04.01.2015 Views

Two-pulse solutions in the fifth-order KdV equation - Dmitry ...

Two-pulse solutions in the fifth-order KdV equation - Dmitry ...

Two-pulse solutions in the fifth-order KdV equation - Dmitry ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Two</strong>-<strong>pulse</strong> <strong>solutions</strong> <strong>in</strong> <strong>the</strong> <strong>fifth</strong>-<strong>order</strong><br />

<strong>KdV</strong> <strong>equation</strong><br />

Mar<strong>in</strong>a Chugunova and <strong>Dmitry</strong> Pel<strong>in</strong>ovsky (McMaster University, Canada)<br />

Background references:<br />

D.P., Y. Stepanyants, SIAM J. Numer. Anal. 42, 1110 (2004)<br />

Yu. Kodama, D.P., J. Phys. A: Math. Gen. 38, 6129 (2005)<br />

M. Chugunova, D.P., SIAM J. Math. Anal., submitted (2006)<br />

AMS Sectional Meet<strong>in</strong>g, Notre Dame, April 8-9 2006


Background and motivations<br />

Fifth-<strong>order</strong> <strong>KdV</strong> <strong>equation</strong><br />

u t + u xxx − u xxxxx + 2uu x = 0<br />

has travel<strong>in</strong>g wave <strong>solutions</strong> u = φ(z), z = x − ct, where φ(z)<br />

solves <strong>the</strong> fourth-<strong>order</strong> ODE<br />

φ (iv) − φ ′′ + cφ = φ 2 .


Background and motivations<br />

Fifth-<strong>order</strong> <strong>KdV</strong> <strong>equation</strong><br />

u t + u xxx − u xxxxx + 2uu x = 0<br />

has travel<strong>in</strong>g wave <strong>solutions</strong> u = φ(z), z = x − ct, where φ(z)<br />

solves <strong>the</strong> fourth-<strong>order</strong> ODE<br />

φ (iv) − φ ′′ + cφ = φ 2 .<br />

Applications:<br />

• capillary-gravity water waves (Craig–Groves, 1994)<br />

• cha<strong>in</strong>s of coupled oscillators (Gorshkov–Ostrovsky, 1979)<br />

• magneto–acoustic waves <strong>in</strong> plasma (Kawahara, 1972)


Solitary waves<br />

Stability of <strong>the</strong> critical po<strong>in</strong>t (0, 0, 0, 0) <strong>in</strong> <strong>the</strong> fourth-<strong>order</strong> ODE:<br />

φ ∼ e κz : κ 4 − κ 2 + c = 0.<br />

Existence of localized <strong>solutions</strong>:<br />

• c < 0 - no <strong>pulse</strong> <strong>solutions</strong> (Tovbis, 2000; Lombardi, 2000)<br />

• 0 < c < 1 - unique one-<strong>pulse</strong> solution (Amick–Toland, 1992;<br />

4<br />

Groves, 1998)<br />

• c > 1 - unique one-<strong>pulse</strong> and <strong>in</strong>f<strong>in</strong>ite countable set of two-<strong>pulse</strong><br />

4<br />

<strong>solutions</strong> (Buffoni–Sere, 1996)<br />

⇒ The doma<strong>in</strong> of our studies is c > 1 4 .


Ma<strong>the</strong>matical problems<br />

Numerical approximations of two-<strong>pulse</strong> <strong>solutions</strong><br />

• numerical shoot<strong>in</strong>g method and cont<strong>in</strong>uation techniques<br />

(Champneys, 1993)<br />

• iterations <strong>in</strong> Fourier space (Petviashvili’s method)<br />

⇒ Iterations diverge for two-<strong>pulse</strong> <strong>solutions</strong>!


Ma<strong>the</strong>matical problems<br />

Numerical approximations of two-<strong>pulse</strong> <strong>solutions</strong><br />

• numerical shoot<strong>in</strong>g method and cont<strong>in</strong>uation techniques<br />

(Champneys, 1993)<br />

• iterations <strong>in</strong> Fourier space (Petviashvili’s method)<br />

⇒ Iterations diverge for two-<strong>pulse</strong> <strong>solutions</strong>!<br />

Spectral stability of two-<strong>pulse</strong> <strong>solutions</strong><br />

• Lyapunov–Schmidt reductions (Sandstede, 1998)<br />

• Count of eigenvalues <strong>in</strong> Pontryag<strong>in</strong> space (Kre<strong>in</strong>’s signatures)<br />

⇒ The count of eigenvalues is <strong>in</strong>conclusive for two-<strong>pulse</strong> <strong>solutions</strong>!


Petviashvili’s method<br />

ODE for solitary waves<br />

φ (iv) − φ ′′ + cφ = φ 2 ,<br />

z ∈ R<br />

The ODE becomes <strong>the</strong> fixed-po<strong>in</strong>t problem <strong>in</strong> H 2 (R):<br />

ˆφ(k) =<br />

̂φ 2 (k)<br />

(c + k 2 + k 4 ) , k ∈ R<br />

where c > 0 and ˆφ(k) is <strong>the</strong> Fourier transform of φ(z).<br />

Iterations {û n (k)} ∞ n=0 are def<strong>in</strong>ed recursively <strong>in</strong> H 2 ev(R):<br />

û n+1 (k) = M 2 n<br />

û 2 n(k)<br />

(c + k 2 + k 4 ) , M[û n] =<br />

∫<br />

R (c + k2 + k 4 ) [û n (k)] 2 dk<br />

∫<br />

R ûn(k)û2 n(k)dk


Convergence Theorem<br />

• Let ˆφ(k) be a solution of <strong>the</strong> fixed-po<strong>in</strong>t problem <strong>in</strong> H 2 ev(R)<br />

• Let H be <strong>the</strong> Jacobian operator of <strong>the</strong> ODE at φ(z):<br />

H = c − ∂ 2 z + ∂ 4 z − 2φ(z)<br />

Theorem: If H has exactly one negative eigenvalue and a simple<br />

zero eigenvalue and if<br />

∣ ∣∣∣<br />

ei<strong>the</strong>r φ(z) ≥ 0 or<br />

∣ <strong>in</strong>f φ(z) < c<br />

z∈R 2 ,<br />

<strong>the</strong>n <strong>the</strong>re exists an open neighborhood of ˆφ <strong>in</strong> H 2 ev(R), <strong>in</strong> which ˆφ<br />

is <strong>the</strong> unique fixed po<strong>in</strong>t and <strong>the</strong> sequence of iterations {û n (k)} ∞ n=0<br />

converges to ˆφ.


One-<strong>pulse</strong> <strong>solutions</strong><br />

Let φ ≡ Φ(z) be a one-<strong>pulse</strong> solution <strong>in</strong> H = c − ∂ 2 z + ∂ 4 z − 2Φ(z).<br />

Then, H has exactly one negative eigenvalue and a simple kernel<br />

with Φ ′ (z) <strong>in</strong> H 2 (R).


Analysis of convergence<br />

Numerical factors for numerical error:<br />

• truncation of z ∈ R to <strong>the</strong> <strong>in</strong>terval z ∈ [−d, d]<br />

• truncation of Fourier series by <strong>the</strong> discrete sum with N terms<br />

• small tolerance ε for E M = |M n − 1| and<br />

E ∞ = ‖u n+1 − u n ‖ L ∞


<strong>Two</strong>-<strong>pulse</strong> <strong>solutions</strong><br />

Let φ ≡ φ n (z) be a two-<strong>pulse</strong> solution. Then,<br />

φ(z) = Φ(z − s) + Φ(z + s) + ϕ(z),<br />

where ‖ϕ‖ L ∞ = O(e −2κs ) and |s − s n | = O(e −2κs ), where s n is an<br />

extremum po<strong>in</strong>t of W (2s) <strong>in</strong><br />

∫<br />

W = Φ 2 (z)Φ(z + 2s)dz.<br />

R


<strong>Two</strong>-<strong>pulse</strong> <strong>solutions</strong><br />

Let φ ≡ φ n (z) be a two-<strong>pulse</strong> solution. Then,<br />

φ(z) = Φ(z − s) + Φ(z + s) + ϕ(z),<br />

where ‖ϕ‖ L ∞ = O(e −2κs ) and |s − s n | = O(e −2κs ), where s n is an<br />

extremum po<strong>in</strong>t of W (2s) <strong>in</strong><br />

∫<br />

W = Φ 2 (z)Φ(z + 2s)dz.<br />

R<br />

The operator H has two f<strong>in</strong>ite negative eigenvalues, a simple kernel<br />

with φ ′ n(z), and a small eigenvalue µ <strong>in</strong> H 2 (R), such that<br />

∣ µ + 2W ′′ (2s n )<br />

Q ∣ ≤ C ne −4κs n<br />

, Q = ‖Φ ′ ‖ 2 L > 0. 2


Iterations of <strong>the</strong> method<br />

<strong>Two</strong>-<strong>pulse</strong> <strong>solutions</strong>


<strong>Two</strong>-<strong>pulse</strong> <strong>solutions</strong><br />

Iterations of <strong>the</strong> method<br />

M<strong>in</strong>imum error for root search


Numerical algorithm<br />

Theorem: There exists s = s ∗ near s = s n such that <strong>the</strong> iteration<br />

method with u 0 = Φ(z − s) + Φ(z + s) converges to φ n (z) <strong>in</strong> a<br />

local neighborhood of φ n <strong>in</strong> H 2 ev(R).


Spectral stability<br />

L<strong>in</strong>earized problem for spectral stability<br />

∂ z Hv = λv,<br />

v ∈ L 2 (R)<br />

Eigenvalues with Re(λ) > 0 result <strong>in</strong> spectral <strong>in</strong>stability.<br />

Let φ ≡ φ n (z) be a two-<strong>pulse</strong> solution. There exists a pair of small<br />

eigenvalues λ of <strong>the</strong> l<strong>in</strong>earized operator ∂ z H, such that<br />

∣ λ2 + 4W ′′ (2s n )<br />

P ′ (c) ∣ ≤ C ne −4κs n<br />

, P ′ (c) = d dc ‖Φ‖2 L > 0. 2<br />

• W ′′ (2s n ) > 0 - pair of purely imag<strong>in</strong>ary eigenvalues<br />

• W ′′ (2s n ) < 0 - pair of real eigenvalues


Spectral stability <strong>the</strong>orem<br />

Notations:<br />

• N real - <strong>the</strong> number of real positive eigenvalues<br />

• N comp - <strong>the</strong> number of complex eigenvalues <strong>in</strong> <strong>the</strong> first open<br />

quadrant<br />

- <strong>the</strong> number of simple positive imag<strong>in</strong>ary eigenvalues<br />

with (Hv, v) ≤ 0<br />

• N −<br />

imag<br />

• The kernel of H is simple and P ′ (c) > 0


Spectral stability <strong>the</strong>orem<br />

Notations:<br />

• N real - <strong>the</strong> number of real positive eigenvalues<br />

• N comp - <strong>the</strong> number of complex eigenvalues <strong>in</strong> <strong>the</strong> first open<br />

quadrant<br />

- <strong>the</strong> number of simple positive imag<strong>in</strong>ary eigenvalues<br />

with (Hv, v) ≤ 0<br />

• N −<br />

imag<br />

• The kernel of H is simple and P ′ (c) > 0<br />

Theorem: Then,<br />

N real + 2N comp + 2N −<br />

imag<br />

= n(H) − 1,<br />

where n(H) is <strong>the</strong> number of negative eigenvalues of H.


Applications of <strong>the</strong> Theorem<br />

Counts of eigenvalues:<br />

• One-<strong>pulse</strong> <strong>solutions</strong><br />

n(H) = 1,<br />

N real = N comp = N −<br />

imag = 0<br />

The one-<strong>pulse</strong> solution is a ground state (Levandosky, 1999)


Applications of <strong>the</strong> Theorem<br />

Counts of eigenvalues:<br />

• One-<strong>pulse</strong> <strong>solutions</strong><br />

n(H) = 1,<br />

N real = N comp = N −<br />

imag = 0<br />

The one-<strong>pulse</strong> solution is a ground state (Levandosky, 1999)<br />

• <strong>Two</strong>-<strong>pulse</strong> <strong>solutions</strong> with W ′′ (2s n ) < 0<br />

n(H) = 2, N real = 1, N comp = N −<br />

imag = 0<br />

The two-<strong>pulse</strong> solution with W ′′ (2s n ) < 0 is spectrally<br />

unstable.


Applications of <strong>the</strong> Theorem<br />

Counts of eigenvalues:<br />

• <strong>Two</strong>-<strong>pulse</strong> <strong>solutions</strong> with W ′′ (2s n ) > 0<br />

n(H) = 3, N real = 0, N comp + N −<br />

imag = 1<br />

The "standard" count is <strong>in</strong>conclusive for <strong>the</strong>se <strong>solutions</strong>.


Applications of <strong>the</strong> Theorem<br />

Counts of eigenvalues:<br />

• <strong>Two</strong>-<strong>pulse</strong> <strong>solutions</strong> with W ′′ (2s n ) > 0<br />

n(H) = 3, N real = 0, N comp + N −<br />

imag = 1<br />

The "standard" count is <strong>in</strong>conclusive for <strong>the</strong>se <strong>solutions</strong>.<br />

Theorem: Let λ be a simple purely imag<strong>in</strong>ary eigenvalue of ∂ z H <strong>in</strong><br />

L 2 (R). Then, it is structurally stable to parameter cont<strong>in</strong>uation, i.e.<br />

it rema<strong>in</strong>s purely imag<strong>in</strong>ary eigenvalue upon an addition of a<br />

relatively compact perturbation to ∂ z H.<br />

N comp = 0,<br />

N −<br />

imag = 1<br />

The two-<strong>pulse</strong> solution with W ′′ (2s n ) > 0 is spectrally stable.


Numerical spectrum<br />

Exponentially weighted space<br />

H 2 α = { v ∈ H 2 loc(R) : e αz v(z) ∈ H 2 (R) }


Numerical spectrum<br />

Exponentially weighted space<br />

H 2 α = { v ∈ H 2 loc(R) : e αz v(z) ∈ H 2 (R) }


Numerical spectrum


Conclusions<br />

Outcomes of our work:<br />

• Application of Pontryag<strong>in</strong> spaces to <strong>KdV</strong> <strong>equation</strong>s<br />

• Numerical approximations of two-<strong>pulse</strong> <strong>solutions</strong><br />

• Proof of structural stability of embedded eigenvalues


Conclusions<br />

Outcomes of our work:<br />

• Application of Pontryag<strong>in</strong> spaces to <strong>KdV</strong> <strong>equation</strong>s<br />

• Numerical approximations of two-<strong>pulse</strong> <strong>solutions</strong><br />

• Proof of structural stability of embedded eigenvalues<br />

Open problems:<br />

• Error bounds on validity of <strong>the</strong> Newton’s particle law:<br />

P ′ (c)¨L = −W ′′ (L),<br />

where L(t) = 2s is <strong>the</strong> distance between two <strong>pulse</strong>s.<br />

• Numerical approximations of three- and multi-<strong>pulse</strong> <strong>solutions</strong><br />

• Proof of asymptotic stability of multi-<strong>pulse</strong> <strong>solutions</strong>


Software for relevant computations

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!