Simultaneous Determination and Validation of ... - Ijpwr.com

Simultaneous Determination and Validation of ... - Ijpwr.com Simultaneous Determination and Validation of ... - Ijpwr.com

06.01.2015 Views

ISSN 0976-111X INTERNATIONAL JOURNAL OF PHARMA WORLD RESEARCH (An International Quarterly Published Online Research Journal) www.ijpwr.com E-mail:editorijpwr@gmail.com Title: SIMULTANEOUS DETERMINATION AND VALIDATION OF TELMISARTAN AND RAMIPRIL IN PHARMACEUTICAL DOSAGE FORM BY RP – HPLC AND HPTLC B.Raj kumar*, M.Priyanka 1 , K.V.Subrahmanyam 2 , Syed Mujtaba Ahmed 3 , Ch.RakeshReddy 1 , R.Prem Sagar 1 Department of Pharmaceutical Analysis Mits College of Pharmacy, kodad, Nalgonda Email id: raj_u_001@yahoo.co.in Mobile no: 9966544051, 9000004806 1. Department of Pharmaceutics Mits College of Pharmacy, Kodad, Nalgonda 2. Department of Pharmaceutical Analysis PIPS, Suryapet, Nalgonda 3. Department of Pharmaceutical chemistry Netaji college of Pharmacy, Choutuppal, Nalgonda IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011 1

ISSN 0976-111X<br />

INTERNATIONAL JOURNAL OF PHARMA WORLD RESEARCH<br />

(An International Quarterly Published Online Research Journal)<br />

www.ijpwr.<strong>com</strong><br />

E-mail:editorijpwr@gmail.<strong>com</strong><br />

Title:<br />

SIMULTANEOUS DETERMINATION AND VALIDATION OF<br />

TELMISARTAN AND RAMIPRIL IN PHARMACEUTICAL DOSAGE<br />

FORM BY RP – HPLC AND HPTLC<br />

B.Raj kumar*, M.Priyanka 1 , K.V.Subrahmanyam 2 , Syed Mujtaba Ahmed 3 ,<br />

Ch.RakeshReddy 1 , R.Prem Sagar 1<br />

Department <strong>of</strong> Pharmaceutical Analysis<br />

Mits College <strong>of</strong> Pharmacy, kodad, Nalgonda<br />

Email id: raj_u_001@yahoo.co.in<br />

Mobile no: 9966544051, 9000004806<br />

1. Department <strong>of</strong> Pharmaceutics<br />

Mits College <strong>of</strong> Pharmacy, Kodad, Nalgonda<br />

2. Department <strong>of</strong> Pharmaceutical Analysis<br />

PIPS, Suryapet, Nalgonda<br />

3. Department <strong>of</strong> Pharmaceutical chemistry<br />

Netaji college <strong>of</strong> Pharmacy, Choutuppal, Nalgonda<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

1


ISSN 0976-111X<br />

ABSTRACT:<br />

The present work deals with the studies carried out on the development, optimization<br />

<strong>and</strong> validation <strong>of</strong> RP-HPLC <strong>and</strong> HPTLC methods for the simultaneous estimation <strong>of</strong> Telmisartan<br />

<strong>and</strong> Ramipril in <strong>com</strong>bined dosage form. Market is folded with <strong>com</strong>bination <strong>of</strong> drugs in various<br />

dosage forms. The multi-<strong>com</strong>ponents formulations have gained a lot <strong>of</strong> importance now days due<br />

to greater patient acceptability, increased potency, multiple action, fewer side effects <strong>and</strong> quicker<br />

reliefs. For simultaneous estimation <strong>of</strong> drugs present in multi-<strong>com</strong>ponent dosage form, High<br />

Pressure Liquid Chromatography (HPLC) <strong>and</strong> High Pressure Thin Layer Chromatography<br />

(HPTLC) methods are considered to be most suitable since it is extremely precise, accurate,<br />

sensitive, linear <strong>and</strong> rapid. The literature survey carried out <strong>and</strong> it revealed that several analytical<br />

methods have been reported for estimation <strong>of</strong> these drugs as individual or in <strong>com</strong>bination with<br />

other drugs. So the objective <strong>of</strong> the work is to develop HPLC <strong>and</strong> HPTLC methods for<br />

simultaneous estimation <strong>of</strong> drugs in multi-<strong>com</strong>ponent dosage form for which no analytical<br />

method has been previously reported. Hence, present study have been planned to develop a<br />

specific, precise, accurate, linear, simple <strong>and</strong> rapid HPLC <strong>and</strong> HPTLC methods for simultaneous<br />

estimation <strong>of</strong> Telmisartan <strong>and</strong> Ramipril in tablet dosage form.<br />

Keywords:<br />

RP-HPLC<br />

HPTLC<br />

TELM<br />

RAMI<br />

UV<br />

I.P.<br />

B.P.<br />

Reverse Phase High Performance Liquid Chromatography<br />

High Performance Thin Layer Chromatography<br />

Telmisartan<br />

Ramipril<br />

Ultra-Violet<br />

Indian Pharmacopoeia<br />

British Pharmacopoeia<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

2


ISSN 0976-111X<br />

INTRODUCTION:<br />

The present work deals with the studies carried out on the development, optimization <strong>and</strong><br />

validation <strong>of</strong> RP-HPLC <strong>and</strong> HPTLC methods for the simultaneous estimation <strong>of</strong> Telmisartan <strong>and</strong><br />

Ramipril in <strong>com</strong>bined dosage form.<br />

Market is folded with <strong>com</strong>bination <strong>of</strong> drugs in various dosage forms. The multi<strong>com</strong>ponents<br />

formulations have gained a lot <strong>of</strong> importance now a day due to greater patient<br />

acceptability, increased potency, multiple action, fewer side effects <strong>and</strong> quicker relief.<br />

Classification <strong>of</strong> Instrumental Methods <strong>of</strong> Analysis 9-11<br />

Most <strong>of</strong> the instrumental techniques fit in to one <strong>of</strong> the three principal areas such as<br />

Spectroscopy<br />

Electrochemistry<br />

Chromatography<br />

Spectroscopy<br />

Spectroscopy is the measurement <strong>and</strong> interpretation <strong>of</strong> electromagnetic radiation<br />

absorbed, scattered, or emitted by atoms, molecules or other chemical species.<br />

Examples: UV Spectrophotometry, Atomic Spectrometry, Infrared Spectrometry, Raman<br />

Spectrometry, X-Ray Spectrometry, Nuclear Magnetic Resonance Spectrometry, Electron Spin<br />

Resonance Spectrometry.<br />

Electrochemistry<br />

In this, each basic electrical measurement <strong>of</strong> current like resistance <strong>and</strong> voltage has<br />

been measured alone or in <strong>com</strong>bination for analytical purposes.Examples: Potentiometry,<br />

Voltametric Techniques, Amperometric Techniques, Electrogravimetry <strong>and</strong> Conductance<br />

Techniques<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

3


ISSN 0976-111X<br />

CHROMATOGRAPHY<br />

The term ‘Chromatography’ covers those processes aimed at the separation <strong>of</strong> the various<br />

species <strong>of</strong> a mixture on the basis <strong>of</strong> their distribution characteristics between a stationary <strong>and</strong> a<br />

mobile phase. Chromatographic methods can be classified most practically according to the<br />

stationary <strong>and</strong> mobile phases, as shown in the following table<br />

Classification <strong>of</strong> Chromatographic methods<br />

Stationary phase Mobile phase Method<br />

Solid<br />

Liquid<br />

Liquid<br />

Liquid<br />

Gas<br />

Adsorption column, thin-layer, ion exchange,<br />

High performance liquid chromatography.<br />

Partition, column, thin-layer, HPLC, paper<br />

chromatography.<br />

Gas – Liquid Chromatography.<br />

A. Method Development in Chromatography (HPLC <strong>and</strong> HPTLC) 1-12<br />

Modes <strong>of</strong> Chromatography<br />

Modes <strong>of</strong> chromatography are defined essentially according to the nature <strong>of</strong> the<br />

interactions between the solute <strong>and</strong> the stationary phase, which may arise from hydrogen<br />

bonding, V<strong>and</strong>er walls forces, electrostatic forces or hydrophobic forces or basing on the size <strong>of</strong><br />

the particles (e.g. Size exclusion chromatography).<br />

Different modes <strong>of</strong> chromatography are as follows:<br />

• Normal Phase Chromatography<br />

• Reversed Phase Chromatography<br />

• Reversed Phase – ion pair Chromatography<br />

• Ion Chromatography<br />

• Ion-Exchange Chromatography<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

4


ISSN 0976-111X<br />

• Affinity Chromatography<br />

• Size Exclusion Chromatography<br />

Adsorption chromatography or normal phase chromatography<br />

In normal phase chromatography, the stationary phase is a polar adsorbent <strong>and</strong> the mobile<br />

phase is generally a mixture <strong>of</strong> non-aqueous solvents.<br />

The silica structure is saturated with silanol groups at the end. These OH groups are<br />

statistically disturbed over the whole <strong>of</strong> the surface. The silanol groups represent the active sites<br />

(very polar) in the stationary phase. This forms a weak type <strong>of</strong> bond with any molecule in the<br />

vicinity when any <strong>of</strong> the following interactions are present.<br />

→ Dipole-induced dipole,<br />

→ Dipole-dipole,<br />

→ Hydrogen bonding,<br />

→ π-Complex bonding,<br />

These situations arise when the molecule has one or several atoms with lone pair electron<br />

or a double bond. The absorption strengths <strong>and</strong> hence k’ values (elution series) increase in the<br />

following order. Saturated hydrocarbons < olefins < aromatics < organic halogen <strong>com</strong>pounds <<br />

sulphides < ethers< esters < aldehydes <strong>and</strong> ketones < amines < sulphones < amides < carboxylic<br />

acids. The strength <strong>of</strong> interactions depends not only on the functional groups in the sample<br />

molecule but also on steric factors. If a molecule has several functional groups, then the most<br />

polar one determines the reaction properties.<br />

Chemically modified silica, such as the aminopropyl, cyanopropyl <strong>and</strong> diol phases is<br />

useful alternatives to silica gel as stationary phase in normal phase chromatography.<br />

The aminopropyl <strong>and</strong> cyanopropyl phases provide opportunities for specific interactions<br />

between the analyte <strong>and</strong> the stationary phases <strong>and</strong> thus <strong>of</strong>fer additional options for the<br />

optimizations <strong>of</strong> separations. Other advantages <strong>of</strong> bonded phases lie in their increased<br />

homogeneity <strong>of</strong> the phase surface.<br />

Reversed Phase Chromatography<br />

In 1960’s chromatographers started modifying the polar nature <strong>of</strong> silanol group by<br />

chemically reacting silica with organic silanes. The objective was to make less polar or non polar,<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

5


ISSN 0976-111X<br />

so that polar solvents can be used to separate water-soluble polar <strong>com</strong>pounds. Since the ionic<br />

nature <strong>of</strong> the chemically modified silica is now reversed i.e. it is non-polar or the nature <strong>of</strong> the<br />

phase is reversed. The chromatographic separation carried out with such silica is referred to as<br />

reversed- phase chromatography. The retention <strong>of</strong> the <strong>com</strong>pounds decreases in the following<br />

order: aliphatics > induced dipoles (i.e. CCl4) > permanent dipoles (e.g.CHCl3) > weak lewis<br />

bases (ethers, aldehydes, ketones) > strong lewis bases (amines) > weak lewis acids (alcohols,<br />

phenols) > strong lewis acids (carboxylic acids). Also the retention increases as the number <strong>of</strong><br />

carbon atoms increases.<br />

As a general rule the retention increases with increasing contact area between sample<br />

molecule <strong>and</strong> stationary phase i.e. with increasing number <strong>of</strong> water molecules, which are released<br />

during the absorption <strong>of</strong> a <strong>com</strong>pound. Branched chain <strong>com</strong>pounds are eluted more rapidly than<br />

their corresponding normal isomers.<br />

In reversed phase systems the strong attractive forces between water molecules arising<br />

from the 3-dimentional inter molecular hydrogen bonded network, from a structure <strong>of</strong> water that<br />

must be distorted or disrupted when a solute is dissolved. Only higher polar or ionic solutes can<br />

interact with the water structure.<br />

Chemically bonded octadecyl silane (ODS) an alkaline with 18 carbon atoms, it is the<br />

most popular stationary phase used in pharmaceutical industry. Since most pharmaceutical<br />

<strong>com</strong>pounds are polar <strong>and</strong> water soluble, the majority <strong>of</strong> HPLC methods used for quality<br />

assurance, de<strong>com</strong>position studies, quantitative analysis <strong>of</strong> both bulk drugs <strong>and</strong> their formulations<br />

use ODS HPLC columns. The solvent strength in reversed phase chromatography is reversed<br />

from that <strong>of</strong> adsorption chromatography (silica gel) as stated earlier. Water interacts strongly<br />

highly with silanol groups, so that, adsorption <strong>of</strong> sample molecules be<strong>com</strong>e highly restricted <strong>and</strong><br />

they are rapidly eluted as a result. Exactly opposite applies in reversed phase system; water<br />

cannot wet the non-polar (hydrophobic) alkyl groups such as C18 <strong>of</strong> ODS phase <strong>and</strong> therefore<br />

does not interact with the bonded moiety. Hence water is the weakest solvent <strong>of</strong> all <strong>and</strong> gives<br />

slowest elution rate. The elution time (retention time) in reversed phase chromatography<br />

increases with increasing amount <strong>of</strong> water in the mobile phase.<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

6


ISSN 0976-111X<br />

HIGH PERFORMANCE LIQUID CHROMATOGRAPHY 1<br />

High Performance Liquid Chromatography (HPLC) is the fastest growing analytical<br />

technique for the analysis <strong>of</strong> drugs. Its simplicity, high specificity <strong>and</strong> wide range <strong>of</strong> sensitivity<br />

make it ideal for the analysis <strong>of</strong> many drugs in both dosage forms <strong>and</strong> biological fluids. In HPLC<br />

the separation is about 100 times faster than the conventional liquid chromatography due to<br />

packing <strong>of</strong> stationary phase particles in the range <strong>of</strong> 5-10µm.<br />

Schematic Representation <strong>of</strong> HPLC<br />

Solvent container Pump Damping unit Injection port<br />

|<br />

Column<br />

|<br />

Recorder Detector<br />

|<br />

Effluent<br />

HIGH PERFORMANCE THIN LAYER CHROMATOGRAPHY 2<br />

High Performance Thin Layer Chromatography (HPTLC) is a powerful separation tool<br />

for quantitative analysis. It can simultaneously h<strong>and</strong>le several samples even <strong>of</strong> divergent nature<br />

<strong>and</strong> <strong>com</strong>position. HPTLC is the most simple separation technique to day available to the analyst.<br />

Features <strong>of</strong> HPTLC<br />

quantitative analysis:<br />

The following are some <strong>of</strong> the special features <strong>of</strong> HPTLC, which make it suitable for<br />

<br />

<br />

<br />

<br />

<strong>Simultaneous</strong> processing <strong>of</strong> sample <strong>and</strong> st<strong>and</strong>ard.<br />

Better analytical precision <strong>and</strong> accuracy, less need for internal st<strong>and</strong>ard.<br />

Lower analysis time <strong>and</strong> less cost for analysis.<br />

Simple sample preparation.<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

7


ISSN 0976-111X<br />

<br />

<br />

<br />

<br />

<br />

Can h<strong>and</strong>le samples <strong>of</strong> divergent nature.<br />

No prior treatment for solvents like filtration <strong>and</strong> degassing.<br />

Low mobile phase consumption for sample.<br />

Visual detection is possible.<br />

Since fresh stationary <strong>and</strong> mobile phase are used for each analysis there are no chances<br />

for contamination.<br />

Schematic procedure for HPTLC<br />

The various steps involved in HPTLC are schematically represented as follows:<br />

Sample <strong>and</strong> st<strong>and</strong>ard<br />

Preparation<br />

Selection <strong>of</strong><br />

chromatographic layer<br />

Layer pre-washing<br />

Layer pre-conditioning<br />

Application <strong>of</strong> sample <strong>and</strong> st<strong>and</strong>ard<br />

Chromatographic development<br />

Detection<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

8<br />

Scanning <strong>and</strong> documentation <strong>of</strong> chromatoplate


ISSN 0976-111X<br />

Steps involved in HPTLC<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Selection <strong>of</strong> chromatographic layer<br />

Sample preparation<br />

Pre-washing <strong>of</strong> plates<br />

Activation <strong>of</strong> plates<br />

Application <strong>of</strong> sample <strong>and</strong> st<strong>and</strong>ard<br />

Pre-conditioning<br />

Chromatographic development<br />

Detection<br />

Scanning<br />

Selection <strong>of</strong> Chromatographic Layer<br />

Pre-coated plate<br />

With the availability <strong>of</strong> pre-coated plates <strong>com</strong>mercially, the use <strong>of</strong> laboratory h<strong>and</strong> made<br />

plates is on decline. The pre-coated plates with different support material (glass, aluminium <strong>and</strong><br />

plastic) <strong>and</strong> different sorbent layers are available in different format <strong>and</strong> thickness by various<br />

manufacturers. Usually plates with sorbent thickness <strong>of</strong> 100 to 200µm are used for qualitative <strong>and</strong><br />

quantitative analysis, however for preparative work, plates with sorbent thickness <strong>of</strong> 1 to 2mm<br />

are available in addition to chemically modified layers.<br />

Sample Preparation: The sample preparation procedure is to dissolve the dosage form with<br />

<strong>com</strong>plete recovery <strong>of</strong> intact <strong>com</strong>pound(s) <strong>of</strong> interest <strong>and</strong> minimum <strong>of</strong> matrix with a suitable<br />

concentration <strong>of</strong> analyte(s) for direct application on HPTLC plate. The choice <strong>of</strong> suitable solvent<br />

is very important.<br />

For normal phase chromatography, solvent for dissolving sample should be nonpolar<br />

<strong>and</strong> volatile as far as possible. For reverse phase chromatography, polar solvents are used to<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

9


ISSN 0976-111X<br />

SIMULTANEOUS ESTIMATION OF TELMISARTAN AND RAMIPRIL<br />

BY RP-HPLC<br />

Materials <strong>and</strong> Methods<br />

Instrumentation<br />

s<strong>of</strong>tware.<br />

Shimadzu HPLC-LC 2010 CHT with class VP version 6.12 with chemstation<br />

Reagents <strong>and</strong> Chemicals<br />

• Acetonitrile HPLC grade<br />

• Orthophospharic acid AR rgade<br />

• Potassium di-hydrogen phosphate AR grade<br />

• Methanol HPLC grade<br />

• Water –Milli Q grade<br />

Reference St<strong>and</strong>ards<br />

TELMISARTAN (TELM)<br />

Purity - 99.42%<br />

Loss on Drying - 0.5%<br />

RAMIPRIL (RAMI)<br />

Purity - 100.12%<br />

Loss on Drying - 0.2%<br />

OPTIMIZED CHROMATOGRAPHIC CONDITIONS<br />

Column<br />

: Hypersil ODS C 18 ; 4.6 x 150 mm, 5microns<br />

Mobile Phase : 10 mM pot. Di hydrogen phosphate: acetonitrile(60:40).<br />

PH : 3.0 ±0.01<br />

Flow rate<br />

: 1 ml/min<br />

Detector<br />

: UV<br />

Injection volume : 20µl<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

10


ISSN 0976-111X<br />

Column temperature<br />

Wavelength<br />

Run time<br />

: Ambient<br />

: 245 nm<br />

: 15 minutes.<br />

LABEL CLAIM<br />

TELM - 40 mg<br />

RAMI - 5 mg<br />

PREPARATION OF BUFFER<br />

10mM potassium di-hydrogen phosphate solution is prepared in water. i,e 1360.1 mg<br />

dissolved in 1000 ml <strong>of</strong> distilled water PH is adjusted to 3.0 ±0.01with orthophosphoric acid <strong>and</strong><br />

filtered through 0.45 µm membrane filter.<br />

Preparation <strong>of</strong> Mobile Phase<br />

(60:40).<br />

Mobile phase is prepared by mixing 600 ml <strong>of</strong> buffer <strong>and</strong> 400 ml <strong>of</strong> acetonitrile<br />

Preparation <strong>of</strong> St<strong>and</strong>ard Stock Solution<br />

An accurately weighed quantity <strong>of</strong> 40 mg <strong>of</strong> Telmisartan <strong>and</strong> 5 mg <strong>of</strong> Ramipril is<br />

transferred into a 100 ml volumetric flask. Dissolved with 25 ml <strong>of</strong> methanol <strong>and</strong> diluted to<br />

required volume with mobile phase, having the concentration <strong>of</strong> 0.4 mg/ml <strong>of</strong> Telmisartan <strong>and</strong><br />

0.05 mg/ml <strong>of</strong> Ramipril.<br />

Preparation <strong>of</strong> St<strong>and</strong>ard Solution<br />

From the st<strong>and</strong>ard stock solution 5 ml is pipetted out into 100 ml volumetric flask<br />

<strong>and</strong> made up the volume with mobile phase, having the concentration <strong>of</strong> 0.02 mg/ml <strong>of</strong><br />

Telmisartan <strong>and</strong> 0.0025 mg/ml <strong>of</strong> Ramipril.<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

11


ISSN 0976-111X<br />

Preparation <strong>of</strong> Sample Solution<br />

Twenty tablets were weighed <strong>and</strong> ground to a fine powder. An amount <strong>of</strong> power<br />

equivalent to 40 mg <strong>of</strong> Telmisartan <strong>and</strong> 5 mg <strong>of</strong> Ramipril were weighed accurately <strong>and</strong><br />

transferred into a 100 ml volumetric flask containing 25 ml <strong>of</strong> methanol <strong>and</strong> sonicated for 30 min.<br />

<strong>and</strong> diluted to 100 ml with mobile phase, then the solution was filtered through 0.45 µm<br />

membrane filter <strong>and</strong> 5 ml <strong>of</strong> filtrate taken into 100 ml volumetric flask <strong>and</strong> made up to the<br />

volume with mobile phase.<br />

Estimation Method<br />

The st<strong>and</strong>ard stock solution is diluted to the working concentration equivalent to that<br />

<strong>of</strong> sample. 20 µl <strong>of</strong> the st<strong>and</strong>ard <strong>and</strong> sample are injected separately <strong>and</strong> chromatograms are<br />

generated, with peak area obtained for st<strong>and</strong>ard <strong>and</strong> sample the content <strong>of</strong> Telmisartan <strong>and</strong><br />

Ramipril in each tablet is calculated using the following<br />

Amount <strong>of</strong> drug present<br />

in each tablet =<br />

Sample area x Std. Conc. x Std. Purity x<br />

(1000-Std.Lod) x Avg. weight<br />

Std. area x Sample conc.x100x100<br />

Amount present<br />

Percentage label claim = x 100<br />

Label claim<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

12


ISSN 0976-111X<br />

SIMULTANEOUS ESTIMATION OF TELMISARTAN AND RAMIPRIL<br />

BY HPTLC<br />

Materials <strong>and</strong> Methods<br />

Instrumentation<br />

Application mode : CAMAG Linomat IV Sample applicator<br />

Scanner mode : CAMAG TLC Scanner III<br />

Development mode : CAMAG Twin trough chamber<br />

Reagents <strong>and</strong> Chemicals<br />

Cholor<strong>of</strong>orm (AR Grade)<br />

Methanol (AR Grade)<br />

Ethly acetate (AR Grade)<br />

Reference St<strong>and</strong>ards<br />

Telmisartan (TELM)<br />

Purity - 99.42%<br />

Loss on Drying (Lod) - 0.5%<br />

Ramipril (RAMI)<br />

Purity - 100.12%<br />

Loss on Drying (Lod) - 0.2%<br />

Optimized Chromatographic Conditions<br />

Stationary phase : Pre-coated Silica get plat 60 F 254 prewashed<br />

with methanol.<br />

Mobile Phase : Ethyl Acetate: Chlor<strong>of</strong>orm: Methanol(10:3:1)<br />

Distance between b<strong>and</strong>s : 14 mm<br />

Plate width : 20 X 20 cm<br />

Spotted technique : Ascending development<br />

Scanning mode : Absorbance<br />

Lamp : Deuterium<br />

Wavelength : 272 nm<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

13


ISSN 0976-111X<br />

Lable Claim<br />

TELM - 40 mg<br />

RAMI - 5 M<br />

Preparation <strong>of</strong> Mobile Phase Ten volumes <strong>of</strong> ethyl acetate, three volumes <strong>of</strong> chlor<strong>of</strong>orm <strong>and</strong><br />

one volume <strong>of</strong> methanol are mixed thoroughly <strong>and</strong> used as mobile phase.<br />

Diluent<br />

Methanol <strong>and</strong> chlor<strong>of</strong>orm in the ratio <strong>of</strong> 1:1 is used as diluent.<br />

Preparation <strong>of</strong> St<strong>and</strong>ard Stock Solution<br />

An accurately weighed quantity <strong>of</strong> 40 mg <strong>of</strong> Telmisartan (working st<strong>and</strong>ard <strong>and</strong> 5 mg <strong>of</strong><br />

Ramipril (working st<strong>and</strong>ard) were dissolved in diluent [methanol <strong>and</strong> chlor<strong>of</strong>orm (1:1)] taken in<br />

20ml volumetric flask. Then the volume is made up to 20 ml with diluent, having the<br />

concentration <strong>of</strong> 2 <strong>and</strong> 0.25 mg/ml for Telmisartan <strong>and</strong> Ramipril, respectively.<br />

Preparation <strong>of</strong> St<strong>and</strong>ard Solution<br />

1m <strong>of</strong> st<strong>and</strong>ard stock solution is transferred to 10 ml volumetric flask. Then it is made up<br />

to volume with the diluent, having the concentration <strong>of</strong> 0.2 <strong>and</strong> 0.025 mg/ml for Telmisartan <strong>and</strong><br />

Ramipril, respectively.<br />

Preparation <strong>of</strong> Sample Solution<br />

Twenty tablets are weighed <strong>and</strong> powdered. The powder equivalent to 40 mg <strong>of</strong><br />

Telmisartan <strong>and</strong> 5 mg <strong>of</strong> Ramipril (average weight <strong>of</strong> tablet) was transferred to 20 ml volumetric<br />

flask. The contents were dissolved in diluent <strong>and</strong> the volume is made up to the mark.1m <strong>of</strong> the<br />

above solution is transferred to 10 ml volumetric flask. Then it is made up to volume with the<br />

diluent.The contents were mixed well using ultra-sonicator <strong>and</strong> filtered through Whatman filter<br />

paper number: 42.<br />

Estimation Method<br />

The sample was spotted on the chromplate with help <strong>of</strong> Linomate IV spotting system. The<br />

chromatograms were recorded <strong>and</strong> the peak area for TELM <strong>and</strong> RAMI area values <strong>of</strong> sample<br />

with that <strong>of</strong> st<strong>and</strong>ard using the formula:<br />

Amount <strong>of</strong> drug present<br />

in each tablet =<br />

Sample area x Std. Conc.x Std. Purity x<br />

(1000-Std.Lod) x Avg.weight<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

14


ISSN 0976-111X<br />

Std. area x Sample conc.x100x100<br />

Amount present<br />

Percentage label claim = x 100<br />

Label claim<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

15


ISSN 0976-111X<br />

RESULTS AND DISCUSSIONS:<br />

The assay values are tabulated in Table 1<br />

Chromatogram <strong>of</strong> Telmisartan & Ramipril Formulation<br />

TABLE 1<br />

QUANTITATIVE ESTIMATION<br />

Tablet<br />

Sample<br />

TELM<br />

Lable<br />

Claim (mg)<br />

40<br />

Amount present<br />

(mg/tablet)<br />

40.20<br />

%Lable Claim<br />

100.49<br />

%Deviation<br />

+ 0.49<br />

RAMI<br />

5<br />

5.0099<br />

100.19<br />

+0.19<br />

Each value is mean <strong>of</strong> three readings<br />

The values obtained for the assay are statistically validated <strong>and</strong> tabulated in Table 2<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

16


ISSN 0976-111X<br />

TABLE 2<br />

STATISTICAL DATA FOR QUANTITATIVE ESTIMATION BY RP-HPLC<br />

Tablet<br />

%Label<br />

St<strong>and</strong>ard<br />

%Relative St<strong>and</strong>ard<br />

St<strong>and</strong>ard<br />

sample<br />

Claim (mg)<br />

Deviation<br />

Deviation<br />

Error<br />

TELM<br />

100.49<br />

±1.30<br />

1.29<br />

0.750<br />

RAMI<br />

100.19<br />

±0.1069<br />

0.106<br />

0.016<br />

<strong>Validation</strong><br />

For validating the developed method the parameters like linearity, range, suitability, system<br />

precision <strong>and</strong> assay (recovery studies) are studied .The validation procedures are carried out as<br />

follows.<br />

Linearity <strong>and</strong> Range<br />

The linearity <strong>of</strong> the analytical procedure is its ability (with in given range) to obtain the test<br />

results which are directly proportional to the concentration <strong>of</strong> analyte in the sample. Linearity was<br />

assessed by performing single measurement at several analyte concentrations. A minimum <strong>of</strong> five<br />

concentrations were re<strong>com</strong>mended for linearity studies.<br />

To evaluate the linearity range <strong>of</strong> Telmisartan <strong>and</strong> Ramipril, varying concentrations <strong>of</strong><br />

st<strong>and</strong>ard stock solution is diluted with mobile phase to give minimum <strong>of</strong> five concentrations in<br />

the range <strong>of</strong> 16 to 24µg/ml for Telmisartan <strong>and</strong> 2 to 3 µg for Ramipril. A calibration curve was<br />

constructed for each sample by plotting the peak area obtained against the concentration.<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

17


ISSN 0976-111X<br />

The linearity data for Telmisartan <strong>and</strong> Ramipril are presented as follows<br />

TELMISARTAN<br />

There exists a linear relationship in the concentration range <strong>of</strong> 16 to 14µg/ml for<br />

Telmisartan. The data are tabulated<br />

7000<br />

6000<br />

5000<br />

Peak area<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

y = 237.91x + 1.2888<br />

R 2 = 0.9998<br />

0 5 10 15 20 25 30<br />

Concentration(mg/ml)<br />

Linearity <strong>of</strong> Telmisartan<br />

LINEARITY DATA FOR TELMISARTAN<br />

CONCENTRATION<br />

(µg/ml)<br />

16<br />

PEAK AREA<br />

3838.48<br />

18<br />

4286.70<br />

20<br />

4700.65<br />

22<br />

5237.62<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

18


ISSN 0976-111X<br />

24 5735.72<br />

From the data obtained correlation coefficient, y-intercept <strong>and</strong> slope were calculated to<br />

provide mathematical estimates <strong>of</strong> linearity for Telmisartan <strong>and</strong> tabulated<br />

PARAMETERS<br />

Linear Dynamic range<br />

Correlation coefficient<br />

Slope(m)<br />

Intercept(c)<br />

TELMISARTAN<br />

16-24µg/ml<br />

0.9998<br />

237.91<br />

1.288<br />

ANALYTICAL PERFORMANCE PARA METERS OF TELMISARTAN<br />

RAMIPRIL<br />

There exists a linear relationship in the concentration range <strong>of</strong> 2 to 3µg/ml for<br />

Ramipril. The data are tabulated in Table 4a<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

19


ISSN 0976-111X<br />

Peak area<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

y = 1088.6x + 4.8739<br />

R 2 = 0.9999<br />

0 0.5 1 1.5 2 2.5 3 3.5<br />

Concentration(mcg/ml)<br />

Linearity <strong>of</strong> Ramipril<br />

CONCENTRATION (µg/ml)<br />

2.00<br />

2.25<br />

2.50<br />

2.75<br />

3.00<br />

PEAK AREA<br />

2200.66<br />

2450.88<br />

2725.44<br />

2995.46<br />

3264.802<br />

LINEARITY DATA FOR RAMIPRIL<br />

from the data obtained correlation coefficient, y-intercept <strong>and</strong> slope were calculated to provide<br />

mathematical estimates <strong>of</strong> linearity for Ramipril <strong>and</strong> tabulated<br />

PARAMETERS<br />

RAMIPRAMIL<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

20


ISSN 0976-111X<br />

Linear Dynamic range<br />

2 – 3 µg/ml<br />

Correlation coefficient (r)<br />

0.999<br />

Slope (m)<br />

1088.6<br />

Intercept (c)<br />

4.8739<br />

SUITABILITY<br />

System suitability parameters are tabulated in Table 5<br />

Parameter TELM RAMI<br />

Resolution 4.38<br />

Asymmetry factor 1.48 1.56<br />

No. <strong>of</strong> Theoretical plates 2945 4738<br />

Tailing factor 1.2 1.32<br />

SYSTEM PRECISION<br />

TABLE -5 - SYSTEM SUITABILITY<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

21


ISSN 0976-111X<br />

St<strong>and</strong>ard with the concentration same as that used for assay is injected in<br />

replicate <strong>and</strong> area <strong>of</strong> peak developed are noted down. The values <strong>of</strong> peak <strong>and</strong> percentage relative<br />

st<strong>and</strong>ard deviation are calculated <strong>and</strong> results are tabulated in Table-6<br />

TABLE -6<br />

SYSTEM PRECISION<br />

S. No Area <strong>of</strong> TELM Area <strong>of</strong> RAMI<br />

1 4943.94 2875.08<br />

2<br />

4950.50<br />

2880.50<br />

3<br />

4835.60<br />

2875.52<br />

4<br />

4965.08<br />

2872.62<br />

5<br />

4998.50<br />

2908.63<br />

Mean 4938.724 2882.464<br />

St<strong>and</strong>ard<br />

Deviation 61.376 14.898<br />

%<br />

St<strong>and</strong>ard<br />

Deviation<br />

1.242 0.516<br />

METHOD PRECISION<br />

Sample solution <strong>of</strong> the working concentration is injected in to replicate <strong>and</strong><br />

percentage label claim is calculated for both the drugs. The mean, st<strong>and</strong>ard deviation <strong>and</strong><br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

22


ISSN 0976-111X<br />

percentage st<strong>and</strong>ard deviation are calculated for percentage label claim <strong>of</strong> the drug by using the<br />

same formula that is used for assay calculation <strong>and</strong> results are tabulated in<br />

S. No Label claim <strong>of</strong> TELM Label claim <strong>of</strong> RAMI<br />

1<br />

2<br />

3<br />

4<br />

5<br />

101.11<br />

101.38<br />

99.00<br />

101.65<br />

102.34<br />

100.13<br />

100.32<br />

100.14<br />

100.04<br />

101.30<br />

Mean<br />

101.096 100.368<br />

St<strong>and</strong>ard<br />

Deviation 1.125 0.0520<br />

%<br />

St<strong>and</strong>ard<br />

Deviation<br />

1.11 0.518<br />

METHOD PRECISION<br />

RECOVERY STUDIES<br />

To ensure that the reliability <strong>and</strong> accuracy <strong>of</strong> the method, recovery studies<br />

are carried out by mixing a known concentration <strong>of</strong> st<strong>and</strong>ard drug with the pre analysed sample<br />

<strong>and</strong> the content were reanalyzed by the proposed method.The study was conducted using 5%,<br />

10% <strong>and</strong> 15% recovery. Three sets <strong>of</strong> 20 tablets were crushed <strong>and</strong> each set is mixed with 40 mg<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

23


ISSN 0976-111X<br />

<strong>of</strong> Telmisartan <strong>and</strong> 5mg <strong>of</strong> Ramipril, 80 mg <strong>of</strong> Telmisartan <strong>and</strong> 10 mg <strong>of</strong> Ramipril <strong>and</strong> 120 mg <strong>of</strong><br />

Telmisartan <strong>and</strong> 15 mg <strong>of</strong> Ramipril for 5%, 10% <strong>and</strong> 15% recovery respectively. The method is<br />

processed same as assay method. The results are tabulated in Table-8.<br />

The percentage recovery is calculated using the formula:<br />

Amount <strong>of</strong> drug found<br />

Percentage Recovery = x 10<br />

Amount <strong>of</strong> drug added<br />

Chromatogram <strong>of</strong> Recovery Studies at 5% Level<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

24


ISSN 0976-111X<br />

Chromatogram <strong>of</strong> Recovery Studies at 10% Level<br />

Chromatogram <strong>of</strong> Recovery Studies at 15% Level<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

25


ISSN 0976-111X<br />

Sample<br />

Amt. <strong>of</strong><br />

Amt. <strong>of</strong> drug<br />

% Recovery % Mean<br />

% RSD<br />

st<strong>and</strong>ard<br />

recovered (mg)<br />

Recovery<br />

added (mg)<br />

2<br />

1.986<br />

99.30<br />

2<br />

1.982<br />

99.70<br />

99.16<br />

2<br />

1.970<br />

98.50<br />

4<br />

3.938<br />

98.45<br />

TELMI<br />

4<br />

3.968<br />

99.20<br />

98.90<br />

0.209<br />

4<br />

3.963<br />

99.07<br />

6<br />

5.98<br />

99.6<br />

6<br />

5.94<br />

99.00<br />

99.31<br />

6<br />

5.96<br />

99.33<br />

0.25<br />

0.246<br />

98.40<br />

0.25<br />

0.249<br />

99.60<br />

99.06<br />

0.25<br />

0.248<br />

99.20<br />

0.5<br />

0.498<br />

99.60<br />

RAMI<br />

0.5<br />

0.492<br />

98.40<br />

99.50<br />

0.242<br />

0.5<br />

0.495<br />

99.00<br />

0.75<br />

0.747<br />

99.60<br />

0.75<br />

0.735<br />

98.00<br />

99.11<br />

0.75<br />

0.748<br />

99.73<br />

RECOVERY STUDIES<br />

LIMITS OF MEASUREMENT<br />

There are two important categories within the level <strong>of</strong><br />

measurement. They are Limit <strong>of</strong> detection (LOD) <strong>and</strong> Limit <strong>of</strong> quantification (LOQ).<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

26


ISSN 0976-111X<br />

LOD can be defined as the smallest level analyte that gives a measurable response <strong>and</strong> can be<br />

calculated using the formula:<br />

LOD = 3 x St<strong>and</strong>ard deviation<br />

Slope<br />

LOQ can be defined as the smallest concentration <strong>of</strong> analyte, which gives a response that can be<br />

accurately quantified <strong>and</strong> can be calculated using the formula:<br />

LOQ = 10 x St<strong>and</strong>ard deviation<br />

Slope<br />

TABLE 8<br />

LIMITS OF MEASUREMENTS<br />

Sample<br />

TELM<br />

RAMI<br />

Limit <strong>of</strong><br />

Detection (µg)<br />

9.47<br />

1.16<br />

Limit <strong>of</strong><br />

Quantification (µg)<br />

31.57<br />

3.88<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

27


ISSN 0976-111X<br />

RESULTS AND DISCUSSIONS: HPTLC<br />

Densitogram <strong>of</strong> Telmisartan <strong>and</strong> Ramipril Formulation<br />

1. Telmisartan<br />

2. Ramipril<br />

QUANTITATIVE ESTIMATION<br />

Tablet<br />

sample<br />

TELM<br />

RAMI<br />

Label<br />

Claim (mg)<br />

40<br />

5<br />

Amount present<br />

(mg/tablet)*<br />

39.70<br />

4.98<br />

Each value is mean <strong>of</strong> three readings.<br />

%Label<br />

claim*<br />

99.25<br />

99.60<br />

%Deviation*<br />

-0.75<br />

-0.40<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

28


ISSN 0976-111X<br />

The value obtained for the assay are statistically validated <strong>and</strong> tabulated in table<br />

STATISTICAL DATA<br />

%<br />

Tablet<br />

sample<br />

%Lable<br />

Claim<br />

St<strong>and</strong>ard<br />

deviation<br />

Relative<br />

st<strong>and</strong>ard<br />

St<strong>and</strong>ard<br />

Error<br />

deviation<br />

TELM<br />

RAMI<br />

99.25<br />

99.60<br />

±0.605<br />

±0.290<br />

0.60<br />

0.29<br />

0.34<br />

0.17<br />

<strong>Validation</strong><br />

Linearity <strong>and</strong> Range<br />

The linearity <strong>of</strong> an analytical procedure is its ability (within a given range) to obtain the<br />

test results, which are directly proportional to the concentration <strong>of</strong> analyte in the sample.<br />

Linearity was assessed by performing single measurement at several analyte concentrations. A<br />

minimum <strong>of</strong> five concentration were re<strong>com</strong>mended for linearity studies<br />

To evaluate the linearity range <strong>of</strong> Telmisartan <strong>and</strong> Ramipril, varying concentration <strong>of</strong><br />

st<strong>and</strong>ard stock solution is diluted with mobile phase to give minimum <strong>of</strong> five concentrations in<br />

the range <strong>of</strong> 120 to 280 µg/ml <strong>of</strong> Telmisartan <strong>and</strong> 15 to 35 µg/ml<strong>of</strong> Ramipril. A calibration curve<br />

was constructed for each sample for each samSple by plotting the peak areas obtained against the<br />

concentration.<br />

Telmisartan<br />

There exists a linear relationship in the concentration range <strong>of</strong> 120 to 280µg/ml for<br />

Telmisartan. The data are tabulated shows the line <strong>of</strong> best fit for Telmisartan.<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

29


ISSN 0976-111X<br />

Peak area<br />

30000<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

0<br />

y = 94.728x + 116.59<br />

R 2 = 0.9995<br />

0 50 100 150 200 250 300<br />

Concentration(mcg/ml)<br />

Linearity <strong>of</strong> Telmisartan<br />

LINEARITY DATA FOR TELMISARTAN<br />

Concentration<br />

(µg/ml)<br />

Peak area<br />

120<br />

160<br />

200<br />

240<br />

280<br />

11518.6<br />

15320.3<br />

19205.7<br />

23099.9<br />

26282.9<br />

From the data obtained Correlation coefficient, Y-intercept <strong>and</strong> Slope were calculated to<br />

provided mathematical estimates <strong>of</strong> the degree <strong>of</strong> linearity for Telmisartan <strong>and</strong> it is tabulated<br />

ANALYTICAL PERFORMANCE PARAMETERS OF TELMISARTAN<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

30


ISSN 0976-111X<br />

Parameters<br />

Linear Dynamic Range<br />

Correlation coefficient (r)<br />

Slope (m)<br />

Intercept (c)<br />

Telmisartan<br />

120-280 µg/ml<br />

0.9995<br />

94.728<br />

116.59<br />

Ramipril<br />

There exists a linear relationship in the concentration range <strong>of</strong> 15 to 35µg/ml for<br />

Ramipril. The data are tabulated shows the line <strong>of</strong> best fit for Ramipril...<br />

12000<br />

10000<br />

Peak area<br />

8000<br />

6000<br />

4000<br />

2000<br />

y = 297.16x + 13.154<br />

R 2 = 0.9996<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

Concentration(mcg/ml)<br />

LINEARITY DATA FOR RAMIPRIL (RAMI)<br />

Concentration<br />

Peak area<br />

(µg/ml)<br />

15 4407.1<br />

20 6012.3<br />

25 7498.1<br />

30 8994.4<br />

35 1031.2<br />

From the data obtained Correlation coefficient, Y-intercept <strong>and</strong> Slope were calculated<br />

to provide mathematical estimates <strong>of</strong> the degree <strong>of</strong> linearity for Ramipril <strong>and</strong> it is tabulated<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

31


ISSN 0976-111X<br />

Parameters<br />

Linear Dynamic Range<br />

Correlation coefficient (r)<br />

Slope (m)<br />

Intercept (c)<br />

Ramipril<br />

15 - 35µg/ml<br />

0.9996<br />

297.16<br />

13.154<br />

Analytical Performance Parameters Of Ramipril<br />

Following fig shows the overlain densitogram for linearity <strong>of</strong> TELM <strong>and</strong> RAMI.<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

32


ISSN 0976-111X<br />

Overlain densitogram for Linearity <strong>of</strong> Telmisartan <strong>and</strong> Ramipril<br />

SYSTEM SUITABILITY<br />

System suitability parameters like resolution <strong>and</strong> asymmetry factor or tailing factor are<br />

studied <strong>and</strong> tabulated in following table.<br />

SYSTEM SUITABILITY DATA<br />

Parameters TELM RAMI<br />

Resolution 2.85<br />

Tailing factor 1.6 1.2<br />

SYSTEM PRECISION<br />

St<strong>and</strong>ard solution with the concentration same as that used for assay is spotted in replicate<br />

<strong>and</strong> the areas <strong>of</strong> peak in the developed chromatogram are noted down. The values <strong>of</strong> mean <strong>and</strong><br />

percentage relative st<strong>and</strong>ard deviation are calculated <strong>and</strong> tabulated in following table<br />

SYSTEM PRECISION<br />

S.NO Area <strong>of</strong> TELM Area <strong>of</strong> HCTZ<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

33


ISSN 0976-111X<br />

1<br />

2<br />

3<br />

4<br />

5<br />

19195.6<br />

19189.7<br />

19220.4<br />

19230.5<br />

19180.4<br />

7480.4<br />

7485.6<br />

7392.8<br />

7479.6<br />

7486.4<br />

Mean 19203.32 7464.96<br />

%R.S.D 0.11 0.54<br />

METHOD PRECISION<br />

Sample solution at the working concentration is spotted in replicate <strong>and</strong> percentage label<br />

claim is calculated for both the drugs. The mean <strong>and</strong> percentage relative st<strong>and</strong>ard deviation are<br />

calculated for percentage label claim calculated for the drugs.<br />

The percentage label claims for the drugs are calculated using the same formula, used for<br />

assay calculation.<br />

The average/mean, percentage relative st<strong>and</strong>ard deviation for the percentage label claims<br />

are calculated for both the drugs <strong>and</strong> the data are tabulated in Table<br />

METHOD PRECISION DATA<br />

S.NO<br />

%Label claim<br />

TELM<br />

HCTZ<br />

1<br />

2<br />

3<br />

4<br />

5<br />

99.01<br />

98.99<br />

99.15<br />

98.20<br />

98.94<br />

99.06<br />

99.12<br />

97.90<br />

99.04<br />

99.14<br />

Mean 99.05 98.85<br />

%R.S.D 0.37 0.53<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

34


ISSN 0976-111X<br />

RECOVERY STUDIES<br />

To ensure the reliability <strong>of</strong> the method, recovery were carried out by mixing a<br />

known quantity <strong>of</strong> st<strong>and</strong>ard drug with the pre-analyzed sample <strong>and</strong> the content were reanalyzed<br />

by the proposed method.<br />

The study was conducted using 10% recovery. 10 tablets were crushed along with 40mg<br />

<strong>of</strong> Telmisartan <strong>and</strong> 5mg <strong>of</strong> Ramipril (for 10%). The method <strong>of</strong> analysis is same as that <strong>of</strong> assay.<br />

The percentage recovery is calculated using the formula:<br />

Amount <strong>of</strong> drug received<br />

Percentage Recovery = _______________________ x 100<br />

Amount <strong>of</strong> drug added<br />

The results are tabulated in table <strong>and</strong> for densitogram<br />

Recovery Densitogram <strong>of</strong> Telmisartan <strong>and</strong> Ramipril<br />

1. Telmisartan<br />

2. Ramipril<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

35


ISSN 0976-111X<br />

Sample<br />

TELM<br />

RAMI<br />

RECOVERY STUDIES<br />

Amt. <strong>of</strong> std. Amt. <strong>of</strong> drug %<br />

added (mg) recovered (mg) Recovery<br />

4<br />

3.989<br />

99.72<br />

4<br />

3.982<br />

99.55<br />

4<br />

4.012<br />

100.3<br />

0.5<br />

0.496<br />

99.2<br />

0.5<br />

0.501 100.2<br />

0.5<br />

0.499<br />

99.8<br />

Mean%<br />

Recovery<br />

99.85<br />

99.73<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

36


ISSN 0976-111X<br />

SUMMARY AND CONCLUSION<br />

The results <strong>of</strong> proposed RP-HPLC method are summarized in following table<br />

SUMMARY FOR RP-HPLC<br />

Observation<br />

Parameter<br />

TELMI RAMI<br />

Label claim (mg/tab) 40 5<br />

% Label claim<br />

100.49 100.19<br />

% RSD (NMT 2%) 1.29 0.106<br />

Linearity range (µg/ml) 16 to 24 2 to 3<br />

Correlation coefficient (NLT 0.999) 0.9997 0.9998<br />

Resolution 4.38<br />

Asymmetry factor (NMT 2%) 1.48 1.56<br />

Number <strong>of</strong> Theoretical Plates<br />

2945 4738<br />

(NLT 2000)<br />

System precision % RSD (NMT 2%) 1.242 0.516<br />

Method precision % RSD (NMT 2%) 1.11 0.518<br />

% Recovery (98 to 102%) 99.12 99.22<br />

Limit <strong>of</strong> Detection (µg) 9.47 1.16<br />

Limit <strong>of</strong> Quantification (µg) 31.57 3.88<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

37


ISSN 0976-111X<br />

The results <strong>of</strong> proposed RP-HPTLC method are summarized in following table<br />

SUMMARY FOR RP-HPTLC<br />

Observation<br />

Parameter<br />

TELMI RAMI<br />

Label claim (mg/tab) 40 5<br />

% Label claim<br />

99.25 99.60<br />

% RSD (NMT 2%) 0.60 0.29<br />

Linearity range (µg/ml) 120 to280 15 to35<br />

Correlation coefficient (NLT 0.999) 0.9995 0.9996<br />

Resolution 2.85<br />

System precision % RSD (NMT 2%) 0.11 0.54<br />

Method precision % RSD (NMT 2%) 0.37 0.53<br />

% Recovery (98 to 102%) 99.85 99.73<br />

Limit <strong>of</strong> Detection (µg) 187 30<br />

Limit <strong>of</strong> Quantification (µg) 623 103<br />

CONCLUSION<br />

The proposed HPLC <strong>and</strong> HPTLC methods were found to be simple, specific, precise,<br />

accurate <strong>and</strong> rapid for determination <strong>of</strong> Telmisartan <strong>and</strong> Ramipril in <strong>com</strong>bined tablet dosage<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

38


ISSN 0976-111X<br />

form. The mobile phase is simple to prepare <strong>and</strong> economical. The sample recoveries in all<br />

formulations were in good agreement with their respective label claims <strong>and</strong> they suggested non –<br />

interference <strong>of</strong> formulation excipients in the estimation.<br />

Hence, this method can be easily <strong>and</strong> conveniently adopted for routine analysis <strong>of</strong><br />

Telmisartan <strong>and</strong> Ramipril in <strong>com</strong>bined tablet dosage form.<br />

REFERENCES:<br />

1. P.D. Sethi, HPLC: Quantitative Analysis Pharmaceutical Formulations, CBS Publishers<br />

<strong>and</strong> distributors, New Delhi (India), 2001, 3-137.<br />

2. P.D. Sethi, HPTLC, Quantitative Analysis <strong>of</strong> Pharmaceutical Formulations, CBS<br />

Publishers & Distributors, New Delhi (India) 1996,3-30.<br />

3. H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental Methods <strong>of</strong> Analysis, 7 th<br />

edition, CBS publishers <strong>and</strong> Distributors, New Delhi. 1986, 518-521, 580-610.<br />

4. P.N. Arora, P.K. Malhan, Biostatistics, Himalaya Publishers House, India, 113,139-<br />

140,154. Doserge, R.F., ed. “Wilson <strong>and</strong> Gisvold’s text book <strong>of</strong> organic medicinal <strong>and</strong><br />

pharmaceutical chemistry”, 8 th edn, Lippincott <strong>com</strong>pany, 1982.<br />

5. Korolkovas, A., “Essential <strong>of</strong> Medicinal Chemistry”, 2 nd edn, Wiley Interscience, New<br />

York, 1988.<br />

6. Goodman Gilman’s, A., Rall, T.W., Nies, A.S. <strong>and</strong> Taylor, P., “Goodman <strong>and</strong> Gilman’s<br />

the pharmacological basis <strong>of</strong> Therapeutics”, 8 th edn, pergamon press, New York, 1990.<br />

7. Essential <strong>of</strong> medical pharmacology, 5 edition K.D.Tripathi, Jaypeebrothers medical<br />

publishers (p) ltd, New delhi,pageno 591-593.<br />

8. Rang H.P., Dale M.M., Ritter J.M., Moore P.K., pharmacology 5 th Edition; 432,2003.<br />

9. Gurdeep Chatwal, Sahm K. An<strong>and</strong>, Instrumental methods <strong>of</strong> Chemical Analysis, 5 th<br />

edition, Himalaya publishing house, New Delhi, 2002, 1,1-1.8, 2.566-2.570<br />

10. William Kemp, Organic Spectroscopy, Palgrave, New York, 2005,7-10, 328-330<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

39


ISSN 0976-111X<br />

11. D. A. Skoog. F. J. Holler <strong>and</strong> T.A. Nieman, Principle <strong>of</strong> Instrumental Analysis, 5 th<br />

edition, Saunders College Publishing, 1998, 778-787.<br />

12. R. Snyder, J. Kirkl<strong>and</strong>, L. Glajch, Practical HPLC method development, A Wiley<br />

International publication, II Ed, 1997,235,266-268,351-353.653-600.686-695.<br />

13. A. John Adamovies, Chromatographic Analysis <strong>of</strong> Pharmaceutical, Marcel Dekker Inc.<br />

New York, II Ed, 74, 5-15.<br />

14. Anthony C M<strong>of</strong>fat, M David Osselton, Brian Widdop, Clarke’s Analysis <strong>of</strong> Drugs <strong>and</strong><br />

Poisons, Pharamaceutical Press, London, 2004, 2, 1109-1110, 1601-1602.<br />

15. Klaus Florey, Analysis Pr<strong>of</strong>ile <strong>of</strong> Drugs Substances, Academic Press, New York, 2005,<br />

10, 406-435.<br />

16. MS Palled, RP-HPLC determination <strong>of</strong> Telmisartan in tablet dosage forms, Indian Journal<br />

<strong>of</strong> Pharamaceutical Sciences, 2005, 67(1), 108-110.<br />

17. J Shen, HPLC determination <strong>of</strong> Telmisartan in human plasma <strong>and</strong> its application to a<br />

pharmacokinetic study, Pharmazie, 2005, 60(6), 418-20.<br />

18. GG Zheng, RP-HPLC determination <strong>of</strong> the content <strong>and</strong> the related substances <strong>of</strong><br />

Telmisartan, Chinese-Journal-<strong>of</strong>-Pharmaceutical-Analysis, 2005, 25(2).<br />

19. Warthan., spectroscopic determination <strong>of</strong> Ramipril( a novel ASE inhibitor) in dosage<br />

forms, spectroscopy letters, 2001,34(2),211-220.<br />

20. Jian Liu, LC-MS Analysis <strong>of</strong> Ramipril And Its Active Metabolite Ramiprilat In Human<br />

Serum: Application to A Pharmacokinetic Study in the Chinese Volunteers, Chinese<br />

Journal Of Pharmaceutical Analysis, 2005.<br />

21. H Hopka, HPTLC Method Development For <strong>Determination</strong> Of Benzepril And Cilazapril,<br />

in both pure <strong>and</strong> in their <strong>com</strong>mercial dosage forms, Spectroscopy Letters 2004.<br />

22. Wankhede SB, Wadodkar SG, RP-HPLC method for simultaneous estimation <strong>of</strong><br />

Telmisartan <strong>and</strong> hydrochlorothiazide in tablet dosage form, Indian Journal Of<br />

Pharmaceutical Sciences, 2007,69(2), 298-300.<br />

23. Shah PB development <strong>and</strong> validation <strong>of</strong> a HPTLC method for the simultaneous estimation<br />

<strong>of</strong> Telmisartan <strong>and</strong> hydrochlorothiazide in tablet dosage form, Indian Journal Of<br />

Pharmaceutical Sciences, 2007,69(2), 202-205.<br />

24. Zarapakar S.S, RP-HPLC determination <strong>of</strong> Ramipril <strong>and</strong> Hydrochlorothiazide in tablets,<br />

Indian Drugs 2000,37(12), 589-593.<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

40


ISSN 0976-111X<br />

25. G<strong>and</strong>himathi M, RP-HPLC determination <strong>of</strong> Losartan.pot <strong>and</strong> Ramipril in tablets, Indian<br />

Drugs 2002, 41(1), 36-39.<br />

IJPWR VOL 2 ISSUE 2 (Mar-Jun) - 2011<br />

41

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!