05.01.2015 Views

Transformer models in EMTP/ATP

Transformer models in EMTP/ATP

Transformer models in EMTP/ATP

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Transformer</strong> <strong>models</strong> <strong>in</strong><br />

<strong>EMTP</strong>/<strong>ATP</strong><br />

Okt 29, 2012, Bp<br />

S<strong>in</strong>gle phase <strong>Transformer</strong><br />

Ac<br />

i 1<br />

i 2<br />

+<br />

N<br />

V<br />

1 +<br />

1 V 2<br />

-<br />

N 2<br />

-<br />

ϕ


Core design of 3-phase transformers<br />

Triplex core (3 x s<strong>in</strong>gle phase trf)<br />

3-legged stacked core<br />

5-legged stacked core<br />

3/ 19<br />

11/6/2012<br />

<strong>Transformer</strong> <strong>models</strong> <strong>in</strong> <strong>ATP</strong>Draw<br />

• Saturable <strong>Transformer</strong><br />

• BCTRAN<br />

• Hybrid <strong>Transformer</strong><br />

BCT<br />

Y<br />

Y<br />

Y<br />

Z<br />

SAT<br />

XFMR<br />

• Ideal<br />

n:<br />

1<br />

P S<br />

YY<br />

4/ 19<br />

11/6/2012


<strong>Transformer</strong> <strong>models</strong> <strong>in</strong> <strong>ATP</strong>Draw<br />

Selection Object name <strong>ATP</strong> card Description<br />

Ideal 1 phase TRAFO_I SOURCE S<strong>in</strong>gle-phase ideal transformer.<br />

type 18<br />

Ideal 3 phase TRAFO_I3 SOURCE<br />

type 18<br />

3-phase ideal transformer.<br />

Saturable<br />

1 phase<br />

TRAFO_S<br />

BRANCH<br />

TRANSFORMER<br />

S<strong>in</strong>gle-phase saturable transformer.<br />

Saturable<br />

3 phase<br />

SATTRAFO<br />

≥v. 4.0<br />

BRANCH<br />

TRANSFORMER<br />

General saturable transformer.<br />

3-phase. 2 or 3 w<strong>in</strong>d<strong>in</strong>gs. All phaseshifts,<br />

zigzag- and Auto-coupl<strong>in</strong>gs. High<br />

and low reluctance <strong>models</strong>.<br />

# Sat. Y/Y<br />

3-leg<br />

TRAYYH_3<br />

BRANCH<br />

TRANSFORMER<br />

THREE PHASE<br />

3-phase saturable transformer. High<br />

homopolar reluct. (3-leg). 3-ph node.<br />

Preprocess<strong>in</strong>g of manufacturer data.<br />

5/ 19<br />

BCTRAN BCTRAN BRANCH<br />

Type 1...9<br />

Hybrid model XFRM BRANCH<br />

Type 1...9<br />

Direct support of Bctran transformer<br />

matrix model<strong>in</strong>g.<br />

Advanced model based on: Design, test<br />

report or typical values. Direct calculation<br />

of the A-matrix. Sophisticated core<br />

model.<br />

11/6/2012<br />

Saturable <strong>Transformer</strong><br />

H1<br />

R1<br />

X1<br />

R2<br />

X2<br />

X1<br />

Rmag<br />

Xmag<br />

H2<br />

X2<br />

H3<br />

X3<br />

H0<br />

Wye - Delta <strong>Transformer</strong>


Saturable <strong>Transformer</strong> Model<br />

• Uses a star-circuit representation<br />

• User could <strong>in</strong>clude saturation data<br />

• Good for s<strong>in</strong>gle-phase transformers<br />

• Should not be used for 3-phase high<br />

reluctance transformers (if no delta w<strong>in</strong>d<strong>in</strong>g<br />

present)<br />

• The model requires the follow<strong>in</strong>g data:<br />

The voltage rat<strong>in</strong>g of each w<strong>in</strong>d<strong>in</strong>g (w<strong>in</strong>d<strong>in</strong>g!)<br />

The leakage impedance of each w<strong>in</strong>d<strong>in</strong>g<br />

The transformer connectivity <strong>in</strong>formation<br />

BCTRAN<br />

• Admittance matrix model<br />

• Represents a l<strong>in</strong>ear relationship between the primary<br />

and secondary voltages and currents<br />

• [R] and [ωL] -1 must be separated<br />

• BCTRAN support<strong>in</strong>g rout<strong>in</strong>e generates 3-phase<br />

coupled R-L {Type 1,2,3,... .PCH file}<br />

• Data Required<br />

MVA rat<strong>in</strong>g<br />

Nom<strong>in</strong>al L-L voltage (term<strong>in</strong>al and not! w<strong>in</strong>d<strong>in</strong>g)<br />

W<strong>in</strong>d<strong>in</strong>g connections<br />

Short circuit impedances, losses<br />

No-load current and loss


Magnetiz<strong>in</strong>g core model<strong>in</strong>g<br />

• Must be considered <strong>in</strong> the follow<strong>in</strong>g studies<br />

• <strong>Transformer</strong> energization studies<br />

• Load rejection studies<br />

• Switch<strong>in</strong>g of transformer term<strong>in</strong>ated l<strong>in</strong>es<br />

• Ferroresonance studies<br />

• CT saturation<br />

• CCVT model<strong>in</strong>g<br />

• No-load losses <strong>in</strong>clude:<br />

• Eddy current loss and<br />

• Hysteresis loss<br />

• Could be represented with a resistance Rm <strong>in</strong> parallel with the<br />

nonl<strong>in</strong>ear magnetiz<strong>in</strong>g <strong>in</strong>ductance, or<br />

• As external, nonl<strong>in</strong>ear (hysteretic) <strong>in</strong>ductance connected to a<br />

low voltage w<strong>in</strong>d<strong>in</strong>g<br />

Hybrid model - XFMR<br />

• The user can construct the transformer model on<br />

three sources of data:<br />

– Design parameter: specify geometry and material<br />

parameters of the core and w<strong>in</strong>d<strong>in</strong>gs.<br />

– Test report: standard transformer tests.<br />

– Typical values: typical values based on the voltage and<br />

power rat<strong>in</strong>gs.<br />

• The model <strong>in</strong>cludes:<br />

– an <strong>in</strong>verse <strong>in</strong>ductance matrix for the leakage description,<br />

– frequency dependent w<strong>in</strong>d<strong>in</strong>g resistance,<br />

– capacitive coupl<strong>in</strong>g,<br />

– and a topologically correct core model with <strong>in</strong>dividual<br />

saturation and losses <strong>in</strong> legs and yokes.<br />

10 / 19<br />

11/6/2012


Hybrid transformer model<br />

BCTRAN<br />

11 / 19<br />

11/6/2012<br />

Hybrid transformer model<br />

12 / 50<br />

11/6/2012


W<strong>in</strong>d<strong>in</strong>g resistance R(f)<br />

• Their dependence on the frequency is due to<br />

- Sk<strong>in</strong> effects<br />

- Proximity effects<br />

- Eddy currents<br />

• The frequency-dependency of R is represented us<strong>in</strong>g<br />

Foster equivalent circuit (two cells)<br />

13 / 19<br />

11/6/2012<br />

Capacitive effects<br />

• Capacitances between high and low voltage w<strong>in</strong>d<strong>in</strong>gs<br />

and core<br />

• Capacitance between high voltage phases, outer legs,<br />

and grounded elements<br />

14 / 19<br />

11/6/2012


Core representation<br />

• Attached to the fictitious N+1th w<strong>in</strong>d<strong>in</strong>g<br />

• Topologically “correct” core model, with<br />

nonl<strong>in</strong>ear <strong>in</strong>ductances represent<strong>in</strong>g<br />

each leg and limb<br />

– Triplex<br />

– 3- and 5-legged core<br />

• Flux l<strong>in</strong>kage-current relation by Frolich<br />

equation and relative lengths and<br />

areas.<br />

• Fitt<strong>in</strong>g to Test Report<br />

λ<br />

i<br />

λ =<br />

a'<br />

+ b'<br />

⋅|<br />

i |<br />

i<br />

R o<br />

L l R l<br />

L o<br />

R y<br />

L y<br />

L l R l<br />

R y<br />

L y<br />

L l R l<br />

R o<br />

L o<br />

15 / 19<br />

11/6/2012<br />

<strong>Transformer</strong> model<strong>in</strong>g at high<br />

frequency<br />

• <strong>Transformer</strong> <strong>models</strong> <strong>in</strong> <strong>EMTP</strong> are valid for<br />

frequencies up to 2 kHz<br />

• To study phenomena with characteristic frequency <strong>in</strong><br />

range of 2 - 30 kHz, capacitive coupl<strong>in</strong>g among<br />

w<strong>in</strong>d<strong>in</strong>gs and to ground must be added<br />

• Above 30 kHz a more detailed representation of<br />

<strong>in</strong>ternal w<strong>in</strong>d<strong>in</strong>g arrangement is required<br />

– Interw<strong>in</strong>d<strong>in</strong>g and <strong>in</strong>terturn/disks capacitances must be taken<br />

<strong>in</strong>to account<br />

• Above 100 kHz the presence of ferromagnetic<br />

material has just secondary importance.


<strong>Transformer</strong> model<strong>in</strong>g guidel<strong>in</strong>es<br />

PARAMETER/<br />

EFFECT<br />

Low Frequency<br />

Transients<br />

Slow Front<br />

Transients<br />

Fast Front<br />

Transients<br />

Very Fast Front<br />

Transients<br />

Short-circuit<br />

impedance<br />

Very important Very important Important Negligible<br />

Saturation<br />

Very important<br />

Very<br />

Important (1)<br />

Negligible<br />

Negligible<br />

Iron losses Important (2) Important Negligible Negligible<br />

Eddy currents Very important Important Negligible Negligible<br />

Capacitive<br />

coupl<strong>in</strong>g<br />

Negligible<br />

Important<br />

Very<br />

important<br />

Very important<br />

(1) Only for transformer energization phenomena, otherwise important<br />

(2) Only for resonance phenomena<br />

17 / 19<br />

11/6/2012<br />

Application: CT model<strong>in</strong>g<br />

ip’ Rp Lp Rs Ls<br />

Es<br />

is<br />

im<br />

imr<br />

Rm<br />

imx<br />

Lm<br />

Rl<br />

18 / 19<br />

11/6/2012


Application: CCVT model<strong>in</strong>g<br />

HV Bus Bar<br />

C<br />

1<br />

LC<br />

SDT<br />

C<br />

2<br />

LP<br />

FSC<br />

ZB<br />

PLC<br />

L d<br />

19 / 19<br />

11/6/2012

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!