05.01.2015 Views

Elektronika 2012-01 I.pdf - Instytut Systemów Elektronicznych ...

Elektronika 2012-01 I.pdf - Instytut Systemów Elektronicznych ...

Elektronika 2012-01 I.pdf - Instytut Systemów Elektronicznych ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ok LIII nr 1/<strong>2<strong>01</strong>2</strong><br />

• MATERIAŁY • KONSTRUKCJE • UKŁADY<br />

• SYSTEMY • MIKROELEKTRONIKA<br />

• OPTOELEKTRONIKA • FOTONIKA<br />

konstrukcje technologie zastosowania<br />

MIESIECZNIK NAUKOWO-TECHNICZNY<br />

• ELEKTRONIKA MIKROFALOWA<br />

• MECHATRONIKA<br />

• ENERGOELEKTRONIKA • INFORMATYKA<br />

ZESPÓŁ REDAKCYJNY<br />

prof. dr hab. inż. Jerzy Klamka – redaktor naczelny<br />

Bożena Lachowicz – sekretarz redakcji<br />

Stały współpracownik: mgr inż. Cezary Rudnicki<br />

Redaktorzy tematyczni: mgr inż. Wiesław Jabłoński,<br />

mgr inż. Krzysztof Kowalski<br />

Adres redakcji: ul. Chmielna 6 m.6, 00-020 Warszawa,<br />

tel./fax (22) 827 38 79; tel.: (22) 826 65 64,<br />

e-mail: elektronika@red.pl.pl, www.elektronika.orf.pl<br />

Zamówienia na reklamę przyjmuje redakcja lub Dział Reklamy<br />

i Marketingu, ul. Mazowiecka 12, 00-950 Warszawa, skr. 1004, tel./fax<br />

(22) 827 43 66, (22) 826 80 16, e-mail: reklama@sigma-not.pl<br />

Kolportaż: ul. Ku Wiśle 7, 00-716 Warszawa, tel. (22) 840 35 89;<br />

tel./fax: (22) 840 59 49, (22) 891 13 74<br />

RADA PROGRAMOWA<br />

prof. dr hab. inż. Władysław Torbicz (PAN) – przewodniczący<br />

prof. dr hab. inż. Leonard Bolc, dr hab. inż. Jerzy Czajkowski, prof.<br />

dr hab. inż. Andrzej Dziedzic, prof. dr hab. inż. Jerzy Frączek, dr hab<br />

inż. Krzysztof Górecki, dr inż. Józef Gromek, mgr inż. Jan Grzybowski,<br />

prof. dr hab. Ryszard Jachowicz, prof. dr hab. Włodzimierz Janke,<br />

prof. dr hab. Włodzimierz Kalita, inż. Stefan Kamiński, prof. dr hab.<br />

inż. Marian P. Kaźmierkowski, dr inż. Wojciech Kocańda, prof. dr hab.<br />

Bogdan Kosmowski, mgr inż. Zbigniew Lange, dr inż. Zygmunt Łuczyński,<br />

prof. dr hab. inż. Józef Modelski, prof. dr hab. Tadeusz Morawski,<br />

prof. dr hab. Bohdan Mroziewicz, prof. dr hab. Andrzej Napieralski, prof.<br />

dr hab. Tadeusz Pałko, prof. dr hab. inż. Marian Pasko, prof. dr hab. Józef<br />

Piotrowski, prof. dr hab. inż. Ryszard Romaniuk, dr hab. inż. Grzegorz<br />

Różański, prof. dr hab. inż. Edward Sędek, prof. dr hab. Ludwik<br />

Spiralski, prof. dr hab. inż. Zdzisław Trzaska, mgr inż. Józef Wiechowski,<br />

prof. dr hab. inż. Marian Wnuk, prof. dr hab. inż. Janusz Zarębski<br />

Czasopismo dotowane przez Ministerstwo Nauki i Szkolnictwa<br />

Wyższego. Za opublikowane w nim artykuły MNiSzW przyznaje<br />

9 punktów.<br />

SIGMA - NOT<br />

Spółka z o.o.<br />

00-950 Warszawa<br />

skrytka pocztowa 1004<br />

ul. Ratuszowa 11<br />

tel.: (0-22) 818 09 18, 818 98 32<br />

fax: (022) 619 21 87<br />

Internet<br />

http://www.sigma-not.pl<br />

Prenumerata<br />

e-mail: kolportaz@sigma-not.pl<br />

Informacje<br />

e-mail: informacja@sigma-not.pl<br />

“<strong>Elektronika</strong>” jest wydawana<br />

przy współpracy Komitetu Elektroniki<br />

i Telekomunikacji Polskiej Akademii Nauk<br />

IEEE<br />

WYDAWNICTWO<br />

CZASOPISM I KSIĄŻEK<br />

TECHNICZNYCH<br />

Redakcja współpracuje<br />

z Polską Sekcją IEEE<br />

„<strong>Elektronika</strong>” jest notowana<br />

w międzynarodowej bazie IEE<br />

Inspec<br />

Publikowane artykuły naukowe były<br />

recenzowane przez samodzielnych<br />

pracowników nauki<br />

Redakcja nie ponosi odpowiedzialności<br />

za treść ogłoszeń. Zastrzega<br />

sobie prawo do skracania i adiustacji<br />

nadesłanych materiałów.<br />

Indeks 35722<br />

Nakład do 2000 egz.<br />

Skład i druk: Drukarnia SIGMA-NOT Sp. z o.o.<br />

Wersja papierowa ELEKTRONIKI jest wersją pierwotną.<br />

Spis treści ● Contents<br />

Study of IDE as a sensor head for interfacing with handheld<br />

electrochemical analyzer system (Projekt głowicy IDE dla<br />

sensorów do zastosowań w podręcznych systemach analizy<br />

elektrochemicznej) – Velusamy V., Arshak K., Korostynska O.,<br />

Adley C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11<br />

Impact of non-optimal grounding of the CC2420 RFIC on<br />

a 802.15.4 Tyndall sensor wireless mote (Wpływ nieoptymalnego<br />

uziemienia układu CC2420 zgodnego ze standardem<br />

IEEE 802.15.4 na pracę systemu Tyndall Mote) – Haigh P., Buckley<br />

J., O’Flynn B., Ó’Mathúna C. . . . . . . . . . . . . . . . . . . . . . 14<br />

Numerical study of the interface heat transfer characteristics<br />

of micro-cooler with CNT structures (Analiza numeryczna<br />

transferu ciepła przez interfejs mikroradiatora ze strukturami<br />

CNT) – Zhang Y., Wang S., Ma S., Hu Z., Liu J., Sitek<br />

J., Janeczek K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br />

Device for road holes and obstacles detection (Urządzenie<br />

do rozpoznawania dziur oraz przeszkód na drodze) – Gelmuda<br />

W., Kos A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br />

Metal – oxide sensor array for gas detection (Matryca sensorów<br />

na bazie tlenków metali do detekcji gazów) – Gwiżdż P.,<br />

Brudnik A., Zakrzewska K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

Dynamic research of foot pressure distribution – the fourpoints<br />

shoe insert with PVDF sensors (Dynamiczne badania<br />

rozkładu nacisku stopy na podłoże – czteropunktowa wkładka<br />

do obuwia z polimerowymi czujnikami z PVDF) – Klimiec E.,<br />

Zaraska W., Kuczyński Sz. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

Design and realization of a microfluidic capillary sensor based<br />

on a silicon structure and disposable optrodes (Projekt<br />

i realizacja mikrocieczowego czujnika kapilarnego opartego na<br />

przestrzennej strukturze krzemowej z wykorzystaniem włókien<br />

światłowodowych) – Szczepański Z., Borecki M., Szmigiel D.,<br />

Pawlowski M.L.K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28<br />

A compact thermoelectric harvester for waste heat conversion<br />

(Kompaktowy termoelektryczny generator do pozyskiwania<br />

i przetwarzania ciepła odpadowego na energię elektryczną)<br />

– Dziurdzia P., Lichota K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30<br />

An investigation of the quality of the conductive lines deposited<br />

by inkjet printing on different substrates (Badanie<br />

jakości ścieżek przewodzących wytworzonych metodą druku<br />

strumieniowego na różnych podłożach) – Sitek J., Futera K.,<br />

Belavič D., Santo Zarnik M., Kościelski M., Bukat K., Janeczek<br />

K., Kuščer Hrovatin D., Jakubowska M. . . . . . . . . . . . . . . . . . 32<br />

High temperature properties of thick-film and LTCC components<br />

(Wysokotemperaturowe właściwości elementów grubowarstwowych<br />

i LTCC) – Nowak D., Janiak M., Dziedzic A.,<br />

Piasecki T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br />

LTCC microfluidic chip with fluorescence based detection<br />

(Mikroprzepływowy fluorescencyjny czujnik ceramiczny wykonany<br />

techniką LTCC) – Czok M., Malecha K., Golonka L. . . . . 37<br />

Investigation of multiple degradation and rejuvenation cycles<br />

of electroluminescent thick film structures (Badanie<br />

powtarzanych cykli degradacji i regeneracji grubowarstwowych<br />

struktur elektroluminescencyjnych) – Mroczkowski M., Cież M.,<br />

Kalenik J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39


Investigations of passive components embedded in printed<br />

circuit boards (Badania podzespołów biernych wbudowanych<br />

w płytki obwodów drukowanych) – Stęplewski W., Serzysko T.,<br />

Kozioł G., Janeczek K., Dziedzic A. . . . . . . . . . . . . . . . . . . . . . 41<br />

GENESI: Wireless Sensor Networks for structural monitoring<br />

(Bezprzewodowa sieć sensorów do monitorowania<br />

strukturalnego) – O’Flynn B., Boyle D., Popovici E., Magno<br />

M., Petrioli C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br />

Mechanical and thermal properties of SiC – ceramics<br />

substrate interface (Mechaniczne oraz cieplne właściwości<br />

połączenia między strukturą SiC a podłożem ceramicznym)<br />

– Kisiel R., Szczepański Z., Firek P., Guziewicz M.,<br />

Krajewski A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48<br />

Analysis of pulse durability of thin-film and polymer thickfilm<br />

resistors embedded in printed circuit boards (Analiza<br />

odporności impulsowej grubo- i cienkowarstwowych rezystorów<br />

wbudowanych w płytki obwodów drukowanych) – Kłossowicz<br />

A., Dziedzic A., Winiarski P., Stęplewski W., Kozioł G.. . . . . . . 51<br />

Analysis of long-term stability of thin-film and polymer thickfilm<br />

resistors embedded in Printed Circuit Boards (Analiza<br />

stabilności długoczasowejrezystorów cienkowarstwowych oraz<br />

polimerowych rezystorów grubowarstwowych wbudowanych<br />

w płytkiobwodów drukowanych) – Winiarski P., Dziedzic A.,<br />

Kłossowski A., Stęplewski W., Kozioł G.. . . . . . . . . . . . . . . . . . 55<br />

Impedance spectroscopy as a diagnostic tool of degradation<br />

of Solid Oxide Fuel Cells (Spektroskopia impedancyjna jako<br />

narzędzie diagnostyczne degradacji tlenkowych ogniw paliwowych)<br />

– Dunst K., Molin S., Jasiński P. . . . . . . . . . . . . . . . . . . . 59<br />

Analysis of electromagnetic couplingsin hybrid circuit<br />

made on austenitic metal substrate (Analiza sprzężeń elektromagnetycznych<br />

w układach hybrydowych wykonanych na<br />

podłożach ze stali austenitycznej) – Sabat W., Klepacki D.,<br />

Kamuda K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61<br />

EMC aspects in microelectronics structures made in LTCC<br />

technology ( Zagadnienia EMC w mikroelektronicznych strukturach<br />

wytwarzanych w technologii LTCC) – Sabat W., Klepacki<br />

D., Kalita W., Slosarčík S., Jurčišin M., Cabúk P. . . . . . . . . . . 65<br />

Method of processing of thermal images recorded in the<br />

beam displacement modulation technique (Metoda przetwarzania<br />

obrazów termicznych zarejestrowanych techniką<br />

modulacji przestrzennej) – Kosikowski M., Suszyński Z. . . . . . 68<br />

Electrocatalytic sensor based on Nasicon with auxiliary layer<br />

(Czujnik elektrokatalityczny na bazie Nasiconu z warstwą dodatkową<br />

– Strzelczyk A., Jasiński G., Jasiński P., Chachulski B. . . 72<br />

Oxide layers fabricated by spray pyrolysis on metallic surfaces<br />

(Warstwy tlenkowe wytworzone metodą pirolizy aerozolowej<br />

na podłożach metalicznych) – Kobierowska K., Karpińska<br />

M., Molin S., Jasiński P. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74<br />

TECHNIKA SENSOROWA: Mechanoakustyczny czujnik aktywności<br />

układu sercowo-naczyniowego (Mechano-acoustic<br />

sensor of the cardiovascular system activity) – Lewandowski<br />

J., Dziuda Ł., Celiński-Spodar K. . . . . . . . . . . . . . . . . . . . . 77<br />

TECHNIKA MIKROFALOWA I RADIOLOKACJA: Aktywne anteny<br />

radarów wielofunkcyjnych – analiza stanu i perspektywy<br />

rozwoju – część 1 (Active phased antenna array for multifunction<br />

radar – review and perspective development – part 1)<br />

– Sędek E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81<br />

TECHNIKI INFORMATYCZNE: Technologie informacyjne<br />

w predykcji pogodowych zagrożeń w ruchu drogowym (Information<br />

technology in prediction of weather hazards affecting<br />

road traffic) – Mitas A.W., Bernaś M., Bugdol M., Ryguła A. 90<br />

Electronic measurement system for monitoring of geometrical<br />

parameters of rolling shaped metal profiles (Еlektroniczny<br />

system pomiarowy do kontroli parametrów geometrycznych<br />

profili produkowanych na liniach wytłaczarkowych) – Zaharieva<br />

S., Mutkov V., Georgiev I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95<br />

Modulacja amplitudy sygnałem pseudolosowym (Amplitude modulation<br />

with pseudo random signal) – Stępień R., Walczak J. . . 98<br />

Problematyka modelowania w programie SPICE charakterystyk<br />

stałoprądowych elektroizolowanych diodowych modułów<br />

mocy zawierających diody typu PiN oraz diody typu FRED<br />

(Problem of the SPICE modeling of the d.c. characteristics of the<br />

electroisolated power diode modules containing PiN diodes and<br />

fast recovery epitaxial diodes) – Dąbrowski J., Zarębski J. . . . . 103


Streszczenia artykułów ● Summaries of the articles<br />

VELUSAMY V., ARSHAK K., KOROSTYNSKA O., ADLEY C.: Projekt<br />

głowicy IDE dla sensorów do zastosowań w podręcznych systemach<br />

analizy elektrochemicznej<br />

<strong>Elektronika</strong> (LIII), nr 1/<strong>2<strong>01</strong>2</strong>, s. 11<br />

W ostatnich latach wiele publikowano na temat przetworników elektrochemicznych<br />

do różnych zastosowań, między innymi do diagnostyki chorób<br />

zakaźnych, detekcji związków chemicznych, hybrydyzacji DNA i detekcji<br />

patogenicznych mikroorganizmów. Monitorowanie żywności i wody w czasie<br />

rzeczywistym ma globalnie wysoki priorytet a obecność patogenicznych<br />

organizmów jest szczególnie ważnym zagadnieniem w badaniach<br />

środowiska. Chociaż zastosowano różne miary do monitorowania jakości<br />

żywości, takie jak zasady dobrej praktyki rolniczej [1, 2], zasady dobrej<br />

praktyki produkcyjnej [2, 3], system analizy zagrożeń i krytycznych punktów<br />

kontroli (HACCP) [4, 5] system kodów do znakowania żywności [6],<br />

ciągle pojawiają się raporty o wybuchach epidemii.<br />

Przedmiotem pracy jest projekt głowicy czujnika do zastosowania w podręcznym<br />

elektrochemicznym analizatorze do detekcji w czasie rzeczywistym<br />

zmiennych środowiskowych z uwzględnieniem patogenicznych mikroorganizmów.<br />

Cienkowarstwową międzypalczastą złotą elektrodę (IDE),<br />

wykonaną techniką sitodruku, zastosowano jako czujnik do detekcji DNA<br />

występującego w żywności patogenu Bacillus cereus. Zastosowanie Polypyrrole<br />

(PPy) jako matrycy immobilizującej i połączenie modyfikowanej<br />

za pomocą PPy międzypalczastej mikroelektrody z pomiarami impedancji<br />

dało czuły biosensor, który jest zdolny do detekcji DNA. Elektroda IDE<br />

wykonana w technologii cienkowarstwowej jest czuła, szybka i tania. Uzyskano<br />

elektryczną detekcję 100 pM koncentracji DNA immobilizowanego<br />

na zmodyfikowanej przez PPy złotej IDE, o szerokości 400µm.<br />

Słowa kluczowe: przetworniki elektrochemiczne, analizator impedancji;<br />

biosensor; DNA<br />

VELUSAMY V., ARSHAK K., KOROSTYNSKA O., ADLEY C.: Study of<br />

IDE as a sensor head for interfacing with handheld electrochemical<br />

analyzer system<br />

<strong>Elektronika</strong> (LIII), no 1/<strong>2<strong>01</strong>2</strong>, p. 11<br />

Electrochemical sensors for various applications including diagnosis of infectious<br />

diseases, detection of chemicals, DNA hybridization and detection<br />

of pathogenic micro-organisms have been reported in recent years. Realtime<br />

monitoring of food and water is a high priority globally and the presence<br />

of pathogenic micro organisms is a particular environmental concern.<br />

Although various measures like good agricultural practices [1, 2], good<br />

manufacturing practices [2, 3], hazard analysis and critical control point<br />

(HACCP) [4, 5] and the food code indicating approaches [6], have been<br />

taken to monitor the food quality, there are still reports of outbreaks.<br />

Detailed in this work is the design of a sensor head for use in a handheld<br />

electrochemical analyzer system to detect environmental variables including<br />

pathogenic micro-organisms in real-time. A thick-film interdigitated<br />

gold electrode (IDE) prepared by screen printing technique was employed<br />

as a sensor to detect DNA of the foodborne pathogen Bacillus cereus. Polypyrrole<br />

(PPy) was used as an immobilization matrix and the combination<br />

of PPy modified interdigitated micro-electrode with impedance measurements<br />

yielded a sensitive label-free biosensor which was able to detect<br />

DNA. The IDE prepared by thick-film technology is sensitive, rapid and<br />

cost effective. The electrical detection of 100 pM concentration of DNA<br />

immobilized onto the PPy modified gold IDE was achieved, with an IDE<br />

width of 400µm.<br />

Keywords: Electrochemical sensor; impedance analyzer; biosensor;<br />

DNA<br />

HAIGH P., BUCKLEY J., O’FLYNN B., Ó’MATHÚNA C.: Wpływ nieoptymalnego<br />

uziemienia układu CC2420 zgodnego ze standardem IEEE<br />

802.15.4 na pracę systemu Tyndall Mote<br />

<strong>Elektronika</strong> (LIII), nr 1/<strong>2<strong>01</strong>2</strong>, s. 14<br />

Działanie układu dopasowującego wysokiej częstotliwości zależy od integralności<br />

uziemienia. Jeżeli połączenie z masą nie jest właściwe, powstają<br />

dodatkowe elementy pasożytnicze, które mogą degradować funkcjonowanie<br />

układu i prowadzić do niepożądanych wyników. Tradycyjnie, projektanci<br />

mierzą moc fali stojącej dla oceny czy tor W.Cz. pracuje optymalnie,<br />

elementy są dopasowane i uziemione. W artykule pokazano, że są<br />

sytuacje, gdy jakość modulacji może być narażona na szwank z powodu<br />

wady uziemienia, która się nie ujawnia przy pomiarze fali stojącej. Konsekwencją<br />

tego jest zredukowany zakres i niezawodność układu. Pomiary<br />

wykonywano na przykładzie systemu Tyndall Mote z zastosowaniem układu<br />

CC2420 aby zademonstrować jak wadliwe połączenie lutowane pomiędzy<br />

masą a płaszczyzną płytki drukowanej, która powinna być uziemiona,<br />

może prowadzić do degradacji funkcjonowania układu. Zaprezentowano<br />

szczegółową analizę pogorszenia jakości przebiegu, przy jednoczesnym<br />

utrzymywaniu się mocy wyjściowej w akceptowalnych granicach, która<br />

wymagała nowej definicji metrologicznej dla standardu IEEE 802.15.4.<br />

Słowa kluczowe: CC2420, sensory bezprzewodowe, uziemienie, 802.15.4,<br />

wielkość wektora błędu (EVM)<br />

HAIGH P., BUCKLEY J., O’FLYNN B., Ó’MATHÚNA C.: Impact of nonoptimal<br />

grounding of the CC2420 RFIC on a 802.15.4 Tyndall sensor<br />

wireless mote<br />

<strong>Elektronika</strong> (LIII), no 1/<strong>2<strong>01</strong>2</strong>, p. 14<br />

The performance of an RF output matching network is dependent on integrity<br />

of the ground connection. If this connection is compromised in anyway,<br />

additional parasitic elements may occur that can degrade performance<br />

and yield unreliable results. Traditionally, designers measure Constant<br />

Wave (CW) power to determine that the RF chain is performing optimally,<br />

the device is properly matched and by implication grounded. It is shown<br />

that there are situations where modulation quality can be compromised<br />

due to poor grounding that is not apparent using CW power measurements<br />

alone. The consequence of this is reduced throughput, range and<br />

reliability. Measurements are presented on a Tyndall Mote using a CC2420<br />

RFIC to demonstrate how poor solder contact between the ground contacts<br />

and the ground layer of the PCB can lead to the degradation of modulated<br />

performance. Detailed evaluation that required the development of<br />

a new measurement definition for 802.15.4 and analysis is presented to<br />

show how waveform quality is affected while the modulated output power<br />

remains within acceptable limits.<br />

Keywords: CC2420, Wireless Sensors, Grounding, 802.15.4, Error Vector<br />

Magnitude (EVM)<br />

ZHANG Y., WANG S., MA S., HU Z., LIU J., SITEK J., JANECZEK K.:<br />

Analiza numeryczna transferu ciepła przez interfejs mikroradiatora<br />

ze strukturami CNT<br />

<strong>Elektronika</strong> (LIII), nr 1/<strong>2<strong>01</strong>2</strong>, s. 17<br />

Technika mikrochłodzenia stanowi obiecujące rozwiązanie w zarządzaniu<br />

ciepłem systemów elektronicznych wraz ze wzrostem mocy mikroprocesorów.<br />

Nanorurki węglowe (CNTs) mogą być wykorzystane w mikroradiatorach,<br />

jako podstawowy materiał służący do tworzenia struktur rozpraszających<br />

ciepło w ich wnętrzu. Interfejsami w mikroradiatorach opartych<br />

na CNTs są obszary między CNT i substancją chłodzącą oraz miedzy CNT<br />

i klejem. Transfer ciepła przez te interfejsy ma istotny wpływ na wydajność<br />

mikroradiatora. W artykule ukazano wyniki analiz numerycznych transferu<br />

ciepła przez interfejsy pomiędzy CNT i innymi materiałami przeprowadzone<br />

za pomocą symulacji dynamiki molekularnej (MDS) dla różnych przypadków.<br />

Słowa kluczowe: zarządzanie ciepłem, nanorurki węglowe (CNT), Symulacja<br />

dynamiki molekularnej (MDS)<br />

ZHANG Y., WANG S., MA S., HU Z., LIU J., SITEK J., JANECZEK K.:<br />

Numerical study of the interface heat transfer characteristics of micro-cooler<br />

with CNT structures<br />

<strong>Elektronika</strong> (LIII), no 1/<strong>2<strong>01</strong>2</strong>, p. 17<br />

Micro-cooling techniques provide a promising solution for the thermal<br />

management of electronics system with increasing microprocessor powers.<br />

Carbon nanotubes (CNTs) can be utilized in micro-coolers as basic<br />

materials to constitute the heat dissipation structures inside. The interfaces<br />

involved in the CNT-based micro-cooler include the one between the CNT<br />

and the coolant, and the CNT and the adhesive. The heat transfer through<br />

these interfaces plays an important role in the thermal performance of the<br />

micro-cooler. In this paper, numerical investigations on thermal resistance<br />

across interfaces between the CNT and other materials are carried out by<br />

molecular dynamics simulation (MDS), and various cases are studied.<br />

Keywords: Thermal Management, CNT, MDS<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


Streszczenia artykułów ● Summaries of the articles<br />

GELMUDA W., KOS A.: Urządzenie do rozpoznawania dziur oraz przeszkód<br />

na drodze<br />

<strong>Elektronika</strong> (LIII), nr 1/<strong>2<strong>01</strong>2</strong>, s. 19<br />

Na początku XXI wieku ludzkość nadal boryka się ze zjawiskiem niepełnosprawności.<br />

Chociaż istnieje wiele protez oraz wyspecjalizowanych<br />

urządzeń, niektóre problemy ludzi niepełnosprawnych ciągle pozostają<br />

nierozwiązane. Na świecie są miliony osób niewidomych i prawie każda<br />

z nich korzysta z pomocy prostej laski dla niewidomych jako podstawowej<br />

pomocy przy przemieszczaniu się. W celu poprawy bezpieczeństwa osób<br />

niewidomych podczas poruszania się autorzy konstruują specjalne urządzenie<br />

w ramach projektu MOBIAN©. Jednymi z trudniejszych przeszkód<br />

do wykrycia podczas poruszania się osoby niewidomej są dziury i uskoki<br />

w nawierzchni. W tym celu użyty został dalmierz na podczerwień. Do wykrywania<br />

przeszkód zastosowano wiele czujników ultradźwiękowych dla<br />

powiększenia obszaru wykrywania. Artykuł przedstawia projekt urządzenia<br />

do wykrywania przeszkód oraz dziur i uskoków nawierzchni.<br />

Słowa kluczowe: ultradźwięki, podczerwień, sensory, niewidomi, przeszkody,<br />

wykrywanie dziur, symulator<br />

GWIŻDŻ P., BRUDNIK A., ZAKRZEWSKA K.: Matryca sensorów na bazie<br />

tlenków metali do detekcji gazów<br />

<strong>Elektronika</strong> (LIII), nr 1/<strong>2<strong>01</strong>2</strong>, s. 22<br />

Celem projektu było zaprojektowanie i skonstruowanie matrycy półprzewodnikowych<br />

rezystancyjnych czujników gazów przeznaczonej do detekcji<br />

i rozpoznawania składników mieszaniny gazów. W skład matrycy wchodzi<br />

sześć komercyjnych sensorów gazów na bazie tlenków metali umieszczonych<br />

w komorze pomiarowej. Zastosowano również sensory wilgotności<br />

i temperatury. System elektroniczny obsługujący matrycę wykorzystuje mikrokontrolery<br />

z rdzeniem ARM i magistralę CAN co ułatwia jego rekonfigurację<br />

w przypadku zmiany liczby sensorów. Każdy sensor może pracować<br />

w innej temperaturze dzięki zmianie napięcia zasilania jego grzejnika. Zaprojektowany<br />

i skonstruowany system do detekcji gazu został przetestowany<br />

na wodór H 2<br />

, amoniak NH 3<br />

oraz dwutlenek węgla CO 2<br />

.<br />

Słowa kluczowe: czujniki gazów, mikrokontrolery<br />

KLIMIEC E., ZARASKA W., KUCZYŃSKI SZ.: Dynamiczne badania<br />

rozkładu nacisku stopy na podłoże – czteropunktowa wkładka do<br />

obuwia z polimerowymi czujnikami z PVDF<br />

<strong>Elektronika</strong> (LIII), nr 1/<strong>2<strong>01</strong>2</strong>, s. 25<br />

Możliwości ruchowe człowieka, w dużej mierze, zależą od stanu jego stopy.<br />

Ocenić go można, badając rozkład sił nacisku stopy na podłoże. Prawidłowo<br />

zbudowana stopa jest wysklepiona po wewnętrznej stronie, co działa<br />

jak amortyzator, łagodząc wstrząsy spowodowane chodzeniem. Największe<br />

wartości nacisku występują na pięcie i śródstopiu a nieznaczne na wklęśniętej<br />

części stopy, jego wzrost, świadczy o stopniu zdeformowania stopy<br />

np. przy płaskostopiu. W artykule omówiono sposób jego pomiaru przy pomocy<br />

opracowanej przez autorów czteropunktowej wkładki do obuwia, którą<br />

umieścić można w dowolnym obuwiu sportowym. Wielkość nacisku mierzono<br />

na pięcie, wklęśniętej części stopy, śródstopiu i dużym palcu, rejestrując<br />

napięcia wytworzone na czujnikach z piezoelektrycznej folii polimerowej<br />

z PVDF. Rezystancja obciążenia układu pomiarowego wynosiła 10 14 Ω.. Ponieważ<br />

czujnik pomiarowy z piezoelektrycznej folii polimerowej z elektrodami<br />

jest samo – ładującym się kondensatorem pod wpływem odkształceń mechanicznych<br />

a także wykazuje właściwości piroelektryczne, bardzo ważną<br />

rolę w prawidłowym przeprowadzeniu pomiarów, odgrywa układ zerujący.<br />

Zapewnia on powrót układu pomiarowego do punktu wyjścia po wykonaniu<br />

każdego kroku, zapobiegając zniekształceniu wyników pomiarowych.<br />

Słowa kluczowe: czujniki nacisku, PVDF, wady postawy<br />

SZCZEPAŃSKI Z., BORECKI M., SZMIGIEL D., PAWLOWSKI M.L.K.:<br />

Projekt i realizacja mikrocieczowego czujnika kapilarnego opartego<br />

na przestrzennej strukturze krzemowej z wykorzystaniem włókien<br />

światłowodowych<br />

<strong>Elektronika</strong> (LIII), nr 1/<strong>2<strong>01</strong>2</strong>, s. 28<br />

W artykule przedstawiono projekt i omówiono realizację optycznego mikrocieczowego<br />

czujnika kapilarnego, przeznaczonego do badań cieczy chemicznych<br />

i biologicznych. Zasada ich działania oparta jest na wykorzystaniu<br />

zmian sygnału świetlnego przechodzącego przez kapilarę wypełnioną<br />

badaną cieczą. Sygnały optyczne wychodzące z czujnika są przetwarzane<br />

w obwodach optoelektronicznych i przekazywane do komputera. Przy<br />

analizowaniu sygnałów wykorzystywane są sztuczne sieci neuronowe. Dla<br />

poprawienia dokładności pomiarowej, czujnik pracuje w układzie wieloparametrycznym,<br />

rejestrując informacje o podstawowych parametrach cieczy.<br />

Główną zaletą tych czujników jest mała ilość cieczy potrzebnej do badań<br />

i krótki czas pomiaru Optoelektroniczne czujniki kapilarne znajdują zastosowanie<br />

w biotechnologii, diagnostyce medycznej, w wykrywaczach narkotyków<br />

oraz w badaniach właściwości użytkowych biopaliw.<br />

Słowa kluczowe: kapilara optyczna, czujnik mikrocieczowy, czujnik inteligentny,<br />

technologia mikrosystemów, czujnik światłowodowy, czujnik zintegrowany<br />

<br />

GELMUDA W., KOS A.: Device for road holes and obstacles detection<br />

<strong>Elektronika</strong> (LIII), no 1/<strong>2<strong>01</strong>2</strong>, p. 19<br />

At the beginning of the 21 st century the world still deals with some of<br />

people’s disabilities. Although there are many prostheses and special<br />

devices, some problems of disabled people are still unsolved. There are<br />

millions of visually impaired people around the world. Almost every blind<br />

person has to cope with everyday life activities only with the aid of a white<br />

stick. To help the blind people navigate and avoid obstacles and holes,<br />

a device is to be designed as a part of the MOBIAN© project, which is<br />

being carried out by the authors. The holes detection is one of a rather<br />

difficult kind of obstacles to be detected when a blind person is moving.<br />

This detection will employ an infrared ranging which is hard to debug in<br />

a real-time environment. That is why a simulator is highly required. The<br />

obstacles detection will employ an array of ultrasonic sensors to increase<br />

sensing area width. Td.<br />

Keywords: ultrasonic, infrared, sensors, blind people, obstacles, holes<br />

detection, simulator<br />

GWIŻDŻ P., BRUDNIK A., ZAKRZEWSKA K.: Metal – oxide sensor array<br />

for gas detection<br />

<strong>Elektronika</strong> (LIII), no 1/<strong>2<strong>01</strong>2</strong>, p. 22<br />

The aim of this work was to design and construct an array of resistive-type<br />

semiconducting sensors dedicated to detection of gas mixture components.<br />

The array comprises six commercial metal oxide gas sensors placed<br />

in the measuring chamber. Humidity and temperature measurements<br />

are provided by the relevant sensors. Electronic system supporting the<br />

array is based on ARM core microcontrollers and CAN bus architecture<br />

what makes it flexible and easy to reconfigure in respect to the number of<br />

sensors. Each sensor can operate at different temperatures by changing<br />

a heater supply voltage. The designed and constructed gas detection system<br />

has been tested for hydrogen H 2<br />

, ammonia NH 3<br />

and carbon dioxide<br />

CO 2<br />

detection.<br />

Keywords: gas sensors, microcontrollers<br />

KLIMIEC E., ZARASKA W., KUCZYŃSKI SZ.:Dynamic research of foot<br />

pressure distribution – the four-points shoe insert with PVDF sensors<br />

<strong>Elektronika</strong> (LIII), no 1/<strong>2<strong>01</strong>2</strong>, p. 25<br />

The man’s movement possibilities depend on foot deformation. It can<br />

be estimated by foot pressure distribution investigations. Healthy foot<br />

is arched on internal side, what acts like shock absorber, softening jolts<br />

caused by walking. Largest values of pressure appear on heel and metatarsus.<br />

Insignificant values appears on medial arch, and its growth shows<br />

the foot extent deformation eg. flatfoot. Article presents measurement<br />

method of foot pressure on the ground by four-points shoe insole, developed<br />

by authors, which can be placed in any sport footwear. The value of<br />

pressure was measured on heel, medial arch, metatarsus and hallux by<br />

recording values of generated voltage on sensors which were made of<br />

piezoelectric polymer PVDF thin film. Load resistance of measuring setup<br />

was 10 14 Ω. Under the influence of mechanical strain, the sensor, which<br />

is made from piezoelectric polymer film with electrodes, acts like a selfcharging<br />

capacitor. To conduct correct measurements, it is important to<br />

use restart circuit. Restart circuit ensures recovery to starting point after<br />

execution of each step, what prevents charge accumulation in capacitor<br />

and measurement results distortion.<br />

Keywords: pressure sensors, PVDF, faulty posture<br />

SZCZEPAŃSKI Z., BORECKI M., SZMIGIEL D., PAWLOWSKI M.L.K.:<br />

Design and realization of a microfluidic capillary sensor based on<br />

a silicon structure and disposable optrodes<br />

<strong>Elektronika</strong> (LIII), no 1/<strong>2<strong>01</strong>2</strong>, p. 28<br />

In this paper a new design and technology of microfluidic capillary sensors<br />

is presented. Those sensors can be applied for in situ classification of biological<br />

and chemical liquids. The principle of work of capillary sensors is<br />

based on changes of light transmission within capillary filled the liquid subject<br />

to a local heating pulse. An example of its application can be instant<br />

determining of biofuel usability at a filling station. The main advantages of<br />

microfluidic capillary sensors are the small sample volume of about 3 mm 3<br />

and a short time of examination, below 2 minutes. The microfluidic capillary<br />

sensor head has been designed as a 3D hybrid structure working in<br />

conjunction with disposable optical capillary optrodes. The hybrid structure<br />

consists of ceramic base (DBC) and a silicon substrate. The silicon substrate<br />

is fabricated using MEMS micromachining processes.<br />

Keywords: optical capillary, microfluidic sensor, intelligent sensor, microsystem<br />

technology, fiber optic sensors, capillary sensor, MEMS sensors<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


Streszczenia artykułów ● Summaries of the articles<br />

DZIURDZIA P., LICHOTA K.: Kompaktowy termoelektryczny generator<br />

do pozyskiwania i przetwarzania ciepła odpadowego na energię<br />

elektryczną<br />

<strong>Elektronika</strong> (LIII), nr 1/<strong>2<strong>01</strong>2</strong>, s. 30<br />

A artykule przedstawiono kompaktowy generator termoelektryczny składający<br />

się z modułu Peltiera, radiatora, przetwornika ultra niskiego napięcia,<br />

mikrokontrolera oraz czujnika. W artykule zawarto opis konstrukcji mechanicznej<br />

generatora oraz części elektronicznej wraz z układem do zarządzania<br />

mocą. W pracy przedstawiono wyniki testów oraz pomiarów uzyskanych<br />

poziomów mocy oraz napięć w funkcji gradientów temperatury. Na końcu<br />

zamieszczono analizę na temat możliwych zastosowań zaprojektowanego<br />

termogeneratora do zasilania węzłów sieci bezprzewodowych.<br />

Słowa kluczowe: pozyskiwanie energii środowiska, generator termoelektryczny,<br />

przetwarzanie energii cieplnej<br />

DZIURDZIA P., LICHOTA K.: A compact thermoelectric harvester for<br />

waste heat conversion<br />

<strong>Elektronika</strong> (LIII), no 1/<strong>2<strong>01</strong>2</strong>, p. 30<br />

In the paper a compact thermoelectric harvester that consists of a Peltier<br />

module, a small heat sink, an ultra low voltage converter, a microcontroller<br />

(µC) and a sensor is presented. A detailed description of the mechanical<br />

and electronic circuits design for power management is also shown. Results<br />

of tests and measurements of obtained voltage and electrical power<br />

levels against temperature gradients are presented and analyzed. A study<br />

on possible application of the designed thermogenerators to supplying<br />

with electrical power wireless sensor nodes is also provided.<br />

Keywords: energy harvesting, thermoelectric generator, heat conversion<br />

SITEK J., FUTERA K., BELAVIČ D., SANTO ZARNIK M., KOŚCIELSKI<br />

M., BUKAT K., JANECZEK K., KUŠČER HROVATIN D., JAKUBOWSKA<br />

M.: Badanie jakości ścieżek przewodzących wytworzonych metodą<br />

druku strumieniowego na różnych podłożach<br />

<strong>Elektronika</strong> (LIII), nr 1/<strong>2<strong>01</strong>2</strong>, s. 32<br />

W artykule przedstawiono badania jakości ścieżek przewodzących wytworzonych<br />

metodą druku strumieniowego na różnych podłożach. W badaniach<br />

użyto trzech różnych typów podłoży ceramicznych oraz tuszu<br />

opartego na nanoproszku srebra. Stwierdzono, że wytwarzanie ścieżek<br />

przewodzących, poprzez ich nadruk na podłoże z surowej taśmy ceramicznej<br />

LTCC i następnie ich wypalenie z użyciem profilu stosowanego<br />

dla LTCC jest nietechnologiczne. Bardziej obiecujące wyniki uzyskano dla<br />

wstępnie wypalonego podłoża LTCC oraz podłoża z ceramiki alundowej.<br />

Konieczne są jednak dalsze prace celem polepszenia jakości ścieżek na<br />

tych podłożach.<br />

Słowa kluczowe: druk strumieniowy, ścieżki przewodzące, technologia<br />

grubowarstwowa<br />

SITEK J., FUTERA K., BELAVIČ D., SANTO ZARNIK M., KOŚCIELSKI<br />

M., BUKAT K., JANECZEK K., KUŠČER HROVATIN D., JAKUBOWSKA<br />

M.: An investigation of the quality of the conductive lines deposited<br />

by inkjet printing on different substrates<br />

<strong>Elektronika</strong> (LIII), no 1/<strong>2<strong>01</strong>2</strong>, p. 32<br />

In this paper an investigation of the quality of inkjet-printed conductive<br />

lines deposited on different substrates is presented. Three different types<br />

of ceramic substrates as well as an ink based on nanosilver powder were<br />

used for investigations. It was found that the inkjet-printing deposition on<br />

green tape LTCC and then co-firing with the conditions of an LTCC temperature<br />

profile is not a usable technology. More promising results on prefired<br />

LTCC and alumina substrates were obtained, but some additional<br />

efforts are required to improve the quality of the lines.<br />

Keywords: inkjet printing, conductive lines, thick-film technology<br />

NOWAK D., JANIAK M., DZIEDZIC A., PIASECKI T.: Wysokotemperaturowe<br />

właściwości elementów grubowarstwowych i LTCC<br />

<strong>Elektronika</strong> (LIII), nr 1/<strong>2<strong>01</strong>2</strong>, s. 35<br />

Od ponad dziesięciu lat obserwuje się rosnące zainteresowanie w obszarze<br />

elektroniki wysokotemperaturowej. Rozwój materiałów półprzewodnikowych<br />

z szeroką przerwą energetyczną (węglik krzemu, azotek galu) umożliwił wytworzenie<br />

nowej klasy przyrządów pracujących w trudnych warunkach środowiska,<br />

również w wysokiej temperaturze. Wymusza to potrzebę rozwoju<br />

elementów biernych, które wspólnie umożliwią wykonanie w pełni funkcjonalnych<br />

układów elektronicznych. Technologie grubowarstwowa i niskotemperaturowej<br />

ceramiki współwypalnej (LTCC) są powszechnie stosowane<br />

do produkcji różnorodnych elementów pasywnych. Wysoka odporność<br />

temperaturowa materiałów ceramicznych w szczególny sposób kwalifikuje<br />

je do zastosowań w podwyższonej temperaturze. W pracy przedstawiono<br />

charakteryzację elementów grubowarstwowych i LTCC pracujących w temperaturze<br />

do 500°C.<br />

Słowa kluczowe: elementy bierne, technologia grubowarstwowa, niskotemperaturowa<br />

ceramika współwypalana, właściwości elektryczne<br />

NOWAK D., JANIAK M., DZIEDZIC A., PIASECKI T.: High temperature<br />

properties of thick-film and LTCC components<br />

<strong>Elektronika</strong> (LIII), no 1/<strong>2<strong>01</strong>2</strong>, p. 35<br />

For the last ten years there has been observed an increasing interest in<br />

the field of high temperature electronics. The development of engineering<br />

of wide-bandgap semiconductors (SiC, GaN) has brought new class of<br />

electronic devices that can work in harsh environment involving high temperature.<br />

This fact imposes development of passive components to enable<br />

manufacturing of fully functional devices. Low temperature co-fired ceramics<br />

(LTCC) and thick-film technologies are well-established techniques of<br />

fabrication different types of passive components. High thermal resistance<br />

of used materials predestines them for high temperature applications. This<br />

paper deals with characterization of LTCC and thick-film passives operating<br />

at temperature up to 500°C.<br />

Keywords: passive components, thick-film, LTCC, electrical properties<br />

CZOK M., MALECHA K., GOLONKA L.: Mikroprzepływowy fluorescencyjny<br />

czujnik ceramiczny wykonany techniką LTCC<br />

<strong>Elektronika</strong> (LIII), nr 1/<strong>2<strong>01</strong>2</strong>, s. 37<br />

W artykule opisano proces wytwarzania mikroprzepływowego czujnika<br />

fluorescencyjnego, w technologii nisktotemperaturowej ceramiki współwypalanej<br />

LTCC (Low Temperature Co-fired Ceramics Technology). Wykonany<br />

czujnik składa się z łatwo dostępnych i niedrogich elementów elektronicznych,<br />

a także z polimerowych światłowodów PMMA (polimetakrylan<br />

metylu). Pracę mikroprzepływowego czujnika ceramicznego zbadano za<br />

pomocą barwnika fluorescencyjnego. W tym celu przygotowano pięć różnych<br />

stężeń fluoresceiny w etanolu. Roztwory testowe pobudzano źródłem<br />

promieniowania, o długości fali równej 465 nm, a następnie mierzono<br />

(dwoma fotodetektorami) natężenie wyemitowanej wiązki światła. Przeprowadzone<br />

badania wykazały, że możliwa jest detekcja sygnału fluorescencyjnego,<br />

wewnątrz mikroprzepływowego czujnika ceramicznego, za<br />

pomocą powszechnie dostępnych elementów optoelektronicznych.<br />

Słowa kluczowe: mikroprzepływowy, fluorescencja, Lab-on-Chip, LTCC<br />

CZOK M., MALECHA K., GOLONKA L.: LTCC microfluidic chip with<br />

fluorescence based detection<br />

<strong>Elektronika</strong> (LIII), no 1/<strong>2<strong>01</strong>2</strong>, p. 37<br />

This paper presents development and manufacturing processes of the<br />

fluorescence based microfluidic chip using Low Temperature Co-fired Ceramics<br />

technology (LTCC). The LTCC material was chosen because of<br />

its outstanding physical and chemical properties. Moreover, there is a possibility<br />

to integrate electronic and optoelectronic components into single<br />

LTCC microfluidic chip. The manufactured microfluidic chip consists of<br />

inexpensive and commonly available electronic components and PMMA<br />

(poly(methyl methacrylate)) optic fibres. Its performance is investigated<br />

with a fluorescent dye. Five different fluorescein solutions are excited with<br />

465 nm light source, and then the intensity of the emitted fluorescent light<br />

is measured with two photodetectors. The performed experiments have<br />

shown that it is possible to detect fluorescent signal inside the LTCC microfluidic<br />

chip using commonly available optoelectronic components.<br />

Keywords: microfluidic, fluorescence, Lab-on-Chip, LTCC<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


Streszczenia artykułów ● Summaries of the articles<br />

MROCZKOWSKI M., CIEŻ M., KALENIK J.: Badanie powtarzanych<br />

cykli degradacji i regeneracji grubowarstwowych struktur elektroluminescencyjnych<br />

<strong>Elektronika</strong> (LIII), nr 1/<strong>2<strong>01</strong>2</strong>, s. 39<br />

W ramach badań podjęto próbę wykonania wielokrotnej regeneracji zdegradowanych<br />

struktur elektroluminescencyjnych. Do tego celu został przygotowany<br />

zestaw testowych grubowarstwowych źródeł światła. Najpierw<br />

te źródła światła zostały zdegradowane przez starzenie przy zasilaniu napięciem<br />

prostokątnym. Następnie próbki wygrzano celem ich regeneracji.<br />

Taki cykl degradacji i regeneracji został wykonany dwukrotnie. Zmierzono<br />

wybrane parametry badanych struktur. Pomiary zostały wykonane po<br />

przygotowaniu próbek, po ich degradacji i po regeneracji.<br />

Zmierzono luminancję struktur zasilanych napięciem prostokątnym o różnej<br />

częstotliwości. W celu określenia wpływu zmian w warstwie izolacyjnej<br />

na luminancję struktury, zamierzono pojemność próbek. Dodatkowo, podjęto<br />

próbę określenia wpływu degradacji i regeneracji na widmo emisyjne<br />

elektroluminescencyjnych struktur grubowarstwowych.<br />

Słowa kluczowe: ZnS, elektroluminescencja wewnętrzna, struktury elektroluminescencyjne,<br />

ACEL, warstwy grube<br />

MROCZKOWSKI M., CIEŻ M., KALENIK J.: Investigation of multiple<br />

degradation and rejuvenation cycles of electroluminescent thick film<br />

structures<br />

<strong>Elektronika</strong> (LIII), no 1/<strong>2<strong>01</strong>2</strong>, p. 39<br />

An attempt to investigate the possibility of repeated rejuvenation of degraded<br />

electroluminescent (EL) lamps was undertaken. A set of samples<br />

of EL lamps with ZnS:Cu phosphor was fabricated. First, each of these<br />

samples worked for a period of time, driven by square voltage. After this<br />

process of degradation, samples were annealed in order to rejuvenate<br />

them. Such cycles of degradation and rejuvenation were repeated twice.<br />

Several parameters of investigated structures were estimated. Measurements<br />

were performed after fabrication of test samples, after degradation<br />

and after annealing. Luminance of EL lamps driven by voltage of different<br />

value of frequency was measured. Capacitance of these samples was measured<br />

to estimate the influence of changes in insulator layer of EL lamps<br />

on changes of luminance. Also an attempt to investigate the influence of<br />

degradation and rejuvenation on emission spectrum of electroluminescent<br />

thick film structures was undertaken.<br />

Keywords: ZnS, AC electroluminescence, EL lamps, ACEL, thick films<br />

STĘPLEWSKI W., SERZYSKO T., KOZIOŁ G., JANECZEK K., DZIE-<br />

DZIC A.: Badania podzespołów biernych wbudowanych w płytki obwodów<br />

drukowanych<br />

<strong>Elektronika</strong> (LIII), nr 1/<strong>2<strong>01</strong>2</strong>, s. 41<br />

W artykule przedstawiono wyniki badań podzespołów biernych wbudowanych<br />

w płytkę odwodu drukowanego. Rezystory cienkowarstwowe zostały<br />

wykonane ze stopu Ni-P nałożonego na folię miedzianą laminatu FR4<br />

(technologia OhmegaPly ® ), rezystory grubowarstwowe zostały wykonane<br />

metodą druku sitowego z rezystywnej pasty węglowej (Electra ® ED7100)<br />

i węglowo-srebrowej (Electra ® ED7500) a kondensatory wykonano z ultra<br />

cienkiego laminatu (dielektryk foliowany obustronnie miedzią – Farad-<br />

Flex ® ). Wykorzystano również materiał nowej generacji złożony z warstwy<br />

pojemnościowej i rezystywnej (Ohmega/FaradFlex). Materiały te zostały<br />

wbudowane pomiędzy warstwami PCB bez zwiększenia jej grubości.<br />

Słowa kluczowe: rezystor cienkowarstwowy, rezystor grubowarstwowy, pojemność<br />

zagrzebana, płytka obwodu drukowanego, podzespoły wbudowane<br />

STĘPLEWSKI W., SERZYSKO T., KOZIOŁ G., JANECZEK K., DZIE-<br />

DZIC A.: Investigations of passive components embedded in printed<br />

circuit boards<br />

<strong>Elektronika</strong> (LIII), no 1/<strong>2<strong>01</strong>2</strong>, p. 41<br />

In this article the results of embedded passive components investigations<br />

are presented. Thin-film resistors were made with NiP metal alloy on copper<br />

foiled FR4 laminate (OhmegaPly ® technology), thick-film resistors<br />

were printed with carbon (Electra ® ED7100) and carbon-silver (Electra ®<br />

ED7500) inks and capacitors were manufactured with ultra-thin laminate<br />

(FaradFlex ® ). A material of a new generation being a composite of capacitance<br />

and resistance layer (Ohmega/FaradFlex) was also used. These<br />

materials were embedded between layers of the PCB without increase of<br />

its thickness.<br />

Keywords: thin-film resistor, thick-film resistor, buried capacitance, printed<br />

circuit board, embedded passives<br />

O’FLYNN B., BOYLE D., POPOVICI E., MAGNO M., PETRIOLI C.: GE-<br />

NESI: Bezprzewodowa sieć sensorów do monitorowania strukturalnego<br />

<strong>Elektronika</strong> (LIII), nr 1/<strong>2<strong>01</strong>2</strong>, s. 46<br />

Ambitnym celem projektu GENESI jest podniesienie technologii bezprzewodowej<br />

sieci czujników na poziom, na którym będzie ona mogła stać<br />

się rdzeniem następnej generacji systemów dla strukturalnego monitorowania<br />

zdrowia, długowiecznych, wszechobecnych, totalnie rozproszonych<br />

i autonomicznych. Ten cel wymaga podjęcia inżynierskich i naukowych<br />

wyzwań, którym nigdy dotąd nie stawiano czoła. Węzły sensorowe będą<br />

przeprojektowane w celu przełamania bieżących ograniczeń, zwłaszcza<br />

pod względem przechowywania i dostarczania energii (potrzebujemy<br />

urządzeń o wirtualnie nieskończonym czasie życia), odporności na uszkodzenia<br />

i interferencje (dla niezawodnej i krzepkiej pracy). Zdefiniowany zostanie<br />

nowy softwer i protokoły aby w pełni wykorzystać możliwości nowego<br />

hardweru, dostarczając nowe paradygmaty dla wewnątrzwarstwowej<br />

interakcji na wszystkich warstwach stosu protokołu spełniając wymagania<br />

nowej koncepcji jakości obsługi, zorientowanej na aplikacje, wiernie odzwierciedlającej<br />

punkt widzenia i oczekiwania końcowego użytkownika.<br />

W ramach projektu GENESI zostaną opracowane długowieczne węzły sensorowe<br />

drogą połączenia nowatorskich technologii pozyskiwania energii ze<br />

środowiska i zielonych źródeł energii (ogniwa paliwowe o małych wymiarach);<br />

w projekcie GENESI zostaną zdefiniowane modele pozyskiwania<br />

energii, przechowywania energii w super-kondensatorach i dostępności<br />

dodatkowej energii za pomocą ogniw paliwowych, jako dodatek do opracowania<br />

nowych algorytmów i protokołów dynamicznej alokacji zadań pomiarowych<br />

i komunikacyjnych. Zespół projektowy opracuje protokoły komunikacyjne<br />

dla wielkoformatowych heterogenicznych bezprzewodowych sieci<br />

sensorowych posiadających zdolność pozyskiwania energii i zdefiniuje rozproszone<br />

mechanizmy dla oceny kontekstowej i świadomości sytuacyjnej.<br />

W artykule zaprezentowano analizę wymagań dla systemu GENESI sformułowanych<br />

w celu osiągnięcia ambitnych celów projektu. Wychodząc<br />

od prezentowanych wymagań, przedyskutowano kształtujące się specyfikacje<br />

systemu względem jego wybranych elementów. Wynikowy system<br />

będzie oceniany i charakteryzowany w celu sprawdzenia czy jest zdolny<br />

spełnić wymagania funkcjonalne projektu.<br />

Słowa kluczowe: strukturalne monitorowanie zdrowia, zielone bezprzewodowe<br />

sieci sensorowe, źródła energii odnawialnej<br />

O’FLYNN B., BOYLE D., POPOVICI E., MAGNO M., PETRIOLI C.: GE-<br />

NESI: Wireless Sensor Networks for structural monitoring<br />

<strong>Elektronika</strong> (LIII), no 1/<strong>2<strong>01</strong>2</strong>, p. 46<br />

The GENESI project has the ambitious goal of bringing WSN technology<br />

to the level where it can provide the core of the next generation of systems<br />

for structural health monitoring that are long lasting, pervasive and totally<br />

distributed and autonomous. This goal requires embracing engineering<br />

and scientific challenges never successfully tackled before. Sensor nodes<br />

will be redesigned to overcome their current limitations, especially concerning<br />

energy storage and provisioning (we need devices with virtually<br />

infinite lifetime) and resilience to faults and interferences (for reliability and<br />

robustness). New software and protocols will be defined to fully take advantage<br />

of the new hardware, providing new paradigms for cross-layer interaction<br />

at all layers of the protocol stack and satisfying the requirements<br />

of a new concept of Quality of Service (QoS) that is application-driven,<br />

truly reflecting the end user perspective and expectations.<br />

The GENESI project will develop long lasting sensor nodes by combining<br />

cutting edge technologies for energy generation from the environment<br />

(energy harvesting) and green energy supply (small form factor fuel cells);<br />

GENESI will define models for energy harvesting, energy conservation in<br />

super-capacitors and supplemental energy availability through fuel cells,<br />

in addition to the design of new algorithms and protocols for dynamic allocation<br />

of sensing and communication tasks to the sensors. The project<br />

team will design communication protocols for large scale heterogeneous<br />

wireless sensor/actuator networks with energy-harvesting capabilities and<br />

define distributed mechanisms for context assessment and situation awareness.<br />

This paper presents an analysis of the GENESI system requirements in<br />

order to achieve the ambitious goals of the project. Extending from the<br />

requirements presented, the emergent system specification is discussed<br />

with respect to the selection and integration of relevant system components.The<br />

resulting integrated system will be evaluated and characterised<br />

to ensure that it is capable of satisfying the functional requirements of the<br />

project.<br />

Keywords: Structural Health Monitoring, Green Wireless Sensor Networks,<br />

Green Energy Sources<br />

<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


Streszczenia artykułów ● Summaries of the articles<br />

KISIEL R., SZCZEPAŃSKI Z., FIREK P., GUZIEWICZ M., KRAJEWSKI<br />

A.: Mechaniczne oraz cieplne właściwości połączenia między strukturą<br />

SiC a podłożem ceramicznym<br />

<strong>Elektronika</strong> (LIII), nr 1/<strong>2<strong>01</strong>2</strong>, s. 48<br />

W artykule zaprezentowano proces realizacji montażu struktur SiC do<br />

podłoży DBC (ceramiki alundowej dwustronnie pokrytej warstwą Cu o grubości<br />

200 µm) przy zastosowaniu niskotemperaturowego zgrzewania mikroproszkiem<br />

Ag. W badaniach wstępnych, zamiast struktur SiC zastosowano<br />

struktury DBC o wymiarach 3 × 3 mm montowane do podłoża DBC<br />

10 × 10 mm (obie łączone części miały metalizację Au). W montażu wykorzystano<br />

mikroproszki Ag, a łączenie wykonywano przez: wygrzewanie w powietrzu<br />

pod naciskiem oraz przez wygrzewanie w próżni pod naciskiem. W obu<br />

metodach uzyskano dobrą adhezję tuż po łączeniu (z zakresu 8…10 MPa).<br />

Przeprowadzone próby starzeniowe w temperaturze 350°C wskazały, że adhezja<br />

próbek łączonych w powietrzu dramatycznie spada po 24 godzinach<br />

wygrzewania. Natomiast adhezja próbek łączonych pod naciskiem w próżni<br />

1,3 Pa w temperaturach z zakresu 500…550°C po procesach starzeniowych<br />

w temperaturze 350°C przez kilkaset godzin jest dobra (powyżej 10 MPa).<br />

Słowa kluczowe: technologie montażu i hermetyzacji, montaż struktur<br />

SiC, zgrzewanie niskotemperaturowe, mikroproszki Ag<br />

KŁOSSOWICZ A., DZIEDZIC A., WINIARSKI P., STĘPLEWSKI W., KO-<br />

ZIOŁ G.: Analiza odporności impulsowej grubo- i cienkowarstwowych<br />

rezystorów wbudowanych w płytki obwodów drukowanych<br />

<strong>Elektronika</strong> (LIII), nr 1/<strong>2<strong>01</strong>2</strong>, s. 51<br />

Elementy bierne (rezystory, kondensatory, cewki) wbudowane w płytki obwodów<br />

drukowanych (PCB) mogą polepszyć właściwości oraz niezawodność<br />

układów elektronicznych. Stabilność impulsowa jest ważnym parametrem<br />

zarówno elementów biernych jak i urządzeń aktywnych. W przypadku rezystorów<br />

pozwala ona określić szereg właściwości takich jak np. maksymalna<br />

moc rozproszona, zmiana rezystancji lub zjawiska występujące wewnątrz<br />

struktury rezystora po przepłynięciu impulsu wysokonapięciowego. Co więcej<br />

odporność impulsowa określa użyteczność rezystora w obwodach pracujących<br />

impulsowo. Dlatego też w artykule przedstawiono wyniki badań odporności<br />

impulsowej cienkowarstwowych i polimerowych grubowarstwowych rezystorów<br />

utworzonych na powierzchni bądź wbudowanych w płytki obwodów<br />

drukowanych. Badane struktury zostały wytworzone z stopu fosforku niklu<br />

(Ni-P) lub polimerowej pasty rezystywnej na laminacie FR-4 o podobnych<br />

wartościach rezystancji powierzchniowej (25 Ω/kw lub 100 Ω/kw dla stopu<br />

Ni-P oraz 20 Ω/kw lub 200 Ω/kw dla polimerowych past rezystywnych). Odporność<br />

impulsowa została określona na podstawie wyznaczonych parametrów:<br />

maksymalnego nieniszczącego pola elektrycznego, maksymalnej nieniszczącej<br />

powierzchniowej gęstości mocy oraz maksymalnej nieniszczącej<br />

objętościowej gęstości mocy. Parametry te zostały ustalone oraz porównane<br />

dla obu rodzajów rezystorów w zależności od czasu trwania impulsu, geometrii<br />

rezystora (długości, szerokości, współczynnika proporcji), rezystancji<br />

powierzchniowej, rodzaju materiału zastosowanego między warstwą rezystywną<br />

a jej kontaktem oraz rodzajem pokrycia. Na podstawie otrzymanych<br />

wyników przeprowadzonych badań przeanalizowano podobieństwa i różnice<br />

w odporności impulsowej dla obu rodzajów rezystorów.<br />

Słowa kluczowe: płytki obwodów drukowanych, rezystory wbudowane,<br />

odporność impulsowa, fosforek niklu, cienkowarstwowe, grubowarstwowe<br />

WINIARSKI P., DZIEDZIC A., KŁOSSOWSKI A., STĘPLEWSKI W., KO-<br />

ZIOŁ G.: Analiza stabilności długoczasowejrezystorów cienkowarstwowych<br />

oraz polimerowych rezystorów grubowarstwowych wbudowanych<br />

w płytkiobwodów drukowanych<br />

<strong>Elektronika</strong> (LIII), nr 1/<strong>2<strong>01</strong>2</strong>, s. 55<br />

W pracy przedstawiono wyniki badań stabilności długoczasowej rezystorów<br />

cienkowarstwowych oraz polimerowych rezystorów grubowarstwowych<br />

wykonanych na powierzchni lub wbudowanych w płytki obwodów<br />

drukowanych (PCB). Badane struktury testowe zostały wykonane ze<br />

stopu fosforku niklu (Ni-P) lub grubowarstwowych past polimerowych na<br />

podłożu FR-4, z podobnymi rezystancjami powierzchniowymi (25 Ω/kw lub<br />

100 Ω/kw dla stopów Ni-P oraz 20 Ω/kw, 200 Ω/kw lub 5 kΩ/kw dla grubowarstwowych<br />

past polimerowych), lecz zdecydowanie różnej grubości<br />

warstw rezystywnych – 0.1 lub 0.4 μm dla stopów Ni-P oraz około 10…12<br />

μm dla polimerowych warstw rezystywnych. Część próbek z rezystorami<br />

Ni-P pokryto dwoma typami warstwy ochronnej – laminatem RCC (Resin<br />

Coated Copper) lub preimpregnatem LDP (Laser Drillable Prepreg). Grubowarstwowe<br />

rezystory polimerowe zostały nadrukowane na kontaktach<br />

Cu lub Cu z powłoką Ni/Au oraz zostały pokryte warstwą laminatu RCC.<br />

Aby przeprowadzić analizę zachowania długoczasowego elementów wykorzystano<br />

metodę procesu przyśpieszonego starzenia oraz pomiarów<br />

In-Situ (pomiar rezystancji w warunkach narażeń).Wyniki wykazały zupełnie<br />

inne zachowanie się obu grup rezystorów. W przypadku rezystorów<br />

cienkowarstwowych Ni-P geometria niemal nie wpływa na stabilność<br />

długoczasową. Jednak znaczny wpływ na zachowanie się rezystorów był<br />

związany z rezystancją powierzchniową, typem pokrycia oraz temperaturą<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong><br />

KISIEL R., SZCZEPAŃSKI Z., FIREK P., GUZIEWICZ M., KRAJEWSKI<br />

A.: Mechanical and thermal properties of SiC – ceramics substrate<br />

interface<br />

<strong>Elektronika</strong> (LIII), no 1/<strong>2<strong>01</strong>2</strong>, p. 48<br />

In this paper, we present the realization of assembly of SiC samples to<br />

DBC substrate (Direct Bonding Copper Substrate with 200 µm Cu metallization<br />

Au covered) by low-temperature sintering of micro scale Ag powder.<br />

In the preliminary experiments DBC test samples size 3 × 3 mm (in place<br />

of SiC die) were assembled to DBC substrate size 10 × 10 mm using following<br />

methods: a) sintering by Ag powder with Ag microparticles in air by<br />

applying temperature and pressure, b) sintering by Ag powder with Ag microparticles<br />

using temperature, pressure and high vacuum. Methods „a” and<br />

„b” permit to obtain very good adhesion range 8…10 MPa after sintering.<br />

However after ageing test at temperature 350°C in air the adhesion fall<br />

down dramatically. By increasing sintering temperature up to 500…550°C<br />

and sintering in vacuum range 1.3 Pa the adhesion is satisfactory. The<br />

results of these experiments will be presented in paper.<br />

Keywords: packaging technology, SiC die bonding, low temperature sintering,<br />

silver microparticles<br />

KŁOSSOWICZ A., DZIEDZIC A., WINIARSKI P., STĘPLEWSKI W.,<br />

KOZIOŁ G.: Analysis of pulse durability of thin-film and polymer<br />

thick-film resistors embedded in printed circuit boards<br />

<strong>Elektronika</strong> (LIII), no 1/<strong>2<strong>01</strong>2</strong>, p. 51<br />

The passives (resistors, capacitors, inductors) embedded in printed circuit<br />

boards (PCBs) can improve electrical properties and reliability of electronic<br />

systems. Pulse durability is an important parameter of passive components<br />

and active devices. In the case of resistors it allows to determine<br />

many properties including maximum power dissipation, resistance change<br />

or phenomena occurring in resistor structures after pulse surging. Furthermore<br />

pulse durability defines utility for pulse circuits. Thus this work<br />

presents pulse durability of thin-film and polymer thick-film resistors made<br />

on the surface or embedded in Printed Circuit Boards (PCBs). Investigated<br />

test structures were made of nickel–phosphorus (Ni-P) alloy or polymer<br />

thick-film resistive inks on FR-4 laminate with similar sheet resistance (25<br />

Ω/sq or 100 Ω/sq for Ni-P alloys and 20 Ω/sq or 200 Ω/sq for polymer<br />

thick-film inks). Pulse durability was determined by calculating the maximum<br />

nondestructive electric field, maximum nondestructive surface power<br />

density or maximum nondestructive volume power density. These parameters<br />

were determined and compared for both kind of resistors in dependence<br />

on pulse duration, resistor geometry (length, width, aspect ratio),<br />

sheet resistance, interface between resistive film and termination material,<br />

type of cladding. Based on experimental results the similarities and dissimilarities<br />

in pulse durability of both group of resistors were analyzed.<br />

Keywords: printed circuit board, embedded resistor, pulse durability, nickel-phosphorous,<br />

thin film, thick film<br />

WINIARSKI P., DZIEDZIC A., KŁOSSOWSKI A., STĘPLEWSKI W.,<br />

KOZIOŁ G.: Analysis of long-term stability of thin-film and polymer<br />

thick-film resistors embedded in Printed Circuit Boards<br />

<strong>Elektronika</strong> (LIII), no 1/<strong>2<strong>01</strong>2</strong>, p. 55<br />

This work presents long-term stability of thin-film and polymer thick-film<br />

resistors made on the surface or embedded in Printed Circuit Boards<br />

(PCBs). Investigated test structures were made of nickel–phosphorus (Ni-<br />

P) alloy or polymer thick-film resistive inks on FR-4 laminate with similar<br />

sheet resistance (25 Ω/sq or 100 Ω/sq for Ni-P alloys and 20 Ω/sq, 200 Ω/<br />

sq or 5 kΩ/sq for polymer thick-film inks) but decidedly different thickness<br />

of resistive layers - 0.1 or 0.4 μm thick Ni-P alloy and about 10…12 μm<br />

for polymer resistive films). Part of the Ni-P samples was covered with<br />

two different coatings – Resin Coated Copper (RCC) or Laser Drillable<br />

Prepreg (LDP). Polymer thick-film resistors were printed on Cu contacts or<br />

Cu contacts with Ni/Au coating and were covered by RCC film. The In-Situ<br />

accelerated ageing process (resistance of test samples performed directly<br />

at the ageing conditions) was carried out to perform long-term behaviour<br />

analysis. The results showed quite different behaviour of both group of<br />

resistors. In case of Ni-P thin-film resistors resistor geometry almost not<br />

affect long-term stability. However a significant influence on the behaviour<br />

of resistors was due to sheet resistance, type of encapsulation and ageing<br />

temperature. Measurement results revealed the square-root-of-time<br />

dependence of the resistance changes, which represent a single ageing<br />

mechanism. In temperature domain resistance drift can be described by<br />

the Arrhenius equation. The extrapolation of these results could be used to<br />

predict behaviour of resistors in various temperature and times of ageing.


Streszczenia artykułów ● Summaries of the articles<br />

starzenia. Wyniki pomiarów ujawniłyiżzmiany rezystancji są proporcjonalne<br />

do pierwiastka czasu, co prezentuje pojedynczy mechanizm starzenia.W<br />

dziedzinie czasu zmiany rezystancji mogą być opisane równaniem<br />

Arrheniusa, ekstrapolacja tych wyników może być użyta do przewidywania<br />

zachowania się rezystorów w różnych temperaturach oraz czasach starzenia.Taka<br />

ekstrapolacja jest prawie niemożliwa dla polimerowych rezystorów<br />

grubowarstwowych, gdzie wzrost temperatury starzenia prowadzi<br />

do zmian relatywnego dryftu rezystancji względem czasu z dodatniego na<br />

ujemny. W przypadku tych struktur połączenie pomiędzy warstwą rezystywną<br />

a materiałem kontaktu gra istotną rolę w obserwowanym poziomie<br />

względnych zmian rezystancji.<br />

Słowa kluczowe: rezystory wbudowane, płytka obwodu drukowanego,<br />

stabilność długoczasowa, thermal ageing, Fosforek niklu (Ni-P), polimerowe<br />

rezystory grubowarstwowe<br />

Such an extrapolation is almost impossible for polymer-thick film resistors,<br />

where the increase of ageing temperature leads to change relative resistance<br />

drift versus ageing time from positive to negative. In the case<br />

of these structures the interface between resistive films and termination<br />

materials plays a very important role on the level of observed relative resistance<br />

changes.<br />

Keywords: embedded resistors, printed circuit board, long-term stability,<br />

thermal ageing, Nickel-Phosphorus (Ni-P), polymer thick film resistor<br />

DUNST K., MOLIN S., JASIŃSKI P.: Spektroskopia impedancyjna jako<br />

narzędzie diagnostyczne degradacji tlenkowych ogniw paliwowych<br />

<strong>Elektronika</strong> (LIII), nr 1/<strong>2<strong>01</strong>2</strong>, s. 59<br />

Tlenkowe ogniwa paliwowe SOFCs (ang. Solid Oxide Fuel Cells) są obecnie<br />

bliskie komercjalizacji. Wiedza na temat mechanizmów degradacji ogniw<br />

paliwowych jest niezbędna do dalszej poprawy ich działania. Spektroskopia<br />

impedancyjna jest skutecznym narzędziem diagnostycznym. Pozwala ona<br />

na wskazanie który element ogniwa SOFC ulega pogorszeniu oraz pozwala<br />

poznać dokładniej naturę procesu degradacji. W tej pracy degradacja<br />

ogniwa SOFC została zbadana przy użyciu spektroskopii impedancyjnej.<br />

Jako paliwa użyto wodoru oraz metanu. Związek pomiędzy niestabilnością<br />

w metanie (spowodowaną osadzaniem się węgla) a widmem impedancji<br />

został pokazany. Rodzaj degradacji został powiązany z częstotliwościami<br />

charakterystycznymi odczytanymi z widm impedancyjnych.<br />

Słowa kluczowe: spektroskopia impedancyjna, tlenkowe ogniwa paliwowe,<br />

degradacja<br />

DUNST K., MOLIN S., JASIŃSKI P.: Impedance spectroscopy as a diagnostic<br />

tool of degradation of Solid Oxide Fuel Cells<br />

<strong>Elektronika</strong> (LIII), no 1/<strong>2<strong>01</strong>2</strong>, p. 59<br />

Solid Oxide Fuel Cells (SOFCs) are close to commercialization and knowledge<br />

about degradation mechanism become a vital step for their further<br />

improvement. A powerful diagnosis tool is impedance spectroscopy (IS).<br />

The IS allows indicating the degrading element of the SOFC and may<br />

provide knowledge about nature of the degradation process. In this paper<br />

degradation of the SOFCs has been investigated by impedance spectroscopy.<br />

Hydrogen and methane was used as a fuel. Relation between<br />

instability in the methane (caused by carbon formation) and impedance<br />

spectra was revealed. Type of degradation was linked with characteristic<br />

frequencies obtained from the impedance spectra.<br />

Keywords: impedance spectroscopy, solid oxide fuel cell, degradation<br />

SABAT W., KLEPACKI D., KAMUDA K.: Analiza sprzężeń elektromagnetycznych<br />

w układach hybrydowych wykonanych na podłożach ze<br />

stali austenitycznej<br />

<strong>Elektronika</strong> (LIII), nr 1/<strong>2<strong>01</strong>2</strong>, s. 61<br />

W opracowaniu przeanalizowano uwarunkowania geometryczne i technologicznerealizacji<br />

układów hybrydowych na podłożach metalowych austenitycznych<br />

w aspekcie ich kompatybilności elektromagnetycznej.W ujęciu<br />

ilościowym określono jak konfiguracja ścieżek, ich parametry geometryczne<br />

i fizyczne wpływają na wartość parametrów elementów resztkowych,<br />

a w efekcie finalnym na proces propagacji sygnałów szybkozmiennych<br />

w układach wzajemnie równoległych ścieżek. Na bazie przeprowadzonej<br />

analizy zdefiniowano mechanizm propagacji znormalizowanych sygnałów<br />

elektrycznych w tego rodzaju strukturach. Dal wybranych konfiguracji ścieżek<br />

zaprezentowano wyniki obliczeń i pomiarów w celu określenia wpływu<br />

zmian parametrów geometrycznych układu na funkcję przenoszenia.<br />

Słowa kluczowe: mikroelektroniczne układy hybrydowe, EMC, integralność<br />

sygnałów, technologia LTCC<br />

SABAT W., KLEPACKI D., KAMUDA K.: Analysis of electromagnetic<br />

couplingsin hybrid circuit made on austenitic metal substrate<br />

<strong>Elektronika</strong> (LIII), no 1/<strong>2<strong>01</strong>2</strong>, p. 61<br />

The geometrical and technological conditions of realization of hybrid circuits<br />

made on austenitic metal substrate in EMC aspects have been analyzed<br />

in this paper. The influence of path configurations, their geometrical<br />

and physical parameters on parasitic element parameters has been determined<br />

in quantitative point of view. On the basis carried out analysis of<br />

topical materials the mechanisms ofpropagation of normalized electrical<br />

signals in this type structure have been characterized. The degree of modification<br />

of transfer function under changes of the particular geometrical<br />

and physical factors of such type structures has been determined. The<br />

results of calculations and experimental verification have been also presented<br />

for the selected path configurations.<br />

Keywords: microelectronic hybrid circuits, electromagnetic compatibility,<br />

signal integrity,hybrid technology<br />

SABAT W., KLEPACKI D., KALITA W., SLOSARČÍK S., JURČIŠIN M.,<br />

CABÚK P.: Zagadnienia EMC w mikroelektronicznych strukturach<br />

wytwarzanych w technologii LTCC<br />

<strong>Elektronika</strong> (LIII), nr 1/<strong>2<strong>01</strong>2</strong>, s. 65<br />

W opracowaniu zaprezentowano uwarunkowania geometryczne i technologiczne<br />

realizacji układów hybrydowych w technologii LTCC w odniesieniu<br />

do kwestii kompatybilności elektromagnetycznej. W ujęciu ilościowym<br />

określono jak konfiguracja ścieżek, ich parametry geometryczne i fizyczne<br />

wpływają na wartość parametrów elementów resztkowych. Zaprezentowano<br />

wyniki obliczeń i pomiarów parametrów resztkowych dla wybranych<br />

charakterystycznych konfiguracji wzajemnie sprzężonych układów ścieżek.<br />

Określono ilościowo wpływ konfiguracji ścieżek oraz parametrów<br />

elektrycznych dla znormalizowanych sygnałów na efektywność procesu<br />

propagacji sygnałów zakłócających w tego typu strukturach.<br />

Słowa kluczowe: mikroelektroniczne układy hybrydowe, EMC, integralność<br />

sygnałów, technologia LTCC<br />

SABAT W., KLEPACKI D., KALITA W., SLOSARČÍK S., JURČIŠIN M.,<br />

CABÚK P.: EMC aspects in microelectronics structures made in<br />

LTCC technology<br />

<strong>Elektronika</strong> (LIII), no 1/<strong>2<strong>01</strong>2</strong>, p. 65<br />

The geometrical and technological conditions of realization of hybrid circuits<br />

made in LTCC technology in EMC aspects have been analyzed in<br />

this paper. The results of calculations and measurements of the change<br />

interval of parasitic element parameters in mutually parallel path systems<br />

have been presented for selected characteristic configurations of conducted<br />

path systems. In terms of quantity the influence of geometrical configuration<br />

of path systems and electrical parameters for standard test signals<br />

on efficiency of process propagation of disturbing signals in this type structures<br />

has been determined. The results of calculations and measurements<br />

have been presented for the selected path configurations.<br />

Keywords: microelectronic hybrid circuit, EMC, signal integrity, LTCC<br />

technology<br />

<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


Streszczenia artykułów ● Summaries of the articles<br />

KOSIKOWSKI M., SUSZYŃSKI Z.: Metoda przetwarzania obrazów termicznych<br />

zarejestrowanych techniką modulacji przestrzennej<br />

<strong>Elektronika</strong> (LIII), nr 1/<strong>2<strong>01</strong>2</strong>, s. 68<br />

W artykule zaprezentowano i opisano koncepcję akwizycji i przetwarzania<br />

obrazów termicznych zarejestrowanych w trybie modulacji przestrzennej<br />

(BDM). Podstawowym problemem analizy tak pozyskanych obrazów termograficznych<br />

jest niejednorodność tła termicznego oraz duże zróżnicowanie<br />

poziomów sygnału wynikające z różnic kontrastu optycznego. W typowej<br />

termografii aktywnej nie jest to problemem ponieważ, po pierwsze<br />

czas rejestracji jest znacznie krótszy i tło temperaturowe można uznać za<br />

niezmienne a po drugie detekcja sygnału w dziedzinie czasu dotyczy albo<br />

wszystkich pikseli jednocześnie albo każdego piksela oddzielnie. W trybie<br />

BDM rejestruje się wartość sygnału temperaturowego dla kolejnych pikseli<br />

dla tego samego opóźnienia względem pobudzenia, co przy dużych różnicach<br />

kontrastu optycznego powoduje znaczące skokowe zmiany sygnału<br />

o skończonym czasie relaksacji, co wprowadza zniekształcenie liniowe<br />

sygnału, widoczne na obrazach w postaci smug.<br />

Słowa kluczowe: przetwarzanie obrazów, termografia aktywna, modulacja<br />

przestrzennej, metody termiczne, metody temofalowe<br />

KOSIKOWSKI M., SUSZYŃSKI Z.: Method of processing of thermal<br />

images recorded in the beam displacement modulation technique<br />

<strong>Elektronika</strong> (LIII), no 1/<strong>2<strong>01</strong>2</strong>, p. 68<br />

The article discusses the concept of acquisition and processing of thermal<br />

images recorded in the mode of spatial modulation. The basic problem<br />

related to analysing thermal images acquired in such a way is the inhomogeneity<br />

of the thermal background and significant diversification of signal<br />

levels, stemming from optic contrast differences. In the typical active<br />

thermography this is not a problem because the recording time is much<br />

shorter and the temperature background may be considered invariable<br />

and, the signal detection in the realm of time refers either to all the pixels<br />

at the same time or to every pixel separately. In the beam displacement<br />

modulation mode, the temperature signal value is recorded for successive<br />

pixel for the same lag when compared to the excitation which for large optical<br />

contrast differences brings about significant discrete signal changes<br />

with a finite relaxation time, resulting in linear signal distortion, visible as<br />

trails in the images.<br />

Keywords: image processing, active thermography, spatial modulation,<br />

thermowave methods<br />

STRZELCZYK A., JASIŃSKI G., JASIŃSKI P., CHACHULSKI B.: Czujnik<br />

elektrokatalityczny na bazie Nasiconu z warstwą dodatkową<br />

<strong>Elektronika</strong> (LIII), nr 1/<strong>2<strong>01</strong>2</strong>, s. 72<br />

W pracy zostały przedstawione wyniki pomiarów czujnika na bazie Nasiconu<br />

pracującego w trybie elektrokatalitycznym. Czujniki takie pobudzane<br />

są zmieniającym się napięciem przy jednoczesnym pomiarze odpowiedzi<br />

prądowej. Przygotowano czujniki ceramiczne o dwóch różnych typów.<br />

Pierwszy z nich to czujnik posiadający dwie identyczne elektrody złote,<br />

pomiędzy którymi znajduje się elektrolit stały. Drugi czujnik posiada złote<br />

elektrody dodatkowo pokryte warstwą azotanu (III) sodu. Zmierzono i porównano<br />

odpowiedzi obu czujników dla różnych stężeń dwutlenku azotu<br />

w mieszaninie z powietrzem.<br />

Słowa kluczowe: czujnik gazu, elektrolit stały, Nasicon, czujnik elektrokatalityczny<br />

STRZELCZYK A., JASIŃSKI G., JASIŃSKI P., CHACHULSKI B.: Electrocatalytic<br />

sensor based on Nasicon with auxiliary layer<br />

<strong>Elektronika</strong> (LIII), no 1/<strong>2<strong>01</strong>2</strong>, p. 72<br />

In this study properties of Nasicon solid state gas sensors working in<br />

electrocatalytic mode are investigated. The principle of operation of such<br />

sensors is based on the excitation with a periodic potential signal, while<br />

current response is recorded. The sensors are prepared in ceramic technology<br />

with two different constructions. One construction is a symmetrical,<br />

sandwich type structure with electrolyte between two identical gold<br />

electrodes. In the second, the same structure is used, but the electrodes<br />

are covered with auxiliary layer of sodium nitrite. Nitrogen dioxide sensing<br />

properties of both sensors are determined and compared.<br />

Keywords: gas sensor, solid state electrolyte, Nasicon, electrocatalytic<br />

sensor<br />

KOBIEROWSKA K., KARPIŃSKA M., MOLIN S., JASIŃSKI P.: Warstwy<br />

tlenkowe wytworzone metodą pirolizy aerozolowej na podłożach metalicznych<br />

<strong>Elektronika</strong> (LIII), nr 1/<strong>2<strong>01</strong>2</strong>, s. 74<br />

W niniejszym artykule przebadane zostały możliwości zastosowania metody<br />

pirolizy aerozolowej do wytwarzania warstw z tlenku cyrkonu stabilizowanego<br />

itrem na podłożu ze stali nierdzewnej 316L. W pierwszej<br />

kolejności bardzo ważne było określenie optymalnych warunków przygotowania<br />

warstw. Podstawowym parametrem w procesie napylania warstw<br />

metodą pirolizy aerozolowej jest temperatura powierzchni, której wpływ<br />

systematycznie przebadano. Przeprowadzone badania wykazały przydatność<br />

warstw z zastosowaniem tlenku cyrkonu stabilizowanego itrem<br />

wytworzonych metodą pirolizy aerozolowej. W celu określenia odporności<br />

na korozję oraz właściwości ochronnych zostały przeprowadzone pomiary<br />

potencjodynamiczne w roztworze imitującym środowisko tkankowe.<br />

Wyniki uzyskane z pomiarów laboratoryjnych dostarczyły informacji na<br />

temat zjawisk korozyjnych zachodzących na powierzchni stali oraz warstw<br />

ochronnych. Badania pokazały, że warstwą wykazującą poprawę właściwości<br />

antykorozyjnych jest ta, która powstała poprzez napylenie prekursora<br />

polimerowego w temperaturze 390°C.<br />

Słowa kluczowe: piroliza aerozolowa, antykorozyjne warstwy ochronne,<br />

tlenek cyrkonu stabilizowany itrem<br />

Lewandowski J., Dziuda Ł., CELIŃSKI-SPODAR K.: Mechanoakustyczny<br />

czujnik aktywności układu sercowo-naczyniowego<br />

<strong>Elektronika</strong> (LIII), nr 1/<strong>2<strong>01</strong>2</strong>, s. 77<br />

W artykule zaprezentowano projekt oraz wyniki badań mechanoakustycznego<br />

czujnika służącego do monitorowania aktywności układu sercowonaczyniowego.<br />

W założeniu czujnik był pomocniczym elementem systemu<br />

sensorów do bezkontaktowych pomiarów aktywności serca i czynności<br />

oddechowej. W prezentowanym czujniku zastosowano głowicę stetoskopu<br />

oraz głowicę odbierającą drgania akustyczne wykorzystującą światłowodową<br />

siatkę Bragga jako element pomiarowy. Czujnik został przebadany<br />

na zaprojektowanym w tym celu stanowisku badawczym. Pasmo odbioru<br />

drgań akustycznych czujnika wynosi 25…135 Hz, zaś jego wzmocnienie<br />

przy częstotliwości 100 Hz – 9,2 dB. Parametry te stwarzają potencjalną<br />

możliwość zastosowania urządzenia w przyszłości jako stetoskopu światłowodowego<br />

bądź elementu pomiarowego w balistokardiografii. Do odbioru<br />

drgań wykorzystywano system interrogacji Micron Optics SM-130.<br />

Słowa kluczowe: akustyka, stetoskop, światłowodowa siatka Bragga,<br />

układ sercowo-naczyniowy<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong><br />

KOBIEROWSKA K., KARPIŃSKA M., MOLIN S., JASIŃSKI P.: Oxide<br />

layers fabricated by spray pyrolysis on metallic surfaces<br />

<strong>Elektronika</strong> (LIII), no 1/<strong>2<strong>01</strong>2</strong>, p. 74<br />

In this paper the possibilities of using spray pyrolysis method to produce<br />

yttrium stabilized zirconia layers have been examined. A stainless steel,<br />

type 316L, was used as a substrate. It was important to determine the<br />

optimal conditions of the films preparation. The basic parameter in the<br />

pyrolysis technology process is a surface temperature, which was systematically<br />

examined. The layer was intended to be used as protective film<br />

for metallic implants. In order to determine the corrosion resistance and<br />

protective properties of produced layers, potentiodynamic measurements<br />

in mimicking tissue environment solution were carried out. It provided information<br />

about the corrosive effects, which occur on the steel surface and<br />

on the protective layer. The experimental results showed that improvement<br />

of corrosion resistance properties was obtained by spraying the precursor<br />

at 390°C.<br />

Keywords: spray pyrolysis, corrosion protective layers, yttrium stabilized<br />

zirconia<br />

LEWANDOWSKI J., Dziuda Ł., CELIŃSKI-SPODAR K.: Mechano-acoustic<br />

sensor of the cardiovascular system activity<br />

<strong>Elektronika</strong> (LIII), no 1/<strong>2<strong>01</strong>2</strong>, p. 77<br />

This article presents the design and results of study on the mechanoacoustic<br />

sensor used for monitoring cardiovascular activity. The basic idea<br />

was to utilize the presented sensor as a secondary element in the sensor<br />

system for contactless measurement of cardiac and respiratory activity.<br />

The sensor consists of a stethoscope head and an acoustic head which<br />

receives vibrations by means of the fiber Bragg grating acting as a sensing<br />

element. The sensor has been tested at the dedicated experimental setup.<br />

The frequency range of acoustic vibration receiving reaches 25-135 Hz,<br />

and its amplification at 100 Hz is 9.2 dB. These parameters make a potential<br />

opportunity to apply the device in the future as a fiber-optic stethoscope<br />

or fiber-optic sensing element in balistocardiography. For signals<br />

receiving, the SM-130 interrogation system by Micron Optics was used.<br />

Keywords: acoustics, cardiovascular system, fiber Bragg grating, stethoscope


Streszczenia artykułów ● Summaries of the articles<br />

SĘDEK E.: Aktywne anteny radarów wielofunkcyjnych – analiza stanu<br />

i perspektywy rozwoju – część 1<br />

<strong>Elektronika</strong> (LIII), nr 1/<strong>2<strong>01</strong>2</strong>, s. 81<br />

W artykule przeglądowym omówiono stan techniki aktywnych anten radarów<br />

wielofunkcyjnych stosowanych w stacjonarnych urządzeniach<br />

naziemnych. Aktywne anteny stosowane w radarach transportowalnych,<br />

samolotowych i okrętowych będą omówione w następnym artykule. Przedstawiono<br />

rozwiązania reprezentatywne dla anten aktywnych stosowanych<br />

w wymienionych radarach. Pokazano ich cechy charakterystyczne oraz<br />

tendencje rozwoju i integracji aktywnych systemów antenowych. Opracowanie<br />

składa się z 3 części. Pierwsza część poświęcona jest aktywnym<br />

antenom naziemnych radarów wielofunkcyjnych. W drugiej części dokonano<br />

przeglądu aktywnych anten stosowanych w radarach transportowalnych,<br />

samolotowych i okrętowych, zaś trzecia część poświęcona będzie<br />

mikrofalowym podzespołom stosowanych w aktywnych antenach.<br />

Słowa kluczowe: radary wielofunkcyjne, radary stacjonarne, aktywne anteny<br />

ścianowe, moduły nadawczo-odbiorcze T/R<br />

SĘDEK E.: Active phased antenna array for multifunction radar – review<br />

and perspective development – part 1<br />

<strong>Elektronika</strong> (LIII), no 1/<strong>2<strong>01</strong>2</strong>, p. 81<br />

In the paper review of active phased antenna array for multifunction radar<br />

is presented. Active phased antenna array for ground based radar is presented<br />

in detail. Shipboard, airborne and transportable/mobile radar active<br />

phased antenna array will be presented in the next paper. The full paper is<br />

compose from three parts. In the first part an active phased antenna array<br />

for multifunction ground based long-range radar is presented. In the second<br />

part the active phase antenna array for transportable/mobile radar, shipboard<br />

and airborne radar will be analyzed. In the third part will be presented<br />

parameters of microwave devices used in antenna array and technology of<br />

transmit/receive modules. We would like to show, that monolithic microwave<br />

technology is perspective and needed to use in active phase antenna<br />

array especially in the higher frequency band such as X, Ka, and W.<br />

Keywords: multifunction radar, ground based radar, active phased antenna<br />

array, transmit/receive modules T/R<br />

MITAS A.W., BERNAŚ M., BUGDOL M., RYGUŁA A.: Technologie informacyjne<br />

w predykcji pogodowych zagrożeń w ruchu drogowym<br />

<strong>Elektronika</strong> (LIII), nr 1/<strong>2<strong>01</strong>2</strong>, s. 90<br />

W artykule w syntetycznym ujęciu przedstawiono zagadnienie predykcji<br />

pogodowej, ze szczególnym uwzględnieniem detekcji zagrożeń atmosferycznych<br />

w ruchu drogowym. W kolejnych punktach opracowania opisano<br />

podstawy prognozowania pogodowego, scharakteryzowano przykładowe<br />

modele matematyczne oraz zaprezentowano autorski system wnioskowania<br />

o niebezpiecznych stanach atmosferycznych na drodze.<br />

Słowa kluczowe: predykcja pogodowa, bezpieczeństwo transportu, technologia<br />

informacyjna w ruchu drogowym<br />

MITAS A.W., BERNAŚ M., BUGDOL M., RYGUŁA A.: Information technology<br />

in prediction of weather hazards affecting road traffic<br />

<strong>Elektronika</strong> (LIII), no 1/<strong>2<strong>01</strong>2</strong>, p. 90<br />

In the article summarized the issue of predicting the weather hazards, with<br />

particular emphasis on the detection of dangerous atmospheric conditions<br />

in road traffic. In the following sections the basis of weather forecasting,<br />

mathematical models and the authors inference system about hazardous<br />

road condition were described.<br />

Keywords: weather prediction, transport safety, information technology<br />

in road traffic<br />

ZAHARIEVA S., MUTKOV V., GEORGIEV I.: Еlektroniczny system pomiarowy<br />

do kontroli parametrów geometrycznych profili produkowanych<br />

na liniach wytłaczarkowych<br />

<strong>Elektronika</strong> (LIII), nr 1/<strong>2<strong>01</strong>2</strong>, s. 95<br />

Pomiar kompleksowych i różnicowych geometrycznych parametrów<br />

w trakcie produkcji cylindrycznych, kwadratowych i prostokątnych wytłaczanych<br />

wyrobów niewątpliwie zwiększa jakość gotowej produkcji. Dynamika<br />

procesu technologicznego oraz wpływ zewnętrznych czynników<br />

na parametry wyrobów narzuca wprowadzanie elektronicznego systemu<br />

pomiarowego, który w trakcie produkcji mierzy i przechowywuje dane pomiarów.<br />

Zrealizowany elektroniczny system pomiarowy do kontroli parametrów<br />

geometrycznych profili produkowanych na liniach wytłaczakowych<br />

pozwala na aktywną kontrolę w trakcie produkcji i równocześnie zwiększa<br />

jakość gotowej produkcji.<br />

Słowa kluczowe: system pomiarowy; kontrolа; parametry geometryczne;<br />

cylindryczne, kwadratowe i prostokątne wytłaczane profile<br />

ZAHARIEVA S., MUTKOV V., GEORGIEV I.: Electronic measurement<br />

system for monitoring of geometrical parameters of rolling shaped<br />

metal profiles<br />

<strong>Elektronika</strong> (LIII), no 1/<strong>2<strong>01</strong>2</strong>, p. 95<br />

The measurement of the complex and the differential geometric parameters<br />

in the production process of cylindrical, square and rectangular rolling<br />

shaped metal profiles will inevitably lead to a rise in the production<br />

quality. The dynamism of the technological process and the influence of<br />

great number of outside factors over geometrical parameters of revolving,<br />

enforce development of an electronic measurement system, which reliably<br />

reads and preserves measured data immediately in the production process<br />

of rolling shaped metal. The accomplished electronic measurement<br />

system for monitoring of geometric parameters of rolling shaped metal<br />

performs an active firsthand control in the production process, for the purpose<br />

of management of the quality of the finished production.<br />

Key words: measurement system, monitoring, geometric parameters, cylindrical,<br />

square and rectangular rolling shaped metal profiles<br />

STĘPIEŃ R., WALCZAK J.: Modulacja amplitudy sygnałem pseudolosowym<br />

<strong>Elektronika</strong> (LIII), nr 1/<strong>2<strong>01</strong>2</strong>, s. 98<br />

W artykule rozpatrzono problem modulacji amplitudy sinusoidalnej fali<br />

nośnej przebiegiem pseudolosowym. Podano przykładowe realizacje generatorów<br />

sygnałów pseudolosowych i ich właściwości. Omówiono proces<br />

modulacji AM sygnałem pseudolosowym i właściwości widma sygnałów<br />

zmodulowanych. Zaproponowano fizyczną realizację modulatora wraz<br />

z układem kształtowania widma. Zaprezentowano wyniki badań symulacyjnych<br />

i eksperymentalnych modulatora podając także jedno z możliwych<br />

zastosowań.<br />

Słowa kluczowe: sygnały pseudolosowe, modulacja AM, generatory<br />

LFSR, widmo sygnału pseudolosowego, modulator, zagłuszanie<br />

STĘPIEŃ R., WALCZAK J.: Amplitude modulation with pseudo random<br />

signal<br />

<strong>Elektronika</strong> (LIII), no 1/<strong>2<strong>01</strong>2</strong>, p. 98<br />

In this article a pseudorandom AM modulation of the sinusoidal carrier is<br />

considered. An exemplary realizations of the pseudorandom generators<br />

are shown. The pseudorandom AM modulation process and its spectrum<br />

are described. A practical construction of the modulator with spectrum<br />

shaping circuit is proposed. Simulation of proposed circuit, experimental<br />

results and one of the possible use of the constructed device are shown.<br />

Keywords: pseudorandom signals, AM modulation, LFSR generator,<br />

pseudorandom signal spectrum, modulator, jamming<br />

DĄBROWSKI J., ZARĘBSKI J.: Problematyka modelowania w programie<br />

SPICE charakterystyk stałoprądowych elektroizolowanych<br />

diodowych modułów mocy zawierających diody typu PiN oraz diody<br />

typu FRED<br />

<strong>Elektronika</strong> (LIII), nr 1/<strong>2<strong>01</strong>2</strong>, s. 103<br />

W artykule poruszono problematykę modelowania w programie SPICE<br />

charakterystyk statycznych krzemowych elektroizolowanych diodowych<br />

modułów mocy. Do badań wybrano moduły zawierające diody typu PiN<br />

oraz diody typu FRED<br />

Słowa kluczowe: moduł elektroizolowany, dioda PiN, dioda FRED (Fast<br />

Recovery Epitaxial Diode), SPICE, modelowanie<br />

DĄBROWSKI J., ZARĘBSKI J.: Problem of the SPICE modeling of the<br />

d.c. characteristics of the electroisolated power diode modules containing<br />

PiN diodes and fast recovery epitaxial diodes<br />

<strong>Elektronika</strong> (LIII), no 1/<strong>2<strong>01</strong>2</strong>, p. 103<br />

In the paper the problem of modeling of d.c. characteristics of electroisolated<br />

power diode modules was considered. For investigations the modules<br />

containing the silicon PiN diodes and the silicon fast recovery epitaxial<br />

diodes were chosen<br />

Keywords: electroisolated module, PiN diode, fast recovery epitaxial diode<br />

(FRED), SPICE, modeling<br />

10<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


Study of IDE as a sensor head for interfacing<br />

with handheld electrochemical analyzer system<br />

(Projekt głowicy IDE dla sensorów do zastosowań w podręcznych<br />

systemach analizy elektrochemicznej)<br />

Vijayalakshmi Velusamy 1) , prof. Khalil Arshak 1) , dr Olga Korostynska 2) ,<br />

dr Catherine Adley 3)<br />

1)<br />

Department of Electronic and Computer Engineering<br />

3)<br />

Department of Chemical and Environmental Sciences University of Limerick, Limerick, Ireland<br />

2)<br />

School of Physics, Dublin Institute of Technology, Dublin, Ireland<br />

Electrochemical biosensors have been receiving more attention<br />

in recent years since they are simple to use, cost-effective, offer<br />

high sensitivity and suitable for in situ analysis [7–10]. Applications<br />

are mainly focused on food quality monitoring for the detection of<br />

foodborne pathogens [11], environmental quality monitoring for<br />

the detection of contamination of potable water resources due to<br />

pathogenic micro organisms and industrial by-products [12, 13]<br />

and in biosecurity for the detection of biowarfare agents [14].<br />

An electrochemical sensor is an electrical device in which the<br />

biological and/or the chemical information are converted to an<br />

electrical signal, which is then processed and recorded for further<br />

analysis.<br />

Towards the development of an electrochemical analyzer system,<br />

a sensor was initially designed that may be interfaced with the<br />

handheld system comprising both the potentiostat and the impedance<br />

analyzer. In biosensors the lower limit of detection is a big<br />

challenge and numerous electrode geometries have been developed<br />

during the past decade to address this problem. Among various<br />

electrode geometries IDE have advantage in bioanalytical applications.<br />

A thick-film gold IDE was employed in this research and<br />

it was prepared by screen printing technique. Thick-film sensors<br />

are advantageous since it is compact, robust and relatively cost-effective.<br />

It is possible to mass produce from macro- to microscale,<br />

with greater reproducibility. However, the applicability of the technology<br />

is limited to a possible minimum line width (100 µm) [15].<br />

The planar IDE sensors based on thick films are very wellsuited<br />

to integrate with electronic circuits. The IDE sensors can<br />

be combined with other planar technologies like plasma/chemical<br />

vapor deposition for surface modification. The device produced<br />

by the thick-film technique has the ability to facilitate as a supporting<br />

structure upon which other sensing materials can be deposited.<br />

To fabricate a DNA sensor for the real time detection of the<br />

microbial pathogens, meandering heater element patterns can be<br />

screen-printed as a first layer which acts as both a temperature<br />

sensor and a heater to enable the localised temperature to be<br />

raised to release the bacteria and thus the DNA fragments. A dielectric<br />

layer can be then deposited over the heating pattern and<br />

the final layer is a gold IDE pattern.<br />

To study the performance of the sensor a label free unmodified<br />

DNA was immobilized and hybridized using simple electrochemical<br />

adsorption technique. Prior to immobilization one pole of<br />

the gold IDE was modified by the conducting polymer polypyrrole<br />

(PPy) which served as an immobilization matrix.<br />

from distilled water. The capture probe and the target probe are<br />

20-mer oligonucleotides and the non complementary probe is 21-<br />

mer in length. Table 1 shows the sequence of the oligonucleotides<br />

probes used in this work.<br />

Tabl. 1. DNA Sequences<br />

Tab. 1. Sekwencje DNA<br />

Probe (5’-3’)<br />

Function<br />

Complementary (5’-3’)<br />

Non-Complementary (5’-3’)<br />

IDE Preparation<br />

Sequence<br />

ATC GCC TCG TTG GAT GAC GA<br />

TCG TCA TCC AAC GAG GCG AT<br />

AAA ATC GAT GGT AAA GGT TGG<br />

The interdigitated electrode structure was screen-printed onto precleaned<br />

alumina substrates (CeramTec UK Ltd.) using a DEK 1202<br />

automatic screen-printer. The material used for the electrodes was<br />

Au thick film conductive paste (Heraeus Materials). After screenprinting,<br />

the electrodes were placed into an oven at 80°C for 2 hours<br />

to facilitate the initial drying of the paste. In this step, the remaining<br />

solvent in the thick film paste evaporates, leaving the dried pattern<br />

on the substrate. The devices are next placed into a multi-chamber<br />

belt-furnace for an 850°C temperature cycle. In this step, any<br />

remaining organic binder is removed and the metal frit is sintered<br />

into one solid structure. This step also allows the electrode pattern<br />

to settle to its final thickness and resistivity values.<br />

The IDE structure used in this work is shown in Fig. 1. The thickness<br />

of the Au thick film was measured as 9 µm using a Dektak<br />

Surface Profile Measuring System.<br />

Materials and Methods<br />

Materials<br />

Pyrrole and MgCl 2<br />

solution was purchased from Sigma-Aldrich,<br />

USA. All the reagents were analytical grade and used without further<br />

purification. Specific sequences for the Bacilus cereus (B.<br />

cereus) were designed in the laboratory [16] and its synthetic<br />

form was purchased from Integrated DNA technologies, USA. All<br />

stock solutions and a concentration of 100 pM/µl were prepared<br />

Fig. 1. Schematic of the gold IDE sensor that is employed in this<br />

work. All dimensions are in millimeters<br />

Rys. 1. Schemat złotego czujnika typu IDE, który jest wykorzystywany<br />

w pracy. Wszystkie wymiary podano w milimetrach<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong> 11


Instrumentation<br />

Link wires were soldered directly to the bond pads of the IDE structure.<br />

An Autolab PGSTAT302N was used to apply constant potential.<br />

The AC characteristics were monitored using a HP 4192A<br />

Low Frequency Impedance Analyzer (0.3 V,10 Hz – 10 kHz), using<br />

LabView software to log the results.<br />

Gold electrode surface modification and<br />

electrochemical synthesis of Polypyrrole<br />

Before surface modification, the bare IDE electrode was scanned<br />

between – 0.3 and 0.8 V in 0.1 M MgCl 2<br />

/10 mM Tris-HCl buffer<br />

(pH 7.2) until a reproducible cyclic voltammogram (CV) was obtained.<br />

Electropolymerization of PPy was performed at a constant<br />

potential of 1 V for 20 s. The IDE electrode was immersed into<br />

a 3 ml solution of 0.1 M pyrrole containing the doping electrolyte<br />

0.1 M MgCl 2<br />

. The IDE coated with PPy film was then washed with<br />

distilled water and dried at room temperature. The prepared PPy<br />

coated electrode was analyzed by impedance measurements. All<br />

impedance measurements were performed in an analysis buffer<br />

consisting of 0.1 M MgCl 2<br />

and 10 mM Tris-HCl buffer, with a pH of<br />

7.2. An AC amplitude of 10 mV was used and the data were collected<br />

in the frequency range 10 Hz – 10 kHz. Impedance versus<br />

frequency was measured and recorded.<br />

Immobilization of capture DNA<br />

The immobilization solution consists of 20 mM MgCl 2<br />

in10 mM<br />

Tris–HCl buffer (pH 7.2) with 100 pM probe DNA. The probe DNA<br />

was immobilized onto the PPy coated electrode by electrochemical<br />

adsorption at 0.5 V for 600 s. The ss-DNA immobilized surface<br />

was washed with distilled water to remove unadsorbed DNA and<br />

dried at room temperature. Impedance analysis was then undertaken<br />

on the PPy/ss-DNA film.<br />

Hybridization of the target DNA<br />

100 pM of the ss- target probe was electrostatically adsorbed as<br />

stated above onto the ss-capture probe immobilized PPy film. The<br />

hybridized Au/PPy/DNA film was washed with distilled water to<br />

remove unadsorbed DNA, dried at room temperature and impedance<br />

measurements were taken.<br />

Results and Discussion<br />

Modification of gold IDE<br />

To detect target DNA, it is important that biorecognition element<br />

(ss-probe DNA) is well integrated with the signal transducer. Integration<br />

is most commonly achieved by immobilizing ss-DNA on<br />

the electrode surface. Here, conducting polymer polypyrrole was<br />

used as an immobilization matrix because of its biocompatibility<br />

and the ease of immobilization. Electrical conduction in PPY is<br />

the result of electron movement within delocalized orbitals and<br />

positive charge defects known as polarons [17]. These positive<br />

charges are located every three to four pyrrole units along the<br />

polymer backbone and negatively charged dopants are deposited<br />

at the locations. Since DNA can form a strong bond with PPy,<br />

based on the interchanging of dopant DNA molecules [18], PPy<br />

has received greater attention for application of DNA biosensors.<br />

Here, one pole of the Gold IDE was modified by PPy film from the<br />

one-step electropolymerization of pyrrole monomer in 20 s and its<br />

thickness can be controlled by varying the polymerization time.<br />

Immobilization and hybridization of DNA<br />

In this study, 100 pM (0.2 µg/ml) of the probe DNA sequence specific<br />

to B.cereus was immobilized onto the PPy coated electrode<br />

through electrochemical adsorption at a potential of 0.5 V for 600<br />

s. Electrochemical adsorption has several advantages over physical<br />

adsorption or physisorption. In electrochemical adsorption<br />

forces of attraction are due to chemical bond whereas in physisorption<br />

forces of attraction are due van der Waals’ forces. Unlike<br />

12<br />

Fig. 2. Frequency versus Impedance plot of (a) the PPy film, (b) PPy/<br />

ss-DNA capture immobilized surface, (c) After the hybridization with<br />

complementary target DNA<br />

Rys. 2. Impedancja w funkcji częstotliwości (a) warstewka PPy, (b)<br />

PP/ss-DNA zajmuje immobilizującą powierzchnię (c) po hybrydyzacji<br />

z komplementarnym DNA<br />

physisorption, electrochemisorption is difficult to reverse and it is<br />

highly specific. However, the elementary step in an electrochemical<br />

adsorption requires an activation energy. To immobilize the<br />

probe DNA a potential of 0.5 V was applied to activate the electrochemical<br />

adsorption process.<br />

In PPy, due to the delocalized electronic structure, the positively<br />

charged defect structures are mobile along the chain axis. This<br />

mobility allows for more flexibility towards the binding of DNA’s<br />

fixed negative charge sites. Therefore, PPy provides a unique<br />

surface for DNA immobilization. The use of PPy allows label-free<br />

immobilization without modifying the probes and no additional reagents<br />

are required. The same amount of target complementary<br />

DNA was electrostatically adsorbed onto the ss-DNA immobilized<br />

electrode as stated above. The electrochemical transduction mechanism<br />

is based on impedance measurements (without the use<br />

of redox active species). The frequency versus impedance plots<br />

for PPy modified electrode, immobilized DNA and hybridized DNA<br />

are shown in Fig. 2.<br />

When the probe DNA is immobilized onto the PPy modified<br />

electrode surface, they form a layer that hinders the electron<br />

transfer and an increase in impedance is expected. If the target<br />

DNA attaches to the immobilized probe DNA it forms DNA duplexes<br />

which will create a further barrier to the electron transfer<br />

to and from the modified electrode surface and hence the impedance<br />

increases. From Fig. 2, the impedance measured at 5 kHz<br />

prior to immobilization (Au/PPy) was 92.47 Ω and after immobilizing<br />

the ss probe DNA 92.4% (177.9 Ω) increase in impedance<br />

was observed. The total change in impedance after hybridization<br />

was 177% (256.2 Ω). The results show that the increase in impedance<br />

is due to presence of the probe DNA at the PPY surface,<br />

which blocks the passage of chloride ions at the PPy/solution interface<br />

and further addition of negative charge to the IDE surface,<br />

in the form of complementary oligonucleotide, further blocks the<br />

chloride ion exchange which yields an increase in impedance after<br />

hybridization.<br />

To validate the performance of the designed IDE sensor, with<br />

respect to its detection limit and sensitivity it was compared to the<br />

conventional gold disc electrode using the same procedures. The<br />

gold disc electrode was modified by PPy and 0.5 µg/ml of DNA<br />

was immobilized and the same amount was used for hybridization<br />

where as in IDE only 0.2 µg/ml of DNA was used. In both cases<br />

impedance measurements are carried without any redox probes.<br />

The results obtained using IDE are comparable to those obtained<br />

by the disc electrodes and are shown in Fig. 3.<br />

Table 2 shows the comparison between IDE and the disc electrode<br />

at frequencies of 100 Hz and 5 kHz. Comparing Fig. 3a and<br />

3b, at 5 kHz the change in impedance after hybridization was<br />

177% using IDE and 34.64% was observed using disc electrode.<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


a)<br />

thick-film technology is simple, sensitive, rapid and cost effective.<br />

The electrical detection of 100 pM concentration of DNA immobilized<br />

onto the PPy modified gold IDE was achieved, with an IDE width of<br />

400 µm. Using IDE samples of few µl to pl can be analyzed thereby,<br />

avoiding the typical three electrode electrochemical cell. Also, it has<br />

led to the use of two-electrode control circuits, rather than the conventional<br />

three-electrode setup and the planar IDE can be directly<br />

interfaced with front-end electronics circuit, which in turn will lead to<br />

the development of handheld system for real time monitoring and<br />

detection of microbial pathogens and bio-warfare agents.<br />

Further research is directed to the development of a handheld<br />

sensor system to detect the DNA of the pathogenic micro-organisms<br />

in a real-time environment directly from food and water.<br />

b)<br />

Fig. 3. (a) Shows the experimental results using LabView software<br />

obtained from using IDE and (b) shows the data obtained with the<br />

typical disc gold electrodes (2 mm diameter) using commercial electrochemical<br />

workstation<br />

Rys. 3. (a) prezentuje wyniki eksperymentalne uzyskane z zastosowaniem<br />

IDE i oprogramowania LabView i (b) pokazuje dane uzyskane<br />

za pomocą typowej okrągłej złotej elektrody (o średnicy 2 mm) z zastosowaniem<br />

komercyjnego stanowiska roboczego<br />

Tabl. 2. Comparison between IDE and disc electrode<br />

Tab. 2. Porównanie pomiędzy IDE i elektrodą dyskową<br />

IDE<br />

Disc electrode<br />

Frequency Impedance (Ω)<br />

Change in Impedance (Ω) Change in<br />

impedance<br />

impedance<br />

Au/PPy Au/PPy/DNA (%) Au/PPy Au/PPy/DNA (%)<br />

100 Hz 116.75 810.4 594.13 152.4 276.9 81.69<br />

5 kHz 92.47 256.2 177.06 127.6 171.8 34.64<br />

Moreover, the amount of DNA used for IDE was 0.2 µg/ml whereas<br />

0.5 µg/ml of DNA is used for disc electrode.<br />

The IDE yields better sensitivity since it has the ability to monitor<br />

the change of the electrical properties in the immediate vicinity<br />

of its surface and they are more sensitive to the rate of change of<br />

electron transfer. There is an option to polymerize either one or<br />

both poles of the IDE.<br />

In this study, only one pole of the IDE was modified with PPy<br />

and used for immobilizing DNA. They can be mass produced in<br />

array format for the simultaneous detection of multiple pathogens.<br />

Conclusion<br />

The combination of polypyrrole modified interdigitated microelectrodes<br />

with impedance measurements offers a sensitive label-free<br />

biosensor capable of DNA detection. The use of the conducting polymer,<br />

polypyrrole and impedance measurements are advantageous,<br />

since label-free unmodified DNA can be detected in aqueous<br />

solutions that are compatible to the DNA’s natural conditions.<br />

Impedance experiments were carried out directly without any<br />

redox probe and the results are reproducible. The IDE prepared by<br />

This project is funded by Science Foundation Ireland (SFI) Research<br />

Frontiers Programme, ID no: 07RPF-ENEF500.<br />

References<br />

[1] Kay D., J. Crowther, L. Fewtrell, C.A. Francis, M. Hopkins, C. Kay,<br />

A.T. McDonald, C.M. Stapleton, J. Watkins, J. Wilkinson, and M.D.<br />

Wyer:: Quantification and control of microbial pollution from agriculture:<br />

a new policy challenge. Environmental Science & Policy, vol.<br />

11, Apr 2008, pp. 171–184.<br />

[2] Umali-Deininger D., M. Sur: Food safety in a globalizing world: opportunities<br />

and challenges for India. Agricultural Economics, vol. 37,<br />

Dec 2007, pp. 135–147.<br />

[3] Mucchetti G., B. Bonvini, S. Francolino, E. Neviani, and D. Carminati:<br />

Effect of washing with a high pressure water spray on removal of<br />

Listeria innocua from Gorgonzola cheese rind. Food Control, vol. 19,<br />

May 2008, pp. 521–525.<br />

[4] Jin S.S., J. Zhou, and J. Ye: Adoption of HACCP system in the Chinese<br />

food industry: A comparative analysis. Food Control, vol. 19,<br />

Aug 2008, pp. 823–828.<br />

[5] Taylor E.: A new method of HACCP for the catering and food service<br />

industry. Food Control, vol. 19, Feb 2007, pp. 126–134.<br />

[6] Piatek D.R. D.L.J. Ramaen: Method for controlling the freshness of<br />

food products liable to pass an expiry date, uses a barcode reader<br />

device that reads in a conservation code when a product is opened<br />

and determines a new expiry date which is displayed. PIATEK D R<br />

(PIAT-Individual) RAMAEN D L J (RAMA-Individual), 20<strong>01</strong>.<br />

[7] Huang Q., H.Y. Liu, and B. Fang: Development of Electrochemical<br />

DNA Biosensors. Progress in Chemistry, vol. 21, May 2009, pp.<br />

1052–1059.<br />

[8] Wei D., M.J.A. Bailey, P. Andrew, and T. Ryhaenen: Electrochemical<br />

biosensors at the nanoscale. Lab on a Chip, vol. 9, 2009,<br />

pp. 2123–2131.<br />

[9] Pedrero M., S. Campuzano, and J.M.<br />

Pingarron: Electroanalytical Sensors<br />

and Devices for Multiplexed Detection<br />

of Foodborne Pathogen Microorganisms.<br />

Sensors, vol. 9, Jul 2009,<br />

pp. 5503–5520.<br />

[10] Velusamy V., K. Arshak, O. Korostynska,<br />

K. Oliwa, and C. Adley: An overview<br />

of foodborne pathogen detection:<br />

In the perspective of biosensors.<br />

Biotechnology Advances, vol. 28,<br />

2<strong>01</strong>0, pp. 232–254.<br />

[11] Velusamy V., K. Arshak, O. Korostynska, K. Oliwa, and C. Adley: Design<br />

of a real time biorecognition system to detect foodborne pathogens-DNA<br />

Biosensor. in 4th IEEE Sensors Applications Symposium,<br />

New Orleans, LA, USA, 2009, pp. 38–42.<br />

[12] Heo J. and S.Z. Hua: An Overview of Recent Strategies in Pathogen<br />

Sensing. Sensors, vol. 9, Jun 2009, pp. 4483–4502.<br />

[13] Melton S. J., H. N. Yu, K.H. Williams, SA Morris, P.E. Long, and D.A.<br />

Blake: Field-based detection and monitoring of uranium in contaminated<br />

groundwater using two immunosensors. Environmental Science<br />

& Technology, vol. 43, 2009, pp. 6703–6709.<br />

[14] Jayanta C., B. Malay, and B. Debadin: Anthrax and bio-terrorism. Biomedical<br />

& Pharmacology Journal, vol. 1, 2008, pp. 315–324.<br />

[15] Aubeck R., C. Eppelsheim, C. Brauchle, and N. Hampp: Potentiometric<br />

thick-film sensor for the determination of the tumor-marker bound<br />

sialic-acid. Analyst, vol. 118, Nov 1993, pp. 1389–1392.<br />

[16] Adley C., K. Arshak, C. Molnar, K. Oliwa, and V. Velusamy: Design of<br />

specific DNA primers to detect the Bacillus cereus group species. in<br />

4th IEEE Sensors Applications Symposium, New Orleans, LA, USA,<br />

2009, pp. 206–209.<br />

[17] Devreux F., F. Genoud, M. Nechtschein, and B. Villeret: Electronspin-resonance<br />

investigation of polarons and bipolarons in conducting<br />

polymers - the case of polypyrrole. Synthetic Metals, vol. 18, Feb<br />

1987, pp. 89–94.<br />

[18] Rodriguez M.I. and E.C. Alocilja: Embedded DNA-polypyrrole biosensor<br />

for rapid detection of Escherichia coli. IEEE Sensors Journal,<br />

vol. 5, Feb 1987, pp. 733–736.<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong> 13


Impact of non-optimal grounding of the CC2420 RFIC<br />

on a 802.15.4 Tyndall sensor wireless mote<br />

(Wpływ nieoptymalnego uziemienia układu CC2420 zgodnego<br />

ze standardem IEEE 802.15.4 na pracę systemu Tyndall Mote)<br />

Peter Haigh 2) , MSc John Buckley 1) , MSc Brendan O’Flynn 1) , PhD. Cían Ó’Mathúna 1)<br />

1)<br />

Clarity Centre for Sensor Web Technology<br />

2)<br />

Tyndall National Institute, University College Cork Lee Maltings, Dyke Parade, Cork, Ireland<br />

Range, throughput and power consumption are important issues<br />

in 802.15.4 [1] Wireless Sensor Networks. While the focus is<br />

often on increased power output (at the expense of dc power)<br />

and sensitivity to address these issues, little attention is given<br />

to waveform quality. Poor waveform quality often measured in<br />

terms of EVM can lead to increased packet errors, transmission<br />

retries and therefore reduced range and throughput leading to<br />

increased power consumption. One important factor in relation to<br />

this is proper grounding of the RF devices. This paper describes<br />

an investigation into these effects that was triggered when poor<br />

throughput was reported from the system integrators.<br />

Measurement Technique<br />

As the modulated signal passes through a non-linear function it<br />

becomes distorted. This distortion leads to a degradation in the<br />

signal quality and ultimately affects the throughput of the system<br />

due to an increase in Bit Error Rate (BER) leads to re-transmissions.<br />

The relationship between linearity, Adjacent Channel Power<br />

Ratio (ACPR) and EVM is well established [2, 3]. Of particular<br />

interest in this study was the effect of non-optimal grounding of<br />

the radio transceiver on output spectrum and EVM. Test methods<br />

were devised to measure these parameters based on the existing<br />

802.15.4 standard.<br />

Adjacent Channel Power Ratio<br />

The incumbent radio standard defines some parameters for signal<br />

quality and ACPR. These are defined to ensure that the wireless<br />

system will perform to specification taking into account regulatory<br />

as well as inter and intra system issues. For ACPR it was found<br />

that the definition in 802.15.4 was not sensitive enough for this<br />

investigation. Therefore, a new measurement was defined to enable<br />

the analysis of more detailed linearity effects.<br />

A typical 802.15.4 spectra such as in Fig. 1, exhibits well defined<br />

troughs that are defined by the channel filter characteristic.<br />

From experimentation, it was shown that the spectral degradation<br />

of these troughs is very sensitive to non-linearity as shown in Fig.<br />

2. Two ACPR points at the first and second trough were established<br />

leading to the settings summarised in Table 1 below.<br />

Tab. 1. ACPR spectrum analyser settings<br />

Tab. 1. Ustawienia analizatora widma przy pomiarze ACPR<br />

14<br />

Description<br />

Tx Channel<br />

Integration Bandwidth<br />

ACPR 1<br />

Integration Bandwidth<br />

Spacing<br />

ACPR 2<br />

Integration Bandwidth<br />

Spacing<br />

Resolution Bandwidth<br />

Video Bandwidth<br />

Parameter<br />

2 MHz<br />

100 kHz<br />

1.5 MHz<br />

100 kHz<br />

2.5 MHz<br />

30 kHz<br />

300 kHz<br />

Ref -10 dBm<br />

-20<br />

UNCAL<br />

-30<br />

-40<br />

1 RM *<br />

CLRWR -50<br />

-60<br />

-70<br />

-80<br />

-90<br />

-100<br />

Att<br />

5 dB<br />

* RBW 30 kHz<br />

* VBW 300 kHz<br />

* SWT 100 ms<br />

Center 2.469955 GHz 1 MHz/<br />

Span 10 MHz<br />

Fig. 1. Typical 802.15.4 spectrum<br />

Rys. 1. Typowe spektrum standardu IEEE 802.15.4<br />

Ref -10 dBm<br />

-20<br />

UNCAL -30<br />

-40<br />

1 RM *<br />

CLRWR -50<br />

-60<br />

-70<br />

-80<br />

-90<br />

-100<br />

Att 5 dB<br />

* RBW 30 kHz<br />

* VBW 300 kHz<br />

* SWT 100 ms<br />

Center 2.44 GHz 1 MHz/<br />

Span 10 MHz<br />

Fig. 2. Typical 802.15.4 distorted spectrum<br />

Rys. 2. Typowe zniekształcenie spektrum standardu IEEE 802.15.4<br />

Figures 1 and 2 below, show examples of good and bad<br />

802.15.4 spectra that were measured on a spectrum analyser.<br />

Figure 1 shows an 802.15.4 signal with good linearity typified by<br />

the well defined troughs in the spectral shape..<br />

Figure 2 shows a plot of an 802.15.4 signal that has been subjected<br />

to non-linear distortion. It is clear that the spectrum has<br />

spread out and the troughs have been filled due to spectral regrowth.<br />

Measuring the spectrum in these troughs yields a highly<br />

sensitive measurement with respect to linearity.<br />

Error Vector Magnitude Measurement<br />

The EVM measurement was conducted as defined in the 802.15.4<br />

standard using a half sine measurement filter. EVM can be used<br />

as a measure of SNR, BER and packet loss as it is a measurement<br />

of the deviation of the baseband vector from the ideal constellation<br />

location. The instantaneous error vector is a function of<br />

all noise sources (deterministic and random) and if averaged over<br />

time, the noise power and thus SNR can be calculated therefore<br />

establishing a correlation with EVM. By applying some analysis, it<br />

is also possible to distinguish between random and deterministic<br />

noise sources [6]. National Instruments published a graph which<br />

is reproduced in Fig. 3 below for 802.15.4 and demonstrates the<br />

effect of EVM on BER. [3].<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong><br />

A<br />

3DB<br />

A<br />

SGL<br />

3DB


Fig. 5. Device characterization at 2.47 GHz<br />

Rys. 5. Charakterystyka elementu na częstotliwości 2.47 GHz<br />

Fig. 3. EVM verse’s BER for 802.15.4<br />

Rys. 3. EVM w funkcji BER dla standardu IEEE 802.15.4<br />

EVM is a function of a number of noise sources, both random<br />

and deterministic. Assuming that the radio design has taken<br />

these into account, at high output powers non-linear distortion<br />

can dominate. Even though 802.15.4 selected a modulation and<br />

pulse shaping filter to yield a constant envelope, poor waveform<br />

quality and ACP degradation can be seen if the transfer function<br />

through the transmitter is non-linear.<br />

Device Characterisation<br />

To investigate the reported throughput issues a representative<br />

sample of Tyndall Motes [5] were tested. Figures 4 and 5 below,<br />

summarises a subsection of these results at 2.44 GHz and 2.47<br />

GHz respectively.<br />

EVM<br />

Six out of ten devices measured an EVM of greater than 20%.<br />

Simple link budget tests on these motes confirmed that for a given<br />

RSSI value the number of received good packet interrupts at the<br />

CC2420 was considerably less for the high EVM motes compared<br />

to the low EVM motes. It was also observed that the difference in<br />

performance between the high and low EVM motes was considerably<br />

less at 2.47 GHz compared to 2.44 GHz. This is in agreement<br />

with the EVM measured values in the figures below.<br />

Closer inspection of the measurements above shows that<br />

there is a correlation between EVM, output power and ACPR. As<br />

the ACPR is degrading with EVM, this is an indication that the<br />

degradation in EVM was due to a linearity issue rather than a random<br />

noise source. Further experiments were conducted to test<br />

this theory. Figure 6 below plots the output power back off against<br />

EVM. One can see that the EVM improves considerably once<br />

the power is backed off relative to the maximum output power.<br />

This was presented as further indication that the root cause of the<br />

problem was linearity rather than noise. If the ACP was dominated<br />

Fig. 6. EVM v Power Back-Off<br />

Rys. 6. EVM w funkcji Power Back-Off<br />

by noise (e.g thermal or phase) there would not be such an improvement<br />

at back off.<br />

Note that at the lowest power levels, below approximately -20<br />

dBm, the EVM gracefully degrades. This is due to the noise floor<br />

of the device beginning to dominate the EVM.<br />

Having established a correlation with linearity, the next step<br />

was to establish the source. There are a number of possibilities<br />

that all tend to be associated with the output matching and balun<br />

circuitry. The investigation focused on the output matching and<br />

balun as this is the only part of the design external to the RFIC<br />

that could influence the linearity.<br />

S11 (Output Return Loss)<br />

To determine whether the device is seeing the correct load impedances,<br />

a simple S11 measurement was taken using a vector<br />

network analyser and a 1 port calibration. Figure 7 below shows<br />

a typical plot of a high EVM mote (Mote 35) against a low EVM<br />

mote (Mote 30). To simplify the measurement, the RFIC is switched<br />

Fig. 4. Device characterization at 2.44 GHz<br />

Rys. 4. Charakterystyka elementu na częstotliwości 2.44 GHz<br />

Fig. 7. S11 for motes 30 and 35<br />

Rys. 7. S11 dla mote 30 i 35<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong> 15


to receive mode. As the matching circuit and balun is common to<br />

both modes, it was concluded that this would give an indication<br />

of a correlation of matching impedance between the two types<br />

of motes. It is observed that the return loss is lower for the high<br />

EVM mote and that the return loss is better at higher frequencies<br />

due to the tuning being centered high in frequency. From these<br />

results it was ascertained that all the high EVM motes were tuned<br />

to a higher frequency compared with low EVM Motes.<br />

Even though this is a measure of Rx S11, this may indicate<br />

the path to ground is different between each mote type and that<br />

the impedance difference must be somewhere common to both<br />

Tx and Rx possibly the connection from the transceiver ground<br />

puck to the PCB.<br />

Measurement Summary<br />

Table 2 below summarises the correlation between the measurements<br />

at 2.44 GHz. The values presented are the average of<br />

the 6 Low throughput motes and the average of the 4 expected<br />

throughput motes. Note how the output power alone does not reveal<br />

the throughput issue.<br />

Tab. 2. Measurement overview<br />

Tab. 2. Wyniki pomiarów<br />

16<br />

Description Good Mote Poor Mote<br />

Throughput Expected Low<br />

EVM 3% 43%<br />

ACP1 -33dBc -28dBc<br />

ACP2 -48dBc -43dBc<br />

Tuning Centre 2.54 GHz 2.58 GHz<br />

Output Power 0dBm ± 3dB 0dBm ± 3dB<br />

The test results show correlation between EVM, ACP, high<br />

tuning centering and power back off with poor throughput. This<br />

combination seems to indicate a linearity, that, given the constant<br />

envelope nature of the waveform was rather surprising.<br />

The CC2420 [7] is highly integrated and the only external components<br />

that affect the RF are the matching and balun circuit. After confirming<br />

that the matching and balun circuit was identical between the<br />

high and low throughput motes it was concluded that the only other<br />

possible variable was the grounding of the RFIC to the PCB ground.<br />

Grounding<br />

A number of high and low EVM parts were removed from the PCB<br />

and an example of each type is shown in Figures 8 and 9 below.<br />

Fig. 8. Low EVM PCB and RFIC. Rys. 8. PCB i RFIC z niskim EVM<br />

Fig. 9. High EVM PCB and RFIC. Rys. 9. PCB i RFIC z wysokim EVM<br />

From Figure 8 above although the solder connection is not<br />

perfect it has good solder wetting over 70% of its surface area.<br />

Also noteworthy was that it took over 5 minutes to remove the part<br />

from the board, using a fine nozzle heat gun.<br />

This part in Figure 9 above clearly had a very poor ground connection.<br />

It also only took a few seconds to remove from the PCB.<br />

Neither the ground puck on the IC or the ground plane on the PCB<br />

exhibited a shiny solder finish normally associated with a good joint.<br />

In this case only part of the PCB surface had solder coverage. The<br />

solder joint was dry in the portion of the ground area it did cover.<br />

This would mean that the device connection to ground would differ<br />

significantly from its model used in design. Thus we see a shift in<br />

frequency of the S11 response from optimum and poor linearity.<br />

Conclusion<br />

It has been demonstrated that measurement of output power<br />

alone may not be enough to determine whether the RF design<br />

is performing to specification. It is possible to get both expected<br />

output power and degraded performance at the same time.<br />

It was found that the existing ACPR measurement definition<br />

defined in 802.15.4 was not sensitive enough to detect changes<br />

in linearity. So a new ACPR measurement was defined that was<br />

more sensitive to linearity degradation.<br />

It is proposed that the quality of the grounding of the CC2420<br />

to the ground pad on the PCB has significant impact on the performance.<br />

Although the data seems to indicate that this relates to<br />

linearity there are two parameters that contradict this view.<br />

i. 802.15.4 uses a constant envelope modulation scheme that is<br />

designed to be very robust to non-linear transfer functions.<br />

ii. There is a clear correlation between the tuning centering and<br />

a high and low throughput mote, EVM and ACP. It should be<br />

noted that the return loss is measured in receive mode and so<br />

is only indicative of an impedance shift in Tx mode. Currently<br />

it is only assumed that in Tx mode the change in impedance is<br />

large enough to cause such a degradation.<br />

It is also shown that monitoring of output power alone may<br />

not reveal grounding issues with the RFIC and that the EVM can<br />

be as poor 50% in these circumstance thus degrading BER and<br />

throughput. Evaluation of the linearity and waveform quality parameters<br />

should be undertaken to ensure the integrity of the build.<br />

Further analysis and measurements are required to confirm the<br />

hypothesis presented in this paper.<br />

The authors would like to acknowledge the support of Enterprise<br />

Ireland, the EU commission through the ME3GAS project. The<br />

authors would also like to acknowledge the support by Science<br />

Foundation Ireland under grant 07/CE/I1147.<br />

References<br />

[1] IEE Std 802.15.4, IEEE Standard for Information Technology – Telecommunication<br />

and information exchange between systems – Local<br />

and metropolitan networks – Specific requirements, Part 15.4<br />

Wireless Medium Acces Control (MAC) and Physical control Layer<br />

(PHY) Specifications for Low-Rate Wireless Personal Area Networks<br />

(WPANS)<br />

[2] Rishad Ahmed Shafik., Md. Shahriar Rahman.: AHM Razibal Islam.,<br />

On the Extended Relationships Among EVM, BER and SNR as<br />

Performance Metrics, 4 th International Conference on Electrical and<br />

Computer Engineering, IECE 2006, 2006, pp. 408–411.<br />

[3] National Instruments., The Basics of Zigbee Transmitter Testing, National<br />

Instruments White Paper, 2006, pp. 1–17.<br />

[4] TAN Xiao-heng., LI Teng-jiao., EVM simulation and analysis in digital<br />

transmitter, The Journal of China Universities of Posts and Telecommunications,<br />

issue 6, Dec 2009, pp. 43–48.<br />

[5] O’Flynn B., Lynch A., Aherne K., Angove P., Barton J., Harte S.,<br />

O’Mathuna C., Diamond D., Regan F.: The Tyndall Mote. Enabling<br />

Wireless Research and Practical Sensor Application Development,<br />

SourceAdvances in Pervasive Computing 2006 Adjunct Proceedings<br />

of Pervasive, Vol. 207, 2006, pp. 21–26.<br />

[6] Hassan R., Flaherty M., Matreci R., Taylor M.: Effective Evaluation<br />

of Link Quality Using Error Vector Magnitude Techniques, Proc IEEE<br />

Wireless Communications Conference, 1997, pp. 89–94.<br />

[7] CC2420 Data sheet. http://focus.ti.com/docs/prod/folders/print/<br />

cc2420.html<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


Numerical study of the interface heat transfer<br />

characteristics of micro-cooler with CNT structures<br />

(Analiza numeryczna transferu ciepła przez interfejs mikro-radiatora<br />

ze strukturami CNT)<br />

Ph.D Yan Zhang 1) , M.Sc. Shun Wang 1) , Ph.D Shiwei Ma 1) , M.Sc. Zhili Hu 1) ,<br />

Ph.D Johan Liu 1, 2) , Ph.D Janusz Sitek 3) , M.Sc.Eng. Kamil Janeczek 3)<br />

1)<br />

Key Laboratory of Advanced Display and System Applications, Ministry of Education & SMIT Center, School<br />

of Mechatronics Engineering and Automation, Shanghai University, China<br />

2)<br />

SMIT Center & Bionano Systems Laboratory, Department of Microtechnology and Nanoscience, Chalmers University<br />

of Technology, Gothenburg, Sweden, 3) Tele and Radio Research Institute, Warsaw<br />

With the continuously increasing packaging density in electronic<br />

products, the system ability to dissipate heat loads has become<br />

a concern in the overall performance. Some novel cooling techniques<br />

have emerged to meet the thermal management requirements<br />

of high power microelectronics components and devices.<br />

Micro cooling, including micro-pin-fin, micro-channel and so on,<br />

provides a promising solution for high-powered electronics.<br />

Meanwhile, carbon nanotubes (CNTs) have shown advantages<br />

in material properties such as the electrical conductivity [1],<br />

[2], the thermal conductivity [3], [4] and the mechanical properties<br />

[5], [6]. CNTs can be used as the micro-cooler construction due to<br />

the excellent thermal conductivity [7]. A micro-channel cooler with<br />

vertically aligned CNT arrays had been developed [8], [9], where<br />

the CNT structures were employed as channels inside to enhance<br />

the heat transfer. And experimental measurement had also been<br />

carried out to evaluate the overall heat removal capability of the<br />

CNT-based micro-cooler. Beside experimental works, the macroscopic<br />

heat transfer characteristics of the micro-channel heat<br />

sinks with carbon nanotubes were also studied numerically [10],<br />

[11], in which parameters such as the inlet velocity, the heating<br />

power, the CNT structure size as well as the flow field and the<br />

temperature distribution were analyzed.<br />

The most widely used fabrication method to obtain aligned<br />

CNTs is the thermal or plasma-enhanced chemical vapour deposition<br />

(CVD). During the process, the carrier substrate typically<br />

needs to be heated up to approximately 700°C or even higher.<br />

Such a high temperature is not compatible with most of the temperature-sensitive<br />

components or devices. A transfer method was<br />

proposed as a solution to this problem, in which the pre-prepared<br />

CNT forest could be transferred onto the target surface at a low<br />

temperature so that the integration of the CNTs into various device<br />

and material processes became feasible [12]. The adhesives<br />

with designed pattern have shown successful transfer.<br />

For a CNT-based micro-cooler with liquid coolant, there appear<br />

various interfaces, such as the one between the CNT and the<br />

coolant or the adhesive. The interfacial resistance was expected<br />

to be more important in the nano-composites than in the traditional<br />

composites since the interfacial density was higher [13]. In the<br />

present paper, numerical investigations on the thermal resistance<br />

across interfaces between the CNT and its surrounding materials<br />

involved in micro-cooler are carried out by molecular dynamics<br />

simulation (MDS), and various cases are studied.<br />

MDS model<br />

The interface thermal resistance values of carbon nanotubes<br />

embedded in various materials was found to range from<br />

0.76 × 10 -8 to 20.0 × 10 -8 m 2 K/W [14]. As for the micro-cooler<br />

with CNT structures inside, there exist interfaces between CNT<br />

and other materials. In the MDS, a (5,5) armchair single-walled<br />

carbon nanotube (SWCNT) is used, and matrices of different<br />

materials are then constructed to embed the CNT inside. Heat<br />

flux is prescribed to the system and temperature field can be<br />

obtained.<br />

According to the simulated temperature field, there appears an<br />

obvious temperature gradient in the interface region. This indicates<br />

that the dominating thermal resistance is associated with the conduction<br />

in the interface area. As shown in Fig. 1, the involved atoms<br />

belonging to the CNT and the material adjacent to the nanotube<br />

surface are marked with green and red spheres, respectively.<br />

Fig. 1. Sketch of the atom<br />

selection in calculation<br />

Rys. 1. Szkic atomów wybranych<br />

do obliczeń<br />

The thermal resistance R th<br />

due to the interface can be calculated<br />

by the temperature gradient at the interface with expression as:<br />

R ∆<br />

T<br />

=<br />

th Q<br />

/<br />

A<br />

where T is the temperature drop across the interface, Q/A is heat<br />

flux in which Q is the heat power and A is the interfacial area.<br />

Simulation results and analysis<br />

As for the micro-cooler with CNT structures, the thermal resistances<br />

at interface between CNT and other materials are taken into<br />

consideration.<br />

CNT-water interface<br />

Water was adopted as the cooling medium in the micro-channel<br />

cooler [8], [9], as described in previous experiment, so the interface<br />

heat transfer of the CNT-water case is studied firstly in the<br />

present work. Fig. 2 shows the structure adopted in MDS.<br />

Fig. 2. CNT-water structure in MDS<br />

Rys. 2. Struktura CNT-woda w MDS<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong> 17


Non-equilibrium molecular dynamics (NEMD) method is used<br />

and the adaptive intermolecular reactive empirical bond order<br />

(AIREBO) potential energy function is applied for the CNT in the<br />

constructed model.<br />

The thermal resistance of the CNT-water interface calculated<br />

to is about 14.69 × 10 -8 Km 2 /W. The value is closed to the one<br />

obtained in ref. [15], where the thermal boundary resistance of<br />

SWCNT-water is estimated to be 12.2 × 10 -8 Km 2 /W.<br />

CNT-epoxy interface<br />

As for the micro-cooler with CNT structures by transfer technique,<br />

the carbon nanotubes were mounted onto the target surface by<br />

means of adhesive. In addition to be exempted from high temperature,<br />

the component/device can also obtain an improved joint<br />

strength of CNTs and the cooler substrate. The thermal characteristics<br />

of the CNT-adhesive interface introduced by the transfer<br />

are studied.<br />

The epoxy used in the present work is DGEBA (diglycidyl<br />

ether of bisphenol-A), as shown in Fig. 3a. Before the simulation<br />

of thermal resistance at the interface between CNT and the epoxy<br />

matrix, the thermal conductivity of the epoxy itself is calculated.<br />

The epoxy matrix is constructed, and the non-equilibrium molecular<br />

dynamics (NEMD) method is adopted. A heat-injection<br />

method is used, where a constant heat rate is added to one end<br />

of the computation area and removed at the other end. Periodic<br />

boundary condition is used in the simulation. After the system<br />

reaches a steady state, the temperature gradient is obtained and<br />

the thermal conductivity can be calculated. The thermal conductivity<br />

of the epoxy matrix is about 0.170 W/mK, and this value is<br />

applied in the following CNT-epoxy simulation.<br />

Then the epoxy matrix with a CNT embedded is constructed.<br />

Two steps are adopted: Firstly, the epoxy matrix is constructed<br />

with a volume 40 × 40 × 28Å 3 ; Secondly, the CNT with a length of<br />

28Å was immersed into the center of the epoxy matrix. The obtained<br />

the CNT-epoxy structure in MDS is shown in Fig. 3b.<br />

The thermal resistance of the CNT-epoxy interface is calculated<br />

at 300K, and the obtained values are 1.0–1.5 × 10 -8 Km 2 /W.<br />

The values shows quite good agreement with the value<br />

2.6 ± 0.9 × 10 −8 Km 2 /W obtained by Bryning [5].<br />

Furthermore, the polymer network is considered. As shown in<br />

Fig. 4, for example, DGEBA can form a network when reacts with<br />

MDA (Methylene Diamine Dianilene). Cross-links are generated<br />

during the molecule reactions so that the polymer networks come<br />

into being.<br />

As the polymer is a network structure, it is difficult to ‘insert’<br />

a carbon nanotube into the polymer. So the surface of the CNT<br />

is treated as plane-shaped instead of a tube. Namely a piece of<br />

graphene was used instead of a carbon nanotube in the simulation.<br />

This is reasonable as a carbon nanotube can be regarded as<br />

rolling up a graphene sheet.<br />

The system is kept at a constant atoms number, pressure and<br />

temperature. In order to decrease the gap between the carbon<br />

nanotube/graphene and the polymer, a higher pressure is used.<br />

In order to get a reasonable distance between the polymer and<br />

the graphene, the pressure in the x- and y- direction are couple<br />

together, while at the z – direction it is set to be independent.<br />

The size of the computational cell was stable at 19.98Å ×<br />

18.46Å × 62.1Å. The bottom area of the simulation cell equals to<br />

that of the grapheme. The distance between the polymer and the<br />

graphene is about 2.1Å. The period boundary condition is applied<br />

to this system.<br />

The thermal resistance at the interface between the carbon nanotube<br />

and the polymer was calculated, and the value is 33.262<br />

× 10 -8 m 2 K/W. This interface resistance is quite high compared<br />

with the one of CNT-epoxy, and reason might be that the space<br />

between the polymer network and the graphene is overcalculated<br />

or the conductance between them is underestimated.<br />

a) The network structure of the polymer<br />

Fig. 3. CNT-Epoxy structure in MDS<br />

Rys. 3. Struktura CNT-klej epoksydowy w MDS<br />

In the molecular dynamics simulation of the heat transfer<br />

across the CNT-epoxy interface, the computational domain<br />

is constructed as a rectangular cell. The periodic boundary condition<br />

is applied over the cell of the CNT-epoxy structure in MDS<br />

so that the simulation results are usable for the adhesive layer<br />

involving CNT bundles.<br />

The simulation is then carried out under the condition of a canonica<br />

ensemble (NVT), while constant valence force field (CVFF)<br />

is applied to evaluate the inter-atomic potentials. When the temperature<br />

is stable at 165K, the simulation is performed under a microcanonical<br />

ensemble (NVE). By means of the Bredensen thermostat,<br />

the system is stabilized at ambient temperature of 300K.<br />

18<br />

b) Geometry of CNT and polymer matrix<br />

Fig. 4. CNT-polymer structure in MDS<br />

Rys. 4. Struktura CNT-polimer w MDS<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


Conclusions<br />

For the CNT-based micro-cooler, the heat transfer between the<br />

CNT and its surrounding material is essential for the effective heat<br />

dissipation as the interface presents a barrier to the heat flow<br />

and will affect the thermal dissipation from the powered chip or<br />

devices to the cooler. Therefore, the interface characteristics are<br />

studied in the present paper.<br />

Molecular dynamics simulations have been carried out to obtain<br />

the thermal resistance across the interfaces of CNT-coolant<br />

and CNT-adhesive. And cases including the CNT in the water, the<br />

CNT in the epoxy matrix, as well as the CNT-polymer network one<br />

between the CNT and the adhesive are simulated. The obtained<br />

results of interface heat transfer can provide information for evaluating<br />

the thermal performance of the CNT-based micro-cooler.<br />

This work was supported by the National Natural Science Foundation<br />

of China (10702037). Support by China-Poland Scientific<br />

and Technology Cooperation Committed (No. 34–11) and Innovation<br />

Program of Shanghai Municipal Education Commission<br />

(12YZ006) were also appreciated.<br />

References<br />

[1] Foygel M., Morris R. D., Anez D., French S., Sobolev V. L.: Theoretical<br />

and Computational Studies of Carbon Nanotube Composites and<br />

Suspensions: Electrical and Thermal Conductivity”, Physical Review<br />

B, Vol. 71, No.10, pp. 1042<strong>01</strong>, 2005.<br />

[2] Martin C. A., Sandler J. K. W., Shaffer M. S. P., Schwarz M. K.,<br />

Hauhofer Q., Schulte K., Windle A. H., „Formation of Percolating Networks<br />

in Multi-Wall Carbon-Nanotube-Epoxy Composites”, Composites<br />

Science and Technology, Vol. 64, pp. 2309–2316, 2004.<br />

[3] Duong H. M., Papavassiliou D. V., Lee L. L., Mullen K. J., „Random<br />

Walks in Nanotube Composites: Improved Algorithms and the Role<br />

of Thermal Boundary Resistance”, Applied Physics Letters, Vol. 87,<br />

pp. <strong>01</strong>31<strong>01</strong>, 2005.<br />

[4] Bryning M. B., Mikie D. E., Islam M. F., Kikkawa J. M., Yodh A. G.,<br />

„Thermal conductivity and interfacial resistance in single-wall carbon<br />

nanotube epoxy composites”, Applied Physics Letters, Vol. 87, 2005,<br />

pp. 161909.<br />

[5] Lau K. T., „Interfacial bonding characteristics of nanotube/polymer<br />

composites”, Chemical Physics Letters, Vol. 370, pp. 399–405,<br />

2003.<br />

[6] Zhu R., Pan E., Roy A. K., „Molecular Dynamics Study of the Stressstrain<br />

Behavior of Carbon-nanotube Reinforced Epon 862 Composites”,<br />

Materials Science and Engineering A, Vol. 447, 2007,<br />

pp. 51–57.<br />

[7] Xu Y., Zhang Y., Suhir E., Wang X., „Thermal Properties of Carbon<br />

Nanotube Array Used for Integrated Circuit Cooling”, Journal of Applied<br />

Physics, Vol. 100, 2006, pp. 074302.<br />

[8] Mo Z., Morjan R., Anderson J., Campbell E. E. B., and Liu J., „Integrated<br />

Nanotube Microcooler for Microelectronics Applications”,<br />

Proceedings of 55th Electronic Componenets and Technology Conference,<br />

Florida, USA, May-June 2005, pp. 51–54.<br />

[9] Wang T., Jonsson M., Nystrom E., Mo Z., Campbell E.B. and Liu<br />

J., „Development and Characterization of Microcoolers using Carbon<br />

Nanotubes”, Proceedings of 1st Electronics Systemintegration<br />

Technology Conference, Dresden, Germany, September 2006,<br />

pp. 881–885.<br />

[10] Zhong X., Fan Y., Liu J., Zhang Y., Wang T., and Cheng Z., A Study<br />

of CFD Simulation for On-chip Cooling with 2D CNT Micro-fin Array’’,<br />

Proceedings of the 2007 International Symposium on High Density<br />

Packaging and Microsystem Integration, Shanghai, China, June<br />

2007, pp. 442–447.<br />

[11] Wang S., Zhang Y., Fu Y., Liu J., Wang X., Cheng Z., „A Study of<br />

the Heat Transfer Characteristics of the Micro-Channel Heat Sink’’,<br />

Proceedings of 2009 International Conference on Electronic Packaging<br />

Technology and High Density Packaging, Beijing, China, August<br />

2009, pp. 255–259.<br />

[12] Wang T., Carlberg B., Jonsson M., Jeong G. H., Campbell E. E. B.<br />

and Liu J., „Low Temperature Transfer and Formation of Carbon Nanotube<br />

Arrays by Imprinted Conductive Adhesive’’, Applied Physics<br />

Letters, Vol. 91, No. 9, 2007, pp. 093123.<br />

[13] Shenogin S., Xue L., Ozisik R., Keblinski P., „Role of thermal boundary<br />

resistance on the heat flow in carbon-nanotube composite”. Journal<br />

of Applied Physics, Vol. 95, No. 12, 2004, pp. 8136–8144.<br />

[14] Unnikrishnan V. U, Banerjee. D, Reddy J. N., „Atomistic-mesoscale<br />

interfacial resistance based thermal analysis of carbon nanotube<br />

systems”. International Journal of Thermal Sciences, Vol. 47, 2008,<br />

pp. 1602–1609.<br />

[15] Maruyama S., Igarashi Y., Shibuta Y., Molecular dynamics simulations<br />

of heat transfer issues in carbon nanotubes, the 1 st international symposium<br />

on micro & nano technology, Hawaii, USA, March 14–17, 2004.<br />

Device for road holes and obstacles detection<br />

(Urządzenie do rozpoznawania dziur oraz przeszkód na drodze)<br />

mgr. Wojciech Gelmuda, prof. dr hab. inż. Andrzej Kos<br />

AGH University of Science and Technology Department of Electronics, Kraków<br />

Today’s life as we know it is based on visual signs. Practically all<br />

the important information needed to go independently through an<br />

average person’s day is provided by their sight. Let us focus on<br />

some urban environment. A person is able to see objects, determine<br />

their approximate distance, distinguish between a hole and<br />

a bump on a road, detect and recognize an important element<br />

from its background or simply read some text information from<br />

books, posters, etc. Most of these actions, if not all, allow people<br />

to gather information and give them time to react before they approach<br />

some objects. Furthermore, there are many devices that<br />

help people gain more important for them information than they<br />

would be able to learn from a closest environment in their field of<br />

view, such as navigation systems. There are also many devices<br />

that help people keep safe and avoid some accidents, like for<br />

instance, street lights and road signs. But neither of them is well<br />

suited for visually impaired people. Of course, there are special<br />

audio signals for blind people near some pedestrian crossings<br />

and there are devices which help visual impaired people avoid<br />

obstacles [1], but they are still not sufficient to keep them safe<br />

and well informed about their surrounding environment [2]. This<br />

is mostly due to a change of sensors positions while a blind<br />

person is moving. That is why we develop a MOBIAN© project<br />

– Mobile Safety System for the Blind [3]. This project is supported<br />

by The National Centre for Research and Development<br />

under: NR13-0065-10. A part of the MOBIAN© project is to create<br />

a highly reliable device for detecting obstacles and holes<br />

of various length and depth, as it is presented in Fig. 1. There<br />

is no doubt that special algorithms have to be designed, tested<br />

and implemented for this purpose.<br />

Fig. 1. Holes and other obstacle detection<br />

Rys. 1. Wykrywanie dziur, uskoków oraz innych przeszkód<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong> 19


While working on ultrasonic both transmitters and receivers<br />

[4] and employing them into a hole detection device based on<br />

a white stick [5], tests have shown that there were some minor<br />

difficulties with sensors vibrations caused by a while stick movement,<br />

especially when the white stick touched the ground. Therefore,<br />

this time an infrared beam will be implemented for a hole<br />

detection concept.<br />

This paper proposes the design of the holes and obstacles detection<br />

device and a software environment based on MatLab for<br />

testing holes detection algorithms, as a faster way to the project<br />

development.<br />

Basic concept<br />

The design of the holes and obstacles detection device is presented<br />

in Fig. 2. The device is controlled by a low-power microcontroller.<br />

A series of ultrasound transducers is used to assure<br />

the high reliability in detecting obstacles in a wide range when<br />

a blind person is walking. A custom made multichannel ultrasonic<br />

range finder was developed. The holes detection is done by an<br />

infrared range finder. Preliminary tests have shown that variable<br />

sensor position while a person is moving leads to inaccurate<br />

measurements which causes incorrect detections. That is why<br />

the measurements have to be corrected with a help of data from<br />

accelerometer and gyroscope. This is how the infrared beam is<br />

being stabilized by software. Small motor vibrators enabled by the<br />

microcontroller are informing a blind person about the danger.<br />

It is more simple to develop and debug electronic systems and<br />

algorithms where all signals come from the inside of the system<br />

and they are predictable and relatively easy to measure. The difficult<br />

part starts when signals come from the outside of the system,<br />

for instance, from sensors. In this project, regards to the holes detection,<br />

an input signal comes from an infrared beam that returns<br />

reflected from the ground ahead. Since neither models of environment<br />

nor electronic parts are perfect, it would not be reliable to<br />

develop and test algorithms for detecting holes in real-time environment.<br />

For the early stages of the MOBIAN© system design the<br />

software environment for testing holes detection algorithms is to<br />

be created based on MatLab. A basic concept is to create a software<br />

environment where imperfects on the road, e.g. holes, could<br />

be simulated. A simple movement of the sensor and of course<br />

distance measurement is to be implemented as well.<br />

For creating reliable test scenarios, a repeatable and self-acting<br />

test-bench has to be implemented. For this purpose, some<br />

environmental variables, such as a hole width, a hole length, and<br />

Fig. 2. Diagram of the holes and obstacles detection device<br />

Rys. 2. Schemat blokowy urządzenia do wykrywanie dziur, uskoków<br />

oraz innych przeszkód<br />

20<br />

a hole depth, have to be pseudorandomly generated. In each<br />

scenario a number of holes and their dimensions should be different.<br />

The whole software environment, aside from modeling a road<br />

and holes and a distance measurement, should be well suited for<br />

different kinds of algorithms. The advantage of using the MatLab<br />

environment instead of simply writing the simulator in one of the<br />

many high-level programming languages is that MatLab is already<br />

supported by a great number of mathematical functions, methods<br />

and algorithms. An implementation of new algorithms or testing<br />

the existing ones is not so complicated and time consuming.<br />

Simulations also have another advantage. One is able to test<br />

as many algorithms as they like on the same sample set without<br />

worrying that computations will take too much time and then new<br />

samples in a buffer will be overwritten. One can also pause and<br />

unpause a simulation.<br />

Due to the nature of the device, a maximum range of the ultrasonic<br />

scanner is over 3 m (a walking direction). That provides<br />

enough time for a blind person to react if some obstacle is detected.<br />

The multisensory approach makes it possible to detect obstacles<br />

placed on variable heights. A detection range is over 1.5 m<br />

(both vertical and horizontal direction). A sufficient ultrasonic scan<br />

interval is 0.5 s. The successful detection of the obstacles relies<br />

on the obstacles dimensions, geometry, material and distance between<br />

them and ultrasonic sensor [3]. However, even 1 cm metal<br />

squares are possible to be detected with the multichannel ultrasonic<br />

range finder. The infrared range finder maximum distance<br />

measurement is over 5 m. This allows to detect holes within the<br />

distance of 3 m. An infrared scan interval is less than 25 ms. The<br />

minimum dimensions of detected holes are determined by the algorithm<br />

which is employed in the device.<br />

Software modules<br />

The simulator consists of the following modules:<br />

– initialization module;<br />

– holes generation module;<br />

– distance computation module;<br />

– holes detection algorithms module;<br />

– display module;<br />

– report module.<br />

The initialization module starts the simulation. It creates environmental<br />

variables, such as, road and holes dimensions, number<br />

of holes, sensor start position, etc.<br />

The hole generation module uses a pseudorandom algorithm<br />

to create holes on the road. One can determine minimal and<br />

maximal dimensions of holes as well as minimal and maximal dimensions<br />

of spaces between them. The algorithm also makes<br />

sure that all holes fit in the defined road area. Another important<br />

issue is that one can set the initial road length. This dimension<br />

defines a hole-free space between an infrared dot starting position<br />

and a first hole. This feature will help to show some flaws in<br />

algorithms.<br />

The distance computation module uses mathematical methods<br />

to calculate the current location of an infrared dot and put it<br />

onto a shape of the road.<br />

The holes detection algorithms module is a module where one<br />

or more algorithms can be implemented and tested. It contains<br />

a detection matrix where algorithms puts theirs results. The matrix<br />

is shared among other modules.<br />

The display module makes it possible to visualize the progress<br />

and computation results. The visualization of data can be done in<br />

a 3D isometric view or in a 2D plane view. For the clarity of the<br />

visualization one may choose how big the part of the road should<br />

be in view. Displaying an image in MatLab takes time, especially<br />

if it is done from a big matrix. Therefore, the display module is<br />

created as a function, so it could be called out whenever we want.<br />

It is wise to visualize the data only if necessary, e.g. when debugging<br />

or if an important event occurs (hole not detected) and additionally,<br />

when the simulation starts and ends.<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


Fig. 3. Simulation flowchart. Rys. 3. Schemat symulatora<br />

The report module creates statistics. Final results of the simulation<br />

are displayed at the end. Results contain data about generated<br />

holes, the number of detected holes by each algorithm.<br />

One can also put there some other information, such as, the<br />

average distance between the sensor and the beginning of detected<br />

holes, dimensions and location of undetected holes, etc.<br />

Some debug information and warnings could be also included<br />

in the report.<br />

The simulator flowchart is presented in Fig. 3. When the simulation<br />

starts, all constants and variables are initiated. Next, a road<br />

and holes in it are being created with regard to parameters one<br />

put. Then, the first distance computation, a starting position and<br />

an angle of an infrared beam are being connected to the road.<br />

A visualization is an optional step. The following computations are<br />

being done till the end of the road. After each iteration the holes<br />

detection algorithms module is activated and results are being put<br />

into a result matrix, errors may be displayed if occurred. One can<br />

enable the current view display. In the end, a summarized report<br />

is being displayed and the simulation stops.<br />

Results<br />

Various algorithms for detecting holes had been designed or modified<br />

and then tested. Algorithms based on median calculations<br />

with a memory effect (ones that analyze measurements from longer<br />

period of time) have problems with detecting short holes, but<br />

thanks to the inertial effect, there are less wrong-hole-detection<br />

glitches. Algorithms that check only the last few measurement<br />

samples have better detected to undetected holes ratio, but the<br />

mentioned above glitches could get a blind person confused. The<br />

good way is to use several algorithms simultaneously.<br />

A prototype of the device is being constructed. Tested algorithms<br />

are going to be implemented into the device, adjusted and<br />

optimized. Efficiency of holes detection will be compared with<br />

simulations results.<br />

In simple simulations a source of an infrared beam moves only<br />

along the road axis. A horizontal (the road width) and vertical (the<br />

height) position is fixed. When a person with attached sensors is<br />

moving, a real source of infrared beam moves in three directions.<br />

The infrared beam changes its position constantly. This influences<br />

a hole detecting algorithms performance. To minimize this effect,<br />

a accelerometer and a gyroscope is implemented. This data<br />

is more helpful in advanced simulations. Also, sometimes during<br />

walking some accidental shakes may occur, such as when a person<br />

suddenly stops or a person is poked. Having the knowledge<br />

about these shakes is a way to avoid some potentially false data<br />

from distance measurement sensors.<br />

The simulator is operational. Some hole detection algorithm<br />

has been implemented. Right now its computation is only based<br />

on a current distance between an infrared beam and a road. The<br />

holes generation module works fine. One can choose if a current<br />

road, a sensor and an infrared dot placement should be displayed<br />

either after every computation iteration, after selected distance<br />

step or only when simulation starts and ends. A sample both 3D<br />

and 2D road display is shown in Fig. 4.<br />

Fig. 4. Sample simulator visualizations<br />

Rys. 4. Przykładowe wizualizacje<br />

symulacji<br />

References<br />

[1] Dakopoulos D., N. G. Bourbakis: Wearable obstacle avoidance electronic<br />

travel aids for blind: a survey. IEEE Transactions on Systems,<br />

Man, and Cybernetics, Part C: Applications and Reviews, volume 40,<br />

issue 1, 25–35 (2<strong>01</strong>0).<br />

[2] Boroń K., W. Gelmuda, A. Kos: Mobile Safety System for the Blind.<br />

ELTE 2<strong>01</strong>0, IMAPS-CPMT: 10th electron technology conference and<br />

34th international microelectronics and packaging, Wrocław, 22–25<br />

September 2<strong>01</strong>0.<br />

[3] Gelmuda W., A. Kos: Możliwości detekcyjne piezoelektrycznych czujników<br />

ultradźwiękowych 40STR-XX w powietrzu. Prace <strong>Instytut</strong>u<br />

Elektrotechniki, ISSN 0032-6216, t. 57 z. 246 s. 133–141, 2<strong>01</strong>0.<br />

[4] Andň B., S. Graziani: Multisensor Strategies to Assist Blind People:<br />

A Clear-Path Indicator. IEEE Transactions on Instrumentation and<br />

Measurement, vol. 58, no. 8, August 2009.<br />

[5] Gelmuda W., A. Kos: Ultrasonic white stick for detecting holes for<br />

blind people. <strong>Elektronika</strong> – konstrukcje, technologie, zastosowania,<br />

ISSN 0033-2089, nr 10 s. 141–143, Warszawa, 2<strong>01</strong>0.<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong> 21


Metal – oxide sensor array for gas detection<br />

(Matryca sensorów na bazie tlenków metali do detekcji gazów)<br />

mgr inż. Patryk Gwiżdż, dr inż. Andrzej Brudnik, dr hab. inż. Katarzyna Zakrzewska<br />

AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science<br />

and Electronics, Kraków<br />

Resistive-type semiconducting gas sensors based on metal oxides<br />

are convenient and relatively cheap devices used for detection<br />

of reducing and oxidizing gases. It is well-known that except<br />

for their high sensitivity, their largest drawback is the lack of selectivity.<br />

Such sensors cannot distinguish between different gases of<br />

the same type, e.g. hydrogen and methane because their dynamic<br />

responses look similar. However, this cross-sensitivity, manifesting<br />

itself as a non-zero sensor response to interfering gases,<br />

is used to advantage in arrays of gas sensors or electronic noses<br />

[1–2]. Application of pattern recognition schemes (PARC) allows<br />

for classification and recognition of particular components of the<br />

analyzed gas mixture and volatile organic compounds (VOCs)<br />

[3–6]. Vast research field of classification based on this idea has<br />

been established in the 80 ties of 20 th century and a new type of<br />

device called: electronic nose has been proposed [1]. The electronic<br />

noses are mainly designed to detect and recognize VOCs<br />

responsible for smell [7]. Although commercial devices are now<br />

available, there is still a need to create miniaturized portable systems.<br />

The aim of this work was to design and construct an array of<br />

resistive-type semiconducting sensors dedicated to detection and<br />

recognition of components of a gas mixture especially hydrogen<br />

and ammonia. Detection of these gases becomes increasingly<br />

important for their use in automotive industry (ammonia) [8] and<br />

fuel cells (hydrogen) [9].<br />

One of the most important requirements for the supporting<br />

electronic system is its flexibility understood as a simplicity of<br />

reconfiguration in the case of changing number of sensors. The<br />

analog part of the system had to be constructed in such a way<br />

that it should provide adaptable measuring range for each sensor<br />

individually. The created system would constitute a base for implementation<br />

of new sensors based on nanomaterials.<br />

Experimental set up<br />

The sensor array was built from six commercial metal oxide gas<br />

sensors, humidity and temperature detectors. All chosen gas sensors<br />

have different specifications, i.e., should be primary used for<br />

the following targets: ammonia, hydrogen, hydrocarbons, alcohol,<br />

air pollution and explosive gases and are destined to operate at<br />

the heater voltage of 5 V. Schematic diagram of the gas detection<br />

system designed and assembled by the authors of this work is<br />

shown in Fig. 1. The system consists of the sensor array placed<br />

in the measuring chamber, gas flow controllers, electronic measuring<br />

and control unit and a PC with a dedicated software.<br />

Concentration of the detected gas in the measuring chamber<br />

can be changed in a step-like way. Gas flow is set and measured<br />

separately for each detected gas as well as for the reference<br />

(synthetic air). All signals from the sensors are recorded by the<br />

electronic measuring and control unit built by the authors.<br />

The measuring system is based on the STM32F103 microcontroller<br />

family. The innovative approach consists in the system<br />

architecture. Each gas sensor is operated by its own measuring<br />

and control module containing analog measuring part, power control<br />

circuit of the sensor heater and microcontroller based digital<br />

part. All modules are connected to the CAN bus which allows for<br />

data transfer between them creating a sensor network. As shown<br />

schematically in Fig. 2, one module communicates with the computer<br />

transferring data from all the modules to a PC.<br />

22<br />

Fig. 1. Schematic diagram of the constructed gas detection system<br />

Rys. 1. Schemat skonstruowanego systemu do detekcji gazu<br />

Gas sensor no. 1<br />

and measuring module<br />

Gas sensor no. 6<br />

and measuring module<br />

Humidity, temperature<br />

sensors<br />

PC computer and<br />

dedicated software<br />

CAN Bus<br />

Fig. 2. Modular representation of the constructed electronic system<br />

Rys. 2. Schemat blokowy skonstruowanego systemu elektronicznego<br />

For the designed array and the electronic system a dedicated<br />

PC computer software has been written in the Microsoft Visual<br />

C++ with the aim to facilitate data acquisition and analysis of the<br />

response of each sensor in the array.<br />

An independent change in the supply voltage of each sensor<br />

has been made possible. This affects the temperature of the sensing<br />

layer, the most important factor that determines the sensing<br />

parameters and responses. Thanks to the independent temperature<br />

change of each sensor, the sensitivity and selectivity can be<br />

optimized.<br />

It is well known that humidity variation influences responses<br />

of the resistive-type semiconducting gas sensors based on metal<br />

oxides [10]. Therefore, continuous monitoring of the humidity level<br />

and temperature was provided by the relevant sensors placed<br />

directly in the measuring chamber.<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


In order to demonstrate to what extent these sensors are nonselective,<br />

the responses to a certain gas concentration of all the<br />

sensors in the array are drawn as radar plots in Figs. 5, 6, 7 and<br />

8. The worst scenario is presented in Fig. 5. Five of six sensors<br />

are almost equally sensitive to ammonia. Weak responses are<br />

obtained with hydrocarbons sensor. On the other hand, as indicated<br />

by the results in Fig. 6, the ammonia and alcohol sensors are<br />

less sensitive to hydrogen than four other sensors.<br />

Fig. 3. Top view of the gas detection system: 1 – measuring chamber<br />

containing six metal oxide sensors; 2 – electronic measuring and<br />

control unit; 3 – gas flow controllers; 4 – gas flow meter; 5 – PC<br />

computer<br />

Rys. 3. Widok układu do detekcji gazów: 1 – komora pomiarowa zawierająca<br />

sześć czujników gazu na bazie tlenków metali; 2 – elektroniczny<br />

system kontrolno-pomiarowy; 3 – kontrolery przepływu gazu;<br />

4 – miernik przepływu gazu; 6 – komputer PC<br />

Results<br />

Designed and constructed array of sensors is shown in Fig. 3.<br />

The test performed comprised the measurements of the response<br />

as a function of:<br />

• gas type,<br />

• gas concentration,<br />

• humidity level,<br />

• heater voltage (temperature).<br />

The response S of a single resistive-type gas sensor has been<br />

defined as:<br />

∆<br />

R<br />

R<br />

−<br />

R<br />

0<br />

S<br />

=<br />

=<br />

(1)<br />

R<br />

R<br />

0 0<br />

where: R 0<br />

is the sensor resistance in the reference atmosphere<br />

(synthetic air), R denotes the sensor resistance in the presence<br />

of the target gas.<br />

The influence of the humidity on the sensor response is given<br />

in Fig. 4 for two particular detectors (explosive gases and air pollution)<br />

upon detection of hydrogen.<br />

Fig. 5. Radar plot indicating the responses of all six sensors in the<br />

array upon changes in the concentration of NH 3<br />

; heater voltage 5 V<br />

Rys. 5. Wykres biegunowy przedstawiający odpowiedzi wszystkich<br />

sześciu czujników zawartych w matrycy pod wpływem zmian koncentracji<br />

NH 3<br />

; napięcie zasilania grzejnika 5 V<br />

Fig. 6. Radar plot indicating the responses of all six sensors in the<br />

array upon changes in the concentration of H 2<br />

; heater voltage 5 V<br />

Rys. 6. Wykres biegunowy przedstawiający odpowiedzi wszystkich<br />

sześciu czujników zawartych w matrycy pod wpływem zmian koncentracji<br />

H 2<br />

; napięcie zasilania grzejnika 5 V<br />

Fig. 4. Response to hydrogen for the explosive gases and air pollution<br />

sensors under different levels of humidity<br />

Rys. 4. Odpowiedzi czujników gazów wybuchowych i czystości powietrza<br />

dla wodoru przy różnych poziomach wilgotności powietrza<br />

Fig. 7. Radar plot indicating the responses of all six sensors in the<br />

array upon changes in the concentration of CO 2<br />

; heater voltage 5 V<br />

Rys. 7. Wykres biegunowy przedstawiający odpowiedzi wszystkich<br />

sześciu czujników zawartych w matrycy pod wpływem zmian koncentracji<br />

CO 2<br />

; napięcie zasilania grzejnika 5 V<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong> 23


y humidity, therefore taking its influence into account is crucial<br />

for reliable gas recognition. The designed electronic measuring<br />

system enables further research and testing of new sensors<br />

based on nanomaterials. The biggest advantage of the system<br />

is its flexibility in respect to the number of the connected sensors<br />

achieved thanks to using the CAN bus and wide measuring range<br />

of the sensor response.<br />

Financial support from Polish Ministry of Science and Higher<br />

Education under AGH-University of Science and Technology<br />

grant no. 11.11.120.614 (Statutory project) for years 2<strong>01</strong>1–<strong>2<strong>01</strong>2</strong><br />

is acknowledged.<br />

Fig. 8. Radar plot indicating the responses of all six sensors in the<br />

array upon changes in the concentration of CO 2<br />

; heater voltage 4 V<br />

Rys. 8. Wykres biegunowy przedstawiający odpowiedzi wszystkich<br />

sześciu czujników zawartych w matrycy pod wpływem zmian koncentracji<br />

CO 2<br />

; napięcie zasilania grzejnika 4 V<br />

Quite pronounced effect of the voltage supplying the sensor<br />

heater on the selectivity of responses to CO 2<br />

is seen when comparing<br />

the radar plots in Figs. 7 and 8. By lowering the voltage<br />

from 5 V to 4 V, what in consequence leads to a decrease in the<br />

operating temperature, all but two gas sensors become insensitive<br />

to CO 2<br />

. The best response is obtained for the explosive gas<br />

sensor according to expectations. Hydrogen sensor is very sensitive<br />

to all studied gases.<br />

Conclusions<br />

The sensor array designed and assembled by the authors of this<br />

work is based on six commercial gas sensor, humidity and temperature<br />

detector. The measurements performed show different<br />

responses of the array of metal oxides gas sensors to ammonia,<br />

hydrogen and carbon dioxide. By adjusting the voltage of the sensor<br />

heater, the temperature of the sensing layer of each sensor<br />

has been modified thus making it possible to reach better selectivity<br />

of the whole array. The response of the sensors suggests that<br />

using more sophisticated algorithms, a reliable gas detection and<br />

recognition may be achieved in future. The tests carried out indicate<br />

that the response of the sensors is affected to a great extent<br />

References<br />

[1] Gardner J. W., Barlett P.N.: A brief history of electronic noses. Sensors<br />

and Actuators B, Vol. 18, Issues 1–3, 1994, pp. 210–211.<br />

[2] Röck F., Barsan N., Weimar U.: Electronic Nose: current status and<br />

future trends. Chemical Review, Vol. 108, 2008, pp. 705–725.<br />

[3] Brudzewski K., Osowski S., Markiewicz T., Ulaczyk J.: Classification<br />

of gasoline with supplement of bio-products by means of an electronic<br />

nose and SVM neural network. Sensors and Actuators B, Vol.<br />

113, Issue 1, 2006, pp. 135–141.<br />

[4] Bicego M., Tessari G., Tecchiolli G., Bettinelli M.: A comparative analysis<br />

of basic pattern recognition techniques for the development of<br />

small size electronic nose. Sensors and Actuators B, Vol. 85, Issues<br />

1–3, 2002, pp. 137–144.<br />

[5] Szczurek A., Szecówka P.M., Licznerski B.W.: Application of sensor<br />

array and neural networks for quantification of organic solvent vapours<br />

in air. Sensors and Actuators B, Vol. 58, Issues 1–3, 1999,<br />

pp. 427–432.<br />

[6] Capone S., Zuppa M., Presicce D.S., Francioso L., Casino F., Siciliano<br />

P.: Metal oxide gas sensor array for the detection of diesel<br />

fuel in engine oil. Sensors and Actuators B, Vol. 131, Issue 1, 2008,<br />

pp. 125–133.<br />

[7] Brudzewski K., Osowski S., Wolińska K., Ulaczyk J.: Smell similarity<br />

on the basis of gas sensor array measurements. Sensors and Actuators<br />

B, Vol. 129, Issue 2, 2008, pp. 643–651.<br />

[8] Moos R., Müller R., Plog C., Knezevic A., Leye H., Irion E., Braun<br />

T., Marquardt K. J., Binder K.: Selective ammonia exhaust gas sensor<br />

for automotive applications. Sensors and Actuators B, Vol. 83,<br />

Issues 1–3, 2002, pp. 181–189.<br />

[9] Cheng X., Shi Z., Glass N., Zhang L., Zhang J., Song D., Liu Z.S.,<br />

Wang H., Shen J.: A review of PEM hydrogen fuel cell contamination:<br />

Impacts, mechanisms, and mitigation. Journal of Power Sources, Vol.<br />

165, Issue 2, 2007, pp. 739–756.<br />

[10] Han N., Tian Y., Wu X., Chen Y.: Improving humidity selectivity in formaldehyde<br />

gas sensing by a two-sensor array made of Ga-doped<br />

ZnO. Sensors and Actuators B, Vol. 138, Issue 1, 2009, pp. 228–235.<br />

Przypominamy o prenumeracie miesięcznika <strong>Elektronika</strong> na <strong>2<strong>01</strong>2</strong> r.<br />

24<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


Dynamic research of foot pressure distribution<br />

– the four-points shoe insert with PVDF sensors<br />

(Dynamiczne badania rozkładu nacisku stopy na podłoże – czteropunktowa<br />

wkładka do obuwia z polimerowymi czujnikami z PVDF)<br />

dr inż. Ewa Klimiec, dr inż. Wiesław Zaraska, mgr inż. Szymon Kuczyński<br />

<strong>Instytut</strong> Technologii Elektronowej, Oddział w Krakowie<br />

The human foot structure majorly decides about his/her movement<br />

possibilities. Correctly constructed foot is arched on internal<br />

side. The weight is distributed in a way, that medial arch acts like<br />

a shock absorber, by softening shocks caused by walking. Correctness<br />

of the foot structure can be estimate, by examining foot<br />

pressure distribution on the ground. Faulty posture manifest itself<br />

by different than correct, foot pressure distribution on the ground.<br />

Currently there are two measuring systems on the market, allowing<br />

diagnosis. It is EMed-SF [1, 2] and PEDAR – System [3,<br />

4]. In the first one, examined person crosses through the track,<br />

placing third step on the measuring platform. Contact with the<br />

platform surface should be measured in a natural way so, that<br />

there was no measuring distortion by aware step shortening or<br />

lengthening. For this purpose, several trials heve to be done and<br />

starter has to be suitably set up. Obtained results are in the form<br />

of map which shows the pressure distribution on foot contact surface<br />

with measuring platform in N/cm 2 . The example of recorded<br />

pressure distribution for healthy foot structure is shown on Fig.1.<br />

ted: under the heel, medial arch, mid-foot and hallux. Films were<br />

glued together. The view of the four-points measuring shoe insert<br />

is shown on Fig. 2.<br />

Fig. 2. The view of a four-point measuring shoe insert<br />

Rys. 2. Widok czteropunktowej wkładki pomiarowej<br />

Fig. 1. Pressure distribution of healthy foot to the ground recorded<br />

by EMed-SF system<br />

Rys. 1. Rozkład nacisku prawidłowo zbudowanej stopy na podłoże,<br />

zarejestrowany przez EMed–SF system<br />

Data presented on Fig. 1 shows that for healthy foot, the biggest<br />

values of the pressure are observe under heel, midfoot and<br />

on hallux. Measuring system PEDAR is characterized by the fact<br />

that we examine the foot pressure between foot and shoe sole.<br />

The pressure is recorded by pressure sensors which are installed<br />

into shoe insole. The system is expensive and shoe insole very<br />

thick. It will be profitable to develop competitive system which will<br />

be able to do research on a large scale. Research on the development<br />

of competing systems and results interpretation are<br />

conducted by various research and development centers in the<br />

world [5].<br />

The article discuss measurement system developed by the<br />

authors where the active element is made of piezoelectric PVDF<br />

film (Measurement Specialties, Inc.) with 100 μm thickness, with<br />

printed silver electrodes, placed in the insert to the shoe of his<br />

own design. Insert was placed in a sport shoe.<br />

Dynamic investigations of foot pressure<br />

distribution on the ground<br />

Shoe insert and measuring system design<br />

Shoe insert consist of two polyester films without piezoelectric<br />

properties. Both films have silver, screen printed electrodes. Between<br />

them, piezoelectric sensors made of PVDF film were loca-<br />

Fig. 3. Electric scheme of measuring system, where: S – Sensing element,<br />

E – Electromotive force, X – Reactance of an equivalent source,<br />

U – Voltage, RS – Resetting System, MA – Measurement amplifier<br />

(Keihley 6517A multimetr), OC – Oscilloscope (LeCroy LT-341), TS<br />

– Time Sensor<br />

Rys. 3. Schemat elektryczny systemu pomiarowego, gdzie: S – czujnik,<br />

E – siła elektromotoryczna, X – reaktancja układu zastępczego,<br />

U – napięcie, RS – układ zerujący, MA – wzmacniacz pomiarowy (Keihley<br />

6517A multimetr), OC – oscyloskop (LeCroy LT-341), TS – czujnik<br />

czasu<br />

Electric scheme of measuring system is shown on Fig. 3.<br />

Large load resistance 10 14 Ω has been provided to measuring<br />

system by input analog amplifier of Keithley multimeter. Generated<br />

piezoelectric voltage was recorded on an oscilloscope.<br />

Recorded digital data were used for further signal analysis. The<br />

sensor made of piezoelectric polymer film with printed electrodes<br />

is a self-charging capacitor. It is caused by mechanical deformation<br />

and by pyroelectric properties influence. That is why resetting<br />

system perform very important role in proper measurements.<br />

Resetting system prevents capacitor charging and also reduce<br />

influence of pyroelectric signal which direction is opposite to piezoelectric<br />

signal. Moreover, piezoelectric voltage measurements<br />

were performed when temperature in shoes was established. Resetting<br />

system ensure return of the measurement system to the<br />

starting point, after each step.<br />

Voltage signals analysis – the influence<br />

of design and fasten of measurement shoe insole<br />

to signal quantity and shape<br />

PVDF sensors are very sensitive to any mechanical deformation.<br />

That should be taken into consideration in shoe insert design<br />

where measuring insert, shown on Fig. 2, is fasten. The article<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong> 25


investigate three designs of shoe insert, which were fastened in<br />

a typical man sports shoe, size EU42. Dynamic research of stress<br />

distribution on foot were made on running track. The speed of<br />

a walking man, weighing ~ 76 kg, was ~ 4 km/h. Design no.1,<br />

consist of measuring insert and lining which was made of a thin<br />

rubber – leather layer. Obtained voltage signals on insole, design<br />

no.1, are shown on Fig. 4.<br />

U [V]<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Heel<br />

Medial arch<br />

Metatarsal<br />

Hallux<br />

Signal for sensor which was located on medial arch also increased.<br />

To summarize voltage curves on Fig. 4, 5 and 6, it is seen,<br />

that presented modernization of the insert is beneficial only for<br />

sensors placed under the heel and hallux.<br />

Further modernization of the insert has gone in direction of<br />

even greater sensors stiffening and further reduction of other mechanical<br />

factors reaction except stress. Additional metal plates<br />

were mounted above sensors, to design no 2. Voltage traces on<br />

insole, design no 3, with stiffened sensor on both sides, are shown<br />

on Fig. 6.<br />

20<br />

15<br />

10<br />

Heel<br />

Medial arch<br />

Metatarsal<br />

Hallux<br />

0<br />

-5<br />

-10<br />

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8<br />

Time [s]<br />

Fig. 4. Piezoelectric voltage signal traces obtained on shoe insert<br />

– design no 1<br />

Rys. 4. Przebiegi piezoelektrycznego napięcia na wkładce do obuwia<br />

– konstrukcja nr 1<br />

U [V]<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

0.0 0.2 0.4 0.6 0.8 1.0 1.2<br />

Time [s]<br />

Voltage traces shown on Fig. 4, presents, that besides positive<br />

signals, which are coming from the applied stress of the foot on<br />

the ground, there are signals of opposite sign, resulting from bending,<br />

torsioning and also other mechanical reactions of foot with<br />

shoe sole. The highest voltage value was obtained from a sensor<br />

placed under heel, and it was ~ 22 V. Next largest is the signal<br />

from metatarsal area ~ 8 V and hallux ~ 6 V. Very small voltage<br />

signal was received from medial arch.<br />

To reduce influence of other mechanical reactions on the measuring<br />

insert except for pressure, design no.1 was modernized.<br />

On the bottom of the measuring insole, under sensors surface,<br />

metal plates with 1.5 mm thickness were sticked. Also, lining leather-rubber<br />

was added starting from shoe sole. This modernization<br />

was done to make the sensor more stiffner and to suppress<br />

measuring insert vibrations. Obtained voltage signals from shoe<br />

insole, design no. 2, are presented on Fig. 5.<br />

Comparing voltage traces on Fig. 4 and 5, we can see, that<br />

for a sensor which is located under the heel, negative signal<br />

decreased. Voltage curve for metatarsal is less corrugated and<br />

it shows smaller vibration of measuring insole, but significantly<br />

increased value of a negative signal. Voltage curve for hallux<br />

under pressure increase more uniform, and the negative signal<br />

slightly decrease.<br />

Fig. 6. Piezoelectric voltage signal traces obtained on shoe insert<br />

– design no 3<br />

Rys. 6. Przebiegi piezoelektrycznego napięcia na wkładce do obuwia<br />

– konstrukcja nr 3<br />

Comparing the voltage character on Fig. 5 and 6, it is seen,<br />

that stiffeners introduction on bottom and top sensor area causes,<br />

that for first three sensors, we obtain voltage response mainly to<br />

foot pressure on the ground. For sensor placed on metatarsal,<br />

where large bending appears, negative voltage is still high. Obtained<br />

voltage values on design no. 3, except hallux, are smaller<br />

than for design no 1 and 2. A comparison of Fig. 4, 5, 6 it is seen,<br />

how the design of measuring insert affects to values and character<br />

of piezoelectric signal.<br />

To present influence of insert bending to electrical signal generated<br />

mainly from stress the following investigation was conducted.<br />

Measurement insert with both sides sensor stifness fastened<br />

to dynamometer IMADA DIGITAL FORCE GAUGE at the area<br />

of one sensor. The pressure was increased gradually up to 200 N.<br />

Then the sensor was kept under pressure and insole was bending<br />

nearby the sensor side. Afer that, pressure was gradually reduced<br />

to the starting point. Voltage trace on sensor during described<br />

above experiment, is shown on Fig. 7.<br />

25<br />

20<br />

15<br />

10<br />

Heel<br />

Medial arch<br />

Metatarsal<br />

Hallux<br />

U [V]<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8<br />

Time [s]<br />

Fig. 5. Piezoelectric voltage signal traces on shoe insert – design no 2<br />

Rys. 5. Przebiegi piezoelektrycznego napięcia na wkładce do obuwia<br />

– konstrukcja nr 2<br />

Fig. 7. Voltage trace on one sensor during pressure growth up to 200<br />

N, measuring insert bending nearby sensor and pressure decrease<br />

to the starting point<br />

Rys. 7. Przebieg napięcia na czujniku podczas wzrostu siły nacisku<br />

do 200 N, zginaniu wkładki pomiarowej w pobliżu czujnika i zmniejszaniu<br />

siły do punktu wyjścia<br />

26<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


Voltage trace presented on Fig. 7 shows, that signal which is<br />

coming from increasing pressure gradually increases and decreases<br />

uniformly when pressure decrease. While measurnig insole<br />

was bending, opposite voltage direction occurred to voltage generated<br />

from pressure.<br />

Also, walking speed have influence on voltage curve and its<br />

character was investigated. Voltage curves on insole deesign no<br />

3, on the sensor located on metatarsal area, for high and slow<br />

walking speed of 4 and 1.4 km/h are shown on Fig. 8.<br />

U [V]<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

V=1.4 [km/h]<br />

V=4 [km/h]<br />

-15<br />

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2<br />

Time [s]<br />

Fig. 8. Voltage trace on insole design no 3, on the sensor located on<br />

metatarsal area, for high and slow walking speed of 4 and 1.4 km/h<br />

Rys. 8. Przebieg napięcia na wkładce o konstrukcji nr 3, na czujniku<br />

umieszczonym w miejscu śródstopia, przy szybkim i powolnym chodzeniu<br />

z prędkością 4 km/h i 1,4 km/h<br />

U [V]<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

Arch of the healthy foot<br />

Arch of the flatfoot<br />

-2<br />

0.0 0.2 0.4 0.6 0.8 1.0 1.2<br />

Time [s]<br />

Fig. 9. Voltage traces on medial arch sensor for healthy foot and foot<br />

with stimulated flatfoot – shoe insole design no 3<br />

Rys. 9. Przebiegi napięć na stopie zdrowej i na stopie ze stymulowanym<br />

płaskostopiem, na czujniku umieszczonym w miejscu wklęśnięcia<br />

stopy zdrowej, na wkładce o konstrukcji nr 3<br />

As shown on Fig. 8, for slow walking speed, negative voltage<br />

is not observed, but it occurs for high walking speed. This phenomenon<br />

can be use for dynamic gait analysis.<br />

Presented above shoe insoles, where active element is a piezoelectric<br />

PVDF film, can be use to diagnose various foot disease,<br />

e.g. flatfoot. By introducing additional insert in medial arch area,<br />

flatfoot was simulated. To conduct this investigations, a shoe insole<br />

with design no 3 was used. Voltage traces recived from healthy<br />

foot and flatfoot at medial arch area, are shown on Fig. 9.<br />

Higher voltage signal is observe in case of flatfoot, than for heathy<br />

foot. By presented shoe insole, it will be possible to diagnose<br />

pathological foot deformations e.g. flatfoot.<br />

This condition leads to chronic bursitis, inflammation of joints<br />

ligaments, edema, pain, and sometimes prevent walking. Examinations<br />

can be performed in a dynamic way, for any long time.<br />

Summary<br />

The design of shoe insert has an influence to the shape and value<br />

of piezoelectric voltage, because its active element is a piezoelectric<br />

PVDF film, which is very sensitive to mechanical deformations.<br />

It is seen on Figs. 3–6.<br />

If measurements are mainly focus on foot pressure distribution<br />

on the ground e.g. flatfoot examinations, it will be well to use insole<br />

design no 3 with stiffened sensors surfaces. It is less sensitive<br />

than insole design no.1. Electrical signal value decrease, but foot<br />

bending and torsioning has smaller influence to its shape and value.<br />

Comparison: Fig. 4 and Fig. 6. Insert design no 1 should be<br />

chosen, if we want a full mapping of foot behavior by electrical<br />

signal during walking. It is very sensitive to any mechanical deformations.<br />

The measuring system developed by the authors, allows to<br />

conduct investigation of foot pathology like flatfoot, at any long<br />

time, in a dynamic way.<br />

Resetting system is important to conduct correct measurements,<br />

which assures that measurement system returns to the<br />

starting point after each step execution.<br />

For sensors calibration, relative pressure measurement of foot<br />

pressure seems most profitable e.g. in relation to heel pressure,<br />

what would largely reduce the influence of shoe insert design to<br />

results interpretation.<br />

Authors are working on radio transmission of electric signal<br />

values from insert placed in footwear to receiving station, where<br />

signal analysis will be conducted.<br />

Authors conduct investigations on further improvement of the<br />

system – eight points shoe insole, and also on adaptation of insole<br />

design to different foot pathologies tests.<br />

Authors wish to express their gratitude to the IET Cracow Division<br />

measurement laboratory staff, especially to Mr. Andrzej Cichocki,<br />

for his assistance while conducting the electric measurements<br />

and in editing this paper. This work has been supported<br />

by key project MNSDIAG, WND-POIG <strong>01</strong>.03.<strong>01</strong>-00-<strong>01</strong>4/08.<br />

References<br />

[1] Bryant A.R., Tinley P., Singer K.P.: Normal values of plantar pressure<br />

measurements determined using the EMED-SF system. Journal<br />

of American Podiatric Medical Association, Vol.°90, No.°6, 2000,<br />

pp. 295–299.<br />

[2] Cichy B, Wilk M.: Gait analysis in osteoarthritis of the hip, Med. Sci<br />

Monit, Vol.°12, No.°12, 2006, pp. 507–513.<br />

[3] Hurkmans H. L. P., et al., Validity of the Pedar Mobile system for<br />

vertical force measurement during a seven-hour perio. Journal of Bomechanics,<br />

Vol.°39, 2006, pp. 110–118.<br />

[4] Hessert M.J., Vyas M., Leach J.,Hu K., Lipsitz L. A., Novak V.: Foot<br />

pressure distribution during walking in young and old adults. BMC<br />

Geriatrics, Vol.°5, No.°8, 2005.<br />

[5] Kong K. and Tomizuka M.:Smooth and continuous human gait phase<br />

detection based on foot pressure patterns. in Proc. IEEE Int. Conf.<br />

Robot.Autom., 2008, pp. 3678–3683.<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong> 27


Design and realization of a microfluidic capillary sensor<br />

based on a silicon structure and disposable optrodes<br />

(Projekt i realizacja mikrocieczowego czujnika kapilarnego opartego na przestrzennej<br />

strukturze krzemowej z wykorzystaniem włókien światłowodowych)<br />

dr inż. Zbigniew Szczepański 1) , dr inż. Michał Borecki 1) , dr inż. Dariusz Szmigiel 2) ,<br />

PhD Michael L. Korwin Pawlowski 3)<br />

1)<br />

Warsaw University of Technology, Institute of Microelectronics and Optoelectronics, Warsaw<br />

2)<br />

Institute of Electron Technology Warsaw, Devision of Silicon Nanostructure Technology, Piaseczno<br />

3)<br />

Département d’informatique et d’ingénierie, Université du Québec en Outaouais, Gatineau,Québec<br />

During the last years microfluidic sensors that use optical capillaries<br />

have gained an increasing importance due to their new<br />

applications as diagnostic tool in biotechnology, medicine and in<br />

environmental sciences. This was possible because the capillary<br />

enables multiparametric sensing [1–7] contrary to the classical<br />

optical fiber sensors [8], which find applications in physical measurements<br />

such as pressure and also magnetic field [9].<br />

In this paper the improvements in the design of microfluidic<br />

sensors that use local heating in optical capillaries as a base<br />

of multiparametric diagnostics is presented [4]. The application<br />

of local heating opened interesting new possibilities for the<br />

sensors, that do not use any chemical sensitive layers or reagents,<br />

while raising specific issues relating to their construction,<br />

materials and technology [5]. The mentioned sensors can be<br />

used for in situ diagnostic in medicine and veterinary and as<br />

biofuel usability testers [10–12].The proposed microfluidic capillary<br />

sensor consists of a stabilized-intensity light source unit,<br />

a testing head with replaceable optical capillary, a heater and<br />

a detection unit. The optical capillary performs the functions of<br />

a liquid sample holder and at the same time of a multiparametric<br />

sensing element. The sensor operates in a multiparametric sensing<br />

mode, monitoring, registering and processing the indirect<br />

information such as the index of refraction, the boiling point,<br />

the vapour pressure, the heat capacity, the heat of fusion, the<br />

viscosity, the surface tension of the liquid and turbidity changes<br />

in a thermally forced measuring cycle. The measuring cycle is<br />

initiated by applying local heating to the sample [5]. The measuring<br />

cycle is controlled indirectly by changes in optical signals<br />

and temperatures [10]. The raw optical data are processed<br />

by an optoelectronic circuits and fed to an information module,<br />

consisting of a personal computer equipped with data an acquisition<br />

function. For information processing an artificial neural<br />

network is used.<br />

The advantage of disposable capillary optrodes in liquid and<br />

fluid classification, are low total sample volume of the order of<br />

3 mm 3 that, is required for the analysis and the fact that washing<br />

of the sensor is not required, because the low-cost capillary can<br />

be disposable. The improvements in sensor construction compared<br />

with its previous versions are used of 3D silicon substrate<br />

structure and of a direct bonded copper (DBC) base.<br />

Sensor construction improvements<br />

The main part of microfluidic capillary sensor is a sensor head,<br />

that consists of the following elements:<br />

● a disposable optical capillary optrode with the liquid to be analysed,<br />

● a substrate for the capillary optrode with a local heater to change<br />

the temperature of the examined sample,<br />

● a set of optical fibres; one to input light from a local light source<br />

into the capillary and others to collect signals from the liquid,<br />

so that the light intensity variations can be monitored,<br />

● temperature sensors for temperature heater measurement,<br />

● a base for the mentioned above elements.<br />

28<br />

a) b)<br />

Fig. 1. Layout of silicon sensor head (a) and the heater (b)<br />

Rys. 1. Schemat krzemowego czujnika (a) głowica, (b) grzejnik<br />

The sensor substrate was designed on the base of a silicon<br />

wafer with the thickness of 900 μm, using silicon micromachining<br />

process, IC fabrication and hybrid techno+logies. The lay out of<br />

the silicon sensor substrate is shown in Fig. 1.<br />

The following elements are shown on Fig. 1: the V-grove for<br />

placement of the capillary, the rectangular groves for the optical<br />

fibres, the cavity of the heater, the heater resistive layer, aluminium<br />

metallization, the four rectangular holes and temperature<br />

sensors. The rectangular holes fulfil the role of thermal barriers to<br />

limit heat transfer from the heater area. The temperature sensors<br />

in a form of thin film resistors are deposited at the upper side and<br />

bottom side under the heater.<br />

The presented sensor design and technology takes into<br />

account the dimensional requirements for this sensor. The critical<br />

point of the optical capillary sensor construction is its reliable<br />

three dimensional positioning of the capillary optrode, in relation<br />

to the heater and of the optical fibres towards to capillary. The<br />

capillaries have to be positioned exactly 100 μm above the heater,<br />

taking into account the tolerances of the capillary’s diameter<br />

of ±20 μm. The source fibre and the receiver fibres ought to be<br />

coaxially positioned in relation to the capillary optrode. For the<br />

above reasons, the Si anisotropic etching was carried out in order<br />

to obtain V-groove profile with excellent dimensional control<br />

(Fig. 2a).<br />

a) b)<br />

Fig. 2. The cross section of V-grove (a) and rectangular grove (b)<br />

Rys. 2. Przekrój poprzeczny wydrążonych kanałów (a) w kształce litery<br />

V, (b) prostokątny<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


Moreover IC technology allows the integration of the heater<br />

and temperature sensors with the silicon substrate. For realization<br />

of silicon sensor head, a silicon wafer with the (100) orientation<br />

and the thickness of 900 μm was used. Such thickness is<br />

appropriate for accommodation of the optical fibres and allows<br />

accommodate optical fibres and replaceable capillaries with outer<br />

diameters of 850 μm (Fig. 2b).<br />

The silicon wafer was oxidized in order to obtain a 100 nm<br />

SiO 2<br />

layer. Then it was covered with a Si 3<br />

N 4<br />

layer with the thickness<br />

of 100 nm, using an LPCVD process. Subsequently the<br />

double side photolithography was used to define the areas of<br />

capillary duct and 4 through the wafer slits. These slits fulfil the<br />

role of thermal barriers. The nitride mask layer was next opened<br />

using RIE plasma treatment, whereas the oxide layer was etched<br />

by means of wet chemical etching. In the next step the 550 μm<br />

depth cavity, V-shape capillary grove and rectangular slits were<br />

anisotropically etched at 80ºC, using KOH solution. After KOH<br />

etching the nitride mask was removed by wet etching and the etched<br />

surface was oxidized (~550 nm). In order to obtain thin film<br />

resistors with Al bond pads metallization at the both sides of silicon<br />

wafer, first RF magnetron sputter deposition of titanium was<br />

performed (300 nm thick) and then aluminium with the thickness<br />

of 500nm was deposited. Each metal layer was subsequently<br />

patterned using photolithography and wet processing. Straight<br />

line rails for the four the optical fibres placement have been made<br />

by means of the incising of the taped wafer using a rotary blade<br />

diamond saw. Finally the silicon wafer was diced into 30 × 30 mm<br />

pieces. In the Fig. 3 the realized functional silicon sensor bed<br />

structure is presented.<br />

Fig. 4. Layout of patterned DBC substrate<br />

Rys. 4. Układ podłoża DBC<br />

Fig. 3. Silicon sensor bed structure view<br />

Rys. 3. Podłożę czujnika krzemowego<br />

Two thin film resistors which act as temperature sensors were<br />

laser trimmed to obtain meander shape, what increases the accuracy<br />

of the temperature measurements. In the next step ultrasonic<br />

large diameter wire bonding process was made using 100 μm<br />

diameter aluminium wire, allowing for high density current flow<br />

through the heater.<br />

The realized silicon sensor head was assembled to patterned<br />

DBC alumina substrate, both side plated with 200 μm thick copper<br />

metallization (Fig. 4).<br />

The bonding pads were made using mechanical treatment,<br />

since photolithography was difficult to perform, due to the relatively<br />

thick copper metallization. The DBC substrate assures efficient<br />

heat transfer between the sensor head and the environment. In<br />

the centre of the DBC substrate, a square hole (12 × 12 mm) was<br />

made using laser drilling, to allow heat dissipation from the heater.<br />

The 3D silicon sensor head was connected with the DBC substrate<br />

using a conductive adhesive, dispensed around the edge<br />

of silicon structure. Such connection did not decrease of thermal<br />

resistance between the bottom side of silicon structure and the<br />

Fig. 5. Scheme of mechanical stabilization of the optical elements<br />

Rys. 5. Schemat mechanicznej stabilizacji elementów optycznych<br />

DBC metallization. To ensure repeatable position of the optical fibres<br />

and of the microfluidic capillary, mechanical stabilization has<br />

been applied (Fig. 5).<br />

In the sensor head assembled on the DBC substrate the temperature<br />

of the heater was measured, using a laser pyrometer<br />

and the thin film temperature sensors. Since the coefficient of<br />

the emission of the heater surface depends of temperature, so<br />

temperature measurements by means of pyrometer were made<br />

with an accuracy of ±10ºC.The better accuracy of the heater<br />

temperature measurement could be obtained using thin film temperature<br />

calibrated sensors. The temperature in the capillary was<br />

monitored by observing the boiling point of the various fluids filling<br />

the capillary. It was found that heater temperature had to be increased<br />

up to 180ºC, in order to obtain 100ºC inside the capillary.<br />

It was reached with heater power of ~5 W.<br />

Conclusions<br />

Capillary optical sensors are a novel instrument and method for<br />

classification of biological and chemical liquids and fluids with the<br />

advantage of a very small liquid sample that is needed for exa-<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong> 29


mination. One intended application of such sensors is testing of<br />

biofuel usability for motor vehicles at a filling station. The capillary<br />

sensor was fabricated using silicon micromachining and IC<br />

technology. The applied technologies allowed for integration of<br />

the main sensor parts. High accuracy in 3D positioning of the heater<br />

in relation of the optical fibres, towards a capillary and good<br />

thermal control of the sample inside the capillary were obtained.<br />

The design of the sensor improved the accuracy of the dynamic<br />

optical measurements of the liquid under study.<br />

This work was supported by the European Union structural funds<br />

grant POIG nr <strong>01</strong>.03.<strong>01</strong>-00-<strong>01</strong>4/08-00 pt. „Mikro- i Nanosystemy<br />

w Chemii i Diagnostyce Biomedycznej – MNS DIAG” zadanie 2A.<br />

References<br />

[1] Weigl B.H., O.S. Wolbeis: Capillary optical sensors. Anal. Chem.66,<br />

1994. pp. 3323–3327.<br />

[2] Weigl B.H., G. Domingo, P. Laborre, J. Gerlach: Towards non and<br />

minimally microfluidics-basd diagnostic devices. Lab Chip. 8. 2008.<br />

pp. 1999–2<strong>01</strong>4.<br />

[3] Romaniuk R.: Applications of capillary optical fibres. Proc. SPIE<br />

6347. 2006.<br />

[4] Borecki M., et al.: Optoelectronic Capillary Sensors in Microfluidic<br />

and Point-of-Care Instrumentation. Sensors. 2<strong>01</strong>0; 10(4):3771-3797;<br />

http://www.mdpi.com/1424-8220/10/4/3771/<strong>pdf</strong>.<br />

[5] Borecki M., M.L. Korwin-Pawłowski, P. Wrzosek, J.Szmidt: Capillaries<br />

as the components photonic sensor and Microsystems. 2008.<br />

Mes.Sci.Technol. 19:065202.<br />

[6] Keller B.K., M.D. DeGrandpre, C.P. Palmer: Sensors and Actuators.<br />

B25. 2007. pp. 360–371.<br />

[7] Lippitisch M.E., S. Draxler, D. Kieslinger, H. Lehmann, B.H. Weigl:<br />

Applied Optics 35. 1996. pp. 3426–3431.<br />

[8] Gholamzadeh B., H. Nabovati: Fiber Optic Sensors. World Academy<br />

of Science, Engineering and Technology 42 2008. pp. 297–307.<br />

[9] Pustelny T., K. Barczak, K. Gut, J. Wojcik: Special optical fiber type D<br />

applied in optical sensor of electric currents. Optica Applicata, 34(4),<br />

2004, pp. 531–539.<br />

[10] Struk P., T. Pustelny, K. Gut, K. Gołaszewska, E. Kamińska, M. Ekielski,<br />

I. Pasternak, E. Łusakowska, and A. Piotrowska: Planar optical<br />

waveguides based on thin ZnO layers. Acta Physica Polonica A,<br />

116(3), 2009, pp. 414–418.<br />

[11] Borecki M., et al.: Intelligent Photonic Sensors for Application in Decentralized<br />

Wastewater Systems; in Waste Water – Evaluation and<br />

Management. Fernando Sebastián García Einschlag (Ed.), ISBN:<br />

978-953-307-233-3, InTech, (2<strong>01</strong>1); http://www.intechopen.com/articles/show/title/intelligent-photonic-sensors-for-application-in-de<br />

centralized-wastewater-systems.<br />

[12] Borecki M., M. Korwin-Pawłowski: Optical Capillary Sensors for Inteligent<br />

Microfluidic Sample Classification. in Nanosensors: Theory<br />

and Applications, ed. K. Lim, CRC Press, pp. 215-246, Boca Raton-<br />

London- New, York, (2<strong>01</strong>1).<br />

[13] Borecki M., M.L. Korwin-Pawlowski, M. Bebłowska, M. Szmidt, K.<br />

Urbańska, J. Kalenik, Ł. Chudzian, Z. Szczepański, K. Kopczyński,<br />

A. Jakubowski and J. Szmidt: Capillary Microfluidic Sensor for Determining<br />

the Most Fertile Period in Cows. Acta Physica Polonica A.<br />

118(6), 2<strong>01</strong>0, pp. 1093–1099.<br />

[14] Urbańska K.et al.: Vaginal fluid of cow differences in rut cycle with<br />

emphasis on most fertile period. Życie Weterynaryjne, 86(2), 2<strong>01</strong>1,<br />

pp. 127–129.<br />

A compact thermoelectric harvester<br />

for waste heat conversion<br />

(Kompaktowy termoelektryczny generator do pozyskiwania i przetwarzania<br />

ciepła odpadowego na energię elektryczną)<br />

dr inż. Piotr Dziurdzia, Akademia Górniczo-Hutnicza, Katedra Elektroniki, Kraków<br />

mgr inż. Karol Lichota, Knorr-Bremse Systemy dla Kolejowych Lokomocji PL Sp. z o.o.<br />

Ambient energy harvesters have been playing more and more important<br />

role in the electronic industry in recent years. Not so long ago,<br />

energy scavenging was treated in R & D laboratories with some timidity<br />

and used only in some niche applications. Nowadays, development<br />

of autonomous power sources for supplying microelectronic systems<br />

is strongly driven by market demands following recent advances in<br />

smart mobile equipment, wireless sensor networks (WSN), monitoring<br />

of industrial processes, etc. Since transmission lines have been<br />

replaced with wireless channels a long time ago, now the energy harvesters<br />

are removing the last obstacle on the way to developing quite<br />

autonomous electronic systems. By providing electrical voltage to the<br />

sensor nodes from harvested pieces of ambient energy (for instance:<br />

heat, light and vibrations) they do not need external sources of energy,<br />

for instance power mains or batteries, any more [1–3].<br />

For the last few years our team has been focused on developing<br />

of thermoelectric energy harvesters for supplying wireless sensor<br />

nodes. At the beginning, basing on the phenomena of Seebeck,<br />

Peltier, Joule and Thomson, an original model of thermoelectric<br />

generator was elaborated [4]. It was next subjected to simulations<br />

in order to investigate the maximum ratings of TEG against available<br />

heat power sources and different ambient conditions. In the<br />

next steps first prototypes of TEGs were designed and fabricated.<br />

Thermoelectric harvester<br />

As a rule, thermoelectric generators suffer from relatively low conversion<br />

efficiency (not exceeding 10%), so they are practically not<br />

applicable to large-scale systems, not to mention power stations.<br />

30<br />

On the other hand they seem to be promising solutions when they<br />

are used to harvesting some waste heat coming from industry<br />

processes or central heating systems.<br />

In recent years a lot of attention was paid to analyzing Peltier<br />

modules and efficiency of conversion thermal energy into electrical<br />

one. Our latest aim was to design a complete, independent device<br />

powering a WSN node. Since low power integrated circuits, like<br />

microcontrollers, transceivers and sensors have been commonly<br />

available for several years we focused especially on DC-DC converter<br />

section. Ideal solution should fulfill the followings objectives:<br />

– operate from extremely low voltages, from tens of mV – it is<br />

a must since it is desirable that energy harvesters could work<br />

properly even with very low (equaling to single Celsius degrees)<br />

temperature gradients between Peltier modules hot and<br />

cold sides. Such temperature differences, for typical commercially<br />

available thermoelectric modules, result in tens of mV<br />

output Seebeck voltage,<br />

– match load impedance to Peltier module internal resistance to<br />

extract maximum amount of power,<br />

– small and compact package, easily applicable to relatively simple<br />

applications,<br />

– very low quiescent current.<br />

Design considerations<br />

A recently released (December 2009) integrated circuit LTC3108<br />

from Linear Technology would presumably meet our expectation.<br />

It can operate from input voltage as low as 20 mV and power ex-<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


Fig. 1. Communication interface between ATTiny2313V and SHT11<br />

Rys. 1. Schemat interfejsu komunikacyjnego między mikrokontrolerem<br />

ATiny2313V i czujnikiem SHT11<br />

ternal microcontroller via V LDO<br />

= 2.2 V or other devices (wireless<br />

transmitters, sensors etc) via two V OUT<br />

outputs with one of four<br />

regulated voltages. It draws 6 uA quiescent current and has input<br />

resistance (including step-up transformer and whole input circuit<br />

not only LTC3108) about 2.5 Ω [5].<br />

Even with the best converter one has to remember that energy<br />

harvesting is a low efficiency method and there is not too much<br />

power available. Therefore, all components should be aware of<br />

power dissipation and have both low current consumption and<br />

possibility to work in „power-save” mode (if not, µC should have<br />

possibility to temporarily turning them off). So, one has to carefully<br />

consider parameters of chosen devices (µC and sensor) in terms<br />

of power consumption. We decided to use Atmel ATTiny2313V<br />

µC from new designed low power family and SENSIRION SHT11<br />

sensor [6]. In fact this is not only sensor but also an A/D converter,<br />

an amplifier, a memory and a serial interface similar to I2C<br />

integrated in a single device. SHT11 could be used in meteorology<br />

station in WSN because of its low power consumption and<br />

good measuring properties. The least 12 bits for temperature and<br />

8 bits for data of humidity (the less bits the lower power consumption)<br />

are read by external microprocessor. SHT1x sensor family<br />

is common used in commercial application like: HVAC systems,<br />

meteorology stations, control and measurements systems, automotive<br />

and medical applications.<br />

Connection between µC and SHT11 is shown in Fig. 1. Although<br />

functionality of all parts is typical, what is worth consideration<br />

is the power balance and considerations of the designed system.<br />

Available energy and power estimation<br />

At first, our objective was to check whether the system will have<br />

enough power to run in constant manner. According to datasheets,<br />

average current consumption of SHT11 is 22 µA and the ATTiny<br />

2313V 20 µA (using 32 kHz internal oscillator). Let’s assume that<br />

Peltier module is one of Laird Technology TEG number 4532 and<br />

that the temperature difference between hot and cold side is 5 o C.<br />

In our laboratory we have checked that when applying such a gradient<br />

it results in output voltage about 94 mV. In Fig. 2 the output<br />

power dependence against temperature of the Peltier module hot<br />

side (the cold side was attached to a heat sink and could not be<br />

controlled) is shown. According to LT documentation [4] 94 mV of<br />

input voltage gives about 300 µA output current. It appeared that<br />

this is more than enough for constant work of the device. Such<br />

system can record measurements in a memory of a µC and store<br />

them for a long time.<br />

To achieve our main goal – the autonomous sensor network<br />

node – sufficient electrical power should be provided for supplying<br />

wireless transmitter. In this example for our calculations a Texas<br />

Instruments CC2520 ZigBee transmitter has been chosen. It requires<br />

18 mA while sending data, so it is obvious that it should work<br />

periodically in an estimated duty cycle. To get maximum pulse current<br />

which equals to I PULSE<br />

= 19.04 mA, all the load currents need to<br />

be added. Duration of transmission is 15 ms and this period of time<br />

Fig. 2. Output power against temperature of the Peltier module hot side<br />

Rys. 2. Moc wyjściowa w funkcji temperatury strony gorącej modułu<br />

Peltiera<br />

should allow free flow of data. Maximum voltage drop at the output<br />

is set to 0.5 V. LTC3108 has a capacitor tied to the V OUT<br />

output<br />

which is a temporary reservoir for the impulse load current. The<br />

appropriate values of capacitors that are able to store sufficient<br />

amount of energy can be calculated as in equation (1).<br />

I<br />

PULSE<br />

(<br />

mA<br />

)<br />

⋅<br />

t<br />

PULSE<br />

(<br />

ms<br />

)<br />

C<br />

OUT<br />

(<br />

µ<br />

F<br />

)<br />

=<br />

(1)<br />

<br />

dV<br />

(<br />

V<br />

)<br />

And after substituting we obtain (2).<br />

OUT<br />

19.04<br />

mA<br />

⋅<br />

15<br />

ms<br />

C OUT ( µ F<br />

)<br />

=<br />

=<br />

582<br />

µ<br />

F<br />

0,5<br />

V<br />

(2)<br />

So, in the designed energy harvester a 600 µF was chosen.<br />

To estimate how often the data can be transmitted, the following<br />

considerations should be carried out. The average spare current<br />

(supplied current minus consumption of ATTiny2313V and SHT11)<br />

is 300 µA – 42 µA = 258 µA. Therefore, the average supplied power<br />

equals to: 3.3 V * 258 µA = 851 µW, whereas the power that<br />

is required during transmission is 3.3 V * 19.04 µA = 62.8 mW.<br />

When we divide these two values of powers (851 µW/62.8 mW<br />

= 1.4%), this means that only 1.4% of required power is supplied<br />

by means of energy harvester. From that we can easily get a duty<br />

cycle: 15 ms/1.4% = 1.07 s.<br />

LTC3108 can be equipped also with some additional storage<br />

capacitor which is the main reservoir of energy in the circuit. By<br />

reducing frequency of transmitting one obtains additional energy<br />

which can be used in situations when Peltier module does not<br />

provide input voltage. In our solution a 0.1 F capacitor was chosen<br />

and the sending data frequency set to f = 0.5 Hz. The storage<br />

time can be calculated as in (3) and (4).<br />

( )<br />

C<br />

STORE<br />

V<br />

STORE<br />

−<br />

V<br />

OUT<br />

(3)<br />

t<br />

STORE<br />

=<br />

I<br />

⋅<br />

t<br />

⋅<br />

f<br />

PULSE<br />

PULSE<br />

( )<br />

TRANSMIT<br />

0,1<br />

F<br />

⋅<br />

5,25<br />

V<br />

−<br />

3,3<br />

V<br />

t STORE =<br />

=<br />

1373<br />

[<br />

s<br />

] (4)<br />

1<br />

19<br />

,04<br />

mA<br />

⋅<br />

15<br />

ms<br />

⋅<br />

0,5<br />

s<br />

The result is 1373 seconds and this is the period of time during<br />

which system can work without energy supplied from Peltier<br />

module.<br />

A mechanical assembly of the TEG and electronic system<br />

for energy harvesting are shown in Fig. 3 and Fig. 4 respectively.<br />

There is additional possibility to connect the node to a PC<br />

via RS243. Instead of storage capacitor there is a space left<br />

for battery button as an alternative solution for energy storage.<br />

The harvesters are currently used to supplying and testing of<br />

autonomous wireless link which will the topic of our upcoming<br />

publication.<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong> 31


Fig. 3. Mechanical assembly of the TEG<br />

Rys. 3. Konstrukcja mechaniczna termogeneratora<br />

Conclusions<br />

Sensor networks with wireless communication are becoming more<br />

and more common. There have been already some low power wireless<br />

systems available on the market. The only missing point is<br />

a reliable power management system with DC-DC converter operating<br />

from tens of mV. The paper presented a device based on Peltier<br />

module and LTC3108 converter which can provide power pulses to<br />

wireless (ZigBee) transmitter and whole sensor network. This power<br />

can be delivered when the TEG is placed at only 5 o C temperature<br />

difference between hot and cold side. The device can be easily integrated<br />

with other application by means of a regulated output voltage.<br />

When power consumption alternates, the only requirement is to<br />

calculate proper duty cycle and correct value of C out<br />

capacitor.<br />

In our case the whole TEG dimensions are approximately 4 x 4<br />

x 4 cm and most of its volume is occupied by relatively small heat<br />

sink. Such a power source can supply a ZigBee sensor node for<br />

many years, practically much longer that the foreseen life cycle<br />

for the sensor network, moreover it does not need any inspecting<br />

or visiting on site for battery replacement. For example, assuming<br />

Fig. 4. Prototype electronic circuit for energy harvesting and power<br />

management<br />

Rys. 4. Prototypowy układ do pozyskiwania energii i zarządzania<br />

mocą<br />

temperature of the heat source of 40 o C, the designed energy harvester<br />

can deliver energy during a year round that is comparable<br />

to a 1.5 V 1 Ah battery.<br />

The work was supported by the National Centre for Research<br />

and Development (NCBiR) project grant No. R02 0073 06/2009.<br />

References<br />

[1] Joseph A. D.: Energy Harvesting Projects. Published by the IEEE CS<br />

and IEEE ComSoc, 1536-1268/05.<br />

[2] Beeby S., White N.: Energy Harvesting for Autonomous Systems.<br />

Artech House 2<strong>01</strong>0, ISBN-13: 978-1-59693-718-5.<br />

[3] Priya S., Inman D. J.: Energy Harvesting Technologies. Springer<br />

2009, ISBN 978-0-387-76463-4.<br />

[4] Mirocha A., Dziurdzia P.: Improved electrothermal model of the thermoelectric<br />

generator implemented in SPICE. Proc. of the International<br />

Conference on Signals and Electronic Systems, 14–17 Sept. 2008,<br />

Cracow, Poland, pp. 317–320.<br />

[5] Datasheet Linear Technology LTC3108, www.linear.com<br />

[6] Datasheet Sensirion SHT1x.<br />

[7] Salerno D.: Ultralow Voltage Energy Harvester Uses Thermoeletric<br />

Generator for Battery-free Wireless Sensors. LT Journal, 2<strong>01</strong>0.<br />

An investigation of the quality of the conductive lines<br />

deposited by inkjet printing on different substrates<br />

(Badanie jakości ścieżek przewodzących wytworzonych metodą druku<br />

strumieniowego na różnych podłożach)<br />

Ph.D Janusz Sitek 1) , M.Sc.Eng. Konrad Futera 1,5) , Darko Belavič 2,3,4) , Ph.D Marina<br />

Santo Zarnik 2,3,4) , M.Sc.Eng. Marek Kościelski 1) , Ph.D Krystyna Bukat 1) , M.Sc. Kamil<br />

Janeczek 1) , Ph.D Danjela Kuščer Hrovatin 2,4) , D.Sc.Eng. Małgorzata Jakubowska 5,6)<br />

1)<br />

Tele- and Radio Research Institute, Centre of Advance Technology, Warsaw, 2) Jozef Stefan Institute, Ljubljana, Slovenia<br />

3)<br />

HIPOT-RR, Otočec, Slovenia, 4) Centre of Excellence NAMASTE, Ljubljana, Slovenia<br />

5)<br />

Warsaw University of Technology, Faculty of Mechatronics, 6) Institute of Electronic Materials Technology, Warsaw<br />

A lot of telecommunications, medical, industrial automation<br />

and measurement equipment, as well as sensor applications,<br />

are currently in the process of miniaturizing their dimensions.<br />

The reliability requirements of electronic equipment and devices<br />

is also constantly on the rise. One of the miniaturization<br />

solutions is thick-film technology and 3D structures [1].<br />

Such devices require conductive lines to connect the different<br />

layers of simply manufactured devices. The fabrication of reliable,<br />

very narrow, conductive lines for thick-film and other<br />

structures is a crucial issue in the production of electronic<br />

components. Inkjet printing is a technology that could be ap-<br />

32<br />

plied for this. It is the element of printed electronics that belongs<br />

to one of the most important, emerging technologies of<br />

the moment [2].<br />

Inkjet printing, as a method for the deposition of conductivenanoparticle-based<br />

inks is a good solution for the fabrication<br />

of good quality and highly reliable electronic circuits. Inkjet<br />

printing is an additive (non-waste) low-temperature process,<br />

which makes it a low-cost and more environmentally friendly<br />

technology.<br />

In this paper an investigation of the quality of inkjet-printed<br />

conductive lines on different substrates is presented.<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


Materials and printing system<br />

Three different types of substrates were used during the investigations:<br />

a pre-fired LTCC substrate (Du Pont 951), a green tape<br />

LTCC (Du Pont 951) and alumina (96% Al 2<br />

O 3<br />

). An ink based on<br />

nanosilver powder was used for the investigation [3]. It was a commercially<br />

available ink made in Poland by the Amepox Company.<br />

The test pattern on the substrates was made with a self-built<br />

InkJet printer system [4]. It allows a great deal of flexibility in the research<br />

work. It was designed and built at the Tele & Radio Research<br />

Institute (ITR). The issue was to design a flexible, low-cost printing<br />

system to support the material science investigation, technology optimization<br />

and new technology development. The printing system<br />

is based on the MicroDrop, piezoceramic PZT print head. It gives<br />

a wide spectrum of compatible inks. It is possible to use inks with<br />

a pH in the range 1–12 and viscosity 1–12 cPs [4, 5]. The nozzle<br />

diameters for this printer are 50 μm and 100 μm, and the drop volume<br />

is in the range from 35 pl to 85 pl. The print head has a heater<br />

that allows heating up the ink inside the nozzle up to 100˚C.<br />

Deposition conditions for the test pattern<br />

and conductive lines<br />

A special test-pattern design was used for the investigation of the<br />

quality of the conductive lines. It contains straight and circular lines to<br />

check their quality after different printing conditions (Fig. 1 and 2). The<br />

printing conditions for the test pattern’s straight lines were as follow:<br />

● the line No. 1 – a single overprint;<br />

● the line No. 2 – a double overprint in the same place;<br />

● the line No. 3 – a triple overprint in the same place;<br />

● the line No. 4 – a single overprint of two lines, next to one<br />

another, with a distance between them of 0.24 mm;<br />

● the line No. 5 – a single overprint of four lines, next to one another,<br />

with a distance between them of 0.10 mm and 0.20 mm;<br />

● the line No. 6 – a double overprint of four lines, next to one<br />

another, with a distance between them of 0.10 mm and<br />

0.18 mm, as shown in Fig. 2.<br />

a) b)<br />

A nozzle diameter of 100 μm and a dot spacing of 150 μm<br />

were used in the printing process. The print head impulse was<br />

set to 110 V and 50 μs. After the printing process the samples<br />

were dried on a heated printer stage. A drying temperature of<br />

60˚C was set up.<br />

Firing conditions<br />

The printed and dried samples were divided into two groups. The<br />

first group was fired at a low temperature (350°C) for one hour.<br />

The second group of samples was fired at a high temperature<br />

using the profile shown in Fig. 3. In detail: the pre-fired LTCC and<br />

alumina Al 2<br />

O 3<br />

substrates were fired with a „30-minutes-temperature<br />

profile”, using a peak firing temperature of 850°C (10 minutes).<br />

The green tape LTCC substrate was fired on the „Du Pont<br />

LTCC-temperature profile” with a peak firing temperature of 875°C<br />

(17 minutes).<br />

During the firing process the organic ingredients evaporated<br />

from the ink and the printed lines became conductive.<br />

Temperature (°C)<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 20 40 60 80 100 120 140 160 180 200 220 240<br />

Time (minutes)<br />

Fig. 3. The firing profile. Rys. 3. Profil wypalania<br />

Geometry of the lines after drying and firing<br />

Fig. 1. Examples of printed and dried lines on: a) pre-fired LTCC,<br />

b) green tape LTCC<br />

Rys. 1. Przykłady nadrukowanych i wysuszonych ścieżek na:<br />

a) wstępnie wypalonej LTCC, b) surowej taśmie LTCC<br />

The lines’ geometry parameters were investigated after the firing<br />

processes at low and high temperatures. Optical and metallographic<br />

microscopes as well as an interferometric profilometer<br />

were used for the investigation.<br />

Examples of the optical microscopy observation results after<br />

firing at a low temperature were shown in Fig. 4. Blurred edges of<br />

the lines caused by the structure of the ceramic substrate were<br />

observed. The first layer of ink soaked in the porous substrate<br />

deforms the edge. The second layer of ink forms a line, and the<br />

solvents evaporate fast enough to prevent dots from spilling on<br />

the first layer.<br />

The best geometry parameter results for the group fired at low<br />

temperature were obtained for a pre-fired LTCC substrate dried at<br />

60°C during printing, line no. 3. This line had a triple overprint in<br />

the same place.<br />

a) b) c)<br />

Fig. 2. A test pattern for straight lines printing<br />

Rys. 2. Wzór testu do nadruku prostych ścieżek<br />

Fig. 4. The view of printed line no. 3 geometry on different substrates,<br />

dried at 60°C, after firing at 350°C: a) pre-fired LTCC, b) green tape<br />

LTCC, c) alumina Al 2<br />

O 3<br />

Rys. 4. Wygląd nadrukowanej linii nr 3 na różnych podłożach, suszonej<br />

w 60°C, po wypaleniu w 350°C: a) wstępnie wypalone LTCC,<br />

b) surowa taśma LTCC, c) ceramika alundowa Al 2<br />

O 3<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong> 33


The examples of the optical microscopy observation results after<br />

firing at high temperature are shown in Fig. 5. The green tape<br />

material was not compatible with the silver nano-ink and the cofiring<br />

process. The shrinkage of the LTCC green tape during the<br />

firing process was so intense that the printed pattern was ripped<br />

out of the surface of the sample (Fig. 5b). The acceptable geometry<br />

parameters for the group fired at high temperature were obtained<br />

for the pre-fired LTCC and the alumina Al 2<br />

O 3<br />

substrates.<br />

The results of the Al 2<br />

O 3<br />

surface morphology before and after firing<br />

are presented in Fig. 6 and 7. The interferometric profilometer<br />

was used for measurements.<br />

a) b) c)<br />

The thicknesses of the investigated lines were between 4 and<br />

8 µm after ink-jet printing and drying and from 1.8 to 3.6 µm after<br />

firing. The width of the printed lines after firing was from 120 μm<br />

(line No. 1) to 340 μm (line No. 6). The best quality was observed<br />

for line No. 3 (3 rd from right), but some further improvement of the<br />

printing parameters is still necessary.<br />

Surface resistance of lines after drying<br />

and firing<br />

The lowest surface resistance of 4.5 mΩ/□ was achieved for line<br />

No. 3 (average width 0.285 mm, average hieght 3.6 µm), dried at<br />

60°C and fired at low temperature (350°C) for 1 hour on pre-fired<br />

LTCC. The lines fired at high temperature had surface resistances<br />

higher that 10 mΩ/□ (Table), and for wider lines (No. 3, 5 and 6)<br />

obtained better results.<br />

Surface resistances of lines (in mΩ/□) for test patterns fired at low (LT)<br />

and high temperature (HT)<br />

Rezystancja powierzchniowa ścieżek (w mΩ/□) dla testów wypalanych<br />

w niskiej (LT) i wysokiej temperaturze (HT)<br />

Fig. 5. The view of printed lines on different substrates after firing<br />

at high temperature: a) pre-fired LTCC, b) green tape LTCC, c) alumina<br />

Al 2<br />

O 3<br />

Rys. 5. Wygląd nadrukowanych linii na różnych podłożach po wypaleniu<br />

w wysokiej temperaturze: a) wstępnie wypalone LTCC, b) surowa<br />

taśma LTCC, c) ceramika alundowa Al 2<br />

O 3<br />

Fig. 6. Printed lines morphology on the alumina substrate before firing<br />

(sample G12C)<br />

Rys. 6. Morfologia nadrukowanych ścieżek na podłożu z ceramiki<br />

alundowej przed wypaleniem (próbka G12C)<br />

0 2 4 6 8 10 mm<br />

µm<br />

0<br />

55<br />

0.5<br />

50<br />

1<br />

1.5<br />

45<br />

2<br />

40<br />

2.5<br />

35<br />

3<br />

30<br />

3.5<br />

25<br />

4<br />

4.5<br />

20<br />

5<br />

15<br />

5.5<br />

10<br />

6<br />

5<br />

6.5<br />

0<br />

mm<br />

Fig. 7. Printed lines morphology on the alumina sample after firing<br />

(sample G12C)<br />

Rys. 7. Morfologia nadrukowanych ścieżek na podłożu z ceramiki<br />

alundowej po wypaleniu (próbka G12C)<br />

34<br />

0 2 4 6 8 10 mm<br />

0<br />

0.5<br />

1<br />

1.5<br />

2<br />

2.5<br />

3<br />

3.5<br />

4<br />

4.5<br />

5<br />

5.5<br />

6<br />

mm<br />

µm<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Substrate/<br />

line No.<br />

Pre-fired<br />

LTCC (LT)<br />

Green tape<br />

LTCC (LT)<br />

1 2 3 4 5 6<br />

51.6 42.5 4.5 7.1 7.0 –<br />

25.0 49.0 55.6 6.5 6.4 9.2<br />

Al 2<br />

O 3<br />

(LT) – – 16.6 Ω/□ 3.8 Ω/□ 6.4 Ω/□ 9.0 Ω/□<br />

Pre-fired<br />

LTCC (HT)<br />

– 29 16 37 10 14<br />

Al 2<br />

O 3<br />

(HT) – 24 23 33 34 18<br />

Summary<br />

The geometry and surface morphology as well as the surface<br />

resistance of the conductive lines were investigated to assess<br />

the quality of the lines deposited by inkjet printing on different<br />

substrates. Different lines structures, width and morphology were<br />

achieved by using different combinations of parameters. Some<br />

pads made by ink-jet printing were not homogenous, especially<br />

after firing at high temperature.<br />

The best quality of lines for the group fired at low temperature<br />

was obtained for the pre-fired LTCC substrate and line No.<br />

3. It had the best morphology and the smallest surface resistance<br />

of 4.5 mΩ/□. The best geometry parameter results for the group<br />

fired at high temperature were obtained for the pre-fired LTCC<br />

and alumina (Al 2<br />

O 3<br />

) substrates. It was observed that inkjet-printing<br />

deposition on green tape LTCC and then co-firing using the<br />

conditions of the LTCC-temperature profile is not a usable technology.<br />

The likely reason was the shrinkage of the LTCC material<br />

during firing. Some additional effort is necessary to improve the<br />

quality of the lines.<br />

References<br />

[1] Santo Zarnik M., Belavič D., Maček S.: Some Critical Steps in the<br />

Manufacturing of LTCC-based Pressure Sensors. MIDEM 2<strong>01</strong>0,<br />

Radenci, Slovenia.<br />

[2] Jakubowska M., Sitek J.: Drukowana <strong>Elektronika</strong> w Polsce. Monografia<br />

<strong>Instytut</strong>u Tele- i Radiotechnicznego, Praca zbiorowa, Warszawa<br />

2<strong>01</strong>0, ISBN: 978-83-926-599-1-4.<br />

[3] Nanosilver ink datasheet http://www.amepox-mc.com<br />

[4] Sitek J. et al.: Investigation of inkjet technology for printed organic<br />

electronics. <strong>Elektronika</strong> LII Nr 3/2<strong>01</strong>1, s. 112.<br />

[5] MicorDrop datasheet www.microdrop.de<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


High temperature properties of thick-film<br />

and LTCC components<br />

(Wysokotemperaturowe właściwości elementów grubowarstwowych i LTCC)<br />

mgr inż. Damian Nowak, mgr inż. Mateusz Janiak, prof. dr hab. inż. Andrzej Dziedzic,<br />

dr inż. Tomasz Piasecki<br />

Politechnika Wrocławska, Wydział Elektroniki Mikrosystemów i Fotoniki<br />

There is an increased demand for electronics that can work in<br />

harsh environment involving high temperature. Applications include<br />

sensors and actuators for control in petroleum and geothermal<br />

industry, process monitoring and distributed control systems in<br />

automotive and aerospace [1–3]. Complete extreme high-temperature<br />

electronic systems require active devices as well as proper<br />

passive components (eg. resistors, capacitors, inductors).<br />

There comes also the requirement for further miniaturization and<br />

integration of electronic components. Thick-film and LTCC (low<br />

temperature co-fired ceramics) technologies are well-established<br />

and relatively low-cost fabrication method of passives. Thus, they<br />

represent promising fabrication techniques to meet the demands<br />

for devices that are miniaturized and operate at high temperature<br />

[4–7]. This paper presents manufacturing process of thick-film<br />

and LTCC resistors, planar inductors and interdigital capacitors<br />

as well as their chosen electrical and stability properties in a wide<br />

frequency and temperature range.<br />

Test structures fabrication<br />

Square planar inductors and interdigital capacitors were made on<br />

alumina (96% Al 2<br />

O 3<br />

, 635 µm thick) or fired LTCC (DP951, 300<br />

µm thick) substrates. The size of the fabricated components was<br />

3×3 mm 2 and 50 μm track width/50 μm spacing were designed.<br />

The inductors consist of 2 or 3 turns (Fig. 1). The structures were<br />

fabricated by photoimageable inks technique. Silver based paste<br />

(Ag 65, ITME Warsaw) was used for conductive paths [8]. The paste<br />

was deposited on the substrate by screen-printing (stainless<br />

screen 325 mesh). Then the ink was dried (90ºC, 10 min) and<br />

exposed to UV light (for 5 seconds) through a photomask with<br />

a proper patterns. The UV light causes polymerization of the photoimageable<br />

ink. Unpolymerized material was removed by spraying<br />

of developer (0.1% ethanolamine). Finally, the structures were<br />

fired in a belt furnace for 60 min with 850ºC peak temperature.<br />

The microresistors with regulated length have been made on<br />

LTCC (DP 951, 300 µm thick) substrates by combining of standard<br />

screen-printing and photoimageable techniques. Conductive<br />

paths were prepared from photosensitive ink as described<br />

above. The distances between electrodes, i.e. proper resistor<br />

length were designed as 90, 120 and 300 µm. The width of resistors<br />

was 200 µm. They were made of DP2021 (DuPont, 100<br />

ohm/sq.) or R490A (Heraeus, 10 ohm/sq.) pastes by printing<br />

through 325 mesh screen. The conductive and resistive paste<br />

were co-fired at 850ºC.<br />

Electrical measurements<br />

Resistors<br />

The HP Agilent 34970A multimeter interfaced to personal computer<br />

for data acquisition and presentation was used for measurements<br />

of dynamic resistance changes directly at elevated temperature<br />

(in-situ). The test structures were placed on hot plate<br />

equipped with spring probe needles and digital temperature controller.<br />

They were kept consecutively at 300, 400 and 500°C for<br />

minimum 72 hours. The data were collected every 15 minutes.<br />

Figures 2 and 3 present dynamic resistance changes of resistors.<br />

The elevated temperature caused decrease of resistance<br />

for the DP2021 resistors. The observed drift was about -1.75% at<br />

300°C. However, keeping at 400°C caused more significant changes<br />

of resistance up to -7%. The R490A resistors exhibit resistance<br />

drift about ±2% at 300°C and 400°C. At 500°C the resistance<br />

has changed about -15%.<br />

Fig. 2. Relative resistance changes, DP2021 resistors<br />

Rys. 2. Względne zmiany rezystancji, rezystory DP2021<br />

Fig. 1. Test structures – planar inductor and thick-film resistor<br />

(DP2021, 300 µm)<br />

Rys. 1. Struktury testowe – cewka planarna i rezystor grubowarstwowy<br />

(DP2021, 300 µm)<br />

Fig. 3. Relative resistance changes, R490A resistors<br />

Rys. 3. Względne zmiany rezystancji, rezystory R490A<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong> 35


Fig. 4. Resistance changes vs electric field for DP2021 resistors<br />

Rys. 4. Względne zmiany rezystancji w funkcji natężenia pola, rezystory<br />

DP2021<br />

Fig. 6. Inductance changes at different temperatures<br />

Rys. 6. Zmiany indukcyjności w różnej temperaturze<br />

Fig. 5. Resistance changes vs surface power density for DP2021 resistors<br />

Rys. 5. Względne zmiany rezystancji w funkcji powierzchniowej gęstości<br />

mocy, rezystory DP2021<br />

The investigations of pulse durability of components were<br />

carried out. Voltage pulses were used for analysis of allowable<br />

electric field and next surface power density for microresistors in<br />

dependence of resistor dimensions and operating temperature<br />

[5]. Exposures to voltage pulses were realized with the aid of self<br />

made Programmed Pulse Generator [9]. There were chosen the<br />

rectangular pulses with duration time 20 μs and amplitude value<br />

from 1 to hundreds of volts. The durability was measured at room<br />

temperature as well as at elevated temperature to 500°C. As an<br />

example relative resistance changes are presented as a function<br />

of electrical field E (Fig. 4) and surface power density P (Fig. 5)<br />

– both above mentioned dependencies were calculated based on<br />

resistances and dimensions of microresistors.<br />

The test were carried out for 4 to 6 resistors with the same<br />

length at each temperature level. Generally, there was observed<br />

a decrease of allowable electric field (the criterion of 10% resistance<br />

change was assumed) with the temperature increase. However,<br />

at elevated temperature they were comparable. Moreover,<br />

shorter components exhibited higher durability to voltage pulses.<br />

Inductors and capacitors<br />

The electrical measurements of components were made at several<br />

temperature level in the frequency range from 10 kHz to<br />

110 MHz using HP Agilent 4292A impedance analyzer.<br />

Figures 6 and 7 present changes of inductance and quality<br />

factor of spiral square inductor (3 turns) at different temperature.<br />

The small changes of inductance were observed whereas Q-factor<br />

depends strongly on temperature. It is caused by typical for<br />

metals increase of parasitic series resistance of structure.<br />

36<br />

Fig. 7. Q-factor changes at different temperatures<br />

Rys. 7. Zmiany dobroci w różnej temperaturze<br />

Fig. 8. Capacitance changes at different temperatures<br />

Rys. 8. Zmiany pojemności w różnej temperaturze<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


Figure 8 presents capacitance changes at different temperature<br />

for 3 × 3 mm 2 interdigital capacitor. The capacitance was increasing<br />

with the temperature, especially at lower frequency range.<br />

Table presents comparison of basic parameters of reactant<br />

components at chosen frequency.<br />

Comparison of basic parameters of components at different temperature<br />

Porównanie podstawowych parametrów elementów w różnej temperaturze<br />

T<br />

[ºC]<br />

L [nH]<br />

at 38 MHz<br />

Inductor<br />

R s<br />

[Ω]<br />

Q = ωL/R<br />

at 38 MHz<br />

C [pF]<br />

at 1 MHz<br />

Capacitor<br />

Q<br />

at 1 MHz<br />

25 111.83 4.29 6.33 2.73 585<br />

100 111.94 5.35 5.08 2.82 136<br />

200 111.97 6.7 4.02 – –<br />

250 112.<strong>01</strong> 7.5 3.62 2.97 34<br />

300 112.04 8.23 3.30 3.09 18<br />

350 112.09 8.91 3.05 3.3 9.5<br />

400 112.03 9.56 2.84 3.68 4.9<br />

450 111.88 10.23 2.65 4.15 3<br />

Conclusions<br />

This paper presents fabrication and basic electrical and stability<br />

properties of thick-film and LTCC microcomponents. The preliminary<br />

results show that they might be very interesting solution for<br />

harsh environment applications, however, further investigations<br />

have to be carried out.<br />

This work was supported by the Polish Ministry of Science<br />

and Higher Education, Grant no N N515 607 839. Damian Nowak<br />

is awarded with Fellowship co-financed by European Union within<br />

European Social Fund (EFS).<br />

References<br />

[1] Johannessen R.: Reliable Microelectronics for Harsh Environment<br />

Applications – Effects Of Thermal Stress and High Pressure. Doctoral<br />

dissertation, Faculty of Mathematics and Natural Science, University<br />

of Oslo, 2008.<br />

[2] Jacq C., Maeder T. and Ryser P.: Sensors and packages based on<br />

LTCC and thick-film technology for severe conditions. SĀDHANĀ<br />

– Academy Proceedings in Engineering Sciences, vol. 34 (2009),<br />

pp. 677–687.<br />

[3] Nowak D., Dziedzic A.: LTCC Package for high temperature applications.<br />

Microelectronics Reliab., vol. 51 (2<strong>01</strong>1), pp. 1241–1244.<br />

[4] Lahti M., Lantto V., Leppavuori S.: Planar inductors on an LTCC<br />

substrate realized by the gravure-offset-printing technique. IEEE<br />

Trans. on Components and Packaging Technol., vol.23 (2000),<br />

pp. 606–610.<br />

[5] Dziedzic A., Miś E., Rebenklau L., Wolter K.-J.: Geometrical and<br />

electrical properties of LTCC and thick-film microresistors. Microelectronics<br />

Int., vol. 22, no.1 (Jan. 2005), pp. 26–33.<br />

[6] Perrone R., Thust H., Drüe K.-H.: Progress in the Integration of planar<br />

and 3D Coils on LTCC by using photoimageable Inks. J. of Microelectronics<br />

and Electronic Packaging, vol. 2 (2005), pp. 155–161.<br />

[7] Miś E., Dziedzic A., Piasecki T., Kita J., Moos R.: Geometrical, electrical<br />

and stability properties of thick-film and LTCC microcapacitors.<br />

Microelectronics Int., vol.25 no 2 (2008), pp. 37–41.<br />

[8] Markowski P., Jakubowska M., Zwierkowska E., Danielkiewicz M.,<br />

Wolter K. J., Luniak M.: Properties of thick-film photoimageable inks<br />

for LTCC substrates. <strong>Elektronika</strong> (Warszawa). 2<strong>01</strong>1, R. 52, nr 3,<br />

pp. 109–111.<br />

[9] Dziedzic A., Golonka L.J., Kita J., Roguszczak H., Zdanowicz T.:<br />

Some remarks about „short” pulse behaviour of LTCC and thick-film<br />

Microsystems. Proc. 1st Eur. Microelectronics and Packaging Symp.,<br />

Prague (Czech Republic), June 2000, pp. 194–199.<br />

LTCC microfluidic chip with fluorescence based detection<br />

(Mikroprzepływowy fluorescencyjny czujnik ceramiczny wykonany<br />

techniką LTCC)<br />

mgr inż. Mateusz Czok, dr inż. Karol Malecha, prof. dr hab. inż. Leszek Golonka<br />

Wrocław University of Technology, Faculty of Microsystem Electronics and Photonics<br />

Nowadays miniaturization is present in many fields of science (electronics,<br />

medicine, biology and chemistry). Over the last few years<br />

many research into miniaturization and microfabrication were carried<br />

out. As a result the concepts of the micro-total analysis system (µTAS)<br />

and Lab-on-Chip (LoC) were proposed. These devices integrate several<br />

laboratory functionalities in a single miniature structure [1, 2].<br />

There are few technologies that can be applied in the realization of<br />

the LoC devices. For many years the most common used materials<br />

were silicon and glass wafers [3, 4]. As an alternative solution few<br />

other materials like PDMS (poly(dimethylsiloxane)) or PCB (Printed<br />

Circuit Boards) were used for microsystems fabrication [5, 6].<br />

The Low Temperature Co-fired Ceramics (LTCC) seems to be<br />

a suitable material to realize LoC devices. Channels, chambers,<br />

valves, electronic and optoelectronic components can be easily<br />

integrated in one LTCC module [7, 8]. It also has outstanding physical<br />

and chemical properties [9].<br />

The main motivation is to use the LTCC technology in the fabrication<br />

of the microfluidic chip, in which fluorescence detection of<br />

biological sample can be performed. The manufactured detection<br />

module consists of inexpensive and commonly available electronic<br />

components and PMMA (poly(methyl methacrylate)) optic<br />

fibres integrated with the LTCC microfluidic chip. It is made up of<br />

the microfluidic channel, cavities for fiber optics, miniature light<br />

emitting diode and photodetector.<br />

The LTCC microfluidic chip performance is investigated with<br />

several different concentrations of fluorescein solutions which<br />

are excited with 465 nm light source. The emitted fluorescent<br />

light is coupled into two separate optic fibres and its intensity is<br />

measured with two photodetectors (TSLG 257 and TCS 3414).<br />

The developed microfluidic structure can be assigned to detection<br />

of Gram-negative and Gram-positive bacteria.<br />

Fabrication process<br />

The LTCC technology was used for fabrication of a microfluidic<br />

system with fluorescence based detection. During manufacturing<br />

process twelve layers of DuPont 951 PX ceramic<br />

tapes were used. Thickness of each LTCC tape was equal to<br />

216 µm after firing. Channels, cavities, termination holes were<br />

cut with the Nd-YAG laser system. A simple electronic circuit<br />

was screen printed through a 325 mesh stainless steel screen<br />

at the bottom side of the microfluidic chip. The PdAg thick-film<br />

paste (DP 6146) was used for that this purpose. After laser cutting<br />

and screen printing all ceramic tapes were stacked and<br />

laminated using an isostatic press. The lamination process was<br />

carried out in a low pressure of 2 MPa and at a temperature of<br />

70°C for 10 minutes. Then the LTCC laminate was co-fired in<br />

a box furnace at a recommended firing profile with a peak temperature<br />

at 850°C.<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong> 37


Fig. 1. Assembled LTCC device<br />

Rys. 1. Mikroprzepływowy czujnik fluorescencyjny wykonany techniką<br />

LTCC<br />

Results<br />

Fluorescence measurements of five different fluorescein concentrations<br />

were carried out to examine the quality of the LTCC<br />

microfluidic chip. Fluorescein is a well know fluorescent dye. It is<br />

widely used in biological and medical applications as a proteins<br />

and antibodies marker. The 98% pure ethyl alcohol was used in<br />

fluorescein solutions preparation. Ethanol is an organic solvent<br />

in which fluorescein can be readily dissolved. The maximum<br />

fluorescence solubility in ethanol solvent equals to 20 g/dm 3 at<br />

temperature of 20°C. Investigated solutions fluoresces green<br />

(520 nm) when is exposed to 465 nm excitation light.<br />

In order to examine the properties of the fabricated LTCC microfluidic<br />

chip, fluorescein concentrations from 0.02 to 0.32 g/dm 3<br />

were used. The Perfusor ® syringe pump was used to force the<br />

fluid flow in the microfluidic channel. Fluorescein concentrations<br />

were gradually changed in approximately 3 minutes time intervals.<br />

Between measurements microfluidic channel was purged<br />

with 98% pure ethyl alcohol. Each solution was illuminated with<br />

blue excitation light (465 nm) which was transmitted through the<br />

input fibre optic. As a result the green fluorescent light was emitted<br />

by the test solution. The fluorescence signal was coupled into<br />

two separate PMMA optical fibres and transmitted to appropriate<br />

photodetector (TSLG 257 and TCS 3414).<br />

Typical 5 V DC power supply was used to feed the LTCC microfluidic<br />

chip. Measurements of the TSLG 257 light-to-voltage<br />

converter output signal were performed with Agilent 344<strong>01</strong>A multimeter.<br />

As the TCS 3414 has a build-in analog to digital converter<br />

measured signal level is given in digital absolute unit. To avoid the<br />

temperature and light influence the experiment were carried out at<br />

room temperature in dark and air-conditioned room. Photodetectors<br />

responses to various test solutions are given in Fig. 3 and 4.<br />

Fig. 2. X-ray image of manufactured device<br />

Rys. 2. Zdjęcie RTG wykonanego urządzenia<br />

After co-firing three PMMA optic fibres with a diameter of 750<br />

µm were precisely positioned and glued into the LTCC module.<br />

Then the light source (LED HB3b-448ABD, Huey Jann Electronics<br />

Industry Co., Ltd.), photodetector (TSLG 257, TAOS) and passive<br />

electronic components were soldered on the LTCC microfluidic<br />

chip. The HB3b-448ABD is a super blue light emitting diode (LED)<br />

with a peak wavelength at λ p<br />

= 465 nm and the spectral halfwidth<br />

∆λ½ = 35 nm. The TSLG 257 is a high-sensitivity low-noise light to<br />

voltage converter that consists of a photodiode, an amplifier and<br />

a green filter combined in a single monolithic CMOS structure.<br />

The output voltage is proportional to light irradiance on the photodiode.<br />

The TLSG 257 has the maximum spectral responsivity at<br />

520 nm with the spectral halfwidth equal to 35 nm. The TCS 3414<br />

(TAOS) is used as an external digital light sensor for real-time<br />

measurement. The device includes an array of 16 filtered photodiodes<br />

(red, green, blue and clear channel) and analog-to-digital<br />

converters with programmable gain integrated on a single monolithic<br />

CMOS structure. The TCS 3414 contains analog-to-digital<br />

converter for each channel that integrates the currents from four<br />

photodiodes. Integration of all channels is made simultaneously<br />

and then the conversion results are transferred to the channel<br />

data registers.<br />

The assembled structure of the LTCC microfluidic chip with<br />

fluorescence based detection is presented in Fig. 1. An X-ray<br />

Computed Tomography was used to examine the PMMA optic fibres<br />

positioning precision and possible defects of the fabricated<br />

module. The X-ray image of manufactured device is presented in<br />

Fig. 2. As can be noticed optic fibres were precisely positioned<br />

and mounted. Moreover, delamination or LTCC layers misalignment<br />

were not observed.<br />

38<br />

Fig. 3. Photodetector (TSLG 257) response to various fluorescein<br />

concentrations<br />

Rys. 3. Odpowiedź fotodetektora (TSLG 257) dla różnych koncentracji<br />

fluoresceiny<br />

Fig. 4. Photodetector (TCS 3414) response to various fluorescein<br />

concentrations<br />

Fig. 4. Odpowiedź fotodetektora (TCS 3414) dla różnych koncentracji<br />

fluoresceiny<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


The measured fluorescence intensity is proportional to the test<br />

solution concentration. In order to evaluate the measurement repeatability<br />

of fabricated microfluidic chip two measurement series<br />

were performed in 24 h interval. Obtained repeatability was better<br />

than 95%.<br />

The TCS 3414 response indicates high stability during realtime<br />

measurements for concentrations below 0.32 g/dm 3 . Moreover,<br />

the digital light sensor gave us additional information about<br />

signals levels measured by photodiodes with red, blue colour filter<br />

and the total light illumination. This could be used to evaluate<br />

the influence of the excitation light on the measured fluorescence<br />

signal.<br />

High signal fluctuation for 0.32 g/dm 3 concentration of test<br />

solution was observed. This could be caused by fluorescence<br />

self-quenching phenomenon. Its threshold value is close to the<br />

highest fluorescein concentration of the examined solutions.<br />

Summary<br />

The LTCC technology was applied for manufacturing of the microfluidic<br />

chip in which fluorescence detection of various fluorescein solutions<br />

can be performed. Moreover, light emiting diode, light-to-voltage<br />

converter and PMMA optic fibres were integrated on the chip.<br />

Inexpensive and commonly available electronic components<br />

(light emitting diode, photodetectors, PMMA fibre optics) were<br />

used to fabricate the detection module.<br />

The performance of the LTCC microfluidic chip was investigated<br />

with two separate photodetectors. Measured responses to<br />

several concentrations of fluorescein solution were proportional<br />

to the fluorescein concentration.<br />

Measurement repeatability was very high with less than 5%<br />

error. The TCS 3414 response indicates high stability in real-time<br />

measurements.<br />

The performed experiments have shown that it is possible to<br />

detect fluorescent signal inside the LTCC-based microfluidic chip.<br />

The developed LTCC microfluidic chip can be assigned to detection<br />

of Gram-negative and Gram-positive bacteria.<br />

The authors wish to thank Wroclaw University of Technology<br />

(grant no. 343 745) for the financial support.<br />

Karol Malecha fellowship is co-financed by European Union within<br />

European Social Fund (ESF).<br />

X-ray Computed Tomography pictures were carried out in the Laboratory<br />

for Interconnecting and Packaging Electronic Circuits,<br />

Wrocław University of Technology.<br />

References<br />

[1] Rivet C., Lee H., Hirsch A., Hamilton S., Lu H.: Microfluidics for medical<br />

diagnostics and biosensors. Chemical Engineering Science, Vol.<br />

66, 2<strong>01</strong>1, pp. 1490–1507.<br />

[2] Malecha K., Pijanowska D. G., Golonka L. J., Torbicz W.: LTCC microreactor<br />

for urea determination in biological fluids. Sensors and<br />

Actuators B: Chemical, Vol. 141, No. 1, 2009, pp. 3<strong>01</strong>–308.<br />

[3] Odijk M., Baumann A., Olthuis W., A. van den Berg, Karst U.: Electrochemistry-on-chip<br />

for on-line conversions in drug metabolism studies.<br />

Biosensors and Bioelectronics, Vol. 26, 2<strong>01</strong>0, pp. 1521–1527.<br />

[4] Radadia A. D., Salehi-Khojin A., Masel R. I., Shannon M. A.: The<br />

effect of microcolumn geometry on the performance of micro-gas<br />

chromatography columns for chip scale gas analyzers. Sensors and<br />

Actuators B, Vol. 150, 2<strong>01</strong>0, pp. 456–464.<br />

[5] Ziółkowska K., et al.: PDMS/glass microfluidic cell culture system<br />

for cytotoxicity tests and cells passage. Sensors and Actuators B:<br />

Chemical, Vol. 145, 2<strong>01</strong>0, pp. 533–542.<br />

[6] Gassmann S., Pagel L.: Fluidic systems in Printed Circuit Boards.<br />

IEEE International Symposium on Industrial Electronics, 2009,<br />

pp. 597-602.<br />

[7] Golonka L. J., et al.: LTCC based microfluidic system with optical<br />

detection. Sensors and Actuators B: Chemical, Vol. 111–112, 2005,<br />

pp. 396–402.<br />

[8] Misiakos K., et al.: Fully integrated monolithic optoelectronic transducer<br />

for real-time protein. Biosensors and Bioelectronics, Vol. 26,<br />

2<strong>01</strong>0, pp. 1528–1535.<br />

[9] Thelemann T., Fischer M., Muller J.: LTCC-based fluidic components<br />

for chemical applications. Journal of Microelectronics and Electronic<br />

Packaging, Vol. 4, 2007, pp. 167–172.<br />

Investigation of multiple degradation and rejuvenation<br />

cycles of electroluminescent thick film structures<br />

(Badanie powtarzanych cykli degradacji i regeneracji grubowarstwowych<br />

struktur elektroluminescencyjnych)<br />

mgr inż. MATEUSZ MROCZKOWSKI 1) , dr inż. MICHAŁ CIEŻ 2) , dr inż. JERZY KALENIK 1)<br />

1)<br />

Politechnika Warszawska, <strong>Instytut</strong> Mikroelektroniki i Optoelektroniki, 2) <strong>Instytut</strong> Technologii Elektronowej<br />

Copper doped zinc sulfide displays electroluminescent prosperities<br />

and it is used as a phosphor in thick film light emitting structures.<br />

Such electroluminescent structures, or alternating current<br />

electroluminescent devices (ACEL), are used as backlight for<br />

liquid crystal displays in portable electronic devices (cell phones,<br />

notebooks, PDAs, etc.) and as a source of light in the advertising<br />

industry. Unfortunately such structures are prone to degradation<br />

and have a limited life time [1, 2].<br />

Degraded electroluminescent thick film structures can be<br />

rejuvenated by annealing [1]. An attempt to investigate the possibility<br />

of repeated rejuvenation of degraded EL lamps was undertaken.<br />

The goal of this investigation is to better understand<br />

the mechanism of degradation and rejuvenation of thick film EL<br />

lamps and prolong their life time.<br />

Alternating Current Electroluminescent<br />

Devices (ACEL)<br />

Typical EL lamps are fabricated as a multi-layer thick film structures.<br />

A layer of phosphor, for example a copper doped zinc sulfide, is<br />

placed in between two layer of conductive materials. This makes<br />

this structure similar to a simple parallel-plate capacitor. Usually EL<br />

lamp structures consist of 4 layers: a layer of transparent conductive<br />

material, e.g. Indium Tin Oxide (ITO), a layer of phosphor, a layer of<br />

dielectric and a layer of metallic conductor, e.g. silver. The layer of<br />

transparent conductor is fabricated on a transparent substrate [1].<br />

In order to cause such structures to emit light alternating current<br />

must by applied. It is necessary that the value of applied electric<br />

field is above 1 MV/m or no light emission will be observed.<br />

Frequency of the alternating current is usually 100 Hz to 20 kHz.<br />

Fig. 1. Cross-section of a thick film electroluminescent lamp<br />

Rys. 1. Przekrój grubowarstwowej lampy elektroluminescencyjnej<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong> 39


Test structures<br />

The test structures were prepared at Institute of Electron Technology,<br />

Division in Cracow. A set of DuPont Luxprint inks, dedicated<br />

to fabricate electroluminescent thick film structures, was utilized<br />

to prepare the test structures. A Luxprint 8152B ZnS:Cu based ink<br />

was applied to produce electroluminescent layer on ITO covered<br />

transparent polymer substrate. Conductive electrodes were screen<br />

printed with the use of a silver based ink. Both pastes were<br />

cured by drying at 130°C for 30 minutes in a box oven.<br />

Degradation<br />

Several mechanisms of degradation of EL phosphors have been<br />

discussed in the literature [1]. Most often it is suggested that degradation<br />

process involves S vacancy or doppant diffusion in ZnS<br />

lattice [2, 3]. Some authors suggest that mechanism that lower<br />

the efficiency of electron/hole injection may be of importance [4].<br />

Degradation causes luminance to decrease. These changes<br />

are a two phase process. The first phase is characterized by rapid<br />

decrease of luminance. In the second phase of degradation<br />

changes of luminance value are slower. Changes of luminance B<br />

as a function of time are given by equation (1).<br />

40<br />

B(t)/B(0) = a 1<br />

exp (-t/τ 1<br />

) + a 2<br />

exp (-t/τ 2<br />

) (1)<br />

Constants a 1<br />

and τ 1<br />

describe changes of luminance caused by<br />

moisture. Constants a 2<br />

and τ 2<br />

describe changes of luminance<br />

caused by decomposition of ZnS grains. Sum of a 1<br />

and a 2<br />

is always<br />

equal to one [5].<br />

The experiment<br />

During the experiment test samples were degraded by applying<br />

square-wave voltage of amplitude of 150 V and frequency of 4 or<br />

10 kHz. After a certain amount of time, samples were rejuvenated<br />

by annealing in temperature of 130°C for 2 hours. This process of<br />

degradation and rejuvenation was repeated.<br />

Results<br />

To characterize the influence of degradation on ACEL devices following<br />

parameters were measured: luminance, capacitance and<br />

emission spectra.<br />

Luminance<br />

For samples degraded at 4 kHz [pic. 2] and 10 kHz [pic. 3] rejuvenation<br />

was performed twice. Before first rejuvenation luminance<br />

of 10 kHz samples was 31% of initial value and of 4 kHz samples<br />

27% of initial value. After rejuvenation luminance increased to 51%<br />

of initial value for 10 kHz samples and 38% for 4 kHz samples.<br />

Before second rejuvenation luminance decreased to 33%<br />

(10 kHz samples) and 18% (4 kHz samples). After second rejuvenation<br />

luminance increased to 43% (10 kHz samples) and<br />

25% (4 kHz samples). Rejuvenation gave better results in case<br />

of 10 kHz samples. Important is the fact, that repeatable rejuvenation<br />

is possible.<br />

Fig. 2. Luminance as a function of time – 10 kHz samples<br />

Rys. 2. Luminancja w funkcji czasu – próbki starzone przy 10 kHz<br />

Fig. 3. Luminance as a function of time – 4 kHz samples<br />

Rys. 3. Luminancja w funkcji czasu – próbki starzone przy 4 kHz<br />

Emission spectrum<br />

During the experiment emission spectrum was observed. When<br />

spectrums measured before and after degradation and after rejuvenation<br />

were compared only differences were observed in the<br />

amount of energy emitted. No changes were observed in the shape<br />

of emission spectrum. This suggest that, during degradation,<br />

efficiency of light emission decreases, but there are no changes<br />

in the electronic band structure of the phosphor. Also the rejuvenation<br />

does not change the band structure.<br />

Capacitance<br />

Table shows results of capacitance measurements during degradation<br />

and rejuvenation. These measurements were performed<br />

for samples depredated at 10 kHz. No significant changes of capacitance<br />

was observed, so the value of the electric field applied<br />

to the structure is constant during the degradation and rejuvenation<br />

process.<br />

Capacitance of 10 kHz samples<br />

Pojemność próbek starzonych przy 10 kHz<br />

Time of measurement<br />

Capacitance [nF]<br />

Initial 2.058<br />

Before first rejuvenation 2.094<br />

After first rejuvenation 2.055<br />

Before second rejuvenation 2.046<br />

After second rejuvenation 2.051<br />

Conclusions<br />

● Decrease of luminance during degradation is a two phase process.<br />

● Annealing allows repeatable rejuvenation.<br />

● No significant changes of emission spectrum suggest no changes<br />

in the band structure of the phosphor.<br />

● No significant changes of capacitance exclude changes of value<br />

of the applied electric field as a reason of decrease of luminance.<br />

References<br />

[1] Stanley J., Yu Jiang, Bridges F., Carter SA, Ruhlen L.: Degradation<br />

and rejuvenation studies of AC electroluminescent ZnS:Cu,Cl phosphors.<br />

J. Phys.: Condens. Matter, 22, 2<strong>01</strong>0, pp. 0553<strong>01</strong>.<br />

[2] Hirabayashi K., Kozawaguchi H., Tsujiyama B.: Study on A-C Powder<br />

EL Phosphor Deterioration Factors. J. Electrochem. Soc., 130, 1983,<br />

pp. 2259–2263.<br />

[3] Lehmann W.: Hyper-Maintenance of Electroluminescence. J. Electrochem.<br />

Soc., 113, 1966, pp. 40–42.<br />

[4] Fischer A.G.: Electroluminescent Lines in ZnS Powder Particles.<br />

J. Electrochem. Soc., 110, 1963, pp. 733–748.<br />

[5] Porada Z., Cież M.: Model matematyczny opisujący wpływ procesów<br />

starzeniowych na parametry elektroluminescencyjne struktur<br />

grubowarstwowych. <strong>Elektronika</strong>, Vol. LI, No. 6, 2<strong>01</strong>0, pp. 123–125.<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


Investigations of passive components embedded<br />

in printed circuit boards<br />

(Badania podzespołów biernych wbudowanych<br />

w płytki obwodów drukowanych)<br />

mgr inż. Wojciech Stęplewski 1) , mgr inż. Tomasz Serzysko 1) , dr Grażyna Kozioł 1) ,<br />

mgr inż. Kamil Janeczek 1) , prof. dr hab. inż. Andrzej Dziedzic 2)<br />

1)<br />

Tele and Radio Research Institute, Centre of Advanced Technology, Warsaw<br />

2)<br />

Wrocław University of Technology, Faculty of Microsystem Electronics and Photonics<br />

The concept of passive components embedded between inner<br />

layers of printed circuit board (PCB) was introduced many<br />

years ago. The first trials of embedded capacitors started at<br />

the end of sixties of the last century [1]. In the beginning of seventies<br />

started the applying of NiP layers for manufacturing of<br />

thin layer resistors [2]. Up to present day many materials which<br />

can be used for embedded passives were elaborated. But this<br />

technology is used in small range, especially in military and air<br />

electronics as well as in space electronics. Due to the increasing<br />

number of components which are now required to support<br />

a single active device, the passives are quickly becoming the<br />

major bottleneck in the general miniaturization trend which has<br />

become so important in today’s electronics world. The miniaturization<br />

of conventional passives reaches its limits and the<br />

next obvious choice is to embed the passive components into<br />

the PCB. This allows further miniaturization, has the potential<br />

to reduce cost and moreover exhibits superior electrical behavior<br />

with respect to the minimization of parasitic effects [3, 4].<br />

Despite unquestionable advantages which characterize the embedded<br />

elements, they are not generally used in the production<br />

of PCBs. As well the designing of electronic devices such as<br />

filters, generators, RFID systems and many others, which are<br />

composed of passive components, was not to this time used<br />

on larger scale and knowledge in this matter is still very poor.<br />

Embedding passives will permit to integrate these elements<br />

and whole structures into the PCB. The idea of packing more<br />

and more elements in PCBs by application and development<br />

of embedding passives technologies becomes a necessity for<br />

electronic equipment producers.<br />

Materials and structures<br />

Thin-film resistors<br />

In the investigations two types of materials with sheet resistance<br />

of 25 Ω/□ (thickness 0.4 µm) and 100 Ω/□ (thickness 0.1 µm)<br />

were used. Thin-film resistors were designed in three sizes, which<br />

were fabricated on ten specimens of the same size in configuration:<br />

1.5 mm × 4 squares, 1.0 mm × 2 squares, 0.5 mm × 1<br />

square, 1.0 mm × 2 squares.<br />

Thick-film resistors<br />

For manufacturing of the resistors the inks with sheet resistance<br />

200 Ω/□ (ED7100_200 Ω – carbon ink), 20 Ω/□ (ED7500_20 Ω –<br />

carbon-silver ink) and 5 kΩ/□ (ED7500_5 kΩ – carbon-silver ink)<br />

were used. These inks were applied by screen printing through<br />

yellow PET mesh (77T) using a capillary film with a thickness of<br />

25 µm. The resistors were designed in the form of bars, which are<br />

optimal for screen printing. The resistors had the same sizes as<br />

the afore mentioned thin-film resistors. The resistors were printed<br />

on Cu contacts (Fig. 1a), asymmetric Cu contacts (Fig. 1b) to<br />

compensate mechanical stresses [5], Cu contacts with protective<br />

Ni/Au coating (Fig. 1c) and Ag contacts (Electrodag PF-050 ink,<br />

Fig. 1d).<br />

a)<br />

b)<br />

c)<br />

d)<br />

Capacitors<br />

Cu contacts<br />

resistive layer<br />

asymmetric Cu contacts<br />

resistive layer<br />

contacts with protective coating Ni/Au<br />

resistive layer<br />

Ag layer<br />

resistive layer<br />

Cu contact<br />

Fig. 1. Type of contacts: a) Cu; b) asymmetric Cu; c) Cu with protective<br />

coating Ni/Au; d) Ag<br />

Rys. 1. Rodzaje pól kontaktowych: a) Cu; b) asymetryczne Cu;<br />

c) z warstwa ochronną Ni/Au; d) Ag<br />

FaradFlex BC24 M and BC12TM dielectric materials with basic<br />

parameters shown in Table 1 were used for fabrication of capacitors.<br />

Tabl. 1. Basic properties of used capacitance materials<br />

Tab. 1. Podstawowe parametry użytego materiału pojemnościowego<br />

Properties BC24 M BC12TM<br />

Dielectric thickness [µm] 24 12<br />

C P<br />

1 MHz/1 GHz [pF/cm 2 ] 180/160 700/600<br />

D K<br />

1 MHz/1 GHz 4.4/4.0 10/8.5<br />

Dielectric strength [kV/mil] 7.0+ 5.8<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong> 41


Nine types of capacitors are designed with the following parameters:<br />

– BC24 M capacitances in the range of 1.5 pF (for a nominal<br />

electrodes area of 0.9 mm × 0.9 mm) to 352.8 pF (14 mm ×<br />

14 mm);<br />

– BC12TM capacitances in the range of 5.7 pF (0.9 mm ×<br />

0.9 mm) to 1372 pF (14 mm × 14 mm).<br />

Combined material for embedded resistors and capacitors<br />

The composite Ohmega/FaradFlex used in performed tests<br />

consisted of a thin film capacitive layer BC24 M with the thickness<br />

of 24 µm enclosed between two copper foils each with 35 µm<br />

thickness. Under one of the foils a NiP 25 Ω/square resistive layer<br />

is applied.<br />

For the investigation the test board containing the electronic<br />

circuit composed of capacitor and resistor forming a low-pass filter<br />

was designed. All resistors were designed with a width of 0.5 mm.<br />

The project included a correction to compensate for a resistance<br />

increase during the manufacturing processes by 15%.<br />

Results<br />

Impact of oxide treatment and lamination on resistance<br />

The most important manufacturing steps which have a significant<br />

influence on the parameters of embedded resistors are oxide<br />

treatment processes and lamination. Oxide treatment processes<br />

were carried out in an aggressive environment of which the main<br />

ingredient was sulfuric acid (J-KEM technology). During the lamination<br />

the devices were exposed to high pressure (30 bar) and<br />

high temperature (up to 180°C) [6]. The exemplary resistance<br />

changes after oxide treatment process and lamination are presented<br />

in Figures 3–7.<br />

Tabl. 2. Parameters of designed low-pass filters<br />

Tab. 2. Parametry zaprojektowanych filtrów dolnoprzepustowych<br />

Lp.<br />

R<br />

[kΩ]<br />

R<br />

length<br />

[mm]<br />

C<br />

[pF]<br />

C<br />

size<br />

[mm]<br />

cutoff frequency<br />

[kHz]<br />

1. 1.000 17.00 318.31 13.68 × 13.68 500.00<br />

2. 0.330 5.61 482.29 16.84 × 16.84 1 000.00<br />

3. 0.150 2.55 212.21 11.17 × 11.17 4 999.92<br />

4. 0.082 1.39 194.09 10.69 × 10.69 10 000.08<br />

5. 0.056 0.95 56.84 5.78 × 5.78 50 000.97<br />

Fig. 3. Example of resistance changes after J-KEM brown oxide processes<br />

and lamination, 25 Ω /□<br />

Rys. 3. Przykładowe zmiany rezystancji po procesie nakładania tlenków<br />

w technologii J-KEM i prasowaniu, 25 Ω /□<br />

Experimental<br />

The basic functional parameters of embedded passives like resistance<br />

and capacitance and their dependence on parameters<br />

of the manufacturing process were examined. The environmental<br />

tests in changing temperature were used additionally.<br />

The measurements of resistor resistance were made with<br />

the aid of Agilent 344<strong>01</strong>A laboratory multimeter. The four-point<br />

method which permits for the elimination of the measuring cable<br />

resistance on the measurement results was used.<br />

The capacitance of the capacitors was measured by the LCR<br />

HAMEG type HM8118 laboratory bridge which was equipped with<br />

the appropriate coaxial cables assembled in a configuration of<br />

three terminals 3T. This configuration reduces the effects of stray<br />

capacitance.<br />

The influence of climatic variation on the resistance value of<br />

resistors was investigated in the CTS-70/200 Climatic Chamber.<br />

The durability of PCBs with resistors were tested on thermal cycles<br />

with temperature changes in the range of -40…85˚C. The duration<br />

of one cycle was 8.5 hours. Figure 3 shows the scheme of<br />

the cycle. 120 exposure cycles were made.<br />

Fig. 2. Scheme of the temperature cycle<br />

Rys. 2. Schemat cykli temperaturowych<br />

42<br />

Temperature [ C]<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

-40<br />

-60<br />

-80<br />

2˚C/min<br />

2˚C/min<br />

0 0,5 1 2 3 4 5 6 7 8 8,5<br />

0,5 h 0,5 h 3 h 0,5 h 3 h 0,5 h<br />

Time [h]<br />

Fig. 4. Example of resistance changes after J-KEM brown oxide processes<br />

and lamination, 100 Ω /□<br />

Rys. 4. Przykładowe zmiany rezystancji po procesie nakładania tlenków<br />

w technologii J-KEM i prasowaniu, 100 Ω /□<br />

Change of resistance [%]<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

20<br />

0 10 20 30 40<br />

1.5 mm 1.0 mm 0.5 mm 1.0 mm<br />

after oxides<br />

Number of resistor<br />

after laminaon<br />

Fig. 5. Example of resistance changes after J-KEM brown oxide processes<br />

and lamination, ED7100 200 Ω /□<br />

Rys. 5. Przykładowe zmiany rezystancji po procesie nakładania tlenków<br />

w technologii J-KEM i prasowaniu, ED7100 200 Ω /□<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


Change of resistance [%]<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

0 10 20 30 40<br />

1.5 mm 1.0 mm 0.5 mm 1.0 mm<br />

after oxides<br />

Number of resistor<br />

after lamianation<br />

Change of resistance[%]<br />

NiP 25 ohm<br />

6<br />

NiP 100 ohm<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

-12<br />

1.5 mm 1.0 mm 0.5 mm 1.0 mm<br />

0 10 20 30 40<br />

Number of resistor<br />

Fig. 6. Example of resistance changes after J-KEM brown oxide processes<br />

and lamination, ED7500 20 Ω /□<br />

Rys. 6. Przykładowe zmiany rezystancji po procesie nakładania tlenków<br />

w technologii J-KEM i prasowaniu, ED7500 20 Ω /□<br />

Fig. 9. Example of resistance changes after double reflow soldering<br />

process, NiP 25 Ω /□ and 100 Ω /□<br />

Rys. 9. Przykładowe zmiany rezystancji po procesie dwukrotnego lutowania<br />

rozpływowego, NiP 25 Ω /□ and 100 Ω /□<br />

Change of resistance [%]<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

0 10 20 30 40<br />

1.5 mm 1.0 mm 0.5 mm 1.0 mm<br />

after oxides<br />

Number of resistor<br />

after lamination<br />

Change of resistance[%]<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

ED7100_200ohm<br />

ED7500_20ohm<br />

ED7500_5kohm<br />

1.5 mm 1.0 mm 0.5 mm 1.0 mm<br />

0 10 20 30 40<br />

Number of resistor<br />

Fig. 7. Example of resistance changes after J-KEM brown oxide processes<br />

and lamination, ED7500 5 kΩ /□<br />

Rys. 7. Przykładowe zmiany rezystancji po procesie nakładania tlenków<br />

w technologii J-KEM i prasowaniu, ED7500 5 kΩ /□<br />

Fig. 10. Example of resistance changes after double reflow soldering<br />

process, ED7100, ED7500<br />

Rys. 10. Przykładowe zmiany rezystancji po procesie dwukrotnego<br />

lutowania rozpływowego, ED7100, ED7500<br />

Fig. 8. Reflow soldering profile<br />

Rys. 8. Profil lutowania rozpływowego<br />

The oxide treatment increased the resistance of thin-film resistors<br />

(Fig. 3–4). On the exposure of acid solution the thin resistive<br />

layer was slowly dissolving. As a result, there is a reduction of thickness.<br />

The influence of acid solution on thick-film resistors was<br />

significantly lower. The lamination process caused only a slight<br />

change in resistance of thin-film resistors. In the case of thick-film<br />

resistors the influence of this process was more significant. This<br />

is due to the phenomenon of an additional resistor curing under<br />

high pressure and temperature. Additional curing of the resistors<br />

at the lamination temperature reduced the changes resulting from<br />

the lamination process. In the investigations it was found that<br />

a second lamination process at a temperature of 180°C reduced<br />

the resistance changes to 1–2% without deterioration of resistor<br />

properties.<br />

The resistors were also exposed to a temperature profile simulating<br />

a lead-free reflow soldering process (Fig. 8). Maximum<br />

temperature on the PCB surface was about 250°C. It was done<br />

double reflow soldering process.<br />

Double reflow soldering did not cause changes in the case<br />

of thin-film resistor 25 Ω /□. Resistors made from the layers of<br />

100 Ω /□ had slight changes in the resistance between +2% and<br />

-2%. The 100 Ω /□ layer was four times thinner. Therefore in<br />

soldering process higher changes of resistance may reveal. Laminated<br />

thick film resistors were characterized by changes at<br />

the level of 2% in the case of carbon ink and 2…5% for carbonsilver<br />

inks.<br />

Environmental tests of resistors<br />

The Figures 11–14 present the change in resistance of embedded<br />

resistors after 120 thermal cycles in a climatic chamber.<br />

After 120 temperature cycles the increase of thin-film resistors<br />

resistance from 1–1.5% for the NiP layer 25 Ω /□ to 1.5–2.5% in<br />

the case of NiP layer 100 Ω /□ was noticed. Slightly smaller changes<br />

of 25 Ω /□ layer resistance in temperature cycles were likely<br />

a result of its greater thickness. The thick-film resistors with Cu<br />

contacts exhibit very large resistance changes, especially for the<br />

width of 0.5 mm. The use of the Ag or Ni/Au contact layers definitely<br />

improves the quality of connection between ink and contact.<br />

Significant worse quality of resistors with Cu contacts might result<br />

from poorer adhesion or chemical reactions between used inks<br />

and copper contacts. The use of special asymmetric Cu contacts<br />

did not meet their requirements (i.e. it did not compensate<br />

mechanical stresses during temperature cycles). The changes in<br />

resistance were significant and the highest in this case.<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong> 43


Change of resistance [%]<br />

5<br />

4,5<br />

NiP 25 ohm<br />

NiP 100 ohm<br />

4<br />

3,5<br />

3<br />

2,5<br />

2<br />

1,5<br />

1<br />

0,5<br />

0<br />

1.5 mm 1.0 mm 0.5 mm 1.0 mm<br />

0 10 20 30 40<br />

Number of resistor<br />

Fig. 11. Example of resistance changes after 120 cycle climatic tests,<br />

NiP 25 Ω /□ and 100 Ω /□<br />

Rys. 11. Przykładowe zmiany rezystancji po 120 cyklach testów klimatycznych,<br />

NiP 25 Ω /□ and 100 Ω /□<br />

Change of resistance [%]<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Cu asymmetric Cu Au Ag<br />

-20<br />

1.5 mm 1.0 mm 0.5 mm 1.0 mm<br />

0 10 20 30 40<br />

Number of resistor<br />

Fig. 12. Example of resistance changes after 120 cycle climatic tests,<br />

ED7100 200 Ω /□<br />

Rys. 12. Przykładowe zmiany rezystancji po 120 cyklach testów klimatycznych,<br />

ED7100 200 Ω /□<br />

The best results were obtained for both type of thin-film resistors<br />

and for thick-film resistors printed on Ag and Ni/Au contact<br />

pads. The use of precise laser trimming in advance allows<br />

to achieve resistance values within a tolerance of 1% by taking<br />

into account the expected changes caused by the manufacturing<br />

steps.<br />

Generally, with a decrease of resistor size the obtained results<br />

were less reproducible and exhibited the largest variance. It is<br />

especially visible for the smallest resistors (with the 0.5 mm size).<br />

It was noticed both in technological processes as well as in the<br />

case of environmental tests. Together with the size decrease an<br />

impact of technological precision on the achieved results increased.<br />

This is mostly observable in the case of thick-film resistors.<br />

Effects of screen printing techniques inaccuracy such as resistor<br />

edges irregularity and ink distribution were caused by resistors<br />

behavior under conditions of technological operations or environmental<br />

exposures. The accuracy of technological operation<br />

depended on an engineer experience and a precision of used<br />

equipment.<br />

Embedded capacitors<br />

In the investigations the significant influence of the oxide treatment<br />

processes on the obtained value of capacity was not found<br />

out. Lamination process resulted in the change of capacitance up<br />

to the level of 1–3% for BC24 M materials. The reason of this phenomenon<br />

was probably a slight decrease in distance between the<br />

plates. In the case of BC12TM material the observed capacitance<br />

changes were slightly below 1%. The capacitance changes were<br />

mainly influenced by the alignment of the electrodes.<br />

Capacitors made of BC24 M had a smaller dispersion of capacitance<br />

and a higher reproducibility than capacitors made<br />

of BC12TM. In the case of the smallest capacitors (less than<br />

0.25 cm 2 , 45 pF for BC24 M and 175 pF for BC12TM) inaccuracies<br />

100<br />

Cu asymmetric Cu Au Ag<br />

12<br />

80<br />

10<br />

Change of resistance [%]<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

1.5 mm 1.0 mm 0.5 mm 1.0 mm<br />

0 10 20 30 40<br />

Number of resistor<br />

Relative deviation [%]<br />

8<br />

6<br />

4<br />

2<br />

0<br />

1,5<br />

1,5<br />

1,5<br />

2,8<br />

2,8<br />

2,8<br />

5,5<br />

5,5<br />

5,5<br />

11,3<br />

11,3<br />

11,3<br />

22,1<br />

22,1<br />

22,1<br />

22,1<br />

45,0<br />

45,0<br />

45,0<br />

45,0<br />

45,0<br />

45,0<br />

88,2<br />

88,2<br />

180,0<br />

180,0<br />

352,8<br />

352,8<br />

Capacitance [pF]<br />

Fig. 13. Example of resistance changes after 120 cycle climatic tests,<br />

ED7500 20 Ω /□<br />

Rys. 13. Przykładowe zmiany rezystancji po 120 cyklach testów klimatycznych,<br />

ED7500 20 Ω /□<br />

Fig. 15. Capacitance after lamination, BC24 M material<br />

Rys. 15. Pojemność po prasowaniu, materiał BC24 M<br />

100<br />

80<br />

Cu asymmetric Cu Au Ag<br />

0<br />

-5<br />

5,7<br />

5,7<br />

5,7<br />

10,9<br />

10,9<br />

10,9<br />

21,4<br />

21,4<br />

21,4<br />

43,8<br />

43,8<br />

43,8<br />

85,8<br />

85,8<br />

85,8<br />

85,8<br />

175,0<br />

175,0<br />

175,0<br />

175,0<br />

175,0<br />

175,0<br />

343,0<br />

343,0<br />

700,0<br />

700,0<br />

1372,0<br />

1372,0<br />

Fig. 14. Example of resistance changes after 120 cycle climatic tests,<br />

ED7500 5 kΩ /□<br />

Rys. 14. Przykładowe zmiany rezystancji po 120 cyklach testów klimatycznych,<br />

ED7500 5 kΩ /□<br />

44<br />

Change of resistance [%]<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

1.5 mm 1.0 mm 0.5 mm 1.0 mm<br />

0 10 20 30 40<br />

Number of resistor<br />

Relative deviation [%]<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

Capacitance [pF]<br />

Fig. 16. Capacitance after lamination, BC12TM material<br />

Rys. 16. Pojemność po prasowaniu, materiał BC12TM<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


of capacitor plate positioning resulted even in a few times larger<br />

difference between obtained and designed capacitance values<br />

than in the case of the capacitors with a relatively large electrode<br />

area (approximately 8% to 2% in the case of the capacitors made<br />

with BC24 M material). In order to achieve capacitance values<br />

with the highest possible accuracy the errors of capacitor electrodes<br />

alignment (photochemigraphy) and errors in the etching<br />

process (over etching, under etching) should be minimized.<br />

Combined Capacitance and Resistance Material<br />

The cut-off frequency of manufactured low-pass filters varied from<br />

-6.5% to -13.5% with regard to their designed values. Smaller<br />

values of frequency than designed one was caused mainly by<br />

higher capacitance values.<br />

It was found that changes in resistance of the resistive material<br />

25 Ω/□ in technological processes were at the level of 14…20%.<br />

These changes were comparable to the resistance changes of resistors<br />

produced with the Ohmega-Ply material. Achieved capacitances<br />

of the capacitors were around 7% higher than designed.<br />

Etched plates were size with high accuracy compatible with the<br />

design so the higher capacitance was resulted from the higher<br />

capacitance of used material. This is caused by either shorter<br />

distance between the plates, a value difficult to measure due to<br />

the very developed surface on the copper plate or a greater value<br />

of dielectric constant.<br />

lower ranges of resistance. The thick film technology allows to<br />

design resistors in a wide range of resistance (from some Ω to<br />

MΩ). The use of dielectric material additionally gives the possibility<br />

to place a significant percentage of the passive components<br />

inside the printed circuit boards. It allows to save space on the<br />

surface and to miniaturize the system. Expanding the embedding<br />

techniques also on inductive elements would even allow to design<br />

embedded low and high pass filters, filter units (amplifiers),<br />

decoupling capacitors and matching resistors in memory and<br />

processor sets, and even RFID systems and simple generators.<br />

The use of a new generation of materials in this technology is an<br />

important step towards full integration of passive components into<br />

the assembly substrate.<br />

Investigations were made as part of the Operational Programme<br />

Innovative Economy, 2007–2<strong>01</strong>3, the Priority of 1 Investigation<br />

and High Technology Development, Action 1.3<br />

supporting B+R Projects for entrepreneurs carried out by scientific<br />

units, 1.3.1 Development Projects. The agreement No: UDA-<br />

POIG.<strong>01</strong>.03.<strong>01</strong>-14-031/08-04 of 16.02.2009, Title of Project: „Technologia<br />

doświadczalna wbudowywania elementów rezystywnych<br />

i pojemnościowych wewnątrz płytki drukowanej”, Project No:<br />

POIG.<strong>01</strong>.03.<strong>01</strong>-00-031/08.<br />

0<br />

1,0 50,0 10,0 5,0 0,5<br />

Relave deviation [%]<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

Frequency [MHz]<br />

Fig. 17. Calculated cut-off frequency of sample filters<br />

Rys. 17. Obliczona częstotliwość graniczna próbek filtrów<br />

Summary<br />

The combination of thin- and thick-film techniques for manufacturing<br />

embedded resistors allows a significant extension of the<br />

range of possible resistance values. The thin-film resistors give<br />

better accuracy, stability and high level of miniaturization in the<br />

References<br />

[1] J.S. Peiffer: „Embedded Passives: Debut in Prime Time”, Printed Circuit<br />

Design & Fab, <strong>01</strong> October 2009.<br />

[2] B. Mahler: „The Design and Use of NiP Embedded Thin-Film Resistive<br />

Materials for Series and Parallel Termination”, CircuiTree, Winter<br />

2<strong>01</strong>1, Vol. 24, No. 1.<br />

[3] W. Jillek, W.K.C. Yung: „Embedded components in printed circuit<br />

boards: a processing technology review”, Int. J. of Advanced Manufacturing<br />

(2005) 25, pp. 350–360.<br />

[4] S. O’Reilly, M. Duffy, T. O’Donnell, P. McCloskey, S.C. Ó Mathúna:<br />

„Integrated passives in advanced printed wiring boards”, Circuit<br />

World 27/4 [20<strong>01</strong>], pp. 22–25.<br />

[5] R.C. Snogren: „Embedded Passives in Printed Circuit Boards”, Defence<br />

Manufacturing Conference 2004.<br />

[6] W. Stęplewski, J. Borecki, G. Kozioł, A. Araźna, A. Dziedzic, P.<br />

Markowski: „Influence of selected constructional and technological<br />

factors on tolerance and stability of thin-film resistors embedded in<br />

PCBs”, <strong>Elektronika</strong>, Vol 52, No. 4, 2<strong>01</strong>1, pp 119–122.<br />

Przypominamy o prenumeracie miesięcznika <strong>Elektronika</strong> na <strong>2<strong>01</strong>2</strong> r.<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong> 45


GENESI: Wireless Sensor Networks for structural monitoring<br />

(GENESI: Bezprzewodowa sieć sensorów do monitorowania strukturalnego)<br />

BE MEng Sc Brendan O’Flynn 1, 2, 3) , Dr. David Boyle 2, 3) , Dr. E. Popovici 1, 2, 3) ,<br />

Phd. Ing. Michele Magno 3, 4) , PhD C. Petrioli 5)<br />

1)<br />

Clarity CENTRE, 2) Tyndall National Institute, 3) University College Cork, Ireland<br />

4)<br />

University of Bologna Italy, 5) University of Rome, Italy<br />

The GENESI project has the ambitious goal of bringing WSN technology<br />

to the level where it can provide the core of the next generation<br />

of systems for structural health monitoring that are long<br />

lasting, pervasive and totally distributed and autonomous. Sensor<br />

nodes are being redesigned to overcome their current limitations,<br />

especially concerning energy storage and provisioning (we need<br />

devices with virtually infinite lifetime) and resilience to faults and interferences<br />

(for reliability and robustness). New software and protocols<br />

will be defined to fully take advantage of the new hardware,<br />

providing new paradigms for cross-layer interaction at all layers of<br />

the protocol stack and satisfying the requirements of a new concept<br />

of Quality of Service (QoS) that is application-driven, truly reflecting<br />

the end user perspective and expectations. The GENESI system<br />

will be deployed in two pilot deployments; namely the monitoring of<br />

a bridge (Pont de la Poya, Switzerland) and a metro tunnel (Metropolitana<br />

Linea B, Rome), both during and after construction.<br />

System requirement analysis<br />

GENESI (Green sEnsor NEtworks for Structural monItoring) [1]<br />

exhibits a range of system requirements from a variety of established<br />

and emerging technical scientific disciplines.<br />

The systems are required to be “Green” and Sustainable – The<br />

use of energy scavanging techniques (i.e. harnessing available<br />

environmental energy) to extend the lifetime of GENESI nodes<br />

will be employed. Realistic potential sources include solar and<br />

wind energy. A fuel cell or series of fuel cells, capable of providing<br />

significant amounts of energy, will also be integrated in the design<br />

of a novel power unit. This unit may also make use of integrated<br />

suitable battery cell(s) and/or other storage techniques (such as<br />

capacitors). It should provide sufficient energy to power the GE-<br />

NESI wireless sensor nodes for extended periods of time.<br />

In addition to developing novel hardware to address the challenge<br />

of providing a solution for structural health monitoring with<br />

virtually infinite lifetime, appropriate algorithms and networking<br />

protocols must be developed to facilitate these goals. The lowest<br />

possible amounts of energy should be consumed during periods<br />

of communication, algorithms and protocols should account for<br />

fluctuating available energy whilst exhibiting fault tolerance in the<br />

presence of malfunctioning devices and lossy channels. Finally,<br />

the overall system should ensure maintenance of suitable levels<br />

of quality of service.<br />

The GENESI nodes, with minimal maintenance from initial deployment,<br />

are required to have an operational lifespan extending<br />

to decades and the following characteristics:<br />

Portability – The intended use of the system requires that, during<br />

the construction phase, one of the desirable properties of the<br />

proposed GENESI system is that it should facilitate easy redeployment,<br />

or repositioning, of the nodes/sensors as construction<br />

work progresses. For example, when one section of monitored<br />

construction is complete, it should be easy for the sensor nodes<br />

to be moved to the next section, Alternatively, they should be reconfigured<br />

in their current position to allow for a different type<br />

of monitoring, for instance moving from a monitoring modality<br />

intended for the construction phase, to long term monitoring of<br />

the system in operation. This functionality should be considered<br />

thoroughly as the design of the system progresses. It will relate<br />

to both the physical aspects of the GENESI devices (form factor<br />

46<br />

– size, mass, connectors, packaging, etc.) and also the networking<br />

and dynamic reprogramming of the devices.<br />

Robustness – GENESI is intended for use in the monitoring of<br />

structures. As such, its field of deployment is naturally rugged. The<br />

devices must be packaged in accordance with the requirements<br />

of the deployment field. Therefore, the end system must be robust<br />

in terms of physical protection from the environment (against elements<br />

such as moisture, lightning, temperature extremes, etc.),<br />

and also exhibit robust physical features such as protection from<br />

impacts/shocks, large simple connectors, etc. In addition to protection<br />

and increased robustness of the GENESI node, the system<br />

architecture should ensure reliability against node failures. The system<br />

should be capable of detecting failures and malfunctioning<br />

system components, should support adequate actions to cope<br />

with problems, e.g. restarting devices and reconfiguring them. Itshould<br />

be self-healing and robust in case of permanent failure, e.g.<br />

by dynamically changing routes, reallocating application tasks.<br />

Flexibility – GENESI should be flexible enough in design to<br />

ensure that it is applicable to a wide range of structural monitoring<br />

scenarios beyond the pilot deployments. This will ensure maximum<br />

impact to the overall market.<br />

Maximization of end-user utility – The development of protocols<br />

and algorithms to ensure the highest levels of system responsiveness<br />

and end-user perceived service quality by fully exploiting the<br />

variable energy availability of harvesting devices.<br />

Interoperability with existing front-ends– the system should be<br />

compatible with the existing front-end provided by the end-user<br />

partners<br />

In summary, GENESI must provide a robust wireless sensor<br />

network for structural health monitoring that exhibits high levels<br />

of quality of service, dramatically enhanced network lifetime, minimal<br />

maintenance requirements, flexibility to a wide range of monitoring<br />

scenarios and dynamic configurability in the field. It must<br />

also be compatible with existing front-end structural monitoring<br />

solutions and significantly reduce overall costs for structural health<br />

monitoring in the field.<br />

GENESI Device Level Specification<br />

In order to facilitate rapid prototyping and experimentation with<br />

various interfaces, both to sensors and power solutions, a modular<br />

approach to the design of the final hardware platform has<br />

been adopted. To this end, a prototype of the GENESI node has<br />

been developed by Tyndall, and the core components of which<br />

are described in the following sections:<br />

Sensors<br />

The sensors to be used for the two initial deployment scenarios<br />

are of the “off-the-shelf” variety. The requirement exists for the<br />

development of sensor interface layers to correspond to the type<br />

of communication supported by the sensors themselves. 2, 3 and<br />

4-wire analogue, RS 485, RS 232 and SPI (digital) interfaces<br />

are required. Additionally, given the variety of supplies required<br />

for individual sensors – a number of power rails will be required.<br />

Similar interfacing must be achieved between the sensors, the<br />

motherboard and the smart power unit. In order to achieve the<br />

required 16-bit granularity for some of the sensors, an additional<br />

analog-to-digital converter (ADC) chip is required.<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


RF and Microcontroller Requirements<br />

The primary enabling technologies of wireless sensor networks<br />

are low-power RF communication and microcontroller components.<br />

In keeping with design goals for the GENESI, state-of-theart<br />

and standard compliant (IEEE 802.15.4) radio transceivers<br />

are implemented in combination with an appropriate microcontroller<br />

(e.g. Texas Instruments MSP430). In order to comply with<br />

GENESI objectives of ultra-low power operation for extended<br />

node lifetime, the lowest power components are chosen in the<br />

design of the electronic hardware.<br />

RF Transceiver<br />

The IEEE 802.15.4 standard for low-rate wireless personal<br />

area networks (LR-WPAN) is the most prominent and applicable<br />

for use with wireless sensor networks [2], underpinning a range<br />

of higher level standards and specifications (including ZigBee<br />

[3], 6LoWPAN [4] and WirelessHART [5]). It provides optimal<br />

trade-offs with respect to range, data rates and power consumption,<br />

in comparison with other wireless communications technologies<br />

that could be applicable to the GENESI platform (such as<br />

Bluetooth, WiFi, etc.; which usually offer superior data rates for<br />

higher power cost over a shorter range). The standard originally<br />

(2003) prescribed two physical layers based upon direct sequence<br />

spread spectrum (DSSS) techniques – one working in the<br />

868 (Europe)/915 (North America) MHz bands, the other in the<br />

2.4 GHz band. In Europe, the 868 MHz band allowed for only<br />

one communications channel (with a transfer rate of 20 kbps<br />

(prior to the 2006 revision of the standard)), whereas the worldwide<br />

2.4 GHz band allows up to 16 channels with a transfer rate<br />

of 250 kbps.<br />

The decision for GENESI to function in the 2.4 GHz band was<br />

agreed based upon the need for a number of channels and reasonable<br />

data rates – thus ensuring the possibility to enhance quality<br />

of service and meet design requirements for the project. We are<br />

also investigating the possibility to add a second radio on GENE-<br />

SI platform operating in the 868 MHz band for specific application<br />

scenarios where 2.4 GHz band may suffer from severe interference<br />

(such as structural health monitoring in buildings).<br />

In choosing an appropriate RFIC, one is limited to those available<br />

commercially. The most well known transceiver in the WSN<br />

domain is the Texas Instruments CC2420 [6]. This transceiver<br />

supports the IEEE 802.15.4-2003 standard, operating in the 2.4<br />

GHz channel. Along with its successor, the CC2520, the Atmel<br />

AT86RF231 and the Analog Devices ADF7242, are all state-ofthe-art<br />

transceivers under consideration for the final GENESI system<br />

specification.<br />

Smart Power System<br />

From the perspective of power requirements<br />

for the GENESI system it is noticeable that<br />

industrial batteries on the market have a number<br />

of limitations from both the user and equipment<br />

perspective.<br />

Firstly, they represent an unpredictable<br />

source of power. A user can have a little advantage<br />

if he knows that the battery is about<br />

to run out of energy or how much operating<br />

time is left. Secondly, the device cannot determine<br />

if the battery, in its current state, is<br />

capable of supplying adequate power for an<br />

additional load (e.g. spinning up a hard disk<br />

in a laptop, turn on a flash-light in a camera,<br />

or start a burst radio transmission in a WSN).<br />

Finally,, battery chargers must be individually<br />

tailored for use with specific battery chemistry<br />

and may cause damage if used on different<br />

storage device.<br />

For these reasons, the specification of an<br />

enhanced battery (called the Smart Power System,<br />

see Figures) which can overcome the limitation of traditional<br />

batteries and jointly exploit the features of an energy harvester<br />

appears to be a winning approach. In this way, it is also possible<br />

to significantly improve the availability of power for the node; one<br />

of the most important factors towards the successful realisation of<br />

the GENESI sytem.<br />

Smart Energy Supply<br />

The GENESI Smart Power System has the following features:<br />

multi-harvester (wind, solar, thermal, etc.), multi-energy storage<br />

(e.g. super capacitor, batteries), intelligent interface to receive<br />

and provide information regarding energy availability, the fuel cell<br />

interface, and allow flexibility in operation.<br />

Energy harvesting devices convert ambient energy into electrical<br />

energy and it is possible to tailor the power source to satisfy<br />

the different power consumption requests various sensors and<br />

scenarios in which the nodes will be deployed.<br />

Depending on the scenario, a multi-harvesting unit able to<br />

convert energy from different kind of ambient source (solar, wind,<br />

thermal, etc.) is a good approach.<br />

The energy harvesting requirements are directly related to the<br />

average power consumption of the application and depend on the<br />

expected quality of service and use-case requirements (sensing<br />

rate, distance between nodes and transmission power, etc.). Moreover,<br />

the different modules or typology of harvesting depends<br />

on the environment where the node is deployed. (For example,<br />

the use of photovoltaic cells, in an underground scenario, may<br />

provide less power than other sources, such as thermal. The opposite<br />

is true when the WSN is deployed outdoors).<br />

Considering that one of the locations where the GENESI platform<br />

will be placed is a bridge, it has been decided that a windphotovoltaic<br />

energy harvester is an optimal choice for implementation.<br />

The choice of a modular and flexible architecture of the<br />

harvester facilitates the interface operation with the fuel cell section,<br />

but also with other energy transducers not originally planned<br />

in this project (i.e. piezoelectric, thermal ones).<br />

It is also expected that a significant amount of wind energy<br />

should be available in the tunnel deployment (due to air-conditioning<br />

and passing metro carriages), whereas, the photovoltaic<br />

energy may be in significantly lesser supply.<br />

The Smart Power System will dynamically select the harvesting<br />

source (if the node is provided with more harvesters) and will<br />

adjust the power conversion parameters to extend the node lifetime.<br />

In general, the harvested energy is stored in a super capacitor<br />

and/or battery. Capacitors are used when the application needs<br />

Block diagram of the GENESI Smart Power System<br />

Schemat blokowy inteligentnego zasilania systemu GENESI<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong> 47


to provide huge energy spikes. Batteries leak less energy and are<br />

therefore used when the device needs to provide a steady flow of<br />

energy. However the GENESI smart battery system will use both<br />

of these solutions.<br />

A similar architecture to the proposed solution is described in<br />

[7]. The GENESI Smart Power Unit will go beyond the capabilities<br />

described therein, through the provision of the capability to<br />

recharge Li-ion batteries and incorporate electrochemical fuel cell<br />

technology. Futhermore, the GENESI system allows for the transfer<br />

of useful information pertaining to energy status from the unit<br />

to the main processor.<br />

Results and conclusions<br />

Based on the requirements elaborated, the specified system<br />

components have been integrated to form a functional prototype<br />

of the GENESI node. Early experimentation has proven feasible<br />

the integration of off-the-shelf sensors traditionally used in structural<br />

health monitoring with low-power RF and microcontroller<br />

components (i.e. a WSN “mote”). Furthermore, an embodiment of<br />

the smart power system (inclusive of energy harvesting capabilities<br />

and fuel cell technology) has been shown to power the unit.<br />

The prototype is currently under technical evaluation with respect<br />

to electrical characterisation (in various modes) and functionality.<br />

Detailed results will be presented in due course.<br />

The authors would like to acknowledge the support of Science<br />

Foundation Ireland (SFI) for funding the CLARITY CSET, the European<br />

Commission for funding the GENESI project, as well as<br />

Enterprise Ireland, Irelands Higher Education Authority (HEA)<br />

and the funding provided to the National Access Program (NAP)<br />

at the Tyndall National Institute by SFI, all of which have contributed<br />

to this work.<br />

References<br />

[1] (2<strong>01</strong>0) GENESI: Green sEnsor NEworks for Structural monItoring.<br />

[Online]. Available: http://genesi.di.uniroma1.it/<br />

[2] IEEE 802.15.4: Wireless Medium Access Control (MAC) and Physical<br />

Layer (PHY) Specifications for Low-Rate Wireless Personal Area<br />

Networks (LR-WPANs) (2003), 3 Park Avenue, New York, USA:<br />

IEEE.<br />

[3] ZigBee Specification v1.0: ZigBee Specification (2005), San Ramon,<br />

CA, USA: ZigBee Alliance.<br />

[4] Hui J., P. Thubert: Compression Format for IPv6 Datagrams over<br />

IEEE 802.l5.4-Based Networks. RFC 6282, Internet Eng. Task Force,<br />

Sept. 2<strong>01</strong>1.<br />

[5] (2009) HART Communication Foundation. [Online]. Available: http://<br />

www.hartcomm.org/<br />

[6] CC2420 Datasheet. [Online]. Available: http://focus.ti.com/lit/ds/symlink/cc2420.<strong>pdf</strong><br />

[7] Tan Y.K., S.K. Panda: Energy Harvesting from Hybrid Indoor Ambient<br />

Light and Thermal Energy Sources for Enhanced Performance of<br />

Wireless Sensor Nodes. IEEE Transactions on Industrial Electronics,<br />

vol.58, in-press, 2<strong>01</strong>1.<br />

Mechanical and thermal properties of SiC<br />

– ceramics substrate interface<br />

(Mechaniczne oraz cieplne właściwości połączenia między strukturą<br />

SiC a podłożem ceramicznym)<br />

dr hab. inż. Ryszard Kisiel 1) , dr inż. ZBIGNIEW Szczepański 1) , dr inż. Piotr Firek 1) ,<br />

dr inż. MAREK Guziewicz 2) , dr inż. ARKADIUSZ Krajewski 3)<br />

1)<br />

Warsaw University of Technology, Institute of Microelectronics and Optoelectronics, Warsaw<br />

2)<br />

Institute of Electron Technology, Warsaw 3) Warsaw University of Technology, Faculty of Production Engineering, Warsaw<br />

Silicon carbide created new possibilities for high power and high<br />

temperature electronics due to its unusual physical properties,<br />

which are not attainable in conventional silicon semiconductor<br />

material. It has been demonstrated that SiC based power devices<br />

are able to operate at temperatures as high as 450°C [1, 2]. To realize<br />

the high temperature functions of SiC power devices, the development<br />

of high temperature packaging technologies becomes<br />

more and more important. Packaging technologies play main role<br />

in high power and high temperature electronics since they have<br />

an essential effect for the reliability of SiC power devices [8, 9].<br />

One of the main problems of high power package is die bonding<br />

technology, which ought to assure not only mechanically reliable<br />

connection between SiC die and substrate, but also good electrical<br />

conductivity and high thermal conductivity. The latter feature is<br />

especially critical for power devices because it allows for effective<br />

heat transfer from power chip to the package.<br />

State-of-the-art technologies for interconnecting Si power devices<br />

involve attaching one terminal of the semiconductor die to<br />

a heat-sinking substrate with solder alloy or with an electrically<br />

conductive adhesive, while the other terminals are bonded by<br />

aluminum or gold wires as well as flip chip technology. Such interconnection<br />

technologies have several limitations in high-temperature<br />

operation because solder alloys/conductive adhesives<br />

usually have low melting/degradation temperatures. By changing<br />

substrate material is possible to increase heat dissipation. So, the<br />

package with DBC substrate is very good solution for high power<br />

application, since such package significantly improves heat dissipation<br />

and therefore is widely used in high power SiC modules.<br />

48<br />

Investigations of new techniques are necessary for high temperature<br />

and high power SiC devices.<br />

Taking into account mentioned above requirements, only a few<br />

of the known die bonding technologies can fulfill the demands of<br />

high both temperature and power. In this paper, the main attention<br />

was focused on technical problems connected with two die bonding<br />

technologies: low temperature joining technique (LTJT) with the use<br />

of micro- or nanosilver paste [1–4], and modifies hard soldering process<br />

based on Au-Sn and Au-Ge solder alloys [7–9]. LTJT is a process<br />

involving the sintering of micro- and nanosized metal particles.<br />

This die bonding technology, from among various chip attachment<br />

method, characterizes the highest thermal conductivity (240 W/mK),<br />

the lowest electrical resistivity (1.6 × 10 -6 Ωcm), low Young’s modulus<br />

(96 Pa), and the highest operating temperature (theoretical operation<br />

capability up to 960ºC) [6]. Porous microstructure of the sintered<br />

silver layer and low Young’s modulus are profitable, since it helps<br />

thermo-mechanical stresses to relieve. Once the interconnection is<br />

formed, the bonding material is close to be pure metal. Because Ag<br />

is mainly used for this purpose, it will not melt until joint temperature<br />

reaches 961°C. By using nano Ag pastes (particles range 30 nm)<br />

the SiC-substrate interface can be formed by sintering at relatively<br />

low temperature, 275…300°C. Die bonding technology with the use<br />

of low temperature sintering of micro- and nanoscale silver pastes<br />

was previously used in our own investigations concerning assembly<br />

of SiC on DBC substrates [12, 13]. Our current work is concentrated<br />

on using microsized Ag pastes for attachment SiC power die to DBC<br />

substrate, instead of Ag nano pastes. The cost of microsized Ag<br />

powder is significantly less than nanosized Ag powder.<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


Application of hard solders based on gold alloys is interesting<br />

alternative of packaging method, especially for SiC devices with<br />

aluminum metallization [7]. From among well known solders, only<br />

AuGe and AuSn can fulfill high temperature requirements. To do<br />

this, substrate and SiC aluminum contacts should be solderable.<br />

It is possible if SiC die and substrate contacts are Au covered.<br />

However, very often SiC dies have Al metallization due to its low<br />

electrical resistivity, good adhesion to die and low cost. In this case<br />

soldering is not possible. The properties of top Al layer onto SiC<br />

can be changed by gold stud bump bonding process. To realize<br />

hard soldering for such devices, modification of die bonding process<br />

is necessary. This modification concerns SiC chips preparation<br />

by means of gold stud bump technology [10]. Gold stud bump<br />

technology is commonly used in flip chip bonding technology and<br />

it can be easily used even on single chips with high bonding speed<br />

[10]. When gold bumps will be realized on Al bond pad of SiC die,<br />

then soldering process with the use of high melting temperature<br />

solder alloy Au82Ge12 (eutectic temperature = 356ºC) can be implemented.<br />

This assembly technology will be investigated in future<br />

series of experiments. Both die bonding technology mentioned<br />

above were used in our investigations.<br />

Experimental procedure<br />

To perform the experiments test samples were prepared. As substrate,<br />

the direct bonded copper substrate (DBC) size 10 × 10 mm<br />

was used. The DBC substrate consists of 0.62 mm thick Al 2<br />

O 3<br />

ceramic<br />

plate sandwiched between two pieces of 0.2 mm Cu plates<br />

thermally bonded to ceramic. Cu top layer of DBC was electroplated<br />

by Ni (3 µm thick) and Au (1 µm thick) layers. Main advantages<br />

of such substrate are high thermal and electrical conductivity due<br />

to thick copper layer and very close to SiC die coefficient of thermal<br />

expansion. Additionally in preliminary experiments, instead of SiC<br />

die the DBC substrate size 3 × 3 mm were used with NiAu metallization.<br />

So, in fact of preliminary experiments, DBC size 3 × 3 mm<br />

was attached to DBC substrate size 10 × 10 mm using LTJT.<br />

In this bonding technology usually silver paste is used, which<br />

was made by mixing silver microparticles and organic binder. However,<br />

during sintering process at the temperature above 250ºC,<br />

organic binder didn’t burn out completely. So, binder system has<br />

to be selected very carefully, to avoid such problems. In our investigations,<br />

we applied a novel approach, by using silver microparticles<br />

without organic additives. The silver powder series AX20LC<br />

(manufactured by AMEPOX MICROelectronics, Łódź, Poland)<br />

was used in experiments. It was deposit on bond pads of DBC<br />

substrate by stencil printing. The stencil was made of Kapton foil<br />

with the thickness of 50 µm. Such process is not very easy in realization<br />

and therefore requires training and experience. Next the<br />

DBC test structures size 3 × 3 mm with metallization Ni/Au were<br />

sintered to DBC substrates size 10 × 10 mm with the use of the<br />

low temperature sintering of silver micro particles in air or in high<br />

vacuum. The parameters of performed processes are presented<br />

in Table 1.<br />

Tabl. 1. The adhesion of DBC structures size 3 × 3 mm to DBC substrate<br />

size 10 × 10 mm after received<br />

Tab.1. Adhezja testowych struktur DBC o wymiarach 3 × 3 mm do podłoża<br />

DBC o wymiarach 10 × 10 mm bezpośrednio po procesie łączenia<br />

Test no<br />

Pressure<br />

[MPa]<br />

Joining parameters<br />

Temp.<br />

[°C]<br />

Time<br />

[min]<br />

Way of<br />

heating<br />

Shear force after<br />

sintering [MPa]<br />

1 0.28 350 30 slowly 0.57<br />

2 3.0 350 30 rapid 2.5<br />

3 3.1 350 30 slowly 8.15<br />

4 2,7 350 30 rapid 2.42<br />

5 2.9 350 50 slowly 10.3<br />

6 2.9 350 40 slowly 10.9<br />

Results and Discussion<br />

The influence of LTJT process parameters on adhesion between<br />

DBC structures size 3 × 3 mm to DBC substrate 10 × 10 mm were<br />

also presented in Tab.1 (last column). It can be observed that for<br />

process temperature 350°C the adhesion is strongly correlated<br />

with pressure applied between joining parts and with way of heating.<br />

Two ways of sample heating were realized: by slow heating,<br />

i.e. heating from room temperature up to 350°C with temperature<br />

ramp 6°C/min, and rapid heating by placing the test sample directly<br />

to 350°C. The best results were obtained when pressure<br />

above 3 MPa were applied a joining parts were heated from room<br />

temperature up to joining temperature 350ºC. By rapid placing<br />

joining parts directly in temperature 350ºC the adhesion was significantly<br />

less.<br />

To check the reliability of prepared joints the ageing process<br />

was performed. So, the next series of test samples were jointed<br />

by applying pressure above 3 MPa and temperature 350ºC with<br />

30 min ageing by slow heating. To check the quality of die-substrate<br />

quality, the shear tension range 3 MPa was applied to DBC<br />

structures 3 × 3 mm. Any destruction of joints were observed. Next<br />

the samples were aged 350ºC &24 h in air and adhesion was<br />

again measured. The adhesion after ageing test was dramatically<br />

low, below 0.05 MPa in all cases. Both surfaces after shear test,<br />

performed just after sintering, and after ageing in 350°C&24h in<br />

air were shown in Fig. 1. Fig. 1a shows that cracks occurs in sintered<br />

Ag layer. In majority of surface there were good connection,<br />

only on some areas porous surfaces are seen. Never the less, the<br />

adhesion of presented sample was above 8 MPa. After ageing<br />

test, the joining surface is different, Fig. 1b. There is areas where<br />

continuous thin Ag layer adhere very well to DBC substrate and<br />

some areas are where sintered Ag has poor cohesion and crack<br />

occur through this plane.<br />

The cohesion cracks in nano Ag sintered joints were observed<br />

by other researches [14]. They observed that the delamination<br />

process occurs between the die or substrate metallization and<br />

the silver layer itself. However, observation the cracking surfaces<br />

on both parts shows that thin Ag layer (thickness few micrometers)<br />

adhere very well to both Au layer of DBC. So in the next series<br />

of experiments the thinner layer of Ag between joining parts<br />

was applied and sintering processes were done in vacuum oven<br />

350°C &30 min with pressure 15 MPa. It was found that adhesion<br />

between parts after vacuum sintering is above 3 MPa. Next the<br />

joined samples were aged in air 350°C&24 h. The adhesion after<br />

ageing was again below 0.05 MPa.<br />

So in the next series of experiments the processes were performed<br />

in vacuum and the sintering temperatures were increased<br />

to 500 and 550°C and ageing time was increased to 2 h. During sintering<br />

the pressure 15 MPa was applied. Such prepared samples<br />

were annealing at 350°C and adhesion was measured before ageing<br />

and in time interval as presented in Tabl. 2. The adhesion was<br />

check temporary by applying test shear force range 3 MPa to sample<br />

size 3 × 3 mm 2 . Samples sintered 550°C &2 h and 500°C &2 h<br />

in vacuum survived the shear test 508 h and 125 h, respectively.<br />

a) b)<br />

Fig.1. The top surface of DBC after shear test performed after sintering<br />

(a) and ageing 350°C (b)<br />

Rys. 1. Powierzchnia struktury DBC po teście ścinania: przed starzeniem<br />

(a) i po starzeniu w temperaturze 350°C (b)<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong> 49


Next, the adhesion was measured in the destructive test. For samples<br />

sintered 400°C & 1 h in air and subsequent sintering in vacuum<br />

in temperatures 550 or 500°C the shear strength was above<br />

12.3 MPa and 18.1 MPa, respectively.<br />

Tabl. 2. The adhesion between DBC substrates with Au metallization made<br />

by micro Ag sintering process<br />

Tab. 2. Stabilność adhezji struktur DBC z metalizacja Au po procesie<br />

zgrzewania wysokotemperaturowego<br />

Test<br />

No<br />

Sample<br />

preparation<br />

0 h<br />

[MPa]<br />

After<br />

50 h<br />

After<br />

125 h<br />

After<br />

200 h<br />

After<br />

508 h<br />

1 550°C&2h >3 >3 >3 >3 11.2<br />

2<br />

400°C&1h<br />

+550°C&2h<br />

>3 >3 >3 >12.3<br />

3 500°C&2h >3 >3 >3<br />

4<br />

400°C&1h<br />

+500°C&2h<br />

> 3 >3 18.1<br />

So, by increasing the sintering temperature of micrometer size<br />

Ag powder up to 550 or 500°C it was possible to create joints between<br />

two DBC substrates with Au top layer with good adhesion.<br />

The further investigations are necessary to decrease sintering<br />

temperature below 500°C and to check if such high temperature<br />

can destroy SiC semiconductor properties or other elements of<br />

SiC package.<br />

Conclusions<br />

In this paper, there was present the realization of assembly of SiC<br />

samples to DBC substrate (Direct Bonding Copper Substrate with<br />

200 µm Cu metallization Ni/Au covered) by low-temperature sintering<br />

of micro scale Ag powder. In the experiments DBC test samples<br />

size 3 × 3 mm 2 (in place of SiC die) were assembled to DBC<br />

substrate size 10 × 10 mm 2 using following methods: a) sintering<br />

by Ag powder with Ag microparticles in air by applying temperature<br />

and pressure, b) sintering by Ag powder with Ag microparticles<br />

using temperature, pressure and high vacuum. Methods „a” and<br />

„b” permit to obtain very good adhesion range 8…10 MPa after<br />

sintering. However after ageing test at temperature 350°C in air<br />

the adhesion fall down dramatically. By increasing sintering temperature<br />

up to 500…550°C and sintering in vacuum range 1.3 Pa<br />

(method „b”) the adhesion is satisfactory, even when ageing time<br />

at 350°C was increased up to 508 h. Destructive tests show that<br />

by sintering samples in vacuum and applying temperature range<br />

500°C the adhesion between two DBC substrates (Au plated) can<br />

be significantly higher than 10 MPa for exploitation temperatures<br />

up to 350°C. Further experiments will be performed for the long<br />

term stability of adhesion at temperatures 350°C or higher.<br />

The work was supported by The National Centre for Research<br />

and Development, NCBiR, Poland (Grant no N N515 499240).<br />

References<br />

[1] Rudzki J., R. Eisek: Low Temperature Joining Technique for Better<br />

Reliability of Power Electronic Modules. Mictrotherm 2007,<br />

pp. 159–166.<br />

[2] Dun-ji Yu, Xu Chen et..al: Applying Anand model to low temperature<br />

sintered nanoscale silver paste chip attachment. Materials and Design.<br />

3D (2009), pp. 45’74–45’79.<br />

[3] John Guofeng Bai, Jian Yin et…al: High Temperature Operation<br />

of SiC Power Devices by Low Temperature Sintered Silver Die-Attachment.<br />

IEEE Transactions on Advanced Packaging. Vol. 30. No 3.<br />

August 2007, pp. 506–509.<br />

[4] John G. Boi Jesus N. Calato, Gou Quan: Processing and Characterization<br />

of Nanosilver Pastes for Die Attaching SiC Devices. IEEE<br />

Trabsactions on Electronic Packaging Nanofacturing. Vol. 30, No. 4,<br />

October 2009, pp. 241–245.<br />

[5] Tsuashi Fundki, Juan Carlos Bonda et…al: Power Conversion with SiC<br />

Devices at Extremely High Ambient Temperatures. IEEE Transactions<br />

on Power Electronics. Vol. 22, No. 4, July 2007, pp. 1321–1329.<br />

[6] Pugi Ning, Thomas Guangyin Lei et…al: A Novel High Temperatures<br />

Planar Package for SiC Multichip Phase-Leg Power Module.<br />

IEEE Transactions on Power Electronics. Vol. 25, No. 8, August<br />

2<strong>01</strong>0, pp. 2059–2067.<br />

[7] Fenggum Lang, Yusuke Hayashi et…al: Novel Three Dimensional<br />

Packaging Method for Al Metalized SiC power Devices. IEEE Transactions<br />

on Advanced Packaging. Vol. 32, No. 4, November 2009,<br />

pp. 773–779.<br />

[8] Fenggum Lang, Yusuke Hayashi et…al: Joint Reliability of Double<br />

Side Package SiC Power Devices to DBC Substrate with High Temperature<br />

Solders. Proceedings of 10 th Electronics Packaging Technology<br />

Conference. 2008, pp. 897–902.<br />

[9] Fenggum Lang, Satashi Tanimato et…al: Long-Term Joint Reliability<br />

of SiC Power Devices at 330ºC. Proceedings of European Microelectronics<br />

and Packaging Technologies. June 2009, pp. 1–5.<br />

[10] Klein M., H. Opperman, R. Kalicki, H. Reichl: “Single Chip Bumping<br />

and Reliability for Chip Process” Microelectronics Reliability. Vol. 39,<br />

No. 9, 1999, pp. 1389–1397.<br />

[11] Szczepański Z., R. Kisiel: „SiC Substrate Connections for High Temperature<br />

Applications” XXXII International Conference of IMAPS-<br />

CPMT IEEE Poland, September 2008.<br />

[12] Szczepański Z., R. Kisiel: Packaging Technologies for SiC Power<br />

Devices. XXXIV International Conference of IMAPS-CPMT IEEE Poland.<br />

September 2<strong>01</strong>0.<br />

[13] Kisiel R., M. Guziewicz, Z. Szczepański: An Overview of Materials<br />

and Bonding Techniques for Inner Connections in SiC High Power<br />

and High Temperature Devices. 33 rd International Spring Seminar on<br />

Electronics Technology ISSE’2<strong>01</strong>0. Warszawa. May 2<strong>01</strong>0.<br />

[14] Rudzki J., Hinken R., Poech H.: Thermal Impedance Test Method for<br />

Detecting Packaging Failures in Silver Sintering Technology. Official<br />

Proceedings MicroTherm 2<strong>01</strong>1, Łódź, Poland, ISBN 978-83-932197-<br />

0–4 pp. 217–222.<br />

50<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


Analysis of pulse durability of thin-film and polymer<br />

thick-film resistors embedded in printed circuit boards<br />

(Analiza odporności impulsowej grubo- i cienkowarstwowych rezystorów<br />

wbudowanych w płytki obwodów drukowanych)<br />

inż. Adam Kłossowicz 1) , prof. dr hab. inż. Andrzej Dziedzic 1) , inż. Paweł Winiarski 1) ,<br />

mgr inż. Wojciech Stęplewski 2) , dr Grażyna Kozioł 2)<br />

1)<br />

Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology<br />

2)<br />

Tele and Radio Research Institute, Warsaw<br />

Traditional passives are three-dimensional discrete components,<br />

soldered through or onto surface. They occupy significant part of<br />

top/bottom surface (up to 50% of the surface area) and increase<br />

thickness and weight of electronic circuits/systems. The embedded<br />

passives (resistors, capacitors and/or inductors – Fig. 1) are<br />

more and more used in multichip module (MCM) technologies.<br />

They are fabricated among others in Low Temperature Co-fired<br />

Ceramics (LTCC) substrates or PCBs. The embedded passives in<br />

comparison to traditional ones are essentially two-dimensional elements<br />

that become part of the internal layers of a PCB or LTCC<br />

substrate increasing its thickness only of around several µm.<br />

Shifting of passives into substrate can increase a free space of<br />

PCB for active components and improve packaging density. The<br />

embedded passive technology (EPT) is incited by many factors<br />

such as the need for higher packaging density, lower production<br />

costs and better electrical properties.<br />

EPT permits for distance reduction between components<br />

(which leads to reduction of parasitics, less crosstalk and enhance<br />

transmission quality) and improving of electrical performance<br />

especially in higher frequencies (because of lower loss and lower<br />

noise yield). One should note, that EPT can also simplify the assembly<br />

process and reduce assembly cost (for example embedded<br />

passives has not problem with positioning). By using embedded<br />

passives we can lower material cost by reducing the number<br />

of discrete passives, flux, and solder paste. Nowadays technology<br />

allows to embedding both thick-film and thin-film resistors.<br />

Pulse durability is an important parameter of passive components<br />

and active devices. In general, the susceptibility to high<br />

voltage pulses and electrostatic discharges has been investigated<br />

for thin- and thick-film resistors for more than 30 years [1, 2].<br />

Such investigations can be performed with the aid of single or<br />

series of „long” pulses (rectangular shape surges with 1 to 20 ms<br />

duration) [3, 4] or by the series of „short” voltage pulses (with duration<br />

from several hundred nanoseconds up to several hundred<br />

microseconds, eg. [5]). One should note that a pulse voltage trimming<br />

method has been developed to realize a noncut trimming of<br />

cermet and LTCC thick-film resistors without any damage to the<br />

resistor surface [6–11], especially for very small devices. Moreover,<br />

because low-ohm thick film resistors are widely used to protect<br />

telecommunication network equipment against lighting surge<br />

voltages therefore these investigations are applied for overstress<br />

characterization of low sheet resistance thick-film systems under<br />

standard telecommunication waveforms [12]. Such behaviour is<br />

also important in case of electric fuses [13], electrical interconnections<br />

(through-metalized vias) manufactured in thick-film technology<br />

[14] or thick-film initiators for automotive applications [15].<br />

This paper characterizes experimentally, compares and analyzes<br />

pulse durability (determined by calculating the maximum nondestructive<br />

electric field, maximum nondestructive surface power<br />

density or maximum non destructive volume power density) of<br />

thin-film and polymer thick-film resistors made on the surface or<br />

embedded in Printed Circuit Boards (PCBs) [16, 17]. Investigated<br />

test structures were made of nickel–phosphorus (Ni-P) alloy<br />

Fig. 1. Preview of typical multichip module with embedded passives<br />

Rys. 1. Przykładowy wygląd płytki wielowarstwowej z zagrzebanymi<br />

elementami biernymi<br />

or polymer thick-film resistive inks on FR-4 laminate with similar<br />

sheet resistance (25 Ω/sq or 100 Ω/sq for Ni-P alloys and 20 Ω/sq<br />

or 200 Ω/sq for polymer thick-film inks).<br />

Investigated structures<br />

Thin-film (TF) resistors<br />

Test structures were fabricated in processes based on Ohmega-Ply<br />

technologies [16]. Structure (Fig. 2) is made of resistive<br />

foil with sheet resistance 25 Ω/sq (0.4 µm thick) and 100 Ω/sq<br />

(0.1 µm thick) embedded between two layers. Upper layer is copper<br />

foil (from 17.5 to 35 µm thick). Those thin layers are on dielectric<br />

subtract made of standard laminate FR-4. The fabrication<br />

process involves: electroplating nickel-phosphorus on copper foil,<br />

lamination formed foil on FR-4 and subtractive methods for defining<br />

shape and dimension of resistor. In experiment rectangular<br />

resistor was used, theirs width and length was determined in two<br />

Fig. 2. Simulation of embedded resistor<br />

Rys. 2. Symulacja rezystora zagrzebanego<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong> 51


etching processes. The dimension were from 0.25 to 1.5 mm width<br />

and aspect ratio (n = length/width) between 1 and 4. Part of<br />

tested structures was coated with Resin Coated Copper (RCC)<br />

or Laser Drillable Prepreg (LDP) 2 × 106 to gain protection from<br />

environmental conditions and simulate multilayer PCBs.<br />

Polymer Thick – film (PTF) resistors<br />

Resistors (Fig. 2) were manufactured in standard additive thickfilm<br />

polymer technique. The resistive inks were applied onto conductive<br />

contacts. Inks have sheet resistance: 20 Ω/sq (ED7500_<br />

20 Ω – carbon-silver) and 200 Ω/sq (ED7100_200 Ω – carbon).<br />

All fabricated resistors have thickness around 11 µm, rectangular<br />

shape, width from 0.5 to 1.5 mm and aspect ratio 1 to 4. All of<br />

them were covered with RCC cladding. The resistors were printed<br />

on Cu contacts, in some cases with protective Ni/Au coating and<br />

Ag contacts Electrodag PF-050 ink [17].<br />

Pulse durability<br />

Measurement system<br />

The research was conducted by using self-made pulse generator<br />

GIHV-1 (rectangular pulses with duration t imp<br />

from 10 µs to 10 s,<br />

time between pulses T from 10 ms to 10 s and pulse amplitude<br />

from 5 to 1500 V), laboratory multimeter and a personal computer<br />

(Fig. 3). The measurements of resistor resistance were made with<br />

the aid of Agilent 344<strong>01</strong>A laboratory multimeter.<br />

Fig. 3. Measurement system. Rys. 3. System pomiarowy<br />

Measurement procedure<br />

There is no one general method to measure pulse durability, so<br />

it is hard to define parameters and criterion of experimental procedure.<br />

Nevertheless we determined failure criterion for resistor<br />

as changing of resistance after stress more than ±10% of initial<br />

value or visible structural damage. To determine pulse durability<br />

the following parameters were calculated:<br />

E max<br />

– maximum nondestructive electric field:<br />

(1)<br />

P max<br />

– maximum nondestructive power:<br />

(2)<br />

P S<br />

– maximum nondestructive surface power density:<br />

(3)<br />

P V<br />

– maximum nondestructive volume power density:<br />

(4)<br />

52<br />

where: V – largest non-destructive pulse amplitude, R after<br />

– resistance<br />

of resistor after pulse stress; l – length of resistor; w – width<br />

of resistor; t – thickness of resistor.<br />

The experiment was divided into two parts. In the first part<br />

component was stressed by two identical pulses, and its resistance<br />

was measured after short time. If resistance change was smaller<br />

than ±10% the amplitude was increased by 2% and procedure<br />

was repeated. This process was conducted until the failure criterion<br />

was achieved.<br />

Parameters of the pulse for constant time of pulse were following:<br />

t imp<br />

= 1 ms, T = 1 s, number of pulses N = 2, V – dependent<br />

of resistor type.<br />

Parameters of experiment pulses with various duration were<br />

following: t imp<br />

= 10 µs, 100 µs, 1 ms, 10 ms, 100 ms, 1 s, 10 s;<br />

T = 1 s for t imp<br />

< 1 s and 10 s for t imp<br />

= 10 s; N = 2, V – dependent<br />

of resistor type.<br />

Results<br />

Pulse durability for constant pulse duration<br />

After all experiments the parameters were calculated and part of<br />

them is presented. Pulse durability is depended on the dimension<br />

of resistor, type of cladding, sheet resistance and contact<br />

material.<br />

Pulse durability of TF resistors<br />

The maximum non-destructive pulse amplitude decreases for TF<br />

resistors with reduced length and width of components. However<br />

other parameters increase their values when dimensions of resistors<br />

decrease. Cladding affects pulse durability. Coated structures<br />

have better durability than uncovered ones (Fig. 4). In most<br />

cases the LPD 2×106 cladding gives the best pulse durability.<br />

Resistors fabricated from 100 Ω/sq foil have larger values of V<br />

and E max<br />

, but smaller values of P max<br />

, P S<br />

and P V<br />

than those made<br />

of 25 Ω/sq foil (Figs. 5 and 6). This is connected with thickness<br />

of resistive foil.<br />

Pulse durability of PTF resistors<br />

PTF resistors exhibit weaker dependence of pulse durability on<br />

resistor dimension. Structures made of 200 Ω/sq inks have nearly<br />

twice higher values of parameters than 20 Ω/sq ones (Figs. 7–9).<br />

Moreover resistors printed on Ag and Au contacts have better pulse<br />

durability in comparison with Cu contacts.<br />

Tabl. 1. Comparison of pulse durability of TF and PTF resistor for t imp<br />

= 1 ms<br />

Tab. 1. Porównanie odporności impulsowej rezystorów cienko- i grubowarstwowych<br />

dla t imp<br />

= 1 ms<br />

width: aspect ratio: 1 4<br />

0.5 mm<br />

1.5 mm<br />

0.5 mm<br />

1.5 mm<br />

TF resistors (100 Ω/sq)<br />

cladding: no 2×106 RCC no 2×106 RCC<br />

E max<br />

[V/mm] 35.0 55.0 55.0 30.5 49.8 46.3<br />

P V<br />

[W/mm 3 ] 9.2E+5 1.4E+6 1.6E+6 1.7E+5 2.5E+5 2.6E+5<br />

E max<br />

[V/mm] 27.3 52.7 52.7 26.5 45.4 47.5<br />

P V<br />

[W/mm 3 ] 7.4E+4 2.2E+5 2.4E+5 6.8E+4 1.8E+5 2.1E+5<br />

PTF resistors (200 Ω/sq)<br />

contact: Cu Ag Au Cu Ag Au<br />

E max<br />

[V/mm] 47.0 74.0 76.0 72.0 72.8 75.0<br />

P V<br />

[W/mm 3 ] 6.4E+2 1.4E+3 2.4E+3 1.3E+3 1.4E+3 1.6E+3<br />

E max<br />

[V/mm] 48.0 78.0 71.3 64.2 74.5 72.9<br />

P V<br />

[W/mm 3 ] 7.4E+2 1.5E+3 1.6E+3 1.6E+3 1.5E+3 1.6E+3<br />

In general TF resistors have smaller values of all parameters<br />

than PTF ones, except of P V<br />

which is approximately 2 orders<br />

higher (Figs. 6 and 9, Tabl. 1).<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


E max<br />

[V/mm]<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

none 2x106 RCC none 2x106 RCC none 2x106 RCC<br />

1 sq<br />

2 sq<br />

4 sq<br />

0.25 mm<br />

0.5 mm<br />

1 mm<br />

1.5 mm<br />

E max<br />

[V/mm]<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Cu Ag Au Cu Ag Au Cu Ag Au<br />

1 sq<br />

2 sq<br />

4 sq<br />

0.5 mm<br />

0.75 mm<br />

1 mm<br />

1.5 mm<br />

Fig. 4. Maximum nondestructive electric field, TF resistors (25 Ω/sq),<br />

t imp<br />

= 1 ms<br />

Rys. 4. Maksymalne nieniszczące pole elektryczne rezystory cienkowarstwowe<br />

(25 Ω/kw), t imp<br />

= 1 ms<br />

Fig. 7. Maximum nondestructive electric field, PTF resistors (20 Ω/sq),<br />

t imp<br />

= 1 ms<br />

Rys. 7. Maksymalne nieniszczące pole elektryczne rezystory grubowarstwowe<br />

(20 Ω/kw), t imp<br />

= 1 ms<br />

2,0x10 6 4 sq<br />

P V<br />

[W/mm 3 ]<br />

1,8x10 6<br />

1,6x10 6<br />

1,4x10 6<br />

1,2x10 6<br />

1,0x10 6<br />

8,0x10 5<br />

6,0x10 5<br />

4,0x10 5<br />

2,0x10 5<br />

0,0<br />

0.25 mm<br />

0.5 mm<br />

1 mm<br />

1.5 mm<br />

none 2x106 RCC none 2x106 RCC none 2x106 RCC<br />

1 sq<br />

2 sq<br />

P V<br />

[W/mm 3 ]<br />

1,5x10 3<br />

1,0x10 3<br />

5,0x10 2<br />

0,0<br />

0.5 mm<br />

0.75 mm<br />

1 mm<br />

1.5 mm<br />

Cu Ag Au Cu Ag Au Cu Ag Au<br />

1 sq<br />

2 sq<br />

2,0x10 3 4 sq<br />

Fig. 5. Maximum nondestructive volume power density TF resistors<br />

(25 Ω/sq), t imp<br />

= 1 ms<br />

Rys. 5. Maksymalna nieniszcząca objętościowa gęstość mocy rezystory<br />

cienkowarstwowe (25 Ω/kw), t imp<br />

= 1 ms<br />

Fig. 8. Maximum nondestructive volume power density PTF resistors<br />

(20 Ω/sq), t imp<br />

= 1 ms<br />

Rys. 8. Maksymalna nieniszcząca objętościowa gęstość mocy rezystory<br />

grubowarstwowe (20 Ω/kw), t imp<br />

= 1 ms<br />

3,5x10 5 4 sq<br />

3,0x10 5<br />

2,5x10 5<br />

0.25 mm<br />

0.5 mm<br />

1 mm<br />

1.5 mm<br />

2,0x10 3<br />

0.5 mm<br />

0.75 mm<br />

1 mm<br />

1.5 mm<br />

2,5x10 3 4 sq<br />

P V<br />

[W/mm 3 ]<br />

2,0x10 5<br />

1,5x10 5<br />

1,0x10 5<br />

5,0x10 4<br />

P V<br />

[W/mm 3 ]<br />

1,5x10 3<br />

1,0x10 3<br />

5,0x10 2<br />

0,0<br />

none 2x106 RCC none 2x106 RCC none 2x106 RCC<br />

1 sq<br />

2 sq<br />

0,0<br />

Cu Ag Au Cu Ag Au Cu Ag Au<br />

1 sq<br />

2 sq<br />

Fig. 6. Maximum nondestructive volume power density TF resistors<br />

(100 Ω/sq), t imp<br />

= 1 ms<br />

Rys. 6. Maksymalna nieniszcząca objętościowa gęstość mocy rezystory<br />

cienkowarstwowe (100 Ω/kw), t imp<br />

= 1 ms<br />

Fig. 9. Maximum nondestructive volume power density PTF resistors<br />

(200 Ω/sq), t imp<br />

= 1 ms<br />

Rys. 9. Maksymalna nieniszcząca objętościowa gęstość mocy rezystory<br />

grubowarstwowe (200 Ω/kw), t imp<br />

= 1 ms<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong> 53


Pulse durability for various pulse duration<br />

Pulse durability is decreasing very quickly with increase of pulse<br />

duration (Tabl. 2 and 3). There is power relationship between pulse<br />

duration and E max<br />

, P S<br />

and P V<br />

.<br />

Tabl. 2. Maximum nondestructive electric field E max<br />

[V/mm] versus pulse<br />

duration, TF and PTF resistors<br />

Tab. 2. Maksymalne nieniszczące pole elektryczne E max<br />

[V/mm] w funkcji<br />

czasu trwania impulsu, rezystory cienko- i grubowarstwowe<br />

E max<br />

t imp<br />

[ms]<br />

TF, 2×1 mm<br />

cladding<br />

PTF 2×1 mm<br />

contact<br />

none 2×106 RCC Cu Au Ag<br />

E max<br />

[V/mm]<br />

10 3<br />

10 2<br />

10 1<br />

PTF - Cu<br />

PTF- Ag<br />

PTF - Au<br />

TF - none<br />

TF- 2x106<br />

TF - RCC<br />

0.<strong>01</strong> 5.6 10.8 11.8 47.0 44.6 42.3<br />

0.1 4.0 7.9 7.5 17.3 17.1 15.9<br />

1 3.1 5.1 5.0 7.1 7.0 6.9<br />

10 1.8 2.7 2.5 3.8 3.6 3.4<br />

100 1.0 1.5 1.3 2.4 2.2 2.1<br />

1000 0.6 0.8 0.7 1.2 1.2 1.0<br />

10 0<br />

10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3 10 4<br />

t imp<br />

[ms]<br />

Fig. 10. Maximum non destructive electric field for PTF (200 Ω/sq)<br />

and TF (100 Ω/sq) 2×1 mm resistors, versus pulse duration<br />

Rys. 10. Maksymalne nieniszczące pole elektryczne w funkcji czasu<br />

trwania impulsu dla rezystorów grubowarstwowych (200 Ω/kw)<br />

i cienkowarstwowych (100 Ω/kw) o wymiarach 2×1 mm<br />

10000 0.5 0.6 0.6 0.9 1.1 0.8<br />

Tabl. 3. Maximum nondestructive volume power density P V<br />

[W/mm 3 ] versus<br />

pulse duration, TF and PTF resistors<br />

Tab. 3. Maksymalna nieniszcząca objętościowa gęstość mocy P V<br />

[W/mm 3 ]<br />

w funkcji czasu trwania impulsu, rezystory cienko- i grubowarstwowe<br />

P V<br />

t imp<br />

[ms]<br />

TF, 2×1 mm<br />

cladding<br />

PTF, 2×1 mm<br />

contact<br />

none 2×106 RCC Cu Ag Au<br />

0.<strong>01</strong> 2.9E+5 1.1E+6 1.4E+6 5.9E+4 4.6E+4 5.4E+4<br />

P V [W/mm 3 ]<br />

10 6<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

PTF - Cu<br />

PTF- Ag<br />

PTF - Au<br />

TF - none<br />

TF- 2x106<br />

TF - RCC<br />

approximation of TF<br />

approximation of PTF<br />

54<br />

0.1 1.6E+5 5.8E+5 5.6E+5 7.7E+3 6.9E+3 7.8E+3<br />

1 9.1E+4 2.1E+5 2.1E+5 1.5E+3 1.4E+3 1.5E+3<br />

10 2.9E+4 6,1E+4 5.9E+4 3.9E+2 3.9E+2 3.5E+2<br />

100 1.1E+4 1.9E+4 1.7E+4 1.4E+2 1.3E+2 1.2E+2<br />

1000 3.9E+3 5.0E+3 4.9E+3 4.0E+1 4.1E+1 3.1E+1<br />

10000 2.3E+3 3.0E+3 2.8E+3 2.1E+1 3.0E+1 1.9E+1<br />

Shapes of E max<br />

= f (t imp<br />

) and P V<br />

= f (t imp<br />

) characteristics are similar<br />

for all tested structures. Both kind of resistors exhibit powerlike<br />

characteristics for shorter pulses and almost constant values<br />

for longer ones (Figs. 10 and 11).<br />

The characteristics P V<br />

= f (t imp<br />

) in the range of pulse duration<br />

from 10 µs to 10 ms were fitted by the following equation:<br />

(5)<br />

Fitted values of b parameter are given in Table 4.<br />

Tabl. 4. Fitted values of b parameter<br />

Tab. 4. Oszacowane wartości współczynnika b<br />

Type of resistor Value Type of resistor Value<br />

TF – uncovered 0.327 PTF – Cu 0.725<br />

TF – LDP 2×106 0.423 PTF – Ag 0.692<br />

TF – RCC 0.456 PTF – Au 0.729<br />

Therefore the b parameter for TF resistors is very close to 0.4<br />

and for PTF ones very close to 0.7.<br />

10 1<br />

10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3 10 4 10 5<br />

t imp<br />

[ms]<br />

Fig. 11. Approximation of maximum nondestructive volume power<br />

density for PTF (200 Ω/sq) and TF (100 Ω/sq) 2×1 mm resistors, versus<br />

pulse duration<br />

Rys. 11. Przybliżenie maksymalnej nieniszczącej objętościowej gęstości<br />

mocy w funkcji czasu trwania impulsu dla rezystorów grubowarstwowych<br />

(200 Ω/kw) i cienkowarstwowych (100 Ω/kw) o wymiarach<br />

2×1 mm<br />

Conclusions<br />

The research for pulse durability for resistors embedded in printed<br />

circuit boards was conducted. Thin-film and polymer thickfilm<br />

resistors were tested. Based on our research the influence<br />

of fabrication process and used materials on pulse stability was<br />

discovered. The structures coated with LDP 2×106 cladding and<br />

PTF resistors made on Ag contacts have the best pulse durability.<br />

Additionally smaller TF resistors have better pulse durability than<br />

larger ones. In PTF this dependence was not observed. Moreover<br />

PTF resistors have higher values of measured parameters<br />

than TF components. Relying on results of research with variable<br />

duration of pulse, values of parameters and time of pulse, power<br />

relationship was ascertained. By analyzing and approximating<br />

those characteristics relative value of parameter was obtained,<br />

it is relatively equal to 0.4 and 0.7 for TF and PTF resistors. The<br />

results can be used to determine safety parameters of work conditions<br />

for devices with this type of components.<br />

Acknowledgement<br />

Investigations were made as a part of the Operational Programme<br />

Innovative Economy (2007–2<strong>01</strong>3), the Priority1, Action 1.3,<br />

Subaction 1.3.1, Developmental Programme „Technologia do-<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


świadczalna wbudowywania elementów rezystywnych i pojemnościowych<br />

wewnątrz płytki drukowanej”, The agrement No:<br />

UDA-POIG.<strong>01</strong>.03.<strong>01</strong>-14-031/08-00 of 16.02.2009 r. Project No:<br />

POIG.<strong>01</strong>.03.<strong>01</strong>-14-031/08 and statutory activity of Wroclaw University<br />

of Technology.<br />

References<br />

[1] C.H. Seager, G.E. Pike; Electrical field induced changes in thick<br />

film resistors, Proc. Int. Microelectronics Symp. (ISHM-USA) 1976,<br />

p. 115–122.<br />

[2] J.-P. Constantin et al.; Effect of surge voltages on thin and thick film<br />

resistors, Proc. 2 nd Int. Microelectronics Conf. (ISHM-Japan), 1982,<br />

p. 51–55.<br />

[3] J.M. Kozłowski, M. Tańcula; The influence of electrical pulses on thick<br />

film (Du Pont 1421 Birox) resistors, Electrocomponent Science and<br />

Technology, vol. 9 (1982), p. 185–189.<br />

[4] R.F. Szeloch et al.; Computer controlled step-stress method for thick<br />

film resistive layers testing, Proc. RELECTRONIC`88 (7 th Symp. on<br />

Reliability in Electronics), Budapest 1988, p. 606–610.<br />

[5] D. Bonfert et al.; Electrical stress on film resistive structures on different<br />

substrates, Proc. 34 th ISSE Conf., Tatranska Lomnica (Slovakia),<br />

May 2<strong>01</strong>1.<br />

[6] T. Tobita, H. Takasago; New trimming technique for a thick film resistor<br />

by the pulse voltage method, IEEE Trans. on Comp., Hybr., and<br />

Manuf. Technol, vol. CHMT-14 (1991), p. 613–617.<br />

[7] J. Muller et al.; Trimming of buried resistors in LTCC-circuits, Proc.<br />

33 rd ISHM Nordic Conf., Helsingor (Denmark) 1996, p. 166–173.<br />

[8] J. Kita et al.; Pulse durability of polymer, cermet and LTCC thick-film<br />

resistors, Proc. 12 th Eur. Microelectronics and Packaging Conf., Harrogate,<br />

1999, p. 313–319.<br />

[9] A. Dziedzic et al.; Some remarks about “short” pulse behaviour of<br />

LTCC microsystems, Proc. 1 st Eur. Microelectronics Packaging and<br />

Interconnection Symp., Prague, 2000, p. 194–199.<br />

[10] W. Ehrhardt, H. Thust; Trimming of thick-film resistors by energy of<br />

high voltage pulses and its influence on microstructure, Proc. 13 th Eur.<br />

Microelectronics and Packaging Conf., Strasbourg, 20<strong>01</strong>,p. 403–407.<br />

[11] A. Dziedzic et al.; Advanced electrical and stability characterization<br />

of untrimmed and variously trimmed thick-film and LTCC resistors,<br />

Microelectronics Reliab., vol. 46 (2006), p. 352–359.<br />

[12] S. Vasudevan; Effect of design parameters on overstress characterization<br />

of thick film resistors for lighting surge protection, Proc. 1997<br />

Int. Symp. on Microelectronics (IMAPS-US), 1997, p. 634–640.<br />

[13] A.R. Batchelor, J.R. Smith; Time-current characteristic of miniature<br />

zinc-element electric fuses for automotive applications, IEE Proc.<br />

– Sci. Meas. Technol., vol. 146 (1999), p. 210–216.<br />

[14] D. Ortolino et al.; Investigation of the short-time high-current behaviour<br />

of vias manufactured in hybrid thick-film technology, Microelectronics<br />

Reliab., vol. 51 (2<strong>01</strong>1), p. 1257–1263.<br />

[15] W. Smetana, R. Reicher, H. Homolka; Improving reliability of thick<br />

film initiators for automotive applications based on FE-analyses, Microelectronics<br />

Reliab., vol.45 (2005), p. 1194–12<strong>01</strong>.<br />

[16] A. Dziedzic et al.; Wybrane właściwości elektryczne i stabilność elementów<br />

biernych wbudowanych w płytki obwodów drukowanych,<br />

Przegląd Elektrotechniczny, 87 (2<strong>01</strong>1), no. 10, p. 39–44.<br />

[17] W. Stęplewski et al.; Investigations of passive components embedded<br />

in printed circuit boards, Proc. 35 th IMAPS/CPMT Poland Int.<br />

Conference, Gdańsk-Sobieszewo, Sept. 2<strong>01</strong>1.<br />

Analysis of long-term stability of thin-film and polymer<br />

thick-film resistors embedded in Printed Circuit Boards<br />

(Analiza stabilności długoczasowej rezystorów cienkowarstwowych<br />

oraz polimerowych rezystorów grubowarstwowych wbudowanych<br />

w płytki obwodów drukowanych)<br />

inż. Paweł Winiarski 1) , prof. dr hab. inż. Andrzej Dziedzic 1) , inż. Adam Kłossowicz 1) ,<br />

mgr inż. Wojciech Stęplewski 2) , dr Grażyna Kozioł 2)<br />

1)<br />

Politechnika Wrocławska, Wydział Elektroniki Mikrosystemów i Fotoniki<br />

2)<br />

<strong>Instytut</strong> Tele- i Radiotechniczny, Centrum Zaawansowanych Technologii,Warszawa<br />

Embedded passives play a major role in miniaturisation of electronic<br />

circuits, where e.g. MCM or HDI technologies [1] can be<br />

used. In most cases resistors represent the majority of passive<br />

components used on a circuit board. Besides size aspects, there<br />

are other very important issues like tolerance, reliability and<br />

long-term stability of components, especially in specialized applications.<br />

Technology and production processes are extensively<br />

studied and improved. However, to determine real reliability of<br />

fabricated components proper measuring methods are needed.<br />

To analyze stability of the resistors an accelerated ageing process<br />

can be used. Treating resistors with elevated temperature<br />

(or/and humidity) allows (in quite short time) obtain long-term behaviour<br />

of tested samples referred to a few years of service [2].<br />

Test structures<br />

The thin-film resistors were fabricated on FR-4 laminate in accordance<br />

with Ohmega-Ply® techno-logy [3, 4]. In this technique firstly<br />

thin layer of Nickel-Phosphorous alloy is electroplated on copper<br />

foil, afterwards this composite foil called RCM (resistor-conductor<br />

material) is laminated to FR-4 substrate. Finally copper circuitry and<br />

planar resistors are realized by subtractive processes. Two types<br />

of resistive foil were used for fabrication of structures with sheet<br />

resistance 25 Ω/sq and 100 Ω/sq (with thickness 0.4 μm and 0.1 μm<br />

respectively). The rectangular resistors, with width from 0.25 mm to<br />

1.5 mm and aspect ratio n=l/w between 1 and 4, were designed and<br />

fabricated. Moreover, to investigate embedded resistors, part of the<br />

samples was covered with two types of cladding – Resin Coated<br />

Copper (RCC) or Laser Drillable Prepreg (LDP) 2 × 106. The cladding<br />

gives additional protection from environ-mental conditions.<br />

The PTF resistors were made using a standard thick-film<br />

method [5]. To fabricate resistors three types of resistive inks were<br />

used, with sheet resistance 20 Ω/sq, 200 Ω/sq and 5 kΩ/sq (with<br />

thickness about 11 μm). Alike to Ni-P ones a rectangular resistors<br />

were fabricated, with similar width from 0.5 mm to 1.5 mm and<br />

same aspect ratio n between 1 and 4. However, in this case all<br />

samples were covered only with RCC cladding, but in turn two types<br />

of contact interlayer (between resistor and copper lead) were<br />

investigated – copper (Cu) contacts and gold (Au) ones.<br />

Measurement procedure<br />

The In-Situ method [6] was used to determine stability of resistors,<br />

where measurements were done during ageing process. In this<br />

case test samples were placed on a hot plate treated with constant<br />

temperature – 100, 130 or 160°C for Ni-P resistors, 100 and 130°C<br />

for polymer ones. A Pt100 sensor was used to monitor and control<br />

temperature on the plate. Structures were equipped with needle<br />

probes, which were connected to Agilent 34970A multimeter. The<br />

selector collected data every 10 minutes (during 30…170 h) and<br />

sent them to personal computer for data acquisition and presentation.<br />

An idea of measurement system is shown in Fig. 1.<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong> 55


Selector<br />

Agilent<br />

HP 34970A<br />

10 1<br />

10 0<br />

1sq - 100°C<br />

1sq - 130°C<br />

1sq - 160°C<br />

4sq - 100°C<br />

4sq - 130°C<br />

4sq - 160°C<br />

Computer<br />

T=100, 130, 160°C<br />

(heater)<br />

Substrate Resistor Pt100<br />

R/R 0<br />

[%]<br />

10 -1<br />

Fig. 1. Schema of measurement system<br />

Rys. 1. Schemat systemu pomiarowego<br />

Results<br />

Measurement results are collected and analyzed, and chosen<br />

ones are presented below. The stability of resistors was determined<br />

based on relative resistance changes during ageing tests. A<br />

normalized percentage resistance changes were calculated by:<br />

(1)<br />

Figures present mean values for clarity.<br />

Ni-P resistors<br />

Resistance drifts of tested thin-film resistors in the time domain<br />

are shown in Figs. 2–4.<br />

R/R 0<br />

[%]<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

1sq - 100°C<br />

1sq - 130°C<br />

1sq - 160°C<br />

4sq - 100°C<br />

4sq - 130°C<br />

4sq - 160°C<br />

10 -1 10 0 10 1 10 2<br />

t [h]<br />

Fig. 2. Relative resistance changes for uncladded Ni-P 25 Ω/sq resistors<br />

Rys. 2. Względne zmiany rezystancji dla rezystorów Ni-P 25 Ω/kw bez<br />

pokrycia<br />

10 1<br />

1sq - 100°C<br />

1sq - 130°C<br />

1sq - 160°C<br />

4sq - 100°C<br />

10 0 4sq - 130°C<br />

4sq - 160°C<br />

R/R 0<br />

[%]<br />

10 -1<br />

10 -2<br />

10 -1 10 0 10 1 10 2<br />

t [h]<br />

Fig. 4. Relative resistance changes for Ni-P 25 Ω/sq – with RCC cladding<br />

Rys. 4. Względne zmiany rezystancji dla rezystorów Ni-P 25 Ω/kw pokrytych<br />

warstwą RCC<br />

The results revealed a square-root-of-time dependence of resistance<br />

changes. A single ageing mechanism occurs here, which<br />

can be described by following equation [7]:<br />

(2)<br />

where A is the pre-exponential constant characteristic for particular<br />

ageing mechanism, t – time, n is the time dependence (and is<br />

about 0.5), E is the activation energy, k is the Boltzmann constant<br />

and T is the temperature.<br />

In temperature domain results can be presented by Arrhenius<br />

law. Figs. 5–7 present resistance changes after 30 h of ageing<br />

process.<br />

R/R 0<br />

[%]<br />

10 1 1sq<br />

4sq<br />

10 0<br />

10 -1<br />

10 -2<br />

2,0 2,2 2,4 2,6 2,8 3,0 3,2 3,4<br />

1/T·10 3 [1/K]<br />

Fig. 5. Arrhenius plot – Ni-P uncladded resistors<br />

Rys. 5. Wykres Arrheniusa dla resystorów Ni-P bez pokrycia<br />

R/R 0<br />

[%]<br />

10 1 1sq<br />

4sq<br />

10 0<br />

10 -1<br />

Fig. 3. Relative resistance changes for Ni-P 25 Ω/sq – with LDP 2 × 106<br />

cladding<br />

Rys. 3. Względne zmiany rezystancji dla rezystorów Ni-P 25 Ω/kw pokrytych<br />

warstwą LDP 2 × 106<br />

56<br />

10 -2<br />

10 -1 10 0 10 1 10 2<br />

t [h]<br />

10 -2<br />

2,0 2,2 2,4 2,6 2,8 3,0 3,2 3,4<br />

1/T·10 3 [1/K]<br />

Fig. 6. Arrhenius plot – Ni-P resistors with LDP 2 × 106 cladding<br />

Rys. 6. Wykres Arrheniusa dla resystorów Ni-P pokrytych warstwą<br />

LDP 2 × 106<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


R/R 0<br />

[%]<br />

10 1 1sq<br />

4sq<br />

10 0<br />

10 -1<br />

10 -2<br />

2,0 2,2 2,4 2,6 2,8 3,0 3,2 3,4<br />

1/T·10 3 [1/K]<br />

Fig. 7. Arrhenius plot – Ni-P resistors with RCC cladding<br />

Rys. 7. Wykres Arrheniusa dla resystorów Ni-P pokrytych warstwą<br />

RCC<br />

Activation energy of ageing process can be calculated using<br />

the approximation of results presented on Arrhenius plots<br />

R/R 0<br />

[%]<br />

10<br />

8<br />

6<br />

1sq - 100°C<br />

1sq - 130°C<br />

4sq - 100°C<br />

4sq - 130°C<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

0 20 40 60 80 100 120 140<br />

t [h]<br />

Fig. 9. Relative resistance changes for polymer resistors – 20 Ω/sq<br />

– Cu contacts<br />

Rys. 9. Względne zmiany rezystancji dla rezystorów polimerowych<br />

20 Ω/kw z kontaktami Cu<br />

(3)<br />

where activation energy is a slope of linear function, which fits<br />

results. Computed values are shown below in Tabl.<br />

Activation energy of Ni-P 25 Ω/sq resistors.<br />

Energie aktywacji rezystorów Ni-P 25 Ω/sq<br />

cladding without LDP 2x106 RCC<br />

length 1sq 4sq 1sq 4sq 1sq 4sq<br />

E [eV] 0.40 0.42 0.34 0.33 0.27 0.27<br />

R/R 0<br />

[%]<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

1sq - 100°C<br />

1sq - 130°C<br />

4sq - 100°C<br />

4sq - 130°C<br />

The changes of FR-4 laminate and cladding materials were<br />

observed (colour becomes darker). It refers to test samples treated<br />

by temperatures higher than 100°C (eg. structures without<br />

cladding and covered by RCC cladding are shown in Fig. 8).<br />

a)<br />

100°C 130°C 160°C<br />

0<br />

-2<br />

0 20 40 60 80 100 120<br />

t [h]<br />

Fig. 10. Relative resistance changes for polymer resistors – 200 Ω/sq<br />

– Cu contacts.<br />

Rys. 10. Względne zmiany rezystancji dla rezystorów polimerowych<br />

200 Ω/kw z kontaktami Cu<br />

b)<br />

Fig. 8. Photography of aged structures a) without cladding, b) with<br />

RCC cladding<br />

Rys. 8. Fotografia starzonych struktur a) niepokrytych, b) pokrytych<br />

warstwą RCC<br />

PTF resistors<br />

The polymer thick-film resistors revealed a quite different behaviour<br />

than Ni-P ones. Depending on sample parameters and ageing<br />

condition resistance drift goes to negative or positive value.<br />

Therefore only results in time domain can be shown (Figs. 9–14).<br />

These resistors could not handle temperature above 130°C – resistor<br />

material melted and expanded.<br />

R/R 0<br />

[%]<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

-12<br />

-14<br />

-16<br />

-18<br />

-20<br />

1sq - 100°C<br />

1sq - 130°C<br />

4sq - 100°C<br />

4sq - 130°C<br />

0 20 40 60 80 100<br />

t [h]<br />

Fig. 11. Relative resistance changes for polymer resistors -5 kΩ/sq<br />

– Cu contacts<br />

Rys. 11. Względne zmiany rezystancji dla rezystorów polimerowych<br />

5 kΩ/kw z kontaktami Cu<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong> 57


R/R 0<br />

[%]<br />

Fig. 12. Relative resistance changes for polymer resistors – 20 Ω/sq<br />

– Au contacts<br />

Rys. 12. Względne zmiany rezystancji dla rezystorów polimerowych<br />

20 Ω/kw z kontaktami Au<br />

R/R 0<br />

[%]<br />

Fig. 13. Relative resistance changes for polymer resistors – 200 Ω/sq<br />

– Au contacts<br />

Rys. 13. Względne zmiany rezystancji dla rezystorów polimerowych<br />

200 Ω/kw z kontaktami Au<br />

R/R 0<br />

[%]<br />

Fig. 14. Relative resistance changes for polymer resistors – 5 kΩ/sq<br />

– Au contacts.<br />

Rys. 14. Względne zmiany rezystancji dla rezystorów polimerowych<br />

5 kΩ/kw z kontaktami Au<br />

58<br />

0,0<br />

-0,5<br />

-1,0<br />

-1,5<br />

-2,0<br />

-2,5<br />

-3,0<br />

-3,5<br />

-4,0<br />

0 10 20 30 40 50 60 70 80<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

-6<br />

t [h]<br />

1sq - 100°C<br />

1sq - 130°C<br />

4sq - 100°C<br />

4sq - 130°C<br />

0 20 40 60 80 100 120 140 160 180<br />

t [h]<br />

1sq - 100°C<br />

1sq - 130°C<br />

4sq - 100°C<br />

4sq - 130°C<br />

-7<br />

0 20 40 60 80 100<br />

Conclusion<br />

t [h]<br />

1sq - 100°C<br />

1sq - 130°C<br />

4sq - 100°C<br />

4sq - 130°C<br />

The results showed quite different behaviour for both groups of<br />

resistors. In case of Ni-P thin-film resistors, their geometry almost<br />

not affects long-term stability. However, the type of encapsulation<br />

and ageing temperature significantly affect observed resistance<br />

drift. Measurement results revealed the square-root-of-time de-<br />

pendence of the resistance changes. In the temperature domain<br />

resistance drift, can be described by the Arrhenius equation.<br />

The extrapolations of these results determine activation energies<br />

of ageing mechanism for each tested sample. According to these<br />

results a single ageing mechanism can be defined, which is<br />

characterized by set of parameters n, E and A for each kind of<br />

structures. One should add that similar parameters time to time<br />

were reported for thick-film resistors (for example authors of paper<br />

[8] have found n very close to 0.5 and E = 0.46 ± 0.02 eV<br />

for DP 1400 resistors aged in the temperature range from 125 to<br />

250°C). The observations made after ageing processes, suggest<br />

that changes, occurred in resistor during thermal exposition, are<br />

caused by some interactions between resistive material and surrounding<br />

films. Applying cladding gives additional protection from<br />

environment and improves stability at higher ageing temperature,<br />

but in turn rather decreases it near room temperature (probably<br />

as a result of stress release after lamination process).<br />

Such simple extrapolation is almost impossible for polymer<br />

thick-film resistors, where depending on sample type and ageing<br />

conditions the relative resistance changes versus ageing time are<br />

positive or negative. For this reason, behaviour of these resistors<br />

cannot be explained using a single ageing mechanism, the problem<br />

is more complex and should take into account also additional<br />

curing of polymer thick-film resistors during ageing at relatively<br />

high temperature (in comparison with 180°C applied for standardcuring<br />

these PTF resistors). In the case of these structures the<br />

interface between resistive films and termination materials plays<br />

very important role on stability. Applying gold contacts significantly<br />

improves reliability, but in general the changes observed for polymer<br />

thick-film resistors are larger than for thin-film ones. Usually<br />

the highest resistance changes for PTF resistors occur during first<br />

20 hours of ageing process – after this period of time further resistance<br />

drifts are much smaller or proceed with linear relationship.<br />

Aforesaid, pre-ageing process phenomenon can be used to enhance<br />

stability of polymer thick-film resistor.<br />

Investigations were made as part of the Operational Programme<br />

Innovative Economy, 2007–2<strong>01</strong>3, the Priority of 1 Investigation and<br />

High Technology Development, Action 1.3 supporting B + R Projects<br />

for entrepreneurs carried out by scientific units, 1.3.1 Development<br />

Projects. The agreement No: UDA-POIG.<strong>01</strong>.03.<strong>01</strong>-14-031/08-<br />

04 of 16.02.2009, Title of Project: „Technologia doświadczalna<br />

wbudowywania elementów rezystywnych i pojemno-ściowych wewnątrz<br />

płytki drukowanej”, Project No: POIG.<strong>01</strong>.03.<strong>01</strong>-00-031/08,<br />

and statutory activity of Wrocław University of Technology.<br />

References<br />

[1] Dziedzic A.: Electrical and structural investigations in reliability characterization<br />

of modern passives and passive integrated components.<br />

Microelectronics Reliability, 42 (2002), pp. 709–719.<br />

[2] Khanna P.K., Bhatnagar S.K., Gust W.: On the thermally accelerated<br />

ageing of thick film resistors. Physica Status Solidi (a) 143, K33<br />

(1994), pp. 15–18.<br />

[3] www.ohmega.com (Ohmega Technologies Inc. website), 21-08-2<strong>01</strong>0.<br />

[4] Dziedzic A., Kłossowicz A., Winiarski P., Nitsch K., Piasecki T., Kozioł<br />

G., Stęplewski W.: Wybrane właściwości elektryczne i stabilność elementów<br />

biernych wbudowanych w płytki obwodów drukowanych.<br />

Przegląd Elektrotechniczny, 87 (2<strong>01</strong>1), no. 10, pp. 39–44.<br />

[5] Stęplewski W., Serzysko T., Kozioł G., Janeczek K., Dziedzic A.:<br />

Investigations of passive components embedded in printed circuit<br />

boards. Proc. 35th International Conference of IMAPS – IEEE CPMT<br />

Poland,Gdańsk-Sobieszewo, September, 2<strong>01</strong>1.<br />

[6] De Schepper L., De Ceuninck W., Stulens H.,. Stals L.M., Vanden<br />

Berghe R., Demolder S.: A new approach to the study of the intrinsic<br />

ageing kinetics of thick film resistors. Hybrid Circuits, No. 23, September<br />

1990, pp. 5–13.<br />

[7] Coleman M.: Ageing mechanisms and stability in thick film resistors.<br />

4th European Hybrid Microelectronics Conference 1983, Copenhagen,<br />

pp. 20–30.<br />

[8] Morten B., Prudenziati M.: Thermal ageing of thick-film resistors. Hybrid<br />

Circuits, no.3 (Autumn 1983, pp. 24–26.<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


Impedance spectroscopy as a diagnostic tool<br />

of degradation of Solid Oxide Fuel Cells<br />

(Spektroskopia impedancyjna jako narzędzie diagnostyczne degradacji<br />

tlenkowych ogniw paliwowych)<br />

mgr inż. Konrad Dunst, dr inż. Sebastian Molin, dr hab. inż. Piotr Jasiński<br />

Politechnika Gdańska, Wydział Elektroniki, Telekomunikacji i Informatyki<br />

Solid oxide fuel cell (SOFC) is an electrochemical device that converts<br />

chemical potential energy directly into electrical power. In<br />

comparison with a traditional combustion process, the SOFCs offer<br />

greater efficiency, reliability and environmental friendliness [1].<br />

The SOFCs have a great potential to generate power from a wide<br />

range of fuels: hydrogen, carbon monoxide, hydrocarbons and<br />

alcohols. However, when operated, the fuel cells usually degrade.<br />

The nature of this process depends on the type of the applied<br />

fuel and materials used to fabricate the SOFC. In particular, when<br />

hydrocarbons are used as a fuel, a carbon can deposit inside the<br />

anode structure [2]. The deposited carbon may cause a complete<br />

degradation of the fuel cell.<br />

Further development of the SOFCs requires investigation of<br />

degradation process during fuel cells operation. Among the fuel<br />

cell diagnostic tools, AC impedance spectroscopy is a powerful<br />

technique [3]. This method allows obtaining information about different<br />

electrode processes, namely, oxygen reduction reaction<br />

kinetics, mass transfer and electrolyte resistance losses [4]. Selection<br />

of the appropriate experimental conditions (temperature,<br />

pressure and flow rate) may provide information extracted from<br />

the impedance spectra about the performance losses from the<br />

each fuel cell element separately [3,5].<br />

Different electrode processes reveal unique characteristic<br />

frequencies, which depend on cell structure, materials used for<br />

SOFC fabrication and testing conditions. For example, in case of<br />

the anode supported cells with LSM ((La 0.75<br />

Sr 0.25<br />

) 0.95<br />

MnO 3<br />

) cathode<br />

operated at 750°C it was found [6], that the characteristic frequencies<br />

for the cathode processes are at ~25 kHz and ~500 Hz.<br />

At ~4 kHz occurs charge transfer reaction related with the anode.<br />

Characteristic frequency responsible for gas diffusion resistance<br />

is located at around 50 Hz, while at ~4 Hz a gas conversion process<br />

can be seen.<br />

In this study the impedance spectroscopy is used for degradation<br />

evaluation of the anode supported SOFC. Both, commercially<br />

available and fabricated, anode supported SOFCs were tested.<br />

The fuel cells were operated in hydrogen and in methane. The experimental<br />

conditions were selected to obtain fast SOFC degradation.<br />

The changes in impedance spectra due to instability were<br />

correlated with the element of the SOFC, which was responsible<br />

for the cell degradation.<br />

Experimental<br />

Anode supports were fabricated using powders of NiO (J.T.<br />

Baker) and YSZ (Zr 0.84<br />

Y 0.16<br />

O x<br />

) (Tosoh). A typical anode cermet<br />

composition of 60 vol% of nickel and 40 vol% of YSZ was exploited.<br />

In order to obtain sufficient final porosity of anodes for<br />

ease fuel diffusion, a 20 vol% of pore former (graphite (Sigma-Aldrich))<br />

was added to cermet powders. The mixture was<br />

ball-milled (Fritsch Pulverisette 7) for 12 hours and iso-axially<br />

pressed (150 MPa) into pellets (16 mm in diameter). The pellets<br />

were pre-sintered at 1050°C for 4 h, followed by slurry spraying<br />

of 10 µm thick YSZ electrolyte and co-sintering at temperature of<br />

1400°C for 4h. Finally, the LNF (LaNi 0.6<br />

Fe 0.4<br />

O 3<br />

) paste was brushpainted<br />

on the electrolyte and the cells were fired at 1100°C for<br />

Fig. 1. Cross-section of the fabricated SOFC<br />

Rys. 1. Przekrój wytworzonego tlenkowego ogniwa paliwowego<br />

Fig. 2. Equivalent circuit model for the SOFC<br />

Rys. 2. Obwód zastępczy tlenkowego ogniwa paliwowego<br />

2 h. It is known that lanthanum from the cathode may react with<br />

zirconium from electrolyte, what leads to performance degradation<br />

of the SOFC. Therefore, frequently a ceria buffer layer is<br />

fabricated between the electrolyte and cathode, which was omitted<br />

in this study to accelerate the fuel cell degradation. A crosssection<br />

of the fabricated SOFC is shown in Fig. 1.<br />

Commercially available and fabricated SOFCs were characterized<br />

by impedance spectroscopy.For this purpose a Solartron<br />

SI1260 impedance analyzer was coupled with a Solartron SI1287<br />

potentiostat/galvanostat. Measurements were carried on unloaded<br />

fuel cells with the amplitude of 5 mV in the frequency range<br />

from 100 mHz to 300 kHz.<br />

Measured spectra were fitted using ZView software to an<br />

equivalent circuit shown in Fig. 2.The circuit, which is frequently<br />

applied circuit for SOFCs analysis [3], consists of a serial connection<br />

of inductance, resistance, and the serial combination of<br />

the three parallel circuits consisting of resistance and constant<br />

phase element (CPE). The inductance L1 is related to connecting<br />

wires, the serial resistance R1 corresponds to ohmic losses, while<br />

parallel connections of the resistance and CPE represent different<br />

electrode processes [6]. Characteristic frequency for each electrode<br />

process was calculated using equation 1:<br />

1<br />

f = ,<br />

(1)<br />

2πRC<br />

where, R and C are the resistance and the capacitance of the<br />

electrode process, respectively.<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong> 59


Results and discussion<br />

Fabricated SOFCs<br />

The fabricated fuel cells were tested in hydrogen at temperature<br />

of 800°C. The fuel cell performance plots are shown in Fig. 3.<br />

The power density decreases after 17 h of fuel cell operation by<br />

25%. However, from the plots it is not possible to acquire detailed<br />

degradation mechanism of the SOFC. Therefore, the impedance<br />

spectroscopy was employed to look for additional information.<br />

Impedance spectra measured just after reduction (marked<br />

as initial) and after 17 hours of fuel cell operation are shown<br />

in Fig. 4. Obtained spectra were fitted using equivalent circuit<br />

presented in Fig. 2. The most representing data are presented<br />

in Tabl. 1. Namely, the resistances (R1, R2, R3, R4), which are<br />

directly correlated with the fuel cell performance and characteristic<br />

frequencies (f1, f2, f3, f4) calculated using eq. 1, which help<br />

correlating the responsible process with the degradation phenomena.<br />

The biggest changes occur at characteristic frequencies<br />

of ~8 kHz – ~4 kHz (f2). Together with f2, the R2 resistance<br />

significantly changes, too. As expected, those changes are connected<br />

with degradation of the cathode. At this range, the characteristic<br />

frequencies are related to cathode phenomena, i.e.<br />

oxygen adsorption and charge transfer reaction.<br />

The increase of resistance is related with interaction between<br />

electrolyte and cathode. As a result, low conductive La 2<br />

Zr 2<br />

O 7<br />

and SrZrO 3<br />

phases are formed at the interface of electrolyte and<br />

cathode, what significantly decrease the length of the triple phase<br />

boundary. Other types of degradation cannot be seen from the<br />

results presented in Fig. 4.<br />

In other to investigate the anode degradation a commercial<br />

fuel cell will be used. In this case the ceria buffer layer was fabricated<br />

between electrolyte and cathode, what significantly diminish<br />

cathode degradation.<br />

Fig. 3. Current-voltage and current-power density plots of the fabricated<br />

SOFC operated in hydrogen at 800°C<br />

Rys. 3. Charakterystyki prądowo-napięciowe oraz prądowo-mocowe<br />

wytworzonych ogniw paliwowych, zmierzone w wodorze w temperaturze<br />

800°C<br />

Tabl. 1. Fitting results of the fabricated fuel cell operated in hydrogen<br />

at 800°C<br />

Tab. 1. Parametry obwodów zastępczych dla wytworzonego ogniwa paliwowego<br />

zbadanego w wodorze w temperaturze 800°C<br />

fabricated<br />

SOFC<br />

R1 R2<br />

(Ω cm 2 ) (Ω cm 2 )<br />

f2<br />

(Hz)<br />

R3<br />

(Ω cm 2 )<br />

f3<br />

(Hz)<br />

R4<br />

(Ω cm 2 )<br />

f4<br />

(Hz)<br />

hydrogen<br />

800°C<br />

0 h 0.025 0.164 8449 0.306 950.9 0.117 8.0<br />

17 h 0.027 0.258 3642 0.355 988.8 0.122 12.6<br />

Fig. 5. Impedance spectra of the commercial SOFC in hydrogen at 600°C<br />

Rys. 5. Widma impedancyjne komercyjnych ogniw paliwowych, zmierzone<br />

w wodorze w temperaturze 600°C<br />

Tabl. 2. Fitting results of the commercial fuel cell operated in hydrogen and<br />

dry methane at 600°C<br />

Tab. 2. Parametry obwodów zastępczych dla komercyjnych ogniw paliwowych<br />

zbadanych w wodorze oraz suchym metanie w temperaturze 600°C<br />

R1 R2<br />

(Ω cm 2 ) (Ω cm 2 )<br />

f2<br />

(Hz)<br />

R3<br />

(Ω cm 2 )<br />

f3<br />

(Hz)<br />

R4<br />

(Ω cm 2 )<br />

f4<br />

(Hz)<br />

Fig. 4. Impedance spectra of the fabricated SOFC in hydrogen at 800°C<br />

Rys. 4. Widma impedancyjne wytworzonych ogniw paliwowych,<br />

zmierzone w wodorze w temperaturze 800°C<br />

commercial SOFC<br />

hydrogen<br />

600°C<br />

methane<br />

600°C<br />

0 h 0.555 0.550 1667.8 0.467 43.8 5.12 0.55<br />

61 h 0.552 0.550 1848.2 0.466 43.1 5.14 0.57<br />

0 h 0.303 0.772 716.2 0.330 26.8 5.15 0.54<br />

70 h 5.2<strong>01</strong> 0.837 525.9 0.373 14.3 5.22 0.38<br />

60<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


Commercial SOFCs<br />

Operation of the fuel cell under the relatively low temperature and<br />

dry methane may cause carbon deposition, which in result should<br />

provide fast anode degradation. Therefore, the commercial<br />

SOFC was tested at temperature of 600°C in hydrogen and in dry<br />

methane. In either case the anode was in-situ reduced at 800°C.<br />

The impedance spectra of the commercial SOFC tested in dry<br />

methane at temperature of 600°C are shown in Fig. 6. The ohmic<br />

resistance has increased significantly after 70 hours of fuel cell operation.<br />

According to the results obtained from the fitting procedure<br />

(Tabl. 2), the R1 increased from 0.303 Ω cm 2 to 5.2<strong>01</strong> Ω cm 2 . This is<br />

associated with carbon formation in the anode structure, what leads<br />

to deterioration of the electrical contact. It can be noted (see Tabl. 2)<br />

that, the characteristic frequencies changed at low frequencies, what<br />

may be related to the gas diffusion and the gas conversion processes.<br />

Pores in the anode become clogged with carbon, which limits the<br />

diffusion and make length of the triple phase boundary shorter.<br />

Conclusion<br />

In this paper the nature of the degradation of the fuel cells was<br />

studies by the impedance spectroscopy. The fuel cells were tested<br />

in the experimental conditions, which allow obtaining fast fuel<br />

cell performance degradation. The impedance spectra and the<br />

parameters obtained from the fitting of the spectra to the equivalent<br />

circuit were correlated with degradation of the fuel cell elements<br />

– anode or cathode.<br />

The project was supported by the Voivodship Fund for Environmental<br />

Protection and Water Management in Gdansk – project<br />

RX-03/43/2<strong>01</strong>1.<br />

Fig. 6. Impedance spectra of the commercial SOFC in dry methane<br />

at 600°C<br />

Rys. 6. Widma impedancyjne komercyjnych ogniw paliwowych, zmierzone<br />

w suchym metanie w temperaturze 600°C<br />

The impedance spectra of the fuel cells operated in hydrogen<br />

at 600°C are shown in Fig. 5. Nearly no changes in the spectra<br />

are observed. This is also confirmed by the results obtained from<br />

fitting the spectra to equivalent circuit (Tabl. 2). None of the fitted<br />

elements changed significantly their values. Those results demonstrate<br />

good stability of the commercial fuel cells in hydrogen.<br />

References<br />

[1] Zhu W. Z., Deevi S. C.: A review on the status of anode materials<br />

for solid oxide fuel cells. Materials Science and Engineering, A362,<br />

2003, pp. 228–239.<br />

[2] Koh J. H., Yoo Y. S., Park J. W., Lim H. C.: Carbon deposition and<br />

cell performance of Ni-YSZ anode support SOFC with methane fuel.<br />

Solid State Ionics, 149, 2002, pp. 157–166.<br />

[3] Huang Q. A., Hui R., Wang B., Zhang J.: A review of AC impedance<br />

modeling and validation in SOFC diagnosis, Electrochimica Acta, 52,<br />

2007, pp. 8144–8164.<br />

[4] Wagner R.: Solid Oxide Fuel Cells (SOFC) in: Macdonald J. R., Barsoukov<br />

E., Impedance Spectroscopy, Theory, Experiment, and Applications.<br />

John Willey & Sons, 2005, pp. 530–537.<br />

[5] Nielsen J., Mogensen M.: SOFC LSM:YSZ cathode degradation inducted<br />

by moisture: An impedance spectroscopy study. Solid State<br />

Ionics, 189, 2<strong>01</strong>1, pp. 74–81.<br />

[6] Hauch A., Mogensen M.: Ni/YSZ electrode degradation studied by<br />

impedance spectroscopy Effects of gas cleaning and current density.<br />

Solid State Ionics, 181, 2<strong>01</strong>0, pp. 745–753.<br />

Analysis of electromagnetic couplingsin hybrid circuit<br />

made on austenitic metal substrate<br />

(Analiza sprzężeń elektromagnetycznych w układach hybrydowych<br />

wykonanych na podłożach ze stali austenitycznej)<br />

dr inż. Wiesław SABAT, dr inż. Dariusz KLEPACKI, dr inż. Kazimierz KAMUDA<br />

Politechnika Rzeszowska, Zakład Systemów <strong>Elektronicznych</strong> i Telekomunikacyjnych<br />

The fast progress in material technology, new compositions of<br />

dielectric inks allowed to realizations of hybrid structures on<br />

metal substrates. The technological materials from DuPont,<br />

ESL or Heraeus make possible to print different pastes on substrates<br />

from rustless steel (austenitic, ferritic), aluminium or platinum.<br />

The elaborated technological applications (in the most<br />

cases) allow to realization of heating elements (HOS – Heaters<br />

on Steel), electronic structures (COS – Circuits on Steel, TFOS<br />

– Thick Film on Steel) as well as sensors structures for special<br />

applications.<br />

There are a lot of dielectric inks especially dedicated for those<br />

applications. For example – 3500N for ferritic steels S430 and<br />

S444 from DuPont, 4916 for austenitic steel S304 and 4924 for<br />

ferritic steel S430 from ESL or SD1000 SD2000 for ferritic steel<br />

S430 and IP211 dedicated to sensor applications and steels S430<br />

or S446 from Heraeus.<br />

This growing interest of the above-mentioned applications leads<br />

to necessity of research in EMC area. The good knowledge<br />

about mechanisms of disturbance propagation processes is the<br />

basis of good designed final product.<br />

Parasitic elements of paths’ system<br />

The application of rustless steel, aluminium or platinum as substrate<br />

material in microelectronic hybrid circuits leads to creation<br />

of typical microstrip structure for path-substrate system<br />

(Fig. 1) [1, 2].<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong> 61


Fig. 1. Structure of microelectronic hybrid circuit made on the metalsubstrate<br />

Rys. 1. Struktura mikroelektronicznego układu hybrydowego wykonanego<br />

na podłożu metalowym<br />

In the above-mentioned configuration the nearness of each<br />

path in relation to ground (determined by thickness of the dielectric<br />

paste) is cause of shorting effect of electric field lines to the<br />

conducted structure of substrate. This effect leads to decrease of<br />

electrical flux value in neighboring paths – then the small values<br />

of parasitic capacitances are observed [2].<br />

The three types of test circuits with different geometrical configuration<br />

were made for realization of experimental investigations<br />

(determination of per-unit-length parameters in planar structures<br />

made on metal substrates) – Fig. 2. The metal substrates fromaustenitic<br />

steel of 304 type (1 mm thick) were selected. The 4916<br />

paste from DuPont (dedicated to austenitic steel) was applied to<br />

insulation layer. On such prepared substrates the test paths were<br />

printed for verification of calculation procedures. The conductive<br />

paths were made on the basis of silver-platinum paste 6305 from<br />

Koartan characterized by low dielectric loss (3 mΩ/□).<br />

The calculations of capacitances between path systems<br />

– for parametrically changed mutual distance and width of paths<br />

– have been made using elaborated numerical procedures for<br />

determination of parasitic parameters with reference ground [4].<br />

The obtained calculation results of equivalent capacitance C z<br />

for<br />

two parallel paths (with constant width) indicate that the value of<br />

capacitance between paths is independent on their mutual distance<br />

(Fig. 3). This effect is a consequence of very near placement<br />

of path’s system in relation to the ground plane as well as small<br />

value of mutual capacitance C M<br />

. It is confirmed by computer simulations<br />

and experimental verification.<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

C z , pF/m<br />

A<br />

- calculated<br />

- measured<br />

B<br />

S C =11 pF/m<br />

=0.2%<br />

s,mm<br />

0.1<br />

0.5<br />

1.0<br />

w, mm<br />

0 0,5 1 1,5 2 2,5 3<br />

Fig. 4. Influence of paths width change on capacitance value C z<br />

between configuration of two mutually parallel path systems<br />

Rys. 4. Wpływ zmiany szerokości ścieżek na wartość pojemności C z<br />

pomiędzy układem dwóch wzajemnie równoległych ścieżek<br />

0,3<br />

L z,<br />

H/m<br />

- obliczenia<br />

- pomiar<br />

0,25<br />

s, mm<br />

0.5<br />

Fig. 2. Test path systems with different geometrical parameters made<br />

on metal stainless substrate (sort 304 – AISI)<br />

Rys. 2. Testowe układy ścieżek o różnych parametrach geometrycznych<br />

wykonanych na metalowym podłożu ze stali nierdzewnej (gatunek<br />

304 – AISI)<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

0,1<br />

C z, pF/m<br />

C M<br />

w, mm<br />

5.0<br />

0.5<br />

0.1<br />

- calculated<br />

- measured<br />

0,2<br />

0 1 2 3 4 w, mm 5<br />

Fig. 5. Influence of paths width change on equivalent inductance value<br />

L z between configuration of two mutually parallel path<br />

Rys. 5. Wpływ zmiany szerokości ścieżek na wartość indukcyjności<br />

L z pomiędzy układem dwóch wzajemnie równoległych ścieżek<br />

1<br />

0,1<br />

L z ,<br />

H/m<br />

- calculated<br />

- measured<br />

w, mm<br />

0.5<br />

0,<strong>01</strong><br />

0 2 4 6 8 s, mm 10<br />

0,<strong>01</strong><br />

0 1 2 3 4 s, mm 5<br />

Fig. 3. Influence of paths distance change on equivalent and mutual<br />

capacitance values C z<br />

and C M<br />

between configuration of two mutually<br />

parallel path system<br />

Rys. 3. Wpływ zmiany odległości ścieżek na wartość wypadkowej<br />

i wzajemnej pojemności C z<br />

i C M<br />

pomiędzy układem dwóch wzajemnie<br />

równoległych ścieżek<br />

Fig. 6. Influence of paths distance change on equivalent inductance<br />

value L z between configuration of two mutually parallel path systems<br />

Rys. 6. Wpływ zmiany odległości ścieżek na wartość indukcyjności<br />

L z pomiędzy układem dwóch wzajemnie równoległych ścieżek<br />

62<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


The increase of paths width has a very big influence on capacitance<br />

value regarding to the substrate (Fig. 4 – curve A) and on<br />

value of equivalent capacitance C z (Fig. 4 – curve B). The value<br />

of capacitance C z is linear dependent on paths width.<br />

The ability of paths’ system for energy accumulation in magnetic<br />

filed is described by the second parasitic parameter – inductance.<br />

For determination of its changes range for typical geometrical<br />

parameters of path systems the experimental investigations<br />

were carried out using above-described test circuits.<br />

The increase of equivalent inductance connected with<br />

increase of mutual distance between paths is caused by value<br />

decreasing of mutual inductance between analyzed paths (with<br />

constant self-inductance). The dynamics of changes of equivalent<br />

inductance for small distances between paths is result<br />

of significant decrease of mutual inductance for the smallest<br />

distances between them [3].<br />

The decrease of equivalent inductance for two parallel paths is<br />

a consequence of decrease of self-inductance value of path with<br />

their width increasing (Fig. 6).<br />

Analysis of electromagnetic couplings<br />

Analysis of electromagnetic couplings in mutual coupled paths’<br />

system requires solution of telegraph equation:<br />

For specification of propagation process of electrical signals<br />

in microcircuits made on metal substrate the test circuits were<br />

designed and made. They allowed to analyze of signal penetration<br />

with taking into consideration the parasitic elements in path<br />

systems.<br />

The significant reduction of disturbances levelwhich penetrate<br />

between path systems can be obtained by using of conductive<br />

substrate as ground plane. The conducted simulations and experimental<br />

investigations for test circuits confirmed such thesis.<br />

The influence of system configuration on crosstalk reduction in<br />

passive path- active path circuit was analyzed for the simplest<br />

configuration of three paths where crosstalk effect was observed<br />

(Fig. 8).<br />

a)<br />

U G<br />

Z<br />

R<br />

1<br />

I<br />

1 1 2 2<br />

I<br />

U1 3 4 4 U2<br />

3<br />

3<br />

U3 M’ M”<br />

4<br />

L<br />

A<br />

I<br />

I<br />

A’<br />

U<br />

R<br />

R<br />

2<br />

4<br />

( )<br />

( )<br />

⎧ ∂u<br />

z,t<br />

∂i<br />

z,t<br />

⎪−<br />

= R ⋅ i( z,t)<br />

+ L<br />

∂z<br />

∂t<br />

⎨<br />

(1)<br />

⎪ ∂i( z,t)<br />

∂u<br />

( )<br />

( z,t)<br />

− = G ⋅u<br />

z,t + C<br />

⎩ ∂z<br />

∂t<br />

b)<br />

A-A’<br />

W s W s<br />

1<br />

3<br />

W M<br />

M’<br />

H17 (1.4<strong>01</strong>6)<br />

where u (z, t), i (z, t) are voltage and current vectors, respectively<br />

and R, G, L, C – matrices of parameters of parasitic elements of<br />

paths’ system.<br />

For three or more paths (with given boundary conditions)<br />

the solution of telegraph equation is possible by transformation<br />

of equation system (1). It allows to decoupling of voltage and current<br />

vectors which are determined by impedance and admittance<br />

matrices [3–5]:<br />

( ) ( )<br />

( )<br />

( ) ( ) ( )<br />

−1<br />

+<br />

−<br />

⎪⎧<br />

U<br />

⎪⎧<br />

m<br />

z = TU<br />

⋅U<br />

z U z = Z<br />

CT<br />

I<br />

exp − γ ⋅ z ⋅ I<br />

m<br />

+ exp γ⋅<br />

z ⋅ Im<br />

⎨ ⇒ ⎨<br />

−1<br />

+<br />

− (2)<br />

⎪⎩ Im( z) = TI<br />

⋅ I( z)<br />

⎪⎩ I( z) = TI( exp ( −γ⋅<br />

z ) ⋅ I<br />

m−<br />

exp ( γ⋅<br />

z)<br />

⋅ Im<br />

)<br />

( ) ( )<br />

+<br />

−1<br />

⎡I<br />

⎤<br />

m ⎡ ZC<br />

+ ZS<br />

TI<br />

ZC<br />

− ZS<br />

TI<br />

⎤ ⎡US<br />

⎤<br />

⎢ ⎥ = ⎢<br />

⋅ (3)<br />

−<br />

( ) ( ) ( ) ( )<br />

⎥ ⎢ ⎥<br />

⎢⎣<br />

I ⎥⎦<br />

⎣ ZC<br />

− ZS<br />

TI<br />

exp − γL<br />

ZC<br />

+ Z<br />

m<br />

S<br />

TI<br />

exp γL<br />

⎦ ⎣UL<br />

⎦<br />

c)<br />

A-A’<br />

W M<br />

W s W<br />

1 2<br />

H17 (1.4<strong>01</strong>6)<br />

Fig. 8. Test circuits configuration (M’ – reference path/layer): a) wiring<br />

diagram (Z 1<br />

= 50 Ω, R 2<br />

= R 4<br />

= 150 Ω, R 3<br />

= 1 MΩ) λ = 0.1 m, b) one-layered<br />

circuit (w = 0.5 mm, s = 0.5 mm, w M<br />

= 0.5 mm), c) two-layered circuit<br />

(w = 0.5 mm, w M<br />

= 50 mm)<br />

Rys. 8. Konfiguracja układów testowych (M’ – ścieżka/warstwa odniesienia):<br />

a) schemat połączeń (Z 1<br />

= 50 Ω, R 2<br />

= R 4<br />

= 150 Ω, R 3<br />

= 1 MΩ)<br />

λ = 0.1 m, b) układ jednowarstwowy (w = 0.5 mm, s = 0.5 mm,<br />

w M<br />

= 0.5 mm), c) układ dwuwarstwowy (w = 0.5 mm, w M<br />

= 50 mm)<br />

M’<br />

where T U<br />

i T I<br />

are matrices allowed to make diagonal of matrices<br />

+ −<br />

Z i Y, U S<br />

i U L<br />

– voltage vectors of supply sources, Im i I m – searched<br />

vectors of integration constants determined on the basis<br />

of boundary conditions, γ means propagation constant, L – path<br />

length, Z S<br />

i Z L<br />

– impedance vector loaded paths’ system and Z C<br />

is<br />

the matrix of wave impedance of paths’ system.<br />

s<br />

w<br />

s=0.5mm, w=0.5mm<br />

a)<br />

100 mm<br />

b)<br />

Fig. 7. Test circuits for analysis of electrical signal process propagation<br />

in mutually parallel path systems: a) geometrical parameters,<br />

b) physical structure of test circuit<br />

Rys. 7. Układy testowe do analizy procesu propagacji sygnałów elektrycznych<br />

w układach wzajemnie równoległych ścieżek: a) parametry<br />

geometryczne, b) fizyczna struktura układu testowego<br />

Fig. 9. Time courses calculated for test circuit in configuration from<br />

the Figure 8b. (U1 – beginning of active path, U3 – near crosstalk, U4<br />

– far crosstalk)<br />

Rys. 9. Symulowane Przebiegi czasowe dla układu testowego o konfiguracji<br />

z rysunku 8b (U1 – początek ścieżki czynnej, U3 – przesłuch<br />

bliski, U4 – przesłuch daleki)<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong> 63


Fig. 10. Time courses measured for test circuit in configuration from<br />

the Figure 8b<br />

Rys. 10. Przebiegi czasowe zmierzone dla konfiguracji układu testowego<br />

z rysunku 8b<br />

Fig. 11. Time courses measured for test circuit in configuration from<br />

the figure 8c<br />

Rys. 11. Przebiegi czasowe zmierzone dla konfiguracji układu testowego<br />

z rysunku 8c<br />

The trapezoidal pulse generated by AFG3252 arbitrary signals<br />

generator (with following parameters: 5 V level, rising time<br />

τ r<br />

and falling time τ f<br />

equal 2.5 ns, duration time – 40 ns and<br />

repetition time equals 200 ns) was used for analysis of propagation<br />

processes. The level of crosstalk generated on the end<br />

of passive path was assumed as reference point in analysis.<br />

For measurements of time courses the oscilloscope MSO4104<br />

with active probes TAP1500 from Tektronix was used.Active and<br />

passive layer were loaded at the end by resistors R 2<br />

and R 4<br />

(value – 150 Ω in SMD version, package 0603). This value is<br />

near to wave impedance value of the considered path systems<br />

(Zoe = 135 Ω − differential impedance, Zoo = 129 Ω − common<br />

impedance). The passive path at the beginningwas loaded by<br />

resistor R 3<br />

= 1 MΩ.<br />

Using conductive plane of substrate as ground plane allows to<br />

significant reduction of crosstalk level generated in passive path<br />

(Fig. 11). The reduction of 25 dB of crosstalk level was obtained<br />

in the case of tested configuration (where active and passive path<br />

had width and mutual distance equal 0.5 mm and were electromagnetically<br />

coupled on distance 0.1 m) in relation to configuration<br />

where ground path was placed in the same plane as active<br />

and passive layer (Fig.10).<br />

Conlusions<br />

The specific properties of hybrid structures realized on metal<br />

substrates (determined by distance of conductive paths in relation<br />

to substrate) are cause of increase of parasitic elements<br />

values in path systems in relation to conductive substrate and<br />

decrease of those parameters between them. The results of calculations<br />

and measurements indicate that values of capacitance,<br />

self and mutual inductance of paths’ system is strongly dependent<br />

on their geometrical parameters.Such systems are transmission<br />

microstrip structures in relation to conductive substrate.<br />

Taking into account those properties the significant reduction of<br />

disturbances level which penetrate by parasitic elements of path<br />

systems can be obtained. However, the one-layered or multilayered<br />

circuits without using the conductive plane as ground<br />

plane can be generate high level of crosstalk. Those effect are<br />

very important from electromagnetic compatibility and signal integrity<br />

point of view.<br />

Equipment purchased in the project No POPW.<strong>01</strong>.03.00-18-<strong>01</strong>2/09<br />

from the Structural Funds, The Development of Eastern Poland<br />

Operational Programme co-financed by the European Union, the<br />

European Regional Development Fund.<br />

References<br />

[1] Kaiser K. L.: Transmission Lines, Matching and Crosstalk. CRC<br />

Press 2006.<br />

[2] Paul C.R., Analysis of Multiconductor Transmission Lines.John Wiley<br />

& Sons Ltd 2008.<br />

[3] Sabat W., Klepacki D., Kamuda K., Kalita W.: Application of Operational<br />

Method in Analysis of Electromagnetic Couplings in Mutual<br />

Coupled Path Systems of Planar Structures. Electronics Systemintegration<br />

Technology Conference, 2008. ESTC 2008. 2nd, s. 1107–<br />

1110, 2008.<br />

[4] Sabat W.: Uwarunkowania propagacji zakłóceń przewodzonych<br />

w hybrydowych strukturach mikroelektronicznych. PhD Thesis, Politechnika<br />

Rzeszowska, Rzeszów 2002 (in Polish).<br />

[5] Caniggia S., Maradei F.: Signal Integrity and Radiated Emission<br />

of High-Speed Digital Systems. John Wiley & Sons Ltd 2008.<br />

64<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


EMC Aspects in microelectronics structures made<br />

in LTCC technology<br />

(Zagadnienia EMC w mikroelektronicznych strukturach wytwarzanych<br />

w technologii LTCC)<br />

dr inż. Wiesław SABAT, dr inż. Dariusz KLEPACKI, dr hab. inż. Włodzimierz KALITA, prof. PRz<br />

Politechnika Rzeszowska, Zakład Systemów <strong>Elektronicznych</strong> i Telekomunikacyjnych<br />

prof. Ing. Stanislav SLOSARČÍK, CSc; Ing. Michal JURČIŠIN, dr Ing. Pavol CABÚK<br />

Technická Univerzita v Košiciach, Fakulta elektrotechniky a informatiky, Katedra technológií v elektronike, Slovenská Republika<br />

The fast development of LTCC technology (Low Temeperature<br />

Cofired Ceramic) is observed in relation to realization of multilayered<br />

hybrid structures. It is applied for manufacturing of wide<br />

range of microelectronic circuits, especially MCM-C structures<br />

(Multi Chip Module on Ceramics) which are used in different<br />

areas of industry. The multilayered structures, sensors, microsystems,<br />

passive elements, microwave elements can be found in<br />

telecommunication, informatics, radioengineering, mechatronics,<br />

transport, etc. The possibility of creation of channels and cavities<br />

inside of LTCC module allows to realization of chemical microreactors,<br />

hydraulic systems in microscale (together with pumps and<br />

valves), fuel cells, flat plasma displays, sensors of physical quantities<br />

and systems applied in biotechnology and medicine [1, 2].<br />

Parasitic elements of paths’ system<br />

The calculations of mutual capacitance C M<br />

and effective inductance<br />

L z<br />

(for two parallel paths system with parametrically changed<br />

the mutual distance „s” and paths width „w”) were made using<br />

elaborated PACAPIND program. They allowed to determine range<br />

of parameters changes of parasitic elements in typical LTCC<br />

structure for three basic configurations.<br />

For experimental investigations (determination of per-unitlength<br />

parameters) the test circuits were made in configuration<br />

of mutual parallel path systems (Fig. 1) on the basis of silver<br />

conductive paste HF612Ag and LTCC substrate 943PX from<br />

DuPont.<br />

The test circuits were made in three configurations: onelayered,<br />

two-layered with ground plane (microstrip configurations)<br />

and layered with the same thickness of substrate layer (strip configuration)<br />

– Fig. 2.<br />

The obtained results of calculations (experimentally confirmed)<br />

show that change of mutual distance and width of paths<br />

– especially for the smallest values those parameters – has a big<br />

Fig. 2. Geometrical parameters of the test path systems and their<br />

configurations<br />

Rys. 2. Parametry geometryczne układów testowych wraz z ich konfiguracjami<br />

100<br />

50<br />

CM, pF/m<br />

- calculated<br />

- measured<br />

S C =1.0 pF/m<br />

20<br />

10<br />

w, mm<br />

5.0<br />

0.5<br />

0.1<br />

0 2 4 6 8 s, mm 10<br />

Fig. 1. Test path systems implemented in Department of Technologies<br />

in Electronics at Technical University of Košice<br />

Rys. 1. Układ testowy wykonany w Katedrze Technologii <strong>Elektronicznych</strong><br />

Technicznego Uniwersytetu w Koszycach<br />

Fig. 3. Influence of geometrical parameters changes in path system<br />

on capacitance value C M<br />

for DuPont 943PX ceramics with thickness<br />

h = 4.5 mm and ε r<br />

= 7.8 for constant value of path width „w” with<br />

change of their mutual distance „s”<br />

Rys. 3. Wpływ zmian parametrów geometrycznych układu ścieżek<br />

na wartość pojemności C M<br />

dla ceramiki DuPont 943PX o grubości<br />

h = 4.5 mm i ε r<br />

= 7.8 dla stałej szerokości ścieżek „w” przy zmianie<br />

wzajemnej odległości „s”<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong> 65


3<br />

2<br />

L'eff, µH/m<br />

- calculated<br />

- measured<br />

S C=40 nH/m<br />

ϕ 2 =0.1%<br />

w, mm<br />

0.1<br />

0.5<br />

a)<br />

UG<br />

Z<br />

R<br />

1<br />

I<br />

1 1 2 2<br />

I<br />

U1 3 4 4 U2<br />

3<br />

3<br />

U3 M’ M”<br />

4<br />

A<br />

I<br />

I<br />

U<br />

R<br />

R<br />

2<br />

4<br />

1<br />

0<br />

s, mm<br />

0 2 4 6 8 10<br />

5.0<br />

b)<br />

A-A’<br />

W s W s<br />

1<br />

L<br />

W M<br />

3 M’<br />

A’<br />

Fig. 4. Influence of geometrical parameters changes in path system<br />

on effective inductance value Leff for DuPont 943PX ceramics with<br />

thickness h = 4.5 mm for constant value of path width „w” with change<br />

of their mutual distance „s”<br />

Rys. 4. Wpływ zmian parametrów geometrycznych układu ścieżek<br />

na wartość indukcyjności L eff<br />

dla ceramiki DuPont 943PX o grubości<br />

h = 4.5 mm dla stałej szerokości ścieżek „w” przy zmianie wzajemnej<br />

odległości „s”<br />

influence on value of parasitic capacitance and inductance. From<br />

the point of view of signal integrity the reduction of mutual capacitance<br />

value between “disturbing” and “disturbed” circuit leads to<br />

measurable crosstalk reduction between non-associated logically<br />

circuits.<br />

Analysis of electromagnetic couplings<br />

in mutually coupled paths<br />

The level of disturbances penetration between paths is in significant<br />

way dependent on geometrical, electrical physical factors of<br />

planar structures [3]. For influence determination of the abovementioned<br />

factors on effectiveness of disturbance propagation<br />

in mutually coupled paths systems the simulation and experimental<br />

investigations were carried out. For the selected configurations<br />

(Fig. 5) with different geometrical parameters the propagation<br />

process of trapezoidal pulse (generated by AFG3052<br />

generator: amplitude – 5 Vpp, changed raising and falling time<br />

τ r<br />

= τ f<br />

– from 2.5 to 10 ns) with using parasitic elements of paths<br />

was analyzed.<br />

The determination of parameter matrices of parasitic elements<br />

for analyzed geometrical configuration of paths’ system is the basis<br />

of simulations [5].<br />

The knowledge about their values is the main element for creation<br />

of transmission line model. For example, matrices of capacitances,<br />

inductances and resistances (calculated using elaborated<br />

PACAPIND) for paths configuration from Fig. 5a (thickness<br />

of substrate after firing h = 0.45 mm, dielectric constant of LTCC<br />

ceramics ε r<br />

= 7.8) are equal:<br />

Fig. 5. Geometrical parameters of test path systems<br />

Rys. 5. Parametry geometryczne testowego układu ścieżek<br />

66<br />

a)<br />

b)<br />

c)<br />

d)<br />

e)<br />

f)<br />

w<br />

M<br />

w s w, s, w M,<br />

0.5 0.5 2.0<br />

0.5 0.5 1.0<br />

50 mm<br />

mm mm mm<br />

0.5<br />

0.5<br />

0.5<br />

0.5<br />

0.5<br />

1.0<br />

0.5<br />

0.5<br />

0.5<br />

0.5<br />

0.5<br />

0.5<br />

c)<br />

A-A’<br />

Fig. 6. Test circuits configuration: a) wiring diagram (Z 1<br />

= 50 Ω,<br />

R 2<br />

= R4 = 150 Ω, R 3<br />

= 1 MΩ, λ = 0.05 m, b) one-layered circuit<br />

(w = 0.5 mm, s = 0.5 mm, w M<br />

= 0.5 mm), c) two-layered circuit with<br />

ground layer (w = 0.5 mm, w M<br />

= 50 mm)<br />

Rys. 6. Układ testowy: a) schemat układu (Z1 = 50 Ω, R2 = R4 = 150 Ω,<br />

R3 = 1 M Ω, l = 0,05 m, b) układ jednowarstwowy (w = 0,5 mm,<br />

s = 0,5 mm, w M<br />

= 0,5 mm), c) układ dwuwarstwowy z płaszczyzną<br />

masy (w = 0,5 mm, w M<br />

= 50 mm)<br />

Fig. 7. Simulated waveforms of near–end crosstalk U 3<br />

in passive<br />

path, for different values of rise an fall time of slope for trapezoidal<br />

test pulse<br />

Rys. 7. Symulowane przebiegi bliskiego przesłuchu U3 w ścieżce<br />

biernej dla różnych czasów narastania i opadania trapezowego impulsu<br />

testowego<br />

⎡ 49.8<br />

C = ⎢<br />

⎣−<br />

39.7<br />

⎡908.5<br />

L = ⎢<br />

⎣399.5<br />

⎡4.7<br />

R = ⎢<br />

⎣1.1<br />

W M<br />

W s W<br />

1 2<br />

− 39.7⎤<br />

79.3<br />

⎥ ⎦<br />

399.5⎤<br />

689.2<br />

⎥ ⎦<br />

1.1⎤<br />

Ω<br />

4.7 ⎥<br />

⎦<br />

/ m<br />

pF / m<br />

nH / m<br />

Those matrices are input data to the program which allowed to<br />

analysis of propagation process of electrical signals in mutually<br />

coupled paths systems.<br />

The influence of changes of rising and falling time of trapezoidal<br />

signal slope on crosstalk level U 3<br />

generated in passive<br />

path (Fig. 6a) was analyzed for test circuit in configuration from<br />

Fig. 6b. The obtained results are presented in Fig. 7 (simulations)<br />

and Fig. 8 (experimental verification).<br />

M’<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong>


Fig. 8. Measured waveforms of near–end crosstalk U 3<br />

in passive path,<br />

for different values of rise an fall time of slope for trapezoidal test<br />

pulse<br />

Rys. 8. Zmierzone przebiegi bliskiego przesłuchu U3 w ścieżce biernej<br />

dla różnych czasów narastania i opadania trapezowego impulsu<br />

testowego<br />

Fig. 9. Measured courses of near-end U 3<br />

and far-end U 4<br />

crosstalk in<br />

passive path for one-layered circuit<br />

Rys. 9. Zmierzone przebiegi bliskiego (U3) I dalekiego (U4) przesłuchu<br />

w ścieżce biernej w układzie jednowarstwowym<br />

The change of configuration from one- to two-layered with<br />

ground layer (Fig. 6) is the characteristic example, which shows<br />

influence of geometrical factors on crosstalk level generated<br />

in system of coupled paths. The basic test circuit was characterized<br />

by following dimensions: length L = 0.05 m, width<br />

w = 0.5 mm and mutual distance s = 0.5 mm for one-layered<br />

circuit (Fig. 6b) and two-layered with ground layer (Fig. 6c). The<br />

influence of configuration changes on crosstalk level U 3<br />

generated<br />

in passive path was analyzed with constant value of changes<br />

speed of test signal (2 V/s).<br />

The small differences between calculations and measurements<br />

are caused by the fact that paths’ shapes were modeled<br />

as „ideal” (with straight edges).<br />

Conclusions<br />

In the case of considered microelectronic structures made in<br />

LTCC technology, the geometrical factors (in connection with<br />

physical parameters) determine parameter values of parasitic<br />

Fig. 10. Measured courses of near-end U 3<br />

and far-end U 4<br />

crosstalk<br />

in passive path for two-layered circuit with ground layer<br />

Rys. 10. Zmierzone przebiegi bliskiego (U3) I dalekiego (U4) przesłuchu<br />

w ścieżce biernej w układzie dwuwarstwowym z płaszczyzną<br />

masy<br />

elements in path’s system. Change of length, width, thickness,<br />

mutual distance of paths, thickness of substrate as well as paths<br />

configuration has a big influence on values of capacitance,<br />

inductance, resistance and conductance of paths’ system. The<br />

specific properties of LTCC technology which allow to obtain<br />

much more integration scale in relation to classical thick-film<br />

technology are cause higher values of per-unit-length parameters<br />

of the conductive structures. For near placed paths the<br />

value of parasitic capacitance can be equal from 100 pF/m to<br />

150 pF/m as well as the effective inductance for the narrowest<br />

paths can be from the range 1…3 µH/m. Those non-zero values<br />

of parasitic parameters are responsible for penetration<br />

of electrical signals between particular parts of circuit. The part<br />

of signal which penetrates by parasitic capacitances and inductances<br />

is received as disturbance. This problem is especially important<br />

– as results of simulations and measurements show – for<br />

fast-changed signals and signals with frequency over 100 kHz,<br />

where parasitic elements are simple medium for penetration<br />

of electric signals. The effectiveness of disturbances penetration<br />

is significant dependent on parameters values of parasitic elements<br />

exist in real-world paths systems.<br />

Equipment purchased in the project No POPW.<strong>01</strong>.03.00-18-<strong>01</strong>2/09<br />

from the Structural Funds, The Development of Eastern Poland<br />

Operational Programme co-financed by the European Union, the<br />

European Regional Development Fund.<br />

References<br />

[1] Slosarcik S., Pietriková A., Banský J.: Základy Technológii v elektronike.<br />

Vienala, 2006.<br />

[2] Golonka L.: Zastosowania ceramiki LTCC w mikroelektronice. Oficyna<br />

Wydawnicza Politechniki Wrocławskiej, 20<strong>01</strong>.<br />

[3] Sabat W.: Uwarunkowania propagacji zakłóceń przewodzonych<br />

w hybrydowych strukturach mikroelektronicznych. Rozprawa doktorska,<br />

Politechnika Rzeszowska, Rzeszów 2002.<br />

[4] Sabat W., Klepacki D., Kamuda K. Kalita W.: Application of Operational<br />

Method in Analysis of Electromagnetic Couplings in Mutual<br />

Coupled Path Systems of Planar Structures. Electronics Systemintegration<br />

Technology Conference, 2008. ESTC 2008. 2nd, s. 1107–<br />

1110, 2008;<br />

[5] Caniggia S., Maradei F.: Signal Integrity and Radiated Emission<br />

of High-Speed Digital Systems. John Wiley & Sons Ltd 2008.<br />

<strong>Elektronika</strong> 1/<strong>2<strong>01</strong>2</strong> 67

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!