05.01.2015 Views

mathematical modelling of metallurgical processes with usage - Acta ...

mathematical modelling of metallurgical processes with usage - Acta ...

mathematical modelling of metallurgical processes with usage - Acta ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Acta</strong> Metallurgica Slovaca, 8, 2002, 3 (308 - 320) 308<br />

MATHEMATICAL MODELLING OF METALLURGICAL PROCESSES<br />

WITH USAGE OF THE THEORY OF INCREASING BODIES<br />

Kochubey A.A. 1 , Syasev A.V. 1 , Vesselovskiy V.B. 1 , Mamuzych I. 2 , Makarenkov E.A. 1 ,<br />

Scherbina E.A. 1<br />

1<br />

State University, Dnepropetrovsk, Ukraine<br />

2<br />

Faculty <strong>of</strong> Metallurgy, University <strong>of</strong> Zagreb, Croatia<br />

Abstract<br />

The <strong>mathematical</strong> model <strong>of</strong> increasing visco-elastic hollow <strong>of</strong> the barrel <strong>with</strong> a<br />

fluid phase inside is <strong>of</strong>fered. The material <strong>of</strong> the barrel in a fluid modular state represents<br />

perfect fluid, and in solid state visco-elastic body. The analysis <strong>of</strong> temperature effect and<br />

geometrical sizes the component on tight - strained state is conducted. The <strong>mathematical</strong><br />

model is designed and the calculation <strong>of</strong> a thermal state <strong>of</strong> rolls <strong>of</strong> hot-rolled steel is<br />

conducted.<br />

Key words: theory <strong>of</strong> increasing bodies, <strong>mathematical</strong> model, rolls <strong>of</strong> hot-rolled steel is<br />

conducted, tight strained state<br />

Introduction<br />

Now theory <strong>of</strong> increasing bodies is on the stage <strong>of</strong> the becoming and is oriented<br />

basically on problem solving, which one arise in practice in theory <strong>of</strong> facilities. However,<br />

creation and development <strong>of</strong> new technologies in metallurgy (continuous casting <strong>of</strong> steel,<br />

tube making and other parts <strong>of</strong> rotation <strong>with</strong> the help <strong>of</strong> a centrifugal casting <strong>of</strong> tubes etc.)<br />

demands new methods development which allovs to decide, arising problems. Distinctive<br />

feature <strong>of</strong> such problems is the availability: irregular temperature fields; mass and surface<br />

power effects; existence, as a minimum <strong>of</strong> two phases <strong>of</strong> a stuff, which is object <strong>of</strong> research.<br />

The development <strong>of</strong> a method <strong>of</strong> such problem solving is possible only in the supposition <strong>of</strong><br />

interaction interference <strong>of</strong> temperature and mechanical fields and results in necessity <strong>of</strong><br />

sharing <strong>of</strong> equations and laws <strong>of</strong> mechanics <strong>of</strong> a deformed solid body and theory <strong>of</strong> heat<br />

conduction.<br />

In the present paper, as against papers [1; 2], in which the problems about<br />

crystallization <strong>of</strong> body <strong>of</strong> revolving on an external surface are reviewed, one <strong>of</strong> problems<br />

arising in metallurgy is reviewed at manufacturing <strong>of</strong> tubes by a method <strong>of</strong> centrifugal to<br />

pour problem about a crystallization <strong>of</strong> the circularbarrel <strong>with</strong> a fluid phase from inside.<br />

Thermo–viscoelastic deforming <strong>of</strong> phase change, increasing in conditions <strong>of</strong> the barrel<br />

The form for crystallization (steel mold) represents the hollow barrel <strong>of</strong> round cross<br />

section <strong>with</strong> an inner radius a 0 and external b 0 . Before deformation the form is in state <strong>of</strong><br />

nature at the temperature <strong>of</strong> crystallizations <strong>of</strong> a melt is T 0 .<br />

For simplicity we consider, that the form is a thin-wall cylindrical shell<br />

b<br />

0<br />

− a<br />

0<br />


<strong>Acta</strong> Metallurgica Slovaca, 8, 2002, 3 (308 - 320) 309<br />

an internal side <strong>with</strong> radius a 1 . At the same time temperature <strong>of</strong> an external part is<br />

instantaneously T < lowered up to value and the part <strong>of</strong> a stuff located in liquid<br />

1<br />

T 0<br />

(a melt) passes in a firm modular state (solid phase). Thus, there is an escalating <strong>of</strong> stuff<br />

owing to phase change, instead <strong>of</strong> owing to attachment <strong>of</strong> stuff from the outside, as it was<br />

supposed in papers [4 - 6].<br />

We shall introduce in the undeformed configuration the cylindrical coordinate<br />

system <strong>of</strong> the axis (r, ϑ, z), which z coincides <strong>with</strong> an axis <strong>of</strong> the form, and unit vectors<br />

designated by е r , е ϑ, е z . It is required to define temperature T castings, the law <strong>of</strong> motion <strong>of</strong> a<br />

demarcation <strong>of</strong> phases a(t) and is tight - strained state <strong>of</strong> casting.<br />

The temperature variation T − T<br />

0 is considered small enough, so that heat expansion <strong>of</strong><br />

stuff can be neglected. We shall consider, that the behavior <strong>of</strong> a stuff <strong>of</strong> casting in liquid is<br />

described by equations <strong>of</strong> state <strong>of</strong> ideal incompressible fluid [7], and in solid - equations <strong>of</strong><br />

state <strong>of</strong> an incompressible visco-elastic body in case <strong>of</strong> the linear law <strong>of</strong> a creep.<br />

The <strong>mathematical</strong> formulation is reduced to a following set <strong>of</strong> equations<br />

σ<br />

1<br />

−<br />

1<br />

ij<br />

= p δ ij<br />

∂ σ<br />

∂ r<br />

σ<br />

= −<br />

−σ<br />

r , i r,<br />

i ϑ,<br />

i<br />

r<br />

( i = 1,2 )<br />

σ<br />

t,<br />

r)<br />

− σ ( t,<br />

r)<br />

= 2G<br />

( t −τ*) ( ε ( t,<br />

r)<br />

− ε ( t,<br />

)) −<br />

r, 2( ϑ,2<br />

2<br />

r,2<br />

ϑ,<br />

2<br />

r<br />

−<br />

t<br />

∫<br />

τ *<br />

R(<br />

t −τ<br />

*, τ −τ<br />

*) ( ε<br />

r , 2<br />

( τ , r)<br />

− εϑ<br />

,2<br />

( τ , r))<br />

dτ<br />

∂ u&<br />

u<br />

ε r<br />

+ ε ϑ<br />

= 0 ,<br />

r<br />

&<br />

& ε<br />

r<br />

= , & εϑ<br />

= , T ′ + T ′ / r = 0<br />

(1)<br />

∂ r<br />

r<br />

<strong>with</strong> initial and boundary conditions<br />

u r<br />

( *( r)<br />

, r) = ε ( τ *( r)<br />

, r) = 0<br />

τ<br />

ϑ<br />

, σ = 0,<br />

σ = − p<br />

T ( ) = , ( a()<br />

t )<br />

a 0<br />

T 1<br />

r r =a0<br />

r r= a(<br />

t )<br />

T = T 0<br />

, λ T ′ = ρ µ a(t & )<br />

(2)<br />

In the formulas (1), (2) and hereinafter index "1" corresponds to a stuff in liquid; an<br />

index "2" - solid phase; p 1 - pressure arising in a melt; δ ij - components <strong>of</strong> a metric tensor in<br />

an initial configuration; G ( t − *) – elastic-moment module <strong>of</strong> deformation;<br />

2<br />

τ<br />

R ( t −τ *, τ −τ<br />

*) – core <strong>of</strong> a relaxation <strong>of</strong> a visco-elastic stuff; τ * – time <strong>of</strong> a germing <strong>of</strong> a<br />

stuff <strong>of</strong> a solid phase; λ – thermal conductivity; ρ – density <strong>of</strong> a melt; µ – latent heat <strong>of</strong> a<br />

melting.<br />

The problem (1), (2) was decided, using the approach which has been set up in<br />

paper [2; 8]. In outcome the following determining ratio were obtained:


<strong>Acta</strong> Metallurgica Slovaca, 8, 2002, 3 (308 - 320) 310<br />

Law <strong>of</strong> motion <strong>of</strong> a demarcation <strong>of</strong> phases –<br />

where<br />

t<br />

2<br />

2<br />

⎛ T ⎞<br />

1<br />

1 a*<br />

( t)<br />

a*<br />

( )<br />

⎜1<br />

− − = lna*<br />

( t)<br />

−<br />

T<br />

⎟<br />

⎝ 0 ⎠ 4 2<br />

4<br />

1 t<br />

Λ<br />

−<br />

2<br />

a0<br />

ρ µ a(<br />

t)<br />

Λ = , a<br />

*(<br />

t)<br />

=<br />

λ T<br />

a<br />

0<br />

0<br />

(3)<br />

temperature field –<br />

T0<br />

−T1<br />

T = T1 +<br />

ln( r a0)<br />

(4)<br />

ln( a(<br />

t) / a )<br />

tight-strained state –<br />

u r<br />

( t,<br />

r )<br />

D ( t ) − D ( τ * ( r ))<br />

,<br />

r<br />

0<br />

D(<br />

t)<br />

− D(<br />

τ * ( r))<br />

r<br />

= − ε<br />

r<br />

( t,<br />

r)<br />

= εϑ<br />

( t,<br />

r)<br />

=<br />

2<br />

t<br />

* *<br />

*<br />

[ 2G<br />

( t − τ *)( D ( t)<br />

− D ( τ *)) − R( t − τ , τ − τ )( D( τ ) D ( τ<br />

) dτ<br />

]<br />

2<br />

σ<br />

r<br />

( t,<br />

r)<br />

− σ ϑ ( t,<br />

r ) = −<br />

2 s<br />

∫ −<br />

r<br />

a0<br />

t<br />

2dr<br />

⎡<br />

*<br />

*<br />

* *<br />

*<br />

σ<br />

r<br />

( t,<br />

r ) = ∫<br />

⎢2G<br />

S<br />

( t − τ )( D () t − D ( τ<br />

) − ( t τ τ τ )( D () τ D ( τ<br />

) dτ<br />

]<br />

r<br />

∫ − , − − . (5)<br />

3<br />

r ⎢<br />

*<br />

⎣<br />

τ<br />

The function D(t) is determined from an integral equation –<br />

τ<br />

where<br />

t<br />

H<br />

1<br />

( t)<br />

D(<br />

t)<br />

−<br />

∫<br />

H<br />

2<br />

( t,<br />

τ ) D(<br />

τ ) =<br />

0<br />

p<br />

a(<br />

t)<br />

2dr<br />

H1(<br />

t)<br />

=<br />

∫<br />

2Gs<br />

( t −τ *) ,<br />

3<br />

r<br />

a0<br />

H<br />

t<br />

2a&<br />

( τ ) ⎡<br />

⎤<br />

t,<br />

τ ) = ⎢2Gs<br />

( t −τ<br />

*) + ∫ R(<br />

t − s,<br />

τ − s)<br />

ds⎥<br />

a ( τ ) ⎢⎣<br />

τ<br />

⎥⎦<br />

2<br />

(<br />

3<br />

The numerical outcomes are submitted in a figure 1-6 at following values <strong>of</strong> main<br />

specifications:<br />

∂µ<br />

( t,<br />

τ )<br />

−<br />

R ( t,<br />

τ ) = , ( , ) 2 ( ) ( )(1<br />

γ ( t−τ )<br />

µ t τ = G τ −ϕ<br />

τ − e )<br />

∂τ<br />

( ) ( )С<br />

G = const.,<br />

− β τ<br />

τ = 2G C + A e 0 = 0.38; А 0 =0.55; β = 0.015 h -1 ; γ = 0.1 h -1<br />

ϕ<br />

0 0


<strong>Acta</strong> Metallurgica Slovaca, 8, 2002, 3 (308 - 320) 311<br />

t<br />

2,0<br />

1,5<br />

2<br />

1,0<br />

0,5<br />

1<br />

a * (t)<br />

0,0<br />

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0<br />

τ * ( a ) *<br />

4,00<br />

3,75<br />

3,50<br />

3,25<br />

3,00<br />

2,75<br />

2,50<br />

2,25<br />

2,00<br />

1,75<br />

1,50<br />

1,25<br />

1,00<br />

0,75<br />

0,50<br />

0,25<br />

0,00<br />

l = 0.25<br />

l = 0.5<br />

l = 0.75<br />

l = 1<br />

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0<br />

T 1 / T 0<br />

Fig.1 The law <strong>of</strong> motion <strong>of</strong> a solidified front <strong>of</strong><br />

crystallization<br />

Fig.2 Relation <strong>of</strong> time <strong>of</strong> a crystallization from<br />

temperature and geometrical sizes <strong>of</strong> casting<br />

In a figure 1 the graph<br />

a = a<br />

( * *<br />

t<br />

)<br />

– law <strong>of</strong> motion <strong>of</strong> a solidified front <strong>of</strong><br />

crystally zation submitted at Λ = 1.5. The curve 1 corresponds to value T 1 /T 0 = 0.5, and<br />

curve 2 – value T 1 /T 0 = 0.9. The outcomes <strong>of</strong> calculations demonstrate, that the temperature<br />

variation <strong>of</strong> an environment renders essential influencing on process <strong>of</strong> a crystallization <strong>of</strong><br />

casting.<br />

The schedules figured in a figure 2 illustrate relation <strong>of</strong> time <strong>of</strong> a crystallization <strong>of</strong><br />

casting to value <strong>of</strong> a temperature variation T 1 /T 0 at different fixed values <strong>of</strong> depth<br />

l =<br />

a<br />

0<br />

− a(t)<br />

a<br />

0<br />

<strong>of</strong> the done pert. The outcomes <strong>of</strong> calculations demonstrate, that the change <strong>of</strong> the<br />

geometrical sizes <strong>of</strong> casting exerts influence on duration <strong>of</strong> process <strong>of</strong> crystallization.<br />

Namely: at increase <strong>of</strong> depth l walls <strong>of</strong> casting from value 0,25 up to value 0,75 at the<br />

temperature <strong>of</strong> T 1 /T 0 = 0.5 the time <strong>of</strong> a crystallization <strong>of</strong> casting increases in 6.3 times, and<br />

at the temperature <strong>of</strong> T1/T 0 =0.9 in 7 times, that confirms also temperature effect on time <strong>of</strong><br />

a crystallization. Besides, the temperature variation T 1 /T 0 , influences on duration <strong>of</strong> process<br />

<strong>of</strong> crystallization and for separately taken wall thickness <strong>of</strong> casting. For example, at value <strong>of</strong><br />

depth l = 0. 5 the time indispensable for a crystallization <strong>of</strong> casting at the temperature <strong>of</strong><br />

T 1 = 0. 9 T 0 is in 4.5 times more, than in a case T1 = 0.5 T 0 . It speaks that, as well as in case<br />

<strong>of</strong> a crystallization on an external surface (external escalating) the temperature variation<br />

renders smaller influencing on duration <strong>of</strong> process <strong>of</strong> a crystallization, than change <strong>of</strong> the<br />

geometrical sizes.<br />

In a figure 3 the relation <strong>of</strong> time <strong>of</strong> a crystallization <strong>of</strong> casting to values <strong>of</strong><br />

temperature T 1 /T 0 for case <strong>of</strong> crystallization on an internal surface (internal escalating) –<br />

continuous line and external – dotted curve is shown. These outcomes allow to make<br />

following conclusions: the time <strong>of</strong> crystallization depends on its direction - at external<br />

escalating this time will be more; the time <strong>of</strong> crystallization depends on value <strong>of</strong> temperature<br />

T /T , and, than this relation is more, the more time <strong>of</strong> crystallization irrespective <strong>of</strong> a<br />

1 0


<strong>Acta</strong> Metallurgica Slovaca, 8, 2002, 3 (308 - 320) 312<br />

τ * ( a * )<br />

10,0<br />

9,5<br />

9,0<br />

8,5<br />

8,0<br />

l = 0.5 внутр. наращивание<br />

7,5<br />

l = 0.5 внешн. наращивание<br />

7,0<br />

6,5<br />

6,0<br />

5,5<br />

5,0<br />

4,5<br />

4,0<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

T 1 / T 0<br />

0,0<br />

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0<br />

0,25 D *<br />

(t)<br />

0,20<br />

0,15<br />

2<br />

0,10<br />

0,05<br />

1<br />

r*<br />

0,00<br />

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0<br />

Fig.3 Temperature effect <strong>of</strong> the form(shape) <strong>of</strong><br />

a on time <strong>of</strong> crystallization<br />

Fig.4 Temperature effect <strong>of</strong> the form for radial<br />

movings<br />

direction <strong>of</strong> crystallization is and at tendency T 1 /T 0 to unit <strong>of</strong> the time <strong>of</strong> crystallization aims<br />

at infinity.<br />

For research <strong>of</strong> temperature effect T 1 <strong>of</strong> an external side on formation <strong>of</strong><br />

tight-trained state during a crystallization <strong>of</strong> casting we shall put numerical results in the<br />

schedules (figure 4), illustrating relation to polar radius <strong>of</strong> a function D(t), describing radial<br />

moving <strong>of</strong> points <strong>of</strong> cylindrical casting, at different values <strong>of</strong> temperature – the curve 1<br />

corresponds to value T 1 /T 0 = 0.5, and curve 2 – value T 1 /T 0 = 0.9. From a figure 4 it is<br />

visible, that at temperature rising the values <strong>of</strong> radial movings <strong>of</strong> points <strong>of</strong> casting increase<br />

more than in 10 times.<br />

Besides, in a figure 5 the law <strong>of</strong> motion <strong>of</strong> a demarcation <strong>of</strong> phases is submitted at<br />

different directions <strong>of</strong> crystallization for miscellaneous values <strong>of</strong> temperature T 1 /T 0 . The<br />

smooth<br />

curve corresponds to value T 1 /T 0 =0.5, curve <strong>with</strong> points – value T 1 /T 0 =0.9. The<br />

continuous lines fall into to a case <strong>of</strong> internal escalating, dashed - known solution at external<br />

escalating [1].<br />

The outcomes <strong>of</strong> calculations demonstrate, that at temperature rise T 1 from value<br />

0.5T 0 up to value 0.9T 0 , the time indispensable for crystallization <strong>of</strong> all volume is from<br />

inside augmented in 5 times, and at formation <strong>of</strong> casting <strong>with</strong> wall thickness, for example<br />

l = 0.25 at the same temperature variation the time increases in 2.6 times. Such matchings<br />

can be conducted and further in more details <strong>with</strong> the help <strong>of</strong> the schedules figured in a<br />

figure 6, which enable to compare influencing depth l walls <strong>of</strong> casting on time <strong>of</strong><br />

crystallization at different directions <strong>of</strong> escalating and values <strong>of</strong> temperature T 1 /T 0 .<br />

Continuous lines, as well as earlier - crystallization from inside, dashed - out <strong>of</strong> door.<br />

From a figure 6 it is visible, that the time indispensable for manufacturing<br />

(crystallization) <strong>of</strong> a part <strong>of</strong> the definite size at external escalating is much more, than at<br />

in ternal. It speaks that the methods <strong>of</strong> internal escalating, at least, are more costeffective<br />

from the point <strong>of</strong> view <strong>of</strong> costs <strong>of</strong> time. For example, to produce a part <strong>with</strong> final wall<br />

thickness l = 0. 75 at the temperature <strong>of</strong> T 1 /T 0 = 0.45 by methods <strong>of</strong> external escalating, it is<br />

required time in 2 times more, than at internal escalating. This difference will grow <strong>with</strong><br />

increase <strong>of</strong> temperature.<br />

Thus, the time difference <strong>of</strong> crystallization will be unessential only


<strong>Acta</strong> Metallurgica Slovaca, 8, 2002, 3 (308 - 320) 313<br />

for parts, for which l ≤ 0. 25 . For remaining parts even at small temperatures, and it is not<br />

always possible on technology, the internal escalating has advantage in time.<br />

The analysis <strong>of</strong> the obtained outcomes demonstrates, that the temperature variation<br />

<strong>of</strong> an external side and geometrical sizes <strong>of</strong> casting renders essential influencing on process<br />

<strong>of</strong> crystallization <strong>of</strong> casting, and as a consequent and on tight-strained state in a part. So, for<br />

example, at temperature rising not only the time <strong>of</strong> crystallization is rising, but also<br />

essentially tight-strained state changes. Namely, at increasing <strong>of</strong> relative temperature T 1 /T 0<br />

twice – the maximum shearing stresses on an internal part <strong>of</strong> casting (at external escalating)<br />

increase in 28 times. As to movings, they also <strong>with</strong> increasing <strong>of</strong> temperature are increasing<br />

approximately in 22 times at external escalating and more than in 10 times at internal<br />

escalating.<br />

a * ( t )<br />

4<br />

3<br />

2<br />

1<br />

T 1 / T 0 = 0.5 внутр. наращивание<br />

T 1 / T 0 = 0.9 внутр. наращивание<br />

T 1 / T 0 = 0.5 внешн. наращивание<br />

T 1 / T 0 = 0.9 внешн. наращивание<br />

τ * ( a * )<br />

0<br />

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0<br />

τ * ( a * )<br />

4,00<br />

3,75<br />

3,50<br />

3,25<br />

3,00<br />

2,75<br />

2,50<br />

2,25<br />

2,00<br />

1,75<br />

1,50<br />

1,25<br />

1,00<br />

0,75<br />

0,50<br />

0,25<br />

0,00<br />

l = 0.25 внутр. наращивание<br />

l = 0.5 внутр. наращивание<br />

l = 0.75 внутр. наращивание<br />

l = 1 внутр. наращивание<br />

l = 0.25 внеш. наращивание<br />

l = 0.5 внеш. наращивание<br />

l = 0.75 внеш. наращивание<br />

l = 1 внеш. наращивание<br />

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0<br />

T 1 / T 0<br />

Fig.5 The law <strong>of</strong> motion <strong>of</strong> a solidified front for cases<br />

<strong>of</strong> external and internal escalating <strong>of</strong> cylindrical<br />

casting<br />

Fig.6 Temperature effect on time <strong>of</strong> crystallization <strong>of</strong><br />

casting for different values <strong>of</strong> depth <strong>of</strong> done part<br />

Thus, on time <strong>of</strong> crystallization apart from value <strong>of</strong> a temperature variation,<br />

geometrical sizes a direction <strong>of</strong> crystallization has the essential influence.<br />

Accoding to adopted assumptions the similar matchings on the one hand do<br />

outcomes evaluation, but <strong>with</strong> other it is possible to speak about their veracity as they will<br />

satisfactorily be agreeed <strong>with</strong> known computational and experimental data [9; 10]. The set<br />

up approach can be used for the approximated solution <strong>of</strong> a problem on definition <strong>of</strong><br />

parameters <strong>of</strong> a centrifugal <strong>of</strong> tubes (pressure in a reshaped tube, law <strong>of</strong> change <strong>of</strong> movings<br />

on depth in velocity function <strong>of</strong> escalating <strong>of</strong> a stuff, law <strong>of</strong> motion <strong>of</strong> a solidified front and<br />

esc.). Thus, we leave out such essential factors, as nonstationary <strong>of</strong> a temperature field,<br />

thermoexchange <strong>with</strong> environment and some other. Such simplified statement makes<br />

possible reliable obtaining <strong>of</strong> numerical outcomes, though they are approximated from the<br />

point <strong>of</strong> view <strong>of</strong> entirety <strong>of</strong> the description <strong>of</strong> process.<br />

Mathematical <strong>modelling</strong> and Calculation <strong>of</strong> a thermal state <strong>of</strong> rolls <strong>of</strong> hot-rolled steel<br />

Now the main way <strong>of</strong> effecting <strong>of</strong> a plate, is roll. During winding <strong>of</strong> rolls <strong>of</strong> flat<br />

hot-rolled bars, reeled <strong>of</strong>f on wire-winding machines <strong>of</strong> broad-strip mills temperature <strong>of</strong>


<strong>Acta</strong> Metallurgica Slovaca, 8, 2002, 3 (308 - 320) 314<br />

them, as a rule, is nonconstant. The temperature <strong>of</strong> rolled bands depends on properties <strong>of</strong> a<br />

deformed stuff, rolling speed, amount <strong>of</strong> reduction, conditions <strong>of</strong> lubrication and roll<br />

cooling, rolls and number <strong>of</strong> other factors. Influencing <strong>of</strong> a thermal factor the known<br />

techniques <strong>of</strong> calculation <strong>of</strong> pressure in rolls leave out [11; 12].<br />

The problem is decided at the following suppositions. The slip <strong>of</strong> convolutions<br />

rather one another misses. The orbits <strong>of</strong> a band in a roll are esteemed as concentric rings.<br />

Pressure and temperature is considered varied from an orbit to an orbit. Depth and the<br />

elastic properties <strong>of</strong> each orbit can be different. The condition <strong>of</strong> coupling <strong>of</strong> conjugated<br />

surfaces <strong>of</strong> adjacent orbits <strong>of</strong> a band in a roll will be written:<br />

u<br />

H<br />

i<br />

B<br />

/<br />

= ui<br />

+ 1<br />

− δ ( qi<br />

, Ti<br />

)<br />

(6)<br />

Where B - notation <strong>of</strong> an internal surface,<br />

H - outside surface,<br />

⎛ ′<br />

δ q , T ⎞ - value <strong>of</strong> a gap between і and (і + 1) orbits,<br />

⎜ i<br />

⎝<br />

′<br />

i<br />

i<br />

⎟<br />

⎠<br />

q , - pressure and temperature on a contact <strong>of</strong> orbits.<br />

i<br />

T i<br />

Let's consider multilayer winding shown in a figure 7. Here E n and d n represent a<br />

Young's modulus and depth <strong>of</strong> a cylindrical layer arranged between radiuses r n-1 and r n. The<br />

displacement U (r) for a cylindrical layer at set values <strong>of</strong> pressure on internal r = r n and<br />

external r = r n+1 radiuses is determined under the formula:<br />

U<br />

2 2<br />

2 2<br />

1 ⎧ P ⎫<br />

nrn<br />

− Pn<br />

+ 1rn<br />

+ 1<br />

rn<br />

rn<br />

+ 1<br />

Pn<br />

− Pn<br />

+ 1<br />

( r)<br />

= ⎨( 1−ν ) r<br />

+ ( + ν )<br />

2 2<br />

2 ⎬ (7)<br />

En+<br />

1 ⎩ rn<br />

+ 1<br />

− rn<br />

r rn<br />

+ 1<br />

− rn<br />

⎭<br />

n, n+ 1<br />

1<br />

2<br />

r<br />

n+ 1<br />

= rn<br />

+ dn+1<br />

(8)<br />

We consider, that the basic material is isotropic, σ Z = 0 (flat state <strong>of</strong> stress) ,<br />

ν = 0.33 – Poisson's constant. Unknown quantities here are the pressure P .<br />

n<br />

U<br />

2 2<br />

2 2<br />

1 ⎧ Pn<br />

rn<br />

− Pn<br />

+ 1rn<br />

+ 1<br />

rn<br />

rn<br />

+ 1<br />

Pn<br />

− P ⎫<br />

n+<br />

1<br />

( r)<br />

= ⎨( 1−ν<br />

) r<br />

+ ( + ν ) ⎬ −δ<br />

( P)<br />

2 2<br />

2<br />

(9)<br />

En+<br />

1 ⎩ rn<br />

+ 1<br />

− rn<br />

r rn<br />

+ 1<br />

− rn<br />

⎭<br />

n, n+ 1<br />

1<br />

2<br />

r<br />

n+ 1<br />

= rn<br />

+ dn+1<br />

(10)<br />

σ<br />

r<br />

ε<br />

r<br />

=<br />

E<br />

r<br />

ν<br />

21<br />

− σ<br />

t<br />

,<br />

E<br />

t<br />

∂u<br />

ε<br />

r<br />

=<br />

(11)<br />

∂r<br />

1<br />

ε<br />

t<br />

= ( −ν<br />

21σ<br />

r<br />

+ σ<br />

t<br />

),<br />

E<br />

t<br />

u<br />

ε<br />

t<br />

=<br />

r


<strong>Acta</strong> Metallurgica Slovaca, 8, 2002, 3 (308 - 320) 315<br />

Accoding to the solution <strong>of</strong> a problem <strong>of</strong> Lame about pressure in a tube under<br />

operating <strong>of</strong> internal and external pressure the value <strong>of</strong> movings <strong>of</strong> an internal surface <strong>of</strong> a<br />

ring-type orbit <strong>of</strong> a band <strong>with</strong> allowance for <strong>of</strong> temperature strains, is determined <strong>with</strong> the<br />

help <strong>of</strong> a following equation:<br />

u<br />

2 2<br />

B 1−<br />

µ<br />

i<br />

qi− 1ri<br />

−1<br />

− qiri<br />

1−<br />

µ<br />

i<br />

qi−<br />

1<br />

− qi<br />

2<br />

i<br />

= r +<br />

r r + r<br />

2 2 i−1<br />

α<br />

2 2 i−1<br />

i T i−1<br />

Ei<br />

ri<br />

− ri<br />

−1<br />

Er<br />

ri<br />

− ri<br />

−1<br />

∆T<br />

(12)<br />

where E – a modulus <strong>of</strong> elasticity <strong>of</strong> a stuff <strong>of</strong> a band i <strong>of</strong> an orbit<br />

i<br />

µ<br />

i<br />

– Poisson's constant<br />

r – an inner radius i <strong>of</strong> an orbit<br />

i −1<br />

r – outside radius<br />

i +1<br />

r – current radius<br />

q<br />

i − 1<br />

– internal pressure which is operational on i an orbit<br />

q<br />

i<br />

– external pressure<br />

α – a factor <strong>of</strong> linear temperature dilating<br />

T<br />

∆ T – a temperature variation (Fig.7)<br />

Taking<br />

into account a cylindrical symmetry and limiting by consideration <strong>of</strong><br />

distribution(propagation) <strong>of</strong> heat in a radial direction, we shall record a general view <strong>of</strong> a<br />

heat conduction equation for multilayer barrels <strong>with</strong> allowance for <strong>of</strong> internal heat sources in<br />

the form [13]:<br />

∂( ρ c m<br />

T ) 1 ∂T<br />

∂ ∂T<br />

m ( )<br />

*<br />

= λ<br />

+ , m = 1 ,<br />

m<br />

+ λm<br />

ω<br />

m<br />

M<br />

∂τ<br />

r ∂r<br />

∂r<br />

∂r<br />

(13)<br />

where<br />

m = 1,...M<br />

M<br />

t<br />

r<br />

ω * m<br />

m<br />

ρ m<br />

– number <strong>of</strong> a layer,<br />

– quantity <strong>of</strong> orbits,<br />

– time,<br />

– coordinate,<br />

– source intensity (sink) <strong>of</strong> heat for m <strong>of</strong> a layer,<br />

λ – thermal conductivity,<br />

– density <strong>of</strong> a stuff m <strong>of</strong> a layer.<br />

On internal and external surfaces <strong>of</strong> a roll the unitized boundary conditions are set:<br />

*<br />

[ f0( τ ) M<br />

0T<br />

r =<br />

]<br />

* ∂T1<br />

*<br />

α<br />

0λ1<br />

r = r<br />

= h<br />

0 0α1<br />

−<br />

1 r<br />

(14)<br />

0<br />

∂r<br />

α<br />

[ f1()<br />

M1TM<br />

]<br />

* ∂ TM<br />

*<br />

M r= r<br />

= h<br />

M M<br />

−<br />

*<br />

1λ<br />

1α<br />

τ<br />

∂r<br />

r=r M<br />

(15)


<strong>Acta</strong> Metallurgica Slovaca, 8, 2002, 3 (308 - 320) 316<br />

Fig.7 Schemes <strong>of</strong> engagement <strong>of</strong> orbits <strong>of</strong> a band in a roll:<br />

а) Model <strong>of</strong> a roll <strong>with</strong> forced cooling; б) approach <strong>of</strong> conjugated surfaces under operating <strong>of</strong> load; в) the<br />

computational scheme<br />

In (14), (15) f l<br />

( τ ), ( l = 0 ,1 ) – boundary functions, which depending on<br />

a type <strong>of</strong> boundary conditions are a surface temperature, ambient temperature by a heat<br />

flow;<br />

α<br />

1<br />

, α<br />

M<br />

– heat-transfer coefficients <strong>of</strong> internal and external surfaces. Supposing in<br />

* * *<br />

(10), (11) factors α h , M equal >, we shall have boundary conditions<br />

l<br />

,<br />

l l<br />

I, II, III <strong>of</strong> a kind and their different combinations. The distribution <strong>of</strong> temperature in an<br />

initial instant looks like:<br />

T<br />

*<br />

τ = 0<br />

Tm<br />

( r)<br />

(16)<br />

m<br />

=<br />

Contact between orbits imperfect. The connection between thermal and elastic<br />

problems implements through factors <strong>of</strong> thermal resistance, which are calculated under the<br />

formula [14]:<br />

R (17)<br />

−0,28<br />

V<br />

= 0,96/ r1 (2,6 + qi<br />

)<br />

General view <strong>of</strong> conditions on joints <strong>with</strong> allowance for <strong>of</strong> contact thermal<br />

resistance and physico-chemical transformations accompanying <strong>with</strong> allocation (absorption)<br />

<strong>of</strong> a heat:<br />

⎧ + − ∂Tm<br />

+<br />

⎪Tm<br />

−Tm<br />

= Rm<br />

( λm<br />

)<br />

∂r<br />

⎨<br />

⎪ ∂Tm<br />

+ ∂Tm<br />

−<br />

( λ ) − ( ) = , m = 2,3,... M −1<br />

m<br />

λm<br />

ωm<br />

⎩ ∂r<br />

∂r<br />

(18)<br />

where R m – value <strong>of</strong> a factor <strong>of</strong> contact thermal resistance for m <strong>of</strong> the joint


<strong>Acta</strong> Metallurgica Slovaca, 8, 2002, 3 (308 - 320) 317<br />

ω<br />

m<br />

– value <strong>of</strong> a source intensity (sink) <strong>of</strong> heat on m the joint Here index "+",<br />

"-" indicates value <strong>of</strong> temperature and heat flow <strong>of</strong> adjoining surfaces<br />

resistance is determined from ratio [13; 14].<br />

For the solution <strong>of</strong> a problem (6) - (18) we use a method <strong>of</strong> finite differences. Let's<br />

take for flexons on transversal coordinate a difference approximation <strong>of</strong> the second order <strong>of</strong><br />

accuracy rather ∆<br />

rm<br />

( ∆<br />

rm<br />

–integration step on coordinate for m <strong>of</strong> a layer). For maiden<br />

derivative approximating by central differences <strong>of</strong> the second order <strong>of</strong> accuracy rather ∆<br />

rm<br />

.<br />

For derivative on time we use approximating the maiden order <strong>of</strong> accuracy rather ∆ τ . The<br />

difference equations <strong>of</strong> definition <strong>of</strong> values <strong>of</strong> temperature both for internal points <strong>of</strong> the<br />

multilayer barrel, and for joints are adduced to a unified standard kind in the form <strong>of</strong> a set <strong>of</strong><br />

equations <strong>with</strong> a scalar matrix:<br />

A T B T + C T = D ,<br />

i i+ 1<br />

+<br />

i i i i−1<br />

i<br />

i = i b<br />

÷ ie<br />

the factors <strong>of</strong> which are calculated under the formulas for internal points <strong>of</strong> each orbit and<br />

under the formula for joints between adjoining surfaces <strong>of</strong> adjacent orbits. Here i b<br />

–<br />

sequence number <strong>of</strong> an initial checkout <strong>of</strong> an incremental grid <strong>of</strong> an axis Oz, i<br />

e<br />

– numb er <strong>of</strong><br />

a final unit.<br />

According to known values q<br />

i , j tangential pressure σ i, j can be determined <strong>with</strong><br />

the help <strong>of</strong> an equation expressing an equilibrium condition <strong>of</strong> an orbit:<br />

qiri<br />

− q r<br />

σ<br />

i<br />

=<br />

r − r<br />

i+<br />

1<br />

i+<br />

1 i+<br />

1<br />

i<br />

For check <strong>of</strong> algorithm the calculations on definition <strong>of</strong> tight-strained state <strong>of</strong> a roll<br />

on a reel block were conducted. In a figure 8 design values <strong>of</strong> pressure <strong>of</strong> a roll on a reel<br />

block are compared to experimental outcomes <strong>of</strong> activity [11].<br />

The outcomes <strong>of</strong> numerical calculation correspond to the following elastic and<br />

geometrical characteristics <strong>of</strong> stuffs <strong>of</strong> a band and reel block: L = E δ = 2100 kg/mm 2 , µ =µ δ<br />

= 0.3, λ = 0.7, d=250mm, h=1mm, s=100МPа. The analysis <strong>of</strong> outcomes, reduced in a<br />

figure 2 demonstrates, that at calculation <strong>of</strong> pressure in rolls disregarding changes <strong>of</strong> value<br />

<strong>of</strong> gaps the pressure on a barrel <strong>with</strong> increasing <strong>of</strong> quantity <strong>of</strong> the reeled orbits continuously<br />

increases. The outcomes receive to high.<br />

The calculations executed (made) <strong>with</strong> allowance for <strong>of</strong> actual conditions <strong>of</strong> contact<br />

interplay <strong>of</strong> surfaces <strong>of</strong> a band in a roll (<strong>with</strong> allowance for <strong>of</strong> gaps), demonstrate, that <strong>with</strong><br />

growth <strong>of</strong> quantity <strong>of</strong> orbits the value <strong>of</strong> pressure is increased up to definite (critical) value,<br />

then practically does not change. It is conditioned by that the efforts from operating<br />

subsequent (after a critical number) orbits almost are completely expended on change <strong>of</strong><br />

gaps between orbits. The obtained computational relations <strong>of</strong> pressure on a reel block from<br />

quantity <strong>of</strong> the reeled layers <strong>of</strong> a band to the full will be agreeed experimental data [14].


<strong>Acta</strong> Metallurgica Slovaca, 8, 2002, 3 (308 - 320) 318<br />

The outcomes <strong>of</strong> a numerical solution are illustrated in a figure 9 by the way distributions <strong>of</strong><br />

temperature on depth <strong>of</strong> an orbit for concrete period (figure 9а) and relation <strong>of</strong> temperature<br />

to time under different conditions <strong>of</strong> heat convection <strong>with</strong> environment (Fig.9b)<br />

The distribution <strong>of</strong> temperature on depth <strong>of</strong> an orbit for concrete period is shown in<br />

a figure 9а. On this figure a continuous line the outcomes obtained <strong>with</strong> allowance for <strong>of</strong> a<br />

a)<br />

Fig. 8 Experimental and computational relations <strong>of</strong> pressure <strong>of</strong> a roll on a reel<br />

block from quantity <strong>of</strong> orbits at winding <strong>with</strong> a constant tension:<br />

1- computational relations <strong>of</strong> pressure <strong>of</strong> a roll on a reel block from quantity <strong>of</strong> orbits at winding (disregarding <strong>of</strong><br />

changes <strong>of</strong> turn-to-turn gaps); 2- computational relations <strong>of</strong> pressure <strong>of</strong> a roll on a reel block (<strong>with</strong> allowance for<br />

changes <strong>of</strong> gaps); 3,4- experimental relations <strong>of</strong> pressure <strong>of</strong> a roll on a reel block [11].<br />

a)


<strong>Acta</strong> Metallurgica Slovaca, 8, 2002, 3 (308 - 320) 319<br />

b)<br />

Fig.9 Influencings <strong>of</strong> the environmental conditions <strong>of</strong> thermoexchange on a temperature field <strong>of</strong><br />

а) relation <strong>of</strong> temperature to time at different depth <strong>of</strong> winding<br />

b) a temperature Variation Т in a median convolution which is removed from a barrel<br />

factor <strong>of</strong> thermal resistance (FTR) and crumpling <strong>of</strong> irregularities are rotined; a shaped line<br />

is similar to a case R T =0 (ideal thermal contact). Curves in a figure 9а indicated in digit 1–<br />

correspond to boundary conditions <strong>of</strong> 1-st kind, i.e. to absence <strong>of</strong> thermoexchange <strong>of</strong> an<br />

external orbit <strong>with</strong> environment (Т с =200С); 2 and 3 – boundary conditions <strong>of</strong> III kind, 2 –<br />

heat-transfer coefficient α =20 Wt / m 2 K; 3 – α =20 Wt / m 2 K. It is clear, that not taking<br />

into account FTR results in essential underestimation <strong>of</strong> a temperature field <strong>of</strong> a roll, the<br />

increasing <strong>of</strong> intensitry <strong>of</strong> thermoexchange <strong>with</strong> environment essentially accelerates a<br />

cooling <strong>of</strong> a roll. The temperature variation Т in a median convolution, which is removed<br />

from a barrel, is shown in a figure 9б. It is clear, that on external 150 orbit the heavy<br />

gradient <strong>of</strong> temperature on depth <strong>of</strong> an orbit <strong>of</strong> winding is watched. The curves 1-5<br />

correspond to time <strong>of</strong> winding 1-0,001с; 2-0,109с; 3-0,122с; 4-0,135с, 5-0,177с. On 50-th<br />

and 100-th orbits temperature remains invariable irrespective <strong>of</strong> time and depth <strong>of</strong> winding a<br />

curve 6.<br />

Literature<br />

[1] Arutyunyan, N. H., Drozdov A. D., Naumov V. A.: Mechanics <strong>of</strong> increasing<br />

viscoelastic-plastic bodies, 1987, M. Science, p. 335<br />

[2] Syasev A. V.: Formation <strong>of</strong> tight-strained state <strong>of</strong> cylindrical casting in conditions <strong>of</strong><br />

phase change// Visnyk DSU, 2001, Mechanics, B.2, Edition 4<br />

[3] Yudin S. B., Levin M. M., Rozenfeld S. E.: A spun casting, 1972, Machine industry,<br />

Moscow, p. 280<br />

[4] Arutyunyan N. H., Kolmanovskiy V. B.: The theory <strong>of</strong> a creep <strong>of</strong> inhomogeneous<br />

bodies, 1983, M. Science, p. 289<br />

[5] Syasev A. V., Kochubey A. A.: Peculiarities <strong>of</strong> pressure distribution in the visco-elastic<br />

round cylinder under the inner increasing as a model <strong>of</strong> from central casting <strong>of</strong> tubes //<br />

Visnyk DNU, 2001, Mechanics, B.2, edition 4<br />

[6] Kochubey A. A., Syasev A. V., Makarenkov E. A.: Continuous Escalating <strong>of</strong> Body <strong>of</strong><br />

Revolutions from a Visco-elastic Stuff in a Case <strong>of</strong> the Non-linear Law <strong>of</strong> a Creep, 41<br />

(2002) 3, Metallurgy, 224<br />

[7] Syasev A. V., Kochubey A. A. Mathematical <strong>modelling</strong> <strong>of</strong> centr<strong>of</strong>ugal casting <strong>of</strong> tubes,<br />

Mathematical <strong>modelling</strong>, 2001, №6, p. 59-63


<strong>Acta</strong> Metallurgica Slovaca, 8, 2002, 3 (308 - 320) 320<br />

[8] Syasev A. V., Kochubey A. A., Mamuzic I.: Mathematical Model <strong>of</strong> Growth <strong>of</strong><br />

Diphasic Cylindrical Bodies <strong>with</strong> a Fluid Phase on the Inside, Metallurgy, 41 (2002) 3,<br />

p. 227<br />

[9] Esman R. I., Bahmat V. А., Korolyev V. M.: A thermal physics <strong>of</strong> foundry <strong>processes</strong>,<br />

Belaruskaya Science, Minsk, 1998, p. 144<br />

[10] Shmrga L.: A solidification and crystallization <strong>of</strong> steel ingots, Metallurgy, 1985, p. 248<br />

[11] Mazur V.L.: Effecting <strong>of</strong> a sheet <strong>with</strong> a high-performance surface, Engineering, Kiev,<br />

1982, p. 166<br />

[12] Pimshteyn P.G., Zhukov V.N.: Calculation <strong>of</strong> pressure in the multilayer barrel <strong>with</strong><br />

allowance for <strong>of</strong> features <strong>of</strong> a contact <strong>of</strong> layers // <strong>of</strong> a Problem <strong>of</strong> strength, 1977, №5, p.<br />

71 - 77<br />

[13] Vesselovskiy V.B.: Application <strong>of</strong> computational methods <strong>of</strong> thermal modes <strong>of</strong> flight<br />

vehicles for research and intensification <strong>of</strong> master schedules, Heat-mass exchange, B.10,<br />

part 2, ITMT НАS Belarus, Minsk, 1996, p. 62 – 66<br />

[14] Vesselovskiy V.B., Ostrovskaya A.V., Beluy N.I., Lyashenko V.I.: Contact thermal<br />

resistance in members <strong>of</strong> designs, Heat-mass exchange - Heat conduction and problems<br />

<strong>of</strong> optimization, B.3, ITMT НАS Belarus, Minsk, 2000, p. 91 – 98

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!