04.01.2015 Views

Lecture: Introduction to Seismology and Ground Motion Parameters

Lecture: Introduction to Seismology and Ground Motion Parameters

Lecture: Introduction to Seismology and Ground Motion Parameters

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

GSC415 Winter 2013<br />

Engineering Geology II<br />

Today’s Class<br />

• <strong>Lecture</strong>: <strong>Introduction</strong> <strong>to</strong> Earthquake Hazards <strong>and</strong><br />

<strong>Seismology</strong><br />

• Homework Exercise: Strong <strong>Ground</strong> <strong>Motion</strong><br />

<strong>Parameters</strong><br />

• Kramer: Geotechnical Earthquake Engineering<br />

– Chapters 1-3<br />

– Appendix B.1-B.5.4<br />

2/18/13 Cal Poly Pomona<br />

1


GSC415 Winter 2013<br />

Engineering Geology II<br />

<strong>Introduction</strong> <strong>to</strong> Earthquake<br />

Hazards <strong>and</strong> <strong>Seismology</strong>


local agency (city or county); show location of fault investigation trenches; 50-foot setbacks perpendicular from fault<br />

plane <strong>and</strong> proposed building footprints.<br />

9. Geologic Hazard Zones (Liquefaction & L<strong>and</strong>slides): (If applicable) Show proposed structures in<br />

relation <strong>to</strong> CGS official map showing zones of required investigation for liquefaction <strong>and</strong> l<strong>and</strong>slide, <strong>and</strong>/or any pertinent<br />

GSC415 Winter geologic 2013 hazard map from the Safety Element of the local agency (city or county).<br />

Engineering Geology II<br />

10. Geotechnical Testing of Representative Samples: Broad suite of appropriate geotechnical tests.<br />

11. Consideration of Geology in Geotechnical Engineering Recommendations:<br />

Checklist Item or Topic Within Consulting Report<br />

NA = not applicable<br />

Discuss California engineering Geological geologic aspects Survey of excavation/grading/fill - Note 48 activities, foundation <strong>and</strong> support of<br />

structures. Checklist for the Include Review geologic of Engineering <strong>and</strong> Geology geotechnical <strong>and</strong> <strong>Seismology</strong> inspections Reports <strong>and</strong> for problems anticipated 16. Site-Specific during <strong>Ground</strong> grading. <strong>Motion</strong> Analysis: (If applicable) Required for sites where<br />

Special California design Public <strong>and</strong> Schools, construction Hospitals, <strong>and</strong> provisions Essential for Services bearing Buildings capacity failure <strong>and</strong>/or footings or foundations<br />

<strong>and</strong> deterministic lower limit. See requirements in CBC §1803A.6.2. Provide design response<br />

founded on weak or expansive January 1, soils. 2011 Consideration of seismic compression of fills; spectrum cut/fill that meets differential<br />

ASCE 7 §21.3. Also provide SDS <strong>and</strong> SD1 values that meet ASCE 7 §21.4.<br />

settlement.<br />

Note 48 is used by the California Geological Survey (CGS) <strong>to</strong> review the geology, seismology, <strong>and</strong> geologic hazards evaluated in<br />

reports that are prepared under California Code of Regulations (CCR), Title 24, California Building Code. CCR Title 24 applies <strong>to</strong> California<br />

Public Schools, Hospitals, Skilled Nursing Facilities, <strong>and</strong> Essential Services Buildings. The Building Official for public schools is the Division of<br />

the State Architect (DSA). Hospitals <strong>and</strong> Skilled Nursing Facilities in California are under the jurisdiction of the Office of Statewide Health<br />

Planning & Development (OSHPD). The California Geological Survey serves under contract with these two state agencies.<br />

<strong>Seismology</strong> & Calculation of Earthquake <strong>Ground</strong> <strong>Motion</strong><br />

<strong>and</strong> scaled time his<strong>to</strong>ries <strong>and</strong> response spectra.<br />

12. Evaluation of His<strong>to</strong>rical Seismicity: Prepare a short description of how his<strong>to</strong>rical<br />

Project Name: ____________________________<br />

Location: ____________________________________<br />

OSHPD or DSA File #: ____________________ Reviewed By: ________________________________<br />

Date 13. Reviewed: Classify __________________________ the Geologic Subgrade California Certified (Site Engineering Class): Geologist 2010 #: _______ CBC Table 1613A.5.2 <strong>and</strong><br />

http://earthquake.usgs.gov/research/hazmaps/design/.<br />

Project Location<br />

1. Site Location Map, Street Address, County Name: Correctly plot site on a<br />

15. 7½-minute Seismic USGS quadrangle Design base-map. Category: Report if S 1 > 0.75<br />

2. Plot Plan with Exploration Data <strong>and</strong> Building Footprint: One boring or exploration<br />

shaft per 5000 ft 2 , with minimum of two for any one building. Explora<strong>to</strong>ry trench locations.<br />

3. Site Coordinates (Latitude & Longitude):<br />

grading.<br />

earthquakes have affected the site.<br />

effectiveness of options <strong>to</strong> mitigate l<strong>and</strong>sliding/slope failure effects. Acceptance criteria for ground-<br />

8. Active Faulting & Coseismic Deformation Across Site: Show conditions proposed structures described in relation <strong>to</strong> in 2010 CBC §1615A.1.227. apply. Dynamic Provide Site Conditions: probabilistic (If applicable) MCE, deterministic Site response analysis MCE <strong>and</strong> <strong>to</strong>pographic effects<br />

Alquist-Priolo Earthquake Fault Zones <strong>and</strong>/or any potential fault rupture hazard identified from the Safety Element of the<br />

should be considered, if appropriate.<br />

local agency (city or county); show location of fault investigation trenches; 50-foot setbacks<br />

<strong>and</strong> deterministic<br />

perpendicular from fault<br />

lower limit. See requirements 28. in Mitigation CBC §1803A.6.2. Options for Provide L<strong>and</strong>sliding/Other design response Slope Failure: (If applicable) Discuss<br />

plane <strong>and</strong> proposed building footprints.<br />

spectrum that meets ASCE 7 §21.3. Also provide S DS <strong>and</strong> S D1 values that meet ASCE 7 §21.4.<br />

9. Geologic Hazard Zones (Liquefaction & L<strong>and</strong>slides): (If applicable) Show proposed structures in<br />

improvement schemes.<br />

relation <strong>to</strong> CGS official map showing zones of required investigation for liquefaction <strong>and</strong> l<strong>and</strong>slide, <strong>and</strong>/or any pertinent<br />

geologic hazard map from the Safety Element of the local agency (city or county).<br />

NR = not addressed by consultant <strong>and</strong> therefore not reviewed at this time<br />

conditions described in 2010 CBC §1615A.1.2 apply. Provide probabilistic MCE, deterministic MCE<br />

17. Deaggregated Seismic Source <strong>Parameters</strong>: (If applicable) Provide controlling<br />

magnitude (Mw) <strong>and</strong> distance <strong>to</strong> fault, if needed for liquefaction, slope stability analysis or for<br />

earthquake record selection.<br />

18. Time His<strong>to</strong>ries of Earthquake <strong>Ground</strong> <strong>Motion</strong>: (If applicable) Compute target spectra,<br />

justify selected earthquake records, scale <strong>to</strong> target <strong>to</strong> meet ASCE 7 §16.1.3 or §17.3 <strong>and</strong> show initial<br />

Liquefaction/Seismic Settlement Analysis<br />

19. Geologic Setting for Occurrence of Liquefaction: Perform screening analysis <strong>to</strong><br />

identify where the following conditions apply:<br />

depth of highest his<strong>to</strong>rical ground water surface


GSC415 Winter 2013<br />

Engineering Geology II<br />

Engineering<br />

<strong>Seismology</strong>:<br />

A Simplified<br />

Picture<br />

• Earthquake source<br />

• Seismic wave propagation<br />

• <strong>Ground</strong> motion<br />

• Building response<br />

2/18/13 Cal Poly Pomona 4


GSC415 Winter 2013<br />

Engineering Geology II<br />

Hazard, Mitigation <strong>and</strong> Risk<br />

Seismic Hazard: any physical phenomenon associated<br />

with an earthquake that may cause damage <strong>and</strong> loss<br />

Hazard is studied <strong>and</strong> evaluated -><br />

Mitigation: design actions <strong>to</strong> reduce loss of life,<br />

injuries <strong>and</strong> damages<br />

Risk: a probability that<br />

social or economic<br />

consequences will<br />

exceed a specified value<br />

2/18/13 Cal Poly Pomona<br />

5


GSC415 Winter 2013<br />

Engineering Geology II<br />

Return Period<br />

Return Period/<br />

Recurrence<br />

Interval: the mean<br />

time period<br />

between samesized<br />

events.<br />

The larger the event,<br />

the longer the<br />

return period.<br />

2/18/13 Cal Poly Pomona<br />

6


GSC415 Winter 2013<br />

Engineering Geology II<br />

Very High Risk:<br />

Tokyo<br />

• One of the world's most<br />

densely populated<br />

metropolitan areas<br />

• In 1923, it suffered a<br />

destructive earthquake, the<br />

Great Kan<strong>to</strong> quake<br />

– 143,000 fatalities<br />

– destroyed two-thirds of<br />

Tokyo<br />

• Estimated recurrence time:<br />

70 years….<br />

2/18/13 Cal Poly Pomona<br />

7


GSC415 Winter 2013<br />

Engineering Geology II<br />

Mitigation: Earthquake Engineering<br />

• Haiti earthquake, 2010:<br />

M7.0, 230,000 deaths<br />

• New Zeal<strong>and</strong> earthquake,<br />

2010: M7.1, 0 deaths<br />

Great earthquake disasters<br />

occur where high population<br />

density, earthquakes, <strong>and</strong><br />

poor construction coincide.<br />

2/18/13 Cal Poly Pomona<br />

8


GSC415 Winter 2013<br />

Engineering Geology II<br />

Fatalities <strong>and</strong> Damages<br />

Vary greatly from year <strong>to</strong> year<br />

Dominated by rare catastrophes<br />

Locations of worst damages are different from those of<br />

fatalities.<br />

Economic Losses:<br />

• Destruction of Infrastructure<br />

• Loss in Productivity<br />

2/18/13 Cal Poly Pomona<br />

9


GSC415 Winter 2013<br />

Engineering Geology II<br />

The Economic <strong>and</strong> Human Impact of Disasters* in the last 12 years<br />

363 Billion<br />

214 Billion<br />

190 Billion<br />

136 Billion<br />

0<br />

46 Billion<br />

27 Billion<br />

52 Billion<br />

69 Billion<br />

34 Billion<br />

74 Billion<br />

46 Billion<br />

131 Billion<br />

659 Million<br />

0<br />

174 Million<br />

108 Million<br />

255 Million<br />

161 Million<br />

160 Million<br />

126 Million<br />

211 Million<br />

221 Million<br />

199 Million<br />

261 Million<br />

162 Million<br />

244,880<br />

242,191<br />

308,152<br />

113,513<br />

93,076<br />

0<br />

39,496<br />

16,666 21,342<br />

29,893<br />

22,424 15,957<br />

32,816<br />

http://www.unisdr.org<br />

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011<br />

KEY<br />

DISASTER<br />

EVENTS<br />

*Disasters refers <strong>to</strong> Natural Disasters as categorized in EM-DAT<br />

Data source: EM-DAT: The OFDA/CRED International Disaster Database<br />

Data version: 10 January 2012 - v12.07<br />

Humanitarian Symbol Set (2008): http://www.ungiwg.org/map/guideline.php<br />

South Asia<br />

July 2002<br />

Europe<br />

Aug 2002<br />

China<br />

Aug 2002<br />

Bam (Iran)<br />

Dec 2003<br />

Indian Ocean<br />

Dec 2004<br />

Kashmir<br />

Oct 2005<br />

Katrina<br />

Aug 2005<br />

Sidr<br />

Nov 2007<br />

Sichuan<br />

May 2008<br />

Nargis<br />

May 2008<br />

2/18/13 Cal Poly Pomona 10<br />

Pakistan<br />

July 2010<br />

Haiti<br />

Dec 2010<br />

Japan<br />

March 2011


GSC415 Winter 2013<br />

Engineering Geology II<br />

Disaster Magnitude <strong>and</strong> Frequency<br />

The occurrence of very<br />

powerful earthquakes is<br />

rare, small scale activity<br />

is common.<br />

2/18/13 Cal Poly Pomona<br />

11


GSC415 Winter 2013<br />

Engineering Geology II<br />

• <strong>Ground</strong> Displacement<br />

Seismic Hazards<br />

• <strong>Ground</strong> Shaking (cause of all other hazards)<br />

• Structural Hazards<br />

– Retaining Structure Failures<br />

– Lifeline Hazards<br />

• Liquefaction<br />

• L<strong>and</strong>slides<br />

• Tsunami <strong>and</strong> Seiche Hazards<br />

2/18/13 Cal Poly Pomona 12


GSC415 Winter 2013<br />

Engineering Geology II<br />

<strong>Ground</strong><br />

Displacement<br />

• Permanent surface offset<br />

on <strong>and</strong> close <strong>to</strong> the fault<br />

2/18/13 Cal Poly Pomona 13


GSC415 Winter 2013<br />

Engineering Geology II<br />

Concrete dam failure resulting from surface fault offset<br />

during the 1999 M7.6 Chi Chi (Taiwan) earthquake<br />

2/18/13 Cal Poly Pomona 14


GSC415 Winter 2013<br />

Engineering Geology II<br />

Greatest Displacement Measured:<br />

2011 Tohoku Earthquake<br />

2/18/13 Cal Poly Pomona 15


GSC415 Winter 2013<br />

Engineering Geology II<br />

How To Estimate Source <strong>Parameters</strong> for<br />

Future Earthquakes<br />

• Use empirical relations between source parameters<br />

compiled for many earthquakes<br />

• Provide estimate, useful average, but: surprises happen!<br />

2/18/13 Cal Poly Pomona 16


GSC415 Winter 2013<br />

Engineering Geology II<br />

Strength of <strong>Ground</strong> Shaking<br />

• Strength <strong>and</strong> duration of<br />

shaking depend on:<br />

– source effects<br />

• orientation<br />

• size<br />

• propagation<br />

direction<br />

– path effects<br />

– site effects<br />

• local rock layering<br />

• immediate soil<br />

conditions<br />

• 3-D basin/hill<br />

<strong>to</strong>pography<br />

2/18/13 Cal Poly Pomona 17


GSC415 Winter 2013<br />

Engineering Geology II<br />

<strong>Ground</strong> Shaking<br />

• For engineering purposes<br />

shaking is usually measured<br />

as acceleration in units of<br />

% g (acceleration of gravity:<br />

9.8 m/s 2 = 100% g = 1 g)<br />

– also used: gal (1 gal = 1 cm/s 2<br />

= 0.01 m/s 2 ~ 0.1% g)<br />

• <strong>Ground</strong> shaking is<br />

perceptible <strong>to</strong> humans if<br />

acceleration exceeds 0.5% g<br />

– “strong ground motion”<br />

• Structural damage in<br />

buildings not designed <strong>to</strong> be<br />

resistant usually occurs at<br />

10% g<br />

2/18/13 Cal Poly Pomona 18


GSC415 Winter 2013<br />

Engineering Geology II<br />

ShakeMaps<br />

2/18/13 Cal Poly Pomona 19


GSC415 Winter 2013<br />

Engineering Geology II<br />

Highest Recorded Acceleration<br />

At a site 3 km from<br />

magnitude 7.2<br />

Nairiku, Japan<br />

earthquake in<br />

2008: over 4g!<br />

2/18/13 Cal Poly Pomona<br />

20


GSC415 Winter 2013<br />

Engineering Geology II<br />

2/18/13 Cal Poly Pomona 21


GSC415 Winter 2013<br />

Engineering Geology II<br />

Christchurch Mw6.3: PGA>2g!<br />

2/18/13 Cal Poly Pomona 22


GSC415 Winter 2013<br />

Engineering Geology II<br />

Highest PGV<br />

2/18/13 Cal Poly Pomona 23


GSC415 Winter 2013<br />

Engineering Geology II<br />

<strong>Ground</strong> Shaking<br />

• Maximum recorded<br />

acceleration for 2008<br />

M5.4 Chino Hills<br />

earthquake: 0.44 g (in<br />

Walnut)<br />

2/18/13 Cal Poly Pomona 24


GSC415 Winter 2013<br />

Engineering Geology II<br />

Liquefaction<br />

Liquefaction:<br />

– strength <strong>and</strong> stiffness of a saturated soil is reduced by<br />

earthquake shaking<br />

• shaking can cause water pressure <strong>to</strong> increase <strong>to</strong> the point where<br />

soil particles can readily move with respect <strong>to</strong> each other<br />

– soil is unable <strong>to</strong> support structures or remain stable<br />

2/18/13 Cal Poly Pomona<br />

25


GSC415 Winter 2013<br />

Engineering Geology II<br />

Liquefaction Lab Experiment<br />

2/18/13 Cal Poly Pomona 26


GSC415 Winter 2013<br />

Engineering Geology II<br />

Liquefaction Examples<br />

S<strong>and</strong> boils/volcanoes in<br />

New Zeal<strong>and</strong> after<br />

2010 earthquake<br />

2/18/13 Cal Poly Pomona 27


GSC415 Winter 2013<br />

Engineering Geology II<br />

Liquefaction Examples<br />

Niigata earthquake in 1964<br />

2/18/13 Cal Poly Pomona 28


GSC415 Winter 2013<br />

Engineering Geology II<br />

Tokyo 2011<br />

2/18/13 Cal Poly Pomona 29


GSC415 Winter 2013<br />

Engineering Geology II<br />

Overturned<br />

apartment<br />

complex<br />

buildings in<br />

Niigata in<br />

1964.<br />

Settling of left section of<br />

building causes destruction<br />

of middle section in Izmit,<br />

1999.<br />

2/18/13 Cal Poly Pomona<br />

30


GSC415 Winter 2013<br />

Engineering Geology II<br />

Haiti Port Damage<br />

2/18/13 Cal Poly Pomona 31


GSC415 Winter 2013<br />

Engineering Geology II<br />

Hazard<br />

Mapping<br />

http://www.conservation.ca.gov/<br />

cgs/shzp/Pages/Index.aspx<br />

2/18/13 Cal Poly Pomona<br />

32


GSC415 Winter 2013<br />

Engineering Geology II<br />

L<strong>and</strong>slides<br />

• may be triggered by<br />

– ground shaking<br />

• slopes marginally stable<br />

under static conditions<br />

– liquefaction<br />

• may create “quake-lakes”<br />

2/18/13 Cal Poly Pomona 33


GSC415 Winter 2013<br />

Engineering Geology II<br />

Tsunami <strong>and</strong><br />

Seiches<br />

• Tsunami: long period<br />

sea waves generated<br />

by rapid vertical<br />

displacement of water<br />

• Seiche: induced waves<br />

in enclosed bodies of<br />

water<br />

• Both can be excited by<br />

earthquakes,<br />

l<strong>and</strong>slides, volcanic<br />

eruptions, etc.<br />

2/18/13 Cal Poly Pomona 34


SAN JU AN CAPISTRAN O<br />

GSC415 Winter 2013<br />

Engineering Geology II<br />

California Emergency Management Agency<br />

California Geological Survey<br />

University of Southern California<br />

118°15'0"W<br />

Tsunami Inundation Map for Emergency Planning<br />

Long Beach Quadrangle<br />

State of California<br />

County of Los Angeles<br />

118°7'30"W<br />

Tsunami<br />

Inundation Maps<br />

33°45'0"N<br />

33°45'0"N<br />

TOPATOPA MOUNTAINS<br />

SANTA PAULA PEAK<br />

SANTA PAULA<br />

CAMARILLO<br />

DEVILS HEART PEAK<br />

FILLMORE<br />

MOORPARK<br />

NEWBURY PARK<br />

COBBLESTONE MTN<br />

PIRU<br />

SIMI VALLEY WEST<br />

THOUSAND OAKS<br />

WHITAKER PEAK<br />

VAL VERDE<br />

SIMI VALLEY EAST<br />

CALABASAS<br />

WARM SPRINGS MOUNTAIN<br />

NEWHALL<br />

OAT MOUNTAIN<br />

CANOGA PARK<br />

GREEN VA LEY<br />

MINT CANYON<br />

SAN FERNANDO<br />

VAN NUYS<br />

SLEEPY VA LEY<br />

AGUA DULCE<br />

SUNLAND<br />

BURBANK<br />

RI TER RIDGE<br />

ACTON<br />

CONDOR PEAK<br />

PASADENA<br />

PALMDALE<br />

PACIFICO MOUNTAIN<br />

CHILAO FLAT<br />

MT WILSON<br />

LITTLEROCK<br />

JUNIPER HILLS<br />

WATERMAN MTN<br />

AZUSA<br />

LOVEJOY BU TES<br />

VALYERMO<br />

CRYSTAL LAKE<br />

GLENDORA<br />

EL MIRAGE<br />

MESCAL CREEK<br />

MOUNT SAN ANTONIO<br />

MT BALDY<br />

http://www.consrv.ca.gov/cgs/<br />

geologic_hazards/Tsunami/<br />

Inundation_Maps/Pages/<br />

Statewide_Maps.aspx<br />

POINT MUGU<br />

TRIUNFO PASS<br />

POINT DUME<br />

MALIBU BEACH<br />

TOPANGA<br />

BEVERLY HILLS<br />

HOLLYWOOD<br />

LOS ANGELES<br />

ELMONTE<br />

BALDWIN PARK<br />

SAN DIMAS<br />

ONTARIO<br />

VENICE<br />

INGLEWOOD<br />

SOUTH GATE<br />

WHITTIER<br />

LA HABRA<br />

YORBA LINDA<br />

PRADO DAM<br />

REDONDO BEACH<br />

TORRANCE<br />

LONG BEACH<br />

LOS ALAMITOS<br />

ANAHEIM<br />

ORANGE<br />

BLACK STAR CANYON<br />

118°15'0"W<br />

2/18/13 118°7'30"W<br />

Cal Poly Pomona 35<br />

METHOD OF PREPARATION<br />

Initial tsunami modeling was performed by the University of Southern California (USC)<br />

Tsunami Research Center funded through the California Emergency Management Agency<br />

(CalEMA) by the National Tsunami Hazard Mitigation Program. The tsunami modeling<br />

process utilized the MOST (Method of Splitting Tsunamis) computational program<br />

(Version 0), which allows for wave evolution over a variable bathymetry <strong>and</strong> <strong>to</strong>pography<br />

used for the inundation mapping (Ti<strong>to</strong>v <strong>and</strong> Gonzalez, 1997; Ti<strong>to</strong>v <strong>and</strong> Synolakis, 1998).<br />

The bathymetric/<strong>to</strong>pographic data that were used in the tsunami models consist of a<br />

series of nested grids. Near-shore grids with a 3 arc-second (75- <strong>to</strong> 90-meters)<br />

resolution or higher, were adjusted <strong>to</strong> “Mean High Water” sea-level conditions,<br />

TSUNAMI INUNDATION MAP<br />

FOR EMERGENCY PLANNING<br />

State of California ~ County of Los Angeles<br />

LONG BEACH QUADRANGLE<br />

SAN PEDRO<br />

SEAL BEACH<br />

NEWPORT BEACH<br />

MAP EXPLANATION<br />

TUSTIN<br />

LAGUNA BEACH<br />

Tsunami Inundation Line<br />

Tsunami Inundation Area


GSC415 Winter 2013<br />

Engineering Geology II<br />

<strong>Seismology</strong><br />

• Science of earthquakes <strong>and</strong><br />

related phenomena. -Richter,<br />

1958<br />

• Basis for all seismic hazard<br />

analysis<br />

• For purpose of engineering<br />

geology, focus on strong<br />

motion seismology<br />

2/18/13<br />

Cal Poly Pomona<br />

36


GSC415 Winter 2013<br />

Engineering Geology II<br />

Seismometers<br />

Seismometers detect <strong>and</strong><br />

record motion (acceleration,<br />

velocity or displacement) of<br />

ground (or building)<br />

2/18/13 Cal Poly Pomona<br />

37


GSC415 Winter 2013<br />

Engineering Geology II<br />

Seismograms<br />

• Each seismogram is composite of:<br />

– Earthquake source effects<br />

– Propagation <strong>and</strong> site effects => Earth structure<br />

• It may therefore be difficult <strong>to</strong> independently resolve either<br />

2/18/13 Cal Poly Pomona<br />

38


GSC415 Winter 2013<br />

Engineering Geology II<br />

Wave<br />

<strong>Parameters</strong><br />

Seismogram<br />

• Amplitude<br />

• Wavelength<br />

• Period = time between waves in seconds<br />

• Frequency = number of waves passing a given point in 1<br />

second (measured in cycles per sec: Hz)<br />

• Velocity (seismic ~ km/sec, depends on material)<br />

2/18/13 Cal Poly Pomona<br />

39


GSC415 Winter 2013<br />

Engineering Geology II<br />

<strong>Ground</strong><br />

<strong>Motion</strong> Period<br />

• Seismograms, like white<br />

light, are composites of<br />

waves of many different<br />

frequencies<br />

• Usually recorded ground<br />

motion will be<br />

combination of short<br />

period motions <strong>and</strong> long<br />

period<br />

2/18/13 Cal Poly Pomona<br />

40


GSC415 Winter 2013<br />

Engineering Geology II<br />

• Body Waves<br />

– Travel through Earth’s interior<br />

– Fastest<br />

– Dominate at short distances<br />

– High frequencies/short period<br />

(1-30 Hz)<br />

• Surface Waves<br />

– Travel along Earth’s surface<br />

– Long period<br />

– Dominate at larger distances<br />

– Generated most efficiently by<br />

shallow earthquakes<br />

• Peak ground motions are<br />

produced by body waves at<br />

distances shorter than ~<br />

twice crustal thickness (30<br />

km)<br />

Seismic Waves<br />

2/18/13 Cal Poly Pomona<br />

41


GSC415 Winter 2013<br />

Engineering Geology II<br />

Body Waves: P-wave<br />

• Primary wave, first <strong>to</strong> arrive<br />

– Used in Early Warning Systems<br />

• Compressional, no rotation<br />

• Particle motion in direction of wave<br />

propagation<br />

• Relatively little damage potential<br />

2/18/13 Cal Poly Pomona<br />

42


GSC415 Winter 2013<br />

Engineering Geology II<br />

Body Waves: S-wave<br />

• Secondary wave, second <strong>to</strong> arrive<br />

• Transverse, shearing, no volume change<br />

• Particle motion at right angles <strong>to</strong> wave<br />

propagation<br />

• Significant damage potential<br />

2/18/13 Cal Poly Pomona<br />

43


GSC415 Winter 2013<br />

Engineering Geology II<br />

Surface Waves: Love waves<br />

• Horizontal, shearing motion<br />

• Contribute <strong>to</strong> damage far from<br />

source<br />

2/18/13 Cal Poly Pomona<br />

44


GSC415 Winter 2013<br />

Engineering Geology II<br />

Surface Waves: Rayleigh waves<br />

• Backward-rotating, elliptical motion<br />

• Vertical as well as horizontal motions<br />

• Contribute <strong>to</strong> damage far from source<br />

2/18/13 Cal Poly Pomona<br />

45


GSC415 Winter 2013<br />

Engineering Geology II<br />

2/18/13 Cal Poly Pomona 46


GSC415 Winter 2013<br />

Engineering Geology II<br />

Southern California Faults<br />

Southern California is traversed<br />

by numerous faults. Some of<br />

these, like the San Andreas<br />

Fault, are major players; others<br />

are minor <strong>and</strong> not so well<br />

known.<br />

2/18/13 Cal Poly Pomona<br />

47


GSC415 Winter 2013<br />

Engineering Geology II<br />

2/18/13 Cal Poly Pomona 48


GSC415 Winter 2013<br />

Engineering Geology II<br />

Geometric Notation<br />

2/18/13 Cal Poly Pomona 49


GSC415 Winter 2013<br />

Engineering Geology II<br />

Geologic Map<br />

2/18/13 Cal Poly Pomona<br />

50


GSC415 Winter 2013<br />

Engineering Geology II<br />

Slip Rate<br />

Map<br />

• Dominance of<br />

SAF, San Jacin<strong>to</strong><br />

fault, <strong>and</strong> Garlock<br />

fault.<br />

• Smaller faults<br />

branching off tend<br />

<strong>to</strong> have moderate<br />

slip rates,<br />

decreasing with<br />

distance from<br />

major fault zones.<br />

2/18/13 Cal Poly Pomona<br />

51


GSC415 Winter 2013<br />

Engineering Geology II<br />

Sense of Slip<br />

• SAF zone: right lateral<br />

• Garlock fault zone, largest<br />

left-lateral strike-slip fault<br />

• Near Transverse Ranges<br />

<strong>and</strong> LA Basin are<br />

numerous reverse faults<br />

• North of Garlock fault:<br />

extension<br />

– normal faulting<br />

– Basin <strong>and</strong> Range tec<strong>to</strong>nic<br />

province<br />

2/18/13 Cal Poly Pomona<br />

52


GSC415 Winter 2013<br />

Engineering Geology II<br />

Earthquake<br />

Failure<br />

• Earthquake failure process is often described as rock fracture<br />

– If rock is subjected <strong>to</strong> stress, eventually fracture occurs<br />

• It may be more appropriate <strong>to</strong> view earthquake faulting as frictional<br />

sliding<br />

– sliding surface ~ earthquake fault, formed by long-term geological<br />

processes, <strong>and</strong> represents weak zone<br />

2/18/13 Cal Poly Pomona<br />

53


GSC415 Winter 2013<br />

Engineering Geology II<br />

Strain Leads <strong>to</strong><br />

Stress: Elastic<br />

Rebound<br />

• Both sides of fault are gradually moving past one another,<br />

whereas fault is locked, accumulating strain<br />

• This flexure places greater <strong>and</strong> greater stress on fault<br />

• When it exceeds strength of fault, fault slips, <strong>and</strong> surrounding<br />

rock rapidly snaps back => earthquake<br />

2/18/13 Cal Poly Pomona<br />

54


GSC415 Winter 2013<br />

Engineering Geology II<br />

Hazard Analysis: Characteristic Earthquake<br />

Elastic rebound: individual<br />

earthquakes on particular fault<br />

segment are not r<strong>and</strong>om<br />

independent events, but depend on<br />

build up of stress<br />

USGS in 1985 predicted M6 along SAF<br />

near Parkfield, between 1987-1993.<br />

Moni<strong>to</strong>ring systems were installed.<br />

Quake occurred in 2004, when most<br />

equipment had been removed.<br />

2/18/13 Cal Poly Pomona<br />

55


GSC415 Winter 2013<br />

Engineering Geology II<br />

Magnitude<br />

Magnitude<br />

= 5.0<br />

• His<strong>to</strong>rically best-known<br />

measure of earthquake size<br />

• All magnitude scales are related<br />

<strong>to</strong> largest amplitude<br />

⇒ Easy <strong>to</strong> measure<br />

• Richter introduced local<br />

magnitude, M L , in 1930s<br />

– Measure A max recorded on Wood-<br />

Anderson seismograph<br />

– Empirical formula:<br />

M L = log 10 A + 2.56log 10 Δ - 1.67<br />

– Measure maximum displacement<br />

amplitude A in 10 -6 m<br />

– Correct for distance, Δ, in km<br />

• Also possible: use nomograph<br />

2/18/13 Cal Poly Pomona<br />

56


GSC415 Winter 2013<br />

Engineering Geology II<br />

• Problems with M L :<br />

– Defined specifically for southern<br />

California<br />

– Depends on outdated Wood-<br />

Anderson instrument<br />

• But: instrument period close <strong>to</strong><br />

resonant frequency of many<br />

buildings (1 Hz)<br />

• More general global scales were<br />

developed, all of general form:<br />

M = log (A/T) + F(h, Δ) + C<br />

– A = amplitude<br />

– T = its dominant period<br />

– F = correction fac<strong>to</strong>r for depth <strong>and</strong><br />

distance<br />

– C = regional scale fac<strong>to</strong>r<br />

Other Scales<br />

2/18/13 Cal Poly Pomona<br />

57


GSC415 Winter 2013<br />

Engineering Geology II<br />

Other<br />

Scales<br />

More general global scales:<br />

• Body wave magnitude, m b<br />

– Dominant period of 1 sec<br />

– Measured from initial part of P-wave<br />

• Surface wave magnitude, M S<br />

– Dominant period of 20 sec<br />

– Only for shallow events: deep events have greatly reduced surface wave<br />

amplitudes<br />

Neither correctly reflects the size of large earthquakes<br />

2/18/13 Cal Poly Pomona<br />

58


GSC415 Winter 2013<br />

Engineering Geology II<br />

Magnitude Saturation<br />

• Measures of earthquake size based on maximum ground<br />

shaking do not account for longer durations of larger events<br />

– M S saturates at about 8.3<br />

– m b at about 6.2<br />

2/18/13 Cal Poly Pomona<br />

59


GSC415 Winter 2013<br />

Engineering Geology II<br />

Moment<br />

Magnitude<br />

Magnitude saturation helped<br />

motivate development of<br />

moment magnitude scale, M w<br />

M w = (log M 0 )/1.5 - 10.73<br />

determined for M 0 , moment, in<br />

dyne-cm<br />

• 10 7 dyne-cm = 1 N-m<br />

M 0 = µ D A, where:<br />

µ : shear modulus<br />

D : average displacement across<br />

fault (slip)<br />

A : area of fault<br />

Gives magnitude directly tied <strong>to</strong><br />

earthquake source processes,<br />

scaled <strong>to</strong> agree with previous<br />

magnitudes for small events.<br />

2/18/13 Cal Poly Pomona<br />

60


GSC415 Winter 2013<br />

Engineering Geology II<br />

Earthquake Intensity<br />

• Described through scales that are based on<br />

intensity of effects experienced by people <strong>and</strong><br />

buildings, developed in the late 1800s.<br />

• Most widely used:<br />

Mercalli scale<br />

2/18/13 Cal Poly Pomona<br />

61


GSC415 Winter 2013<br />

Engineering Geology II<br />

2/18/13 Cal Poly Pomona 62


GSC415 Winter 2013<br />

Engineering Geology II<br />

His<strong>to</strong>ric Earthquakes:<br />

1811/1812 New Madrid<br />

• Intensity can be inferred<br />

from human accounts =><br />

no seismometers are<br />

needed<br />

• His<strong>to</strong>ric earthquakes can<br />

still be analyzed<br />

• Lines of constant intensity:<br />

isoseismals<br />

• Typically, intensity decays<br />

with distance<br />

2/18/13 Cal Poly Pomona<br />

63


GSC415 Winter 2013<br />

Engineering Geology II<br />

Regional Geology<br />

• For fixed earthquake size,<br />

region of strong shaking<br />

can be indication of<br />

regional geologic structure<br />

• Old, eastern section of US<br />

transmits seismic<br />

vibrations very efficiently<br />

relative <strong>to</strong> young California<br />

coastal region<br />

=> for equal-size earthquake,<br />

east is likely <strong>to</strong> experience<br />

a wider extent of damage<br />

than coastal California<br />

2/18/13 Cal Poly Pomona<br />

64


GSC415 Winter 2013<br />

Engineering Geology II<br />

2/18/13 Cal Poly Pomona 65


GSC415 Winter 2013<br />

Engineering Geology II<br />

Strong <strong>Ground</strong> <strong>Motion</strong>


GSC415 Winter 2013<br />

Engineering Geology II<br />

Use of <strong>Ground</strong> <strong>Motion</strong> Measurements<br />

in Reducing Future Losses<br />

Structural engineers must take in<strong>to</strong> account two<br />

fundamental characteristics of earthquake shaking:<br />

1. how ground shaking propagates through the Earth (especially near<br />

the surface)<br />

2. how buildings respond <strong>to</strong> this ground motion<br />

Recordings of ground motion in urban areas by<br />

seismographs/seismometers can be used <strong>to</strong><br />

characterize variability of ground shaking<br />

2/18/13 Cal Poly Pomona 67


GSC415 Winter 2013<br />

Engineering Geology II<br />

<strong>Ground</strong> <strong>Motion</strong> Range<br />

Range of ground motions<br />

of interest <strong>to</strong><br />

seismologists is large,<br />

because earth<br />

deformation occurs at<br />

many different rates<br />

<strong>and</strong> scales.<br />

Different types of<br />

seismometers are used<br />

<strong>to</strong> record ground<br />

motions.<br />

2/18/13 Cal Poly Pomona 68


GSC415 Winter 2013<br />

Engineering Geology II<br />

Seismograph<br />

Simple seismographs (<strong>and</strong> buildings) are Single Degree of<br />

Freedom (SDOF) Oscilla<strong>to</strong>rs<br />

• discrete system whose position can be described by single variable<br />

This system consists of:<br />

• mass m, moving on frictionless surface<br />

• driven by horizontal ground motion with acceleration Ü (dot<br />

notation)<br />

• connected <strong>to</strong> spring with stiffness k <strong>and</strong><br />

• dashpot with coefficient of viscous damping c<br />

Spring <strong>and</strong> dashpot are not rigid, so motion of mass is not<br />

identical <strong>to</strong> that of ground during earthquake<br />

2/18/13 Cal Poly Pomona 69


GSC415 Winter 2013<br />

Engineering Geology II<br />

Review: Free<br />

Vibration Without<br />

Damping<br />

u<br />

Force is proportional <strong>to</strong> amount spring is stretched<br />

“u” with proportionality constant, k:<br />

m˙ u ˙ + ku = 0 !<br />

If we start system by stretching spring by distance A<br />

!<br />

<strong>and</strong> letting go, mass will oscillate with simple<br />

harmonic motion u(t) with amplitude A <strong>and</strong><br />

f<br />

undamped natural n<br />

= 1 k m˙ u ˙ + ku = 0 !<br />

!<br />

frequency f n<br />

!<br />

!<br />

m˙ ! u ˙ + ku = 0!<br />

u(t) ! = Acos(2"f n<br />

t)!<br />

f n ! = 1 k<br />

!<br />

!<br />

2" m !<br />

!<br />

u(t) = Acos(2"f n<br />

t)!<br />

2"<br />

2/18/13 Cal Poly Pomona 70<br />

m !<br />

!<br />

u(t) = Acos(2"f n<br />

t)!<br />

f n<br />

= 1<br />

2"<br />

k<br />

m !


GSC415 Winter 2013<br />

Engineering Geology II<br />

Review: Free<br />

Vibration With<br />

Damping<br />

u<br />

We now add "viscous" damper <strong>to</strong> model, with damping<br />

coefficient c. This adds additional force on mass:<br />

m˙ u ˙ + c˙ u + ku = 0 !<br />

!<br />

u(t) = Ae "#$ nt cos( 1"# 2 2%f<br />

Solution depends u(t) on = amount Ae "#$ cos( of damping, 1"# 2 2%f n<br />

t) !<br />

characterized by<br />

n<br />

!<br />

!<br />

damping ratio:<br />

" =<br />

c<br />

2 km!<br />

m˙ u ˙ + c˙ u + ku = 0!<br />

!<br />

!<br />

which ! is exactly 1 at critical damping, where system returns<br />

<strong>to</strong> equilibrium as quickly as possible without oscillating.<br />

!<br />

" =<br />

c<br />

2 km !<br />

!<br />

!<br />

2/18/13 Cal Poly Pomona 71


GSC415 Winter 2013<br />

Engineering Geology II<br />

Damping<br />

If damping is small enough (damping ratio


GSC415 Winter 2013<br />

Engineering Geology II<br />

Free Vibration With Damping<br />

!<br />

Solution for underdamped<br />

system:<br />

m˙ u ˙ + c˙ u + ku = 0!<br />

!<br />

u(t) = Ae "#$ nt cos( 1"# 2 2%f n<br />

t) !<br />

• exponential determines how fast<br />

system damps down<br />

" =<br />

c<br />

• cosine is oscillation<br />

2 km !<br />

Natural frequency <strong>and</strong><br />

damping determine<br />

behavior of system both in<br />

free <strong>and</strong> forced vibration.<br />

2/18/13 Cal Poly Pomona 73


GSC415 Winter 2013<br />

Engineering Geology II<br />

Forced Vibration With Damping<br />

!<br />

!<br />

We can force SDOF oscilla<strong>to</strong>r<br />

by ground displacement (u g ):<br />

!<br />

!<br />

m˙ u ˙ + c˙ u + ku = "m˙ ˙<br />

If u g is uharmonic " with 2<br />

frequency ω g , displacement response<br />

=<br />

ratio u g<br />

will be: !<br />

!<br />

" = # g<br />

# 0<br />

!<br />

(1# " 2 ) 2 + (2$") 2 !<br />

where β is tuning ratio:<br />

!<br />

!<br />

!<br />

u g<br />

m˙ u ˙ + c˙ u + ku = "m˙ ˙<br />

u<br />

u g<br />

=<br />

" = # g<br />

u g<br />

2/18/13 Cal Poly Pomona 74<br />

" 2<br />

(1# " 2 ) 2 + (2$") 2 !<br />

# 0<br />

!<br />

β = ω g<br />

ω n


GSC415 Winter 2013<br />

Engineering Geology II<br />

Displacement Response Ratio<br />

Displacement response<br />

ratio varies with<br />

frequency <strong>and</strong> damping<br />

• For large β, trace amplitude<br />

is same as ground motion<br />

amplitude<br />

• In lightly damped system<br />

when ground motion<br />

frequency<br />

m˙<br />

nears natural<br />

u ˙ + c˙<br />

frequency, amplitude of<br />

vibration can get very high:<br />

resonance<br />

!<br />

!<br />

u<br />

u g<br />

=<br />

u + ku = "m˙ ˙<br />

" 2<br />

(1# " 2 ) 2 + (2$") 2 !<br />

u g<br />

2/18/13 !<br />

Cal Poly Pomona 75<br />

#<br />

β = ω g<br />

ω n


GSC415 Winter 2013<br />

Engineering Geology II<br />

Forced Vibration<br />

Three identically damped SDOF<br />

oscilla<strong>to</strong>rs, all with natural<br />

frequency f n =1 Hz, are<br />

initially at rest. Harmonic<br />

force is applied <strong>to</strong> each.<br />

Driving frequencies of<br />

applied forces are (matching<br />

colors):<br />

f g =0.4 Hz f g =1.01 Hz f g =1.6 Hz<br />

2/18/13 Cal Poly Pomona 76


GSC415 Winter 2013<br />

Engineering Geology II<br />

Example: Wood-Anderson<br />

• Provided data for early<br />

southern California<br />

earthquake catalog.<br />

• Uses mirror on mass<br />

suspended by vertical wire :<br />

when ground moved<br />

horizontally, wire would<br />

twist, causing deflection of<br />

reflected light<br />

• f n =1.25 Hz<br />

• ζ=0.7<br />

• magnification=2080<br />

2/18/13 Cal Poly Pomona 77


GSC415 Winter 2013<br />

Engineering Geology II<br />

Seismometer<br />

Response Curves<br />

• One way <strong>to</strong><br />

characterize<br />

seismometers:<br />

describe range of<br />

vibration<br />

frequencies that<br />

they can detect<br />

• Plot of amplification<br />

versus frequency is<br />

called seismometer<br />

instrument response<br />

2/18/13 Cal Poly Pomona 78


GSC415 Winter 2013<br />

Engineering Geology II<br />

• Different recording<br />

instruments may<br />

produce different<br />

measurements of<br />

ground motion for an<br />

earthquake due <strong>to</strong> their<br />

instrument response<br />

• Strong ground motion:<br />

motion of sufficient<br />

strength <strong>to</strong> affect<br />

people <strong>and</strong> their<br />

environment<br />

<strong>Ground</strong> <strong>Motion</strong>s<br />

2/18/13 Cal Poly Pomona 79


GSC415 Winter 2013<br />

Engineering Geology II<br />

Accelerometer<br />

• also called accelerograph or strong motion seismometer<br />

• instrument designed <strong>to</strong> record large amplitude <strong>and</strong><br />

high-frequency shaking within few tens of kilometers<br />

near large earthquakes<br />

• strong motion data is basis for all quantitative<br />

earthquake resistant design<br />

2/18/13 Cal Poly Pomona 80


GSC415 Winter 2013<br />

Engineering Geology II<br />

!<br />

Example: SMA-1 Strong <strong>Motion</strong><br />

Accelerograph<br />

• ζ=0.6<br />

– damping similar <strong>to</strong> WA<br />

• high natural frequency: f n = ω n /2π = 18 Hz<br />

!<br />

!<br />

!<br />

u ˙ + 2"# ˙ n<br />

u + # 2 u ˙ + u = $˙ 2"# n<br />

u ˙ + # 2 n<br />

u = $˙ ˙<br />

n<br />

– third term dominates:<br />

u<br />

u g<br />

=<br />

" 2<br />

(1# " 2 ) 2 + (2$") 2 !<br />

=> seismograph trace displacement is proportional <strong>to</strong><br />

acceleration of ground<br />

" = # g<br />

# 0<br />

!<br />

!<br />

!<br />

2/18/13 Cal Poly Pomona 81<br />

u g<br />

!<br />

!<br />

!<br />

u = " 1<br />

# n<br />

2 ˙ ˙ u g<br />

!<br />

" = # g<br />

# 0<br />

!<br />

u g


GSC415 Winter 2013<br />

Engineering Geology II<br />

Strong <strong>Motion</strong> Records<br />

• Usually three components of<br />

ground motion, two horizontals<br />

+ one vertical<br />

• Thous<strong>and</strong>s of acceleration<br />

values measured at increments<br />

of ~ 0.01 sec<br />

2/18/13 Cal Poly Pomona 82


GSC415 Winter 2013<br />

Engineering Geology II<br />

2/18/13 Cal Poly Pomona 83


GSC415 Winter 2013<br />

Engineering Geology II<br />

Deriving Velocity <strong>and</strong> Displacement<br />

• velocity of ground movement can be calculated as<br />

integral of acceleration record<br />

• displacement = integral of velocity<br />

2/18/13 Cal Poly Pomona 84


GSC415 Winter 2013<br />

Engineering Geology II<br />

2/18/13 Cal Poly Pomona 85


GSC415 Winter 2013<br />

Engineering Geology II<br />

March 10, 1933<br />

Mw=6.4 Long Beach Earthquake<br />

First accurate<br />

record of<br />

destructive ground<br />

motions<br />

2/18/13 Cal Poly Pomona<br />

86


GSC415 Winter 2013<br />

Engineering Geology II<br />

National Strong<br />

<strong>Motion</strong> Array<br />

http://nsmp.wr.usgs.gov/<br />

U.S. Geological Survey National Strong-<strong>Motion</strong> Project has<br />

primary Federal responsibility for recording each<br />

damaging earthquake in US on ground <strong>and</strong> in man-made<br />

structures in densely urbanized areas <strong>to</strong> improve public<br />

earthquake safety.<br />

2/18/13 Cal Poly Pomona 87


67&5;&2,K6$,<<br />

:$)K3&++<br />

D7;#,#<br />

!<br />

!<br />

!<br />

!<br />

!<br />

M)7,E2#<br />

M)7,KL7#GG<br />

!<br />

DEL NORTE<br />

HUMBOLDT<br />

}þ1<br />

}þ1<br />

}þ20<br />

MENDOCINO<br />

}þ1<br />

}þ1<br />

!<br />

}þ96<br />

%$++$,5<br />

B9$#C<br />

!<br />

}þ36<br />

}þ20<br />

6+)4&7'#+&<br />

TRINITY<br />

Farallon<br />

Isl<strong>and</strong>s<br />

!<br />

}þ3<br />

}þ29<br />

(#9&.)7,<br />

@&#+'5JE7G<br />

SONOMA<br />

!<br />

!<br />

!<br />

F&J#5,).)+<br />

Lake<br />

Pillsbury<br />

Clear<br />

Lake<br />

6),#,$<br />

}þ1<br />

}þ299<br />

!<br />

LAKE<br />

}þ20<br />

!<br />

MARIN<br />

-)4#,)<br />

!<br />

}þ12<br />

!<br />

!<br />

!<br />

!<br />

}þ3<br />

!(!(!(!(!(!(!(!(!(<br />

S<strong>to</strong>ny Gorge<br />

Reservoir<br />

Indian Va ley<br />

Reservoir<br />

!<br />

!<br />

!<br />

!<br />

!<br />

Clair<br />

Engle<br />

Lake<br />

East Park<br />

Reservoir<br />

!<br />

Lake<br />

!<br />

SAN PABLO BAY<br />

F#2K:#0#&+<br />

}þ1<br />

}þ36<br />

}þ29<br />

}þ37<br />

}þ92<br />

!<br />

!<br />

!<br />

!<br />

! !<br />

! !<br />

Black Butte<br />

Reservoir<br />

!!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

D+#A&'#<br />

SAN<br />

FRANCISCO<br />

}þ35<br />

}þ84<br />

}þ96<br />

87&9#<br />

}þ12}þ121<br />

}þ1<br />

}þ16<br />

BAY<br />

}þ92<br />

}þ9<br />

}þ3<br />

Lake<br />

}þ12<br />

}þ20<br />

6#+$5,)G#<br />

NAPA<br />

F#$2,K@&+&2#<br />

:)C2&7,K=#79<br />

F)2)A#<br />

N$++K#++&<<br />

L7$5J#2&<br />

=#;$0$;#<br />

F#2KN#,&)<br />

@#+0KN))2KL#<<br />

Projection: Teale Albers<br />

North American Datum of 1927 (NAD27)<br />

Plotted Apr 30, 2004<br />

6+&#7+#9&<br />

@$GC+#2'5<br />

SAN MATEO<br />

%&&'<br />

! !<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

Lake<br />

D2'&75)2<br />

!<br />

Lake<br />

Shastina<br />

!<br />

Shasta<br />

!<br />

:&'KL+E00<br />

TEHAMA<br />

GLENN<br />

8)E2,4$++&<br />

!<br />

! !<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

COLUSA<br />

-#.#<br />

:$;CA)2'<br />

F#E5#+$,)<br />

L&79&+&<<br />

}þ24<br />

SISKIYOU<br />

}þ85<br />

!<br />

!<br />

!<br />

!<br />

}þ45<br />

YOLO<br />

}þ1<br />

}þ16<br />

}þ84<br />

!<br />

!<br />

!<br />

}þ17 }þ82<br />

}þ1<br />

!<br />

!<br />

Meiss<br />

Lake<br />

SHASTA<br />

}þ1<br />

}þ45<br />

}þ45<br />

SOLANO<br />

}þ1<br />

!<br />

!<br />

!<br />

}þ36<br />

!<br />

!<br />

!<br />

}þ44<br />

}þ99<br />

!<br />

}þ99<br />

!<br />

}þ89<br />

!<br />

SUTTER<br />

ALAMEDA<br />

SANTA CLARA<br />

N)7G#2K@$++<br />

F;),,5K#++&<<br />

SANTA CRUZ<br />

6#.$,)+# *$+7)<<br />

6#7A&+KL.)7,KL&#;C<br />

Rogers<br />

Dry<br />

Lake<br />

!<br />

}þ1<br />

Salt Lake<br />

()2&K=$2&<br />

}þ60<br />

!<br />

!<br />

!<br />

Airport<br />

Lake<br />

!<br />

!<br />

}þ14 01 395<br />

6#+$0)72$#K6$,<<br />

*+&2')7#<br />

China<br />

Lake<br />

178 }þ178<br />

El Mirage<br />

Lake<br />

D'&+#2,)<br />

! !<br />

}þ83<br />

}þ30<br />

!<br />

Cuddleback<br />

Lake<br />

!<br />

!<br />

Lake<br />

Matthews<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

Searles<br />

!<br />

Lake<br />

!<br />

Harper<br />

Lake<br />

!<br />

!<br />

Perris<br />

Reservoir<br />

=&77$5<br />

H+5$2)7&<br />

Lake<br />

ORANGE Elsinore<br />

N$55$)2K$&")<br />

}þ74<br />

}þ18<br />

INYO<br />

:$'G&;7&5,<br />

}þ66<br />

}þ60<br />

(#GE2#KL&#;C<br />

F#2KPE#2<br />

6#.$5,7#2)<br />

3#2#K=)$2,<br />

F#2K6+&A&2,&<br />

}þ91<br />

H2;$2$,#5<br />

F)+#2#KL&#;C<br />

3&+KN#7<br />

}þ58<br />

Dry<br />

Lake<br />

!<br />

Lake<br />

Arrowhead<br />

Lake<br />

Skinner<br />

!<br />

!<br />

!<br />

Superior Lake<br />

!<br />

$;,)74$++&<br />

D..+&K#++&< Lucerne<br />

Lake<br />

}þ76<br />

$5,#<br />

6)7)2#')<br />

@&5.&7$#<br />

6#7+5J#'<br />

F#2KN#7;)5<br />

}þ75<br />

}þ79<br />

}þ18<br />

}þ79<br />

!<br />

!<br />

Big Bear<br />

Lake<br />

:&'+#2'5<br />

}þ67<br />

}þ94<br />

!<br />

!<br />

San Vincente<br />

Reservoir<br />

El Capitan<br />

Reservoir<br />

Lovel<strong>and</strong><br />

Reservoir<br />

H+K6#")2<br />

Sweetwater<br />

Reservoir<br />

Cot<strong>to</strong>n Ball<br />

Marsh<br />

L#75,)><br />

Lower Otay<br />

Reservoir<br />

Middle<br />

Basin<br />

Golds<strong>to</strong>ne<br />

Lake<br />

Badwater<br />

Basin<br />

Lost<br />

Lake<br />

Coyote<br />

Lake<br />

Lake<br />

Henshaw<br />

Owl<br />

Lake<br />

Leach Lake<br />

Soggy<br />

Lake<br />

Baldwin<br />

Lake<br />

L$GKL&#7K(#9&<br />

}þ38<br />

}þ38<br />

}þ18<br />

F#2KP#;$2,)<br />

@&A&,<br />

}þ79<br />

}þ74<br />

}þ78 }þ78<br />

=)>#<<br />

F#2,&&<br />

L#22$2G<br />

}þ62<br />

SAN DIEGO<br />

}þ79<br />

Bicycle<br />

Lake<br />

Langford<br />

Well<br />

Lake<br />

!<br />

Melville<br />

Lake<br />

!<br />

!<br />

Galway<br />

Lake<br />

}þ94<br />

Emerson<br />

Lake<br />

6#,C&'7#+K6$,<<br />

:#2;C)KN$7#G&<br />

=#+AK3&5&7,<br />

(#QE$2,#<br />

!<br />

!<br />

Red Pass<br />

Lake<br />

Cronese<br />

Dry Lakes<br />

!<br />

Clark<br />

Lake<br />

}þ78<br />

Dry<br />

Lake<br />

Silurian<br />

Lake<br />

Mojave River Wash<br />

Broadwell<br />

Lake<br />

Silver<br />

Lake<br />

Deadman<br />

Lake<br />

Soda<br />

Lake<br />

SAN BERNARDINO<br />

3&5&7,K@),KF.7$2G5<br />

12'$)<br />

Mesquite<br />

Lake<br />

/>&2,+&<<br />

1A.&7$#+<br />

H+K6&2,7)<br />

!<br />

!<br />

!<br />

!<br />

6#+&I$;)<br />

!<br />

Cadiz<br />

Lake<br />

!<br />

}þ78<br />

Palen<br />

Lake<br />

Danby<br />

Lake<br />

IMPERIAL<br />

@)+,4$++&<br />

}þ62<br />

Ford Dry<br />

Lake<br />

}þ78<br />

-&&'+&5<br />

!<br />

L+


GSC415 Winter 2013<br />

Engineering Geology II<br />

Urban Networks<br />

• Rapid proliferation of arrays in recent years, especially in<br />

urban areas<br />

• Small scale ground motion variability cannot yet be resolved by<br />

most existing arrays: insufficient spatial sampling.<br />

2/18/13 Cal Poly Pomona 89


GSC415 Winter 2013<br />

Engineering Geology II<br />

Building Arrays<br />

• Most seismometers are free<br />

field (i.e. away from large<br />

structures), but some are<br />

located in buildings, dams<br />

or bridges<br />

• For example:<br />

– UCLA Fac<strong>to</strong>r Building<br />

Seismic Array<br />

• 17-s<strong>to</strong>ry moment-resisting<br />

steel frame structure with<br />

embedded 72-channel<br />

accelerometer array<br />

– Bay Bridge<br />

• 72 accelerometers<br />

2/18/13 Cal Poly Pomona 90


GSC415 Winter 2013<br />

Engineering Geology II<br />

2/18/13 Cal Poly Pomona 91


GSC415 Winter 2013<br />

Engineering Geology II<br />

Data<br />

Availability<br />

http://www.strongmotioncenter.org/<br />

• Many strong motion databases are accessible through<br />

Internet<br />

– Parametric data<br />

– Full waveform data<br />

– Some in near real-time<br />

• Format not st<strong>and</strong>ardized<br />

2/18/13 Cal Poly Pomona 92


GSC415 Winter 2013<br />

Engineering Geology II<br />

Data Format<br />

• Most seismogram formats contain:<br />

– header<br />

• event information<br />

• station information: metadata<br />

– location<br />

– response<br />

• time information<br />

– start time<br />

– time interval<br />

– number of points<br />

– ground motion data<br />

2/18/13 Cal Poly Pomona 93

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!