04.01.2015 Views

Membrane Structure and Function •The plasma membrane is the ...

Membrane Structure and Function •The plasma membrane is the ...

Membrane Structure and Function •The plasma membrane is the ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Ch 7- <strong>Membrane</strong> <strong>Structure</strong> <strong>and</strong> <strong>Function</strong><br />

Goals for today’s lecture:<br />

Learn about <strong>the</strong> structure of cellular <strong>membrane</strong>s<br />

-Underst<strong>and</strong> osmos<strong>is</strong> <strong>and</strong> water balance in cells<br />

-Underst<strong>and</strong> passive vs. facilitated diffusion<br />

-Learn about <strong>the</strong> traffic of large molecules<br />

-exocytos<strong>is</strong> <strong>and</strong> endocytos<strong>is</strong><br />

•The <strong>plasma</strong> <strong>membrane</strong> <strong>is</strong> <strong>the</strong> boundary that<br />

separates <strong>the</strong> living cell from its nonliving<br />

surroundings<br />

•The <strong>plasma</strong> <strong>membrane</strong> exhibits selective<br />

permeability, allowing some substances to cross it<br />

more easily than o<strong>the</strong>rs<br />

A Fluid Mosaic of Lipids <strong>and</strong> Proteins<br />

•The <strong>membrane</strong>s of cells are composed of<br />

Hydrophilic<br />

head<br />

Hydrophobic<br />

tail<br />

Phospholipid<br />

bilayer<br />

WATER<br />

WATER<br />

Hydrophilic region<br />

of protein<br />

Hydrophobic region of protein<br />

•Th<strong>is</strong> behavior leads to <strong>the</strong> description of a<br />

<strong>membrane</strong> as a fluid mosaic<br />

Lateral movement<br />

(~107 times per second)<br />

Flip-flop<br />

(~ once per month)<br />

Movement of phospholipids<br />

<strong>Membrane</strong> Proteins <strong>and</strong> Their <strong>Function</strong>s<br />

•Proteins determine most of <strong>the</strong> <strong>membrane</strong>’s<br />

specific functions<br />

Glycoprotein<br />

Peripheral proteins<br />

EXTRACELLULAR<br />

SIDE OF<br />

MEMBRANE<br />

Integral proteins penetrate <strong>the</strong><br />

hydrophobic core <strong>and</strong> often span <strong>the</strong> <strong>membrane</strong><br />

Peripheral<br />

proteins<br />

Integral<br />

protein<br />

CYTOPLASMIC SIDE<br />

OF MEMBRANE


<strong>Membrane</strong> Proteins <strong>and</strong> Their <strong>Function</strong>s<br />

•Six major functions of <strong>membrane</strong> proteins:<br />

Fibers of<br />

extracellular<br />

matrix<br />

c<br />

Cytoplasm<br />

Enzymatic activity<br />

b<br />

Cell signaling<br />

a<br />

Attachment to<br />

cytoskeleton <strong>and</strong><br />

extracellular<br />

matrix<br />

Cytoskeleton<br />

d<br />

e<br />

Intercellular f<br />

joining Cell-cell<br />

Transport<br />

recognition<br />

Cytoplasm<br />

Figure<br />

The Role of <strong>Membrane</strong> Carbohydrates in Cell-Cell Recognition<br />

Cell-cell recognition<br />

Enzymes<br />

Signal<br />

•Cells recognize each o<strong>the</strong>r by binding to surface molecules,<br />

often carbohydrates, on <strong>the</strong> <strong>plasma</strong> <strong>membrane</strong><br />

ATP<br />

Receptor<br />

Transport Enzymatic activity Signal transduction<br />

<strong>Membrane</strong> structure results in selective permeability<br />

A cell must exchange materials with its surroundings, a<br />

process controlled by <strong>the</strong> <strong>plasma</strong> <strong>membrane</strong><br />

Plasma <strong>membrane</strong>s are selectively permeable, regulating<br />

<strong>the</strong> cell’s molecular traffic<br />

Glycoprotein<br />

Hydrophobic (nonpolar) molecules<br />

Cell-cell recognition Intercellular joining Attachment to <strong>the</strong><br />

cytoskeleton <strong>and</strong> extracellular<br />

matrix (ECM)<br />

Polar molecules<br />

Passive transport <strong>is</strong> diffusion of a substance across<br />

a <strong>membrane</strong> with no energy investment<br />

Diffusion<br />

Although each molecule moves r<strong>and</strong>omly, diffusion of a population of molecules may exhibit a net movement in one<br />

direction<br />

Diffusion across a <strong>membrane</strong> <strong>is</strong> called passive transport.<br />

Passive because <strong>the</strong> cell does not expend any energy for passive transport to happen.


Effects of Osmos<strong>is</strong> on Water Balance<br />

Osmos<strong>is</strong><br />

Lower<br />

concentration<br />

of solute (sugar)<br />

Higher<br />

concentration<br />

of sugar<br />

Same concentration<br />

of sugar<br />

H 2 O<br />

The direction of osmos<strong>is</strong> <strong>is</strong> determined only by a<br />

difference in total solute concentration<br />

Water diffuses across a <strong>membrane</strong> from <strong>the</strong> region of<br />

lower solute concentration to <strong>the</strong> region of higher solute<br />

concentration<br />

Selectively<br />

permeable <strong>membrane</strong>:<br />

sugar molecules<br />

cannot pass<br />

through pores, but<br />

water molecules can<br />

Osmos<strong>is</strong><br />

Tonicity<br />

hypertonic<br />

hypotonic<br />

<strong>is</strong>otonic<br />

Water Balance in Animal Cells<br />

•Animals <strong>and</strong> o<strong>the</strong>r organ<strong>is</strong>ms without rigid cell walls<br />

have osmotic problems in ei<strong>the</strong>r a hypertonic or<br />

hypotonic environment<br />

osmoregulation


Water Balance in Animal Cells<br />

•To maintain <strong>the</strong>ir internal environment, such organ<strong>is</strong>ms must<br />

have adaptations for osmoregulation, <strong>the</strong> control of water<br />

balance<br />

Filling vacuole<br />

The prot<strong>is</strong>t Paramecium<br />

Contracting vacuole<br />

Water Balance in Plant Cells<br />

Water balance problems are<br />

somewhat different for plant<br />

cells because of <strong>the</strong>ir rigid cell<br />

wall.<br />

Facilitated Diffusion: Passive Transport Aided by Proteins<br />

•In facilitated diffusion, transport proteins speed<br />

movement of molecules across <strong>the</strong> <strong>plasma</strong> <strong>membrane</strong><br />

EXTRACELLULAR<br />

FLUID<br />

Channel proteins<br />

Channel protein<br />

Solute<br />

CYTOPLASM<br />

Carrier proteins<br />

Carrier protein<br />

Solute


Active Transport: The Pumping of Molecules<br />

Across <strong>the</strong> <strong>Membrane</strong><br />

In contrast to passive transport, active transport requires<br />

that a cell expend energy to move molecules across <strong>the</strong><br />

<strong>membrane</strong>.<br />

In active transport, a specific transport protein<br />

actively pumps a solute across <strong>the</strong> cell <strong>membrane</strong><br />

against <strong>the</strong> solute’s concentration gradient.<br />

The Sodium-Potassium Pump<br />

EXTRACELLULAR<br />

FLUID<br />

[Na + ] high<br />

[K + ] low<br />

Na +<br />

Na +<br />

Na +<br />

Na +<br />

Na +<br />

Na +<br />

Na +<br />

Na +<br />

CYTOPLASM Na+<br />

[Na + ] low<br />

[K + ] high<br />

Cytoplasmic Na + bonds to<br />

<strong>the</strong> sodium-potassium pump<br />

P<br />

ADP<br />

ATP<br />

Phosphorylation causes<br />

<strong>the</strong> protein to change its<br />

conformation, expelling Na +<br />

to <strong>the</strong> outside.<br />

P<br />

P<br />

P<br />

Loss of <strong>the</strong> phosphate<br />

restores <strong>the</strong> protein’s<br />

original conformation.<br />

K + <strong>is</strong> released <strong>and</strong> Na +<br />

sites are receptive again;<br />

<strong>the</strong> cycle repeats.<br />

Maintenance of <strong>Membrane</strong> Potential by Ion Pumps<br />

•<strong>Membrane</strong> potential<br />

–<br />

+<br />

EXTRACELLULAR<br />

FLUID<br />

Two combined forces, collectively called <strong>the</strong><br />

electrochemical gradient, drive <strong>the</strong> diffusion of ions across<br />

a <strong>membrane</strong>:<br />

A chemical force (<strong>the</strong> ion’s concentration<br />

gradient)<br />

An electrical force (<strong>the</strong> effect of <strong>the</strong> <strong>membrane</strong><br />

potential on <strong>the</strong> ion’s movement)<br />

ATP<br />

H +<br />

–<br />

CYTOPLASM<br />

–<br />

Proton pump<br />

+<br />

+<br />

+<br />

H +<br />

H +<br />

H +<br />

H +<br />

H +<br />

An electrogenic pump<br />

The sodium-potassium pump <strong>is</strong> <strong>the</strong> major electrogenic pump of animal cells.<br />

The pumping of H+ transfers positive charge from <strong>the</strong> cytoplasm to <strong>the</strong> extracellular solution.<br />

By generating voltage across <strong>the</strong> <strong>membrane</strong>s, electrogenic pumps store energy for cellular work.


Cotransport: Coupled Transport by a <strong>Membrane</strong> Protein<br />

Cotransport<br />

ATP<br />

H+<br />

Proton pump<br />

•A substance that has been pumped across a <strong>membrane</strong> can do work as<br />

it moves back through diffusion.<br />

•Plants commonly use <strong>the</strong> gradient of hydrogen ions<br />

generated by proton pumps to drive active transport<br />

of nutrients into <strong>the</strong> cell<br />

Sucrose-H+<br />

cotransporter<br />

Sucrose<br />

Diffusion<br />

of H+<br />

Bulk transport across <strong>the</strong> <strong>plasma</strong> <strong>membrane</strong> occurs by exocytos<strong>is</strong> <strong>and</strong><br />

endocytos<strong>is</strong><br />

•Small molecules <strong>and</strong> water enter or leave <strong>the</strong> cell through <strong>the</strong> lipid bilayer<br />

or by transport proteins<br />

Exocytos<strong>is</strong><br />

During protein production by <strong>the</strong> cell, secretory proteins exit<br />

<strong>the</strong> cell in transport vesicles that fuse with <strong>the</strong> <strong>plasma</strong> <strong>membrane</strong>,<br />

<strong>and</strong> spill <strong>the</strong> contents outside <strong>the</strong> cell.<br />

Endocystos<strong>is</strong><br />

Three types of endocytos<strong>is</strong><br />

Phagocytos<strong>is</strong> (“cellular eating”)<br />

Pinocytos<strong>is</strong> (“cellular drinking”)<br />

Plasma<br />

<strong>membrane</strong><br />

Vesicle<br />

Pinocytos<strong>is</strong><br />

vesicles forming<br />

(arrows) in a cell<br />

lining a small<br />

blood vessel<br />

(TEM).<br />

Receptor<br />

RECEPTOR-MEDIATED ENDOCYTOSIS<br />

Coat protein<br />

Coated<br />

vesicle<br />

Receptor-mediated endocytos<strong>is</strong><br />

An example <strong>is</strong> <strong>the</strong> mechan<strong>is</strong>m human liver<br />

cells use to take up cholesterol particles that<br />

circulate in <strong>the</strong> blood.<br />

Lig<strong>and</strong><br />

Coated<br />

pit<br />

Coat<br />

protein<br />

Plasma<br />

<strong>membrane</strong> 0.25 µm<br />

A coated pit<br />

<strong>and</strong> a coated<br />

vesicle formed<br />

during<br />

receptormediated<br />

endocytos<strong>is</strong><br />

(TEMs).


Study outline-Chapter 7-<strong>Membrane</strong> <strong>Structure</strong> <strong>and</strong> <strong>Function</strong><br />

Underst<strong>and</strong> structure of <strong>membrane</strong>s <strong>and</strong> <strong>the</strong> Fluid Mosaic Model<br />

Recognize <strong>the</strong> following parts of <strong>the</strong> Fluid Mosaic Model<br />

-phospholipid bilayer<br />

-hydrophobic tail<br />

-hydrophilic head<br />

-<strong>membrane</strong> proteins<br />

integral proteins<br />

peripheral proteins<br />

Know <strong>the</strong> functions of <strong>membrane</strong> proteins (7.10)<br />

-attachment to cytoskeleton<br />

-cell signaling<br />

-enzymatic activity<br />

-transport<br />

-intercellular joining<br />

-cell-cell recognition<br />

Permeability of <strong>the</strong> lipid bilayer<br />

Underst<strong>and</strong> <strong>the</strong> permeability of hydrophobic (nonpolar) molecules<br />

vs. polar molecules <strong>and</strong> how permeability relates to fluidity of <strong>the</strong> <strong>membrane</strong><br />

Passive transport<br />

-diffusion (Fig. 7.13a)<br />

-osmos<strong>is</strong> (Fig. 7.14)<br />

-facilitated transport<br />

channel proteins<br />

carrier proteins<br />

Tonicity<br />

Underst<strong>and</strong> hypertonic, <strong>is</strong>otonic, <strong>and</strong> hypotonic in plant <strong>and</strong> animal cells (Fig. 7.15)<br />

Active transport<br />

Examples – sodium-potassium pump<br />

proton pump- electrochemical gradient<br />

cotransport<br />

Bulk flow<br />

Exocytos<strong>is</strong> vs Endocytos<strong>is</strong><br />

Three types of endocytos<strong>is</strong> (Fig. 7.22)<br />

-phagocytos<strong>is</strong><br />

-pinocytos<strong>is</strong><br />

-receptor-mediated endocytos<strong>is</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!