04.01.2015 Views

Track D - University of Minnesota

Track D - University of Minnesota

Track D - University of Minnesota

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Rapid Infiltration Measurement for<br />

Assessing Infiltration <strong>of</strong> BMPs<br />

Farzana Ahmed<br />

St. Anthony Falls Laboratory<br />

October 19 th , 2010


Overview<br />

• Basic concept.<br />

• Description and Procedure.<br />

• Application and Advantage<br />

• Case Studies<br />

• Conclusion<br />

http://stormwater.safl.umn.edu/


Basic concept<br />

http://stormwater.safl.umn.edu/


Why is it important to measure the<br />

infiltration rate<br />

• To determine performance and schedule<br />

maintenance<br />

‣An important indicator to determine the<br />

functionality <strong>of</strong> the stormwater BMPs.<br />

‣Accumulation <strong>of</strong> soil particles will reduce the<br />

infiltration rate <strong>of</strong> soil.<br />

‣Compaction during construction will reduce the<br />

infiltration rate <strong>of</strong> soil by reducing the pore<br />

volume.<br />

http://stormwater.safl.umn.edu/


Spatial variation <strong>of</strong> K sat<br />

• Images courtesy <strong>of</strong> N. Olson<br />

http://stormwater.safl.umn.edu/


Spatial variation <strong>of</strong> K sat<br />

Image courtesy B. Asleson & R. Nestingen<br />

http://stormwater.safl.umn.edu/


Spatial variation <strong>of</strong> K sat<br />

• Need ~20 infiltration measurements.<br />

• Need a device to measure the infiltration rate<br />

which is fast, simple and requires a lower volume<br />

<strong>of</strong> water.<br />

http://stormwater.safl.umn.edu/


Description and Procedure<br />

http://stormwater.safl.umn.edu/


Modified Philip Dunne Infiltrometer<br />

(MPD Infiltrometer)<br />

• 42 cm long - 10 cm inner<br />

diameter cylinder - two<br />

parts.<br />

• Clear acrylic pipe and<br />

finished steel.<br />

• A metric measuring tape -<br />

adhered outside <strong>of</strong> the pipe<br />

• Stopwatch<br />

http://stormwater.safl.umn.edu/


Modified Philip Dunne Infiltrometer<br />

(MPD Infiltrometer)<br />

Procedure <strong>of</strong> MPD<br />

Infiltrometer test<br />

Field Procedure Lab Procedure Computer procedure<br />

http://stormwater.safl.umn.edu/


Modified Philip Dunne Infiltrometer<br />

(MPD Infiltrometer)<br />

Field Procedure<br />

• Take soil samples<br />

http://stormwater.safl.umn.edu/


Modified Philip Dunne Infiltrometer<br />

(MPD Infiltrometer)<br />

• Pound the MPD into<br />

the soil<br />

http://stormwater.safl.umn.edu/


Modified Philip Dunne Infiltrometer<br />

• Fill the MPD with<br />

water.<br />

• Record the height<br />

<strong>of</strong> water level with<br />

time.<br />

(MPD Infiltrometer)<br />

http://stormwater.safl.umn.edu/


Modified Philip Dunne Infiltrometer<br />

(MPD Infiltrometer)<br />

Lab Procedure<br />

• Measure initial moisture content and bulk density<br />

according to ASTM methods.<br />

http://stormwater.safl.umn.edu/


Modified Philip Dunne Infiltrometer<br />

Computer procedure<br />

(MPD Infiltrometer)<br />

• Input the initial moisture content, the saturated<br />

moisture content for that type <strong>of</strong> soil, the water<br />

level vs time data and the bulk density <strong>of</strong> soil into<br />

the MPD spreadsheet.<br />

http://stormwater.safl.umn.edu/


Modified Philip Dunne Infiltrometer<br />

(MPD Infiltrometer)<br />

t http://stormwater.safl.umn.edu/


Modified Philip Dunne Infiltrometer<br />

Results<br />

(MPD Infiltrometer)<br />

t • Saturated t hydraulic conductivity it (K sat ) and<br />

• Soil suction (C) <strong>of</strong> the upper ~30 cm <strong>of</strong> soil.<br />

• K sat : Indicates the ease with which water can<br />

move through the pore space when the soil is in<br />

saturated condition.<br />

• The attraction force that the soil exerts on the<br />

water is termed soil suction (C).<br />

http://stormwater.safl.umn.edu/


Application and Advantage<br />

http://stormwater.safl.umn.edu/


Modified Philip Dunne Infiltrometer<br />

Application<br />

(MPD Infiltrometer)<br />

• K sat and C values- to calculate the drain time and amount <strong>of</strong> surface run<strong>of</strong>f.<br />

• To identify the hydrologic soil group.<br />

• Has been used in rain gardens, an infiltration basin, one swale and a study<br />

<strong>of</strong> tillage and compost to remediate compact soil.<br />

http://stormwater.safl.umn.edu/


Modified Philip Dunne Infiltrometer<br />

(MPD Infiltrometer)<br />

t Advantage <strong>of</strong> using the MPD Infiltrometer<br />

• Relatively l quick<br />

• Simple and inexpensive device<br />

• Requires less volume <strong>of</strong> water.<br />

• MPD measures the K sat value <strong>of</strong> the top 30 cm <strong>of</strong> media.<br />

http://stormwater.safl.umn.edu/


Case Studies<br />

http://stormwater.safl.umn.edu/


Application <strong>of</strong> the K sat and C values<br />

• Case Study I<br />

‣ Type <strong>of</strong> BMP: Infiltration basin<br />

‣ Area: 2.5% <strong>of</strong> the impervious watershed<br />

‣ Rainfall event: 3month 24hr storm (2.5 cm/day)<br />

‣ Depression storage: 183cm<br />

‣ Moderate soil moisture<br />

Type <strong>of</strong> soil Ksat (cm/hr) C (cm) Drain time Surface run<strong>of</strong>f (cm)<br />

Loamy sand 3 6 13 hr 0<br />

Sandy loam 1 11 2 days, 8 hr 0<br />

Silt loam 0.65 17 4 days, 9 hr 0<br />

Sandy clay loam 0.15 22 27 days 0<br />

Clay 0.03 32 140 days 0<br />

http://stormwater.safl.umn.edu/


Application <strong>of</strong> the K sat and C values<br />

• Case Study II<br />

‣ Type <strong>of</strong> BMP: Bioretention Practice<br />

‣ Area: 5% <strong>of</strong> the impervious watershed<br />

‣ Rainfall event: 3month 24hr storm (2.5 cm/day)<br />

‣ Depression storage: 46cm<br />

‣ Moderate soil moisture<br />

Type <strong>of</strong> soil Ksat (cm/hr) C (cm) Drain time Surface run<strong>of</strong>f (cm)<br />

Loamy sand 3 6 No ponding 0<br />

Sandy loam 1 11 22 hr 0<br />

Silt loam 0.65 17 2 days 0<br />

Sandy clay loam 0.15 22 12 days 10 hr 0<br />

Clay 0.03 32 63 days 12 hr 4.2<br />

http://stormwater.safl.umn.edu/


Application <strong>of</strong> the K sat and C values<br />

• Case Study III<br />

‣ Type <strong>of</strong> BMP: Roadside Swale (drainage ditch)<br />

‣ Area: 15% <strong>of</strong> the impervious watershed<br />

‣ Rainfall event: 3month 24hr storm (2.54 cm/day)<br />

‣ Depression storage: 92cm<br />

‣ Moderate soil moisture<br />

Type <strong>of</strong> soil Ksat (cm/hr) C (cm) Drain time (hr) Surface run<strong>of</strong>f (cm)<br />

Loamy sand 3 6 No ponding 0<br />

Sandy loam 1 11 3 hr 0<br />

Silt loam 0.65 17 12 hr 0<br />

Sandy clay loam 0.15 22 3 days 2 hr 0<br />

Clay 0.03 32 22 days 4 hr 0<br />

http://stormwater.safl.umn.edu/


Conclusions<br />

• Measurement <strong>of</strong> Ksat is important to determine<br />

performance and schedule maintenance.<br />

• We need to know the spatial distribution <strong>of</strong> K sat<br />

to estimate infiltration rate.<br />

• MPD infiltrometer is designed for spatial<br />

distribution<br />

– has been used at up to 20 locations simultaneously,<br />

allowing for up to 40 measurements per day, with a<br />

three-person team.<br />

http://stormwater.safl.umn.edu/


Thank you<br />

Questions<br />

&<br />

Comments<br />

http://stormwater.safl.umn.edu/


Improved Site Investigation<br />

Procedures for Long‐term Success <strong>of</strong><br />

Stormwater BMPs – Lessons Learned<br />

from Soil ilSi Science<br />

Dave Bauer, PSS, CPESC<br />

Rice Creek Watershed District<br />

Dan Wheeler<br />

<strong>University</strong> <strong>of</strong> <strong>Minnesota</strong>


Raingardens & Septic Systems<br />

• Both rely on soil for the acceptance and<br />

treatment <strong>of</strong> water<br />

• 36% <strong>of</strong> infiltration/filtration BMPs installed to<br />

meet Rice Creek Rules between 2003 and<br />

2007 failed.<br />

• 2% <strong>of</strong> SSTS (Septic Systems) constructed<br />

between 1984 and 2004 failed fildin Ottertail<br />

County.


Raingarden<br />

Septic System


Comparing Failures<br />

• When a rain garden fails, you generally have<br />

an unplanned pond, sometimes with an odor,<br />

that generally doesn’t fit in the landscape.<br />

• When a septic system fails, you have a oozing<br />

spring <strong>of</strong> human waste, which can stink to<br />

high heaven and make people sick.


Raingarden Failure


Septic System Failures


A Standard Wastewater Site Evaluation Exists…<br />

• 1980 EPA Design Manual<br />

• Earlier in MN ISTS SSRules<br />

• ASTM Standards D5879, D5921<br />

*Key: Standard forms


A Standard Site Evaluation =<br />

An Appropriate Design<br />

1 st a complete lt preliminary<br />

i<br />

evaluation should be<br />

completed<br />

Soils <strong>of</strong> the area are<br />

important to characterize<br />

and understand<br />

Hydrology, soil and<br />

landscape variability, and<br />

slope<br />

Physical constraints <strong>of</strong> site<br />

H. Soil Survey Information (from web soil survey ) Map<br />

Map Units on Parcel 730B, 1110, 1253C<br />

List landforms hills, swales, outwash plains<br />

Slope Range 2-6, 0-2, 6-15<br />

Parent materials Till Outwash Loess Bedrock Alluvium<br />

Landscape Position Summit Shoulder Backslope Footslope Toeslope<br />

(circle all that apply ) Colluvium Lacustrine Organic Cut/Fill (circle all that apply ) Depression Stream Terrace Man-made Plain<br />

Map Unit<br />

Ratings<br />

N/A Minimum bedrock depth<br />

Maximum Bedrock Depth Minimum Redox Depth<br />

~0"<br />

Maximum Redox Depth<br />

>63"<br />

Septic Tank Absoprtion Field - Trench (MN) moderately limited, extremely limited, moderately limited<br />

Septic Tank Absorption Field - At-grade (MN) not limited, extremely limited, slightly limited<br />

Septic Tank Absorption Field - Mound (MN) slightly limited, very limited, extremely limited<br />

4. Preliminary Soil Pr<strong>of</strong>ile Information (from web soil survey - map unit description & <strong>of</strong>ficial series descriptions )<br />

Map Unit 730B<br />

Depth Texture(s) Structure(s) Consistence<br />

Other (flooding, ponding, etc.)<br />

Horizon 1<br />

0-2" ls weak granular fr<br />

Horizon 2 2-6" ls weak blocky<br />

fr<br />

E horizon<br />

Horizon 3<br />

6-15" ls weak blocky<br />

fr<br />

E horizon<br />

Horizon 4 15-21" sl mod blocky<br />

fr<br />

clay films<br />

Horizon 5 21-33" s single grain<br />

loose<br />

Map Unit<br />

1110<br />

Depth Texture(s) Structure(s) Consistence<br />

Other (flooding, ponding, etc.)<br />

Horizon 1 0-10" sl weak blocky<br />

fr<br />

N 2.5/0<br />

Horizon 2 10-14" sl weak blocky fr<br />

N 2.5/0<br />

Horizon 3 14-20" ls weak blocky<br />

vfr<br />

redox conc.<br />

Horizon 4 20-34" ls weak blocky vfr<br />

redox dep/conc.<br />

Horizon 5 34-40" cos single grain<br />

loose<br />

redox dep/conc.<br />

Map Unit 1253C<br />

Depth Texture(s) Structure(s) Consistence<br />

Other (flooding, ponding, etc.)<br />

Horizon 1 04" 0-4 grls weak granular<br />

vfr<br />

Horizon 2 4-11" vgrcos single grain loose<br />

~35% gravel<br />

Horizon 3 11-24" egrcos single grain<br />

loose<br />

~70% gravel<br />

Horizon 4 24-43" grs single grain loose<br />

~16% gravel<br />

Horizon 5 43-63" grs/grcos single grain<br />

loose<br />

~15% gravel


What SHOULD be on the Site<br />

Evaluation<br />

• Surface Water Run<strong>of</strong>f Location(s)<br />

• Setbacks<br />

– Bedrock<br />

• Slope<br />

– Contours<br />

– Shape<br />

• System location<br />

– Scale<br />

• Site evaluation<br />

– Soil observations (description and number)<br />

– Percolation tests or water movement tests


MPCA Stormwater Manual, 2005<br />

Requires bulk density (or soil structure)<br />

Depth to seasonal saturation<br />

(redoximorphic features identification)


Blue Thumb’s Site Investigation<br />

From Blue Thumb Guide to Raingardens<br />

(summarized)<br />

• Find location that makes sense for drainage<br />

• Look for things to avoid (utilities, within 10’ <strong>of</strong><br />

home, soggy part <strong>of</strong> yard, bedrock)<br />

• Run infiltration test at site<br />

• Extrapolate tested rate to 24 hours to get<br />

maximum depth, with a max depth <strong>of</strong> 12<br />

inches.


Blue Thumb<br />

Infiltration ti testt<br />

• Dig 8” diameter hole, 8” deep<br />

• Fill with water<br />

• Wait one or two hours to saturate<br />

soil<br />

• Refill hole<br />

• Measure rate <strong>of</strong> drop at regular<br />

time intervals<br />

– Sand: 15 minute intervals, for 1 hour<br />

– Clay: hourly intervals, for 4 hours


Site Investigation Success<br />

• Using Blue Thumb site evaluation methods,<br />

only 1 out <strong>of</strong> 23 raingardens installed<br />

voluntarily as part <strong>of</strong> Rice Creek cost share<br />

program have failed, 4%.


Lessons Learned<br />

• Standardized site evaluations for infiltration‐<br />

based stormwater strategies will increase<br />

success rate<br />

• For regulatory sites, where large<br />

features/volumes are anticipated, adopting<br />

wastewater‐based site evaluations seem<br />

appropriate<br />

• Forms provide a checklist for design/review


Looking Forward…<br />

• Designers, Inspectors and Installers need<br />

additional training in soil and site evaluation<br />

– Rice Creek Watershed District is sponsoring a 1‐<br />

day soil and site evaluation workshop in May<br />

2011,<br />

– A certification program is another method for<br />

providing this additional training, or<br />

– LGUs oversee proper soil and site evaluations


When Do We Need to<br />

Replace Bioretention ti Media<br />

Joel Morgan<br />

St. Anthony Falls Laboratory<br />

<strong>University</strong> <strong>of</strong> <strong>Minnesota</strong>


Outline<br />

• Introduction<br />

• Background<br />

• Experiment Setup<br />

• Results and Discussion<br />

• Application<br />

• Conclusions


Introduction<br />

Figure 1 Typical Rain Garden. Adapted from Davis et al (2009)<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Objective<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Objective<br />

• Develop understanding <strong>of</strong> ability <strong>of</strong> rain<br />

garden media to remove heavy metals<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Objective<br />

• Develop understanding <strong>of</strong> ability <strong>of</strong> rain<br />

garden media to remove heavy metals<br />

• Develop a life cycle analysis <strong>of</strong> a rain<br />

garden<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Objective<br />

• Develop understanding <strong>of</strong> ability <strong>of</strong> rain<br />

garden media to remove heavy metals<br />

• Develop a life cycle analysis <strong>of</strong> a rain<br />

garden<br />

• Provide suggestions for preventative<br />

and non-routine maintenance to extend<br />

life span<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Background<br />

Source Transport Consequence<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Background<br />

• Sorption is the primary removal process<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Background<br />

• Sorption is the primary removal process<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Background<br />

• Sorption is the primary removal process<br />

Zn 2+ Cd 2+<br />

Zn 2+<br />

Cu 2+<br />

Zn 2+ Cd 2+<br />

Cu 2+ Cu 2+ -Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Experimental Setup<br />

• We are testing ti Compost, Sand, and Soil<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Experimental Setup<br />

• We are testing ti Compost, Sand, and Soil<br />

• Analyzed samples on an ICP at the<br />

Soils Lab at the U <strong>of</strong> M’s St. Paul<br />

campus<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Experimental Setup<br />

• We are testing ti Compost, Sand, and Soil<br />

• Type <strong>of</strong> Setup<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Experimental Setup<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Experimental Setup<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Experimental Setup<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Experimental Setup<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Experimental Setup<br />

1.2<br />

1<br />

C/Co<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 5 10 15 20 25 30 35<br />

Time<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Experimental Setup<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Experimental Setup<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Experimental Results<br />

• Background concentration ti <strong>of</strong> metals on<br />

compost (mg/kg)<br />

Cadmium Copper Zinc<br />

Sample 1 0273 0.273 13.962 63.422<br />

Duplicate 0.341 13.877 57.931<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Experimental Results<br />

• Sorption Kinetics<br />

Cadmium sorption to 1.0 g <strong>of</strong> compost.<br />

Percent Re emoved<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 10 20 30 40 50 60<br />

Time (hrs)<br />

q (ug /g)<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Experimental Results<br />

• Sorption Equilibrium<br />

i<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Experimental Results<br />

• Sorption Equilibrium<br />

i<br />

– Purpose is to determine maximum sorption<br />

capacity, q<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Experimental Results<br />

• Sorption Equilibrium<br />

i<br />

Cadmium sorption to compost.<br />

Mass removed<br />

per mass <strong>of</strong><br />

compost<br />

3.000<br />

2.500<br />

2.000<br />

1.500<br />

1.000<br />

K = 20.28 L/g<br />

1/n = 0.93<br />

0.500<br />

0.000<br />

0.000 0.020 0.040 0.060 0.080 0.100<br />

Cadmium Concentration (mg/L)<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Experimental Results<br />

• Phosphorus h Leaching<br />

1400<br />

1200<br />

1000<br />

Conc.<br />

(ug/L)<br />

800<br />

600<br />

400<br />

y = 284.54x 0.326<br />

R² = 0.9585<br />

200<br />

0<br />

0 10 20 30 40 50<br />

Time (hrs)<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Phosphorus Removal - Iron<br />

ion Reta ained<br />

P hosphor rus Fract<br />

1.2<br />

• Phosphorus Leaching<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

100% sand<br />

5% iron filings<br />

2% iron filings<br />

0.3% iron filings<br />

0 5 10 15 20 25 30 35 40<br />

Years <strong>of</strong> Service<br />

HLR = 5.6 m/yr<br />

Erickson et al, 2010<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Application<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Application<br />

• Assume rain gardens infiltrate t first ½” <strong>of</strong><br />

run<strong>of</strong>f<br />

• Rain Garden area to drainage area ratio<br />

<strong>of</strong> 0.05 and a run<strong>of</strong>f coefficient <strong>of</strong> 0.5<br />

• Annual depth <strong>of</strong> run<strong>of</strong>f treated <strong>of</strong> 6.44<br />

m/yr for the Minneapolis/St. Paul area<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Application<br />

• Assume a rain garden made <strong>of</strong> 70/30<br />

sand and compost by volume<br />

• Bulk Density<br />

– Sand: 1600 kg/m 3<br />

– Compost: 500 kg/m 3 -Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Application<br />

where m is the mass dosage rate <strong>of</strong> rain<br />

garden media, Q is the flow rate, and q<br />

is the sorption capacity<br />

q<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Application<br />

• Depth <strong>of</strong> Water Treated at 30” depth<br />

– Cadmium: 2,500 m<br />

– Zinc: 4,400 m<br />

• Time to breakthrough<br />

– Cadmium: 390 years<br />

– Zinc: 680 years<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Application<br />

• Depth <strong>of</strong> Water Treated at 6” depth<br />

– Cadmium: 507 m<br />

– Zinc: 935 m<br />

• Time to breakthrough<br />

– Cadmium: 79 years<br />

– Zinc: 145 years<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Conclusion<br />

• A little bit <strong>of</strong> compost goes a long way<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Conclusion<br />

• A little bit <strong>of</strong> compost goes a long way<br />

• Compost leaches phosphorus<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Conclusion<br />

• A little bit <strong>of</strong> compost goes a long way<br />

• Compost leaches phosphorus<br />

• Rain gardens should be designed with<br />

2-stage removal in mind<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Conclusion<br />

Compost Amended Sand<br />

Iron Enhanced Sand Filter<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Zn 2+ Conclusion<br />

Cd<br />

2+<br />

Conclusion<br />

Cd<br />

Zn 2+<br />

2+<br />

Cu 2+<br />

P<br />

Compost Amended Sand<br />

P<br />

Cu 2+<br />

P<br />

P<br />

P<br />

P<br />

Iron Enhanced Sand Filter<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Acknowledgements<br />

• <strong>Minnesota</strong> Mulch and Soil<br />

• <strong>Minnesota</strong> Pollution Control Agency<br />

• Pr<strong>of</strong>essors John Gulliver and Ray<br />

Hozalski<br />

• Andy Erickson and Kim Paus<br />

-Introduction and Background<br />

-Experiment Setup<br />

-Results and Discussion<br />

-Application<br />

-Conclusion


Questions<br />

• Contact Information:<br />

Joel Morgan<br />

St. Anthony Falls Laboratory<br />

2 3 rd Ave SE<br />

Minneapolis, MN 55414<br />

morga526@umn.edu

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!