03.01.2015 Views

Influence of excess pore pressures on the stability of the tunnel face

Influence of excess pore pressures on the stability of the tunnel face

Influence of excess pore pressures on the stability of the tunnel face

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

J. Saveur (ed.) (Re)Claiming <strong>the</strong> Underground Space, ITA, Amsterdam, 2003, pp. 759–765.<br />

<str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>stability</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>tunnel</strong> <strong>face</strong><br />

W. Broere<br />

A. Broere’s Aannemingsmij. BV, Amsterdam, The Ne<strong>the</strong>rlands<br />

Geotechnical Laboratory, Delft University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, The Ne<strong>the</strong>rlands<br />

ABSTRACT: In shield <strong>tunnel</strong>ling in loose and water bearing soils, a bent<strong>on</strong>ite slurry is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used to help support<br />

<strong>the</strong> <strong>tunnel</strong> <strong>face</strong>. During excavati<strong>on</strong>, <strong>the</strong> bent<strong>on</strong>ite cake, which is intended to seal <strong>the</strong> <strong>face</strong>, is removed by <strong>the</strong> cutter<br />

bits and subsequently slurry will infiltrate <strong>the</strong> soil. This infiltrati<strong>on</strong> causes <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

TBM, which lower <strong>the</strong> <strong>stability</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>face</strong>. The effect has been investigated using a stati<strong>on</strong>ary model as well as<br />

with a time-dependent groundwater flow model, linked to a limit equilibrium <strong>face</strong> <strong>stability</strong> model. This model<br />

can be used to predict <strong>the</strong> minimal required support pressure and also <strong>the</strong> build-up <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> in<br />

fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> TBM over time. The calculated <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> compare well with field observati<strong>on</strong>s.<br />

1 INTRODUCTION<br />

The use <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>tunnel</strong> boring machines to realise underground<br />

works is still c<strong>on</strong>tinuously extended to c<strong>on</strong>diti<strong>on</strong>s<br />

that were, until recently, deemed too difficult to<br />

work in. A list <str<strong>on</strong>g>of</str<strong>on</strong>g> examples can be found in <strong>the</strong> Ne<strong>the</strong>rlands<br />

al<strong>on</strong>e, such as <strong>the</strong> <strong>tunnel</strong> beneath <strong>the</strong> Green<br />

Heart, part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> High Speed Link South from Amsterdam<br />

to Brussel. This almost 15 m diameter <strong>tunnel</strong><br />

is c<strong>on</strong>structed in part in loose sand layers with a high,<br />

c<strong>on</strong>fined, water table, below a thick stratum <str<strong>on</strong>g>of</str<strong>on</strong>g> extremely<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>t peats and clays. The soil c<strong>on</strong>diti<strong>on</strong>s can<br />

<strong>on</strong>ly be characterised as difficult and extremely sensitive<br />

to settlements. Yet due to <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> several<br />

roads, railroads, dikes and pipe infrastructure at <strong>the</strong><br />

sur<strong>face</strong>, <strong>the</strong> allowable sur<strong>face</strong> settlements are limited<br />

to <strong>on</strong>ly 10 mm in some locati<strong>on</strong>s.<br />

Ano<strong>the</strong>r example is <strong>the</strong> proposed c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

North-South light rail link in Amsterdam, where a twin<br />

<strong>tunnel</strong> will be c<strong>on</strong>structed in <strong>the</strong> vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> old<br />

wooden pile foundati<strong>on</strong>s supporting <strong>the</strong> historic buildings<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> inner city. In <strong>the</strong>se c<strong>on</strong>diti<strong>on</strong>s <strong>the</strong> acceptable<br />

deformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> subsoil are even more limited,<br />

to avoid damage to <strong>the</strong> highly sensitive mas<strong>on</strong>ry<br />

structures. For such projects, a reliable predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> required support pressure and, subsequently, a reliable<br />

c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pressure at <strong>the</strong> <strong>tunnel</strong> <strong>face</strong>, is <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

utmost importance.<br />

2 SUPPORT PRESSURE CALCULATION<br />

The most comm<strong>on</strong> <strong>tunnel</strong> boring techniques used in<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>t, water bearing soils are <strong>the</strong> slurry shield and <strong>the</strong><br />

earth-pressure balance (EPB) shield, as o<strong>the</strong>r techniques<br />

fail to meet <strong>the</strong> rigorous settlement criteria outlined<br />

above.<br />

In a slurry shield a pressurised slurry is used to<br />

stabilise <strong>the</strong> <strong>tunnel</strong> <strong>face</strong>, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten combined with an air<br />

bubble in <strong>the</strong> pressure chamber to limit pressure fluctuati<strong>on</strong>s.<br />

This bent<strong>on</strong>ite slurry is normally injected<br />

into <strong>the</strong> working chamber at a pressure higher than <strong>the</strong><br />

<str<strong>on</strong>g>pore</str<strong>on</strong>g> water pressure in <strong>the</strong> soil. Due to <strong>the</strong> pressure<br />

difference <strong>the</strong> slurry will infiltrate <strong>the</strong> soil and form a<br />

filter cake at <strong>the</strong> <strong>face</strong> (Krause 1987). This filter cake<br />

will <strong>the</strong>n seal <strong>the</strong> <strong>face</strong>, help to transfer <strong>the</strong> slurry pressure<br />

<strong>on</strong>to <strong>the</strong> soil skelet<strong>on</strong> and protect against microcollapses<br />

at <strong>the</strong> <strong>face</strong>. Numerous models used to determine<br />

<strong>the</strong> minimal required support pressure at <strong>the</strong><br />

<strong>face</strong> implicitly assume this filter cake to be a thin and<br />

perfectly impermeable membrane, so that no slurry infiltrates<br />

<strong>the</strong> soil, e.g. <strong>the</strong> models by Jancsecz & Steiner<br />

(1994), Leca & Dormieux (1990) or Murayama, see<br />

(Kanayasu et al. 1995).<br />

Anagnostou & Kovári (1994) noticed that during<br />

stand-still <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> TBM <strong>the</strong> slurry will infiltrate <strong>the</strong> soil<br />

and <strong>the</strong> filter cake is no l<strong>on</strong>ger a thin membrane. In<br />

coarse sands and gravels, <strong>the</strong> infiltrati<strong>on</strong> length <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

slurry can reach several decimeters. The support pressure<br />

is no l<strong>on</strong>ger transferred to <strong>the</strong> soil at <strong>the</strong> <strong>tunnel</strong><br />

<strong>face</strong>, but gradually over this infiltrati<strong>on</strong> z<strong>on</strong>e. The result<br />

is a reduced efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> slurry in stabilising<br />

<strong>the</strong> <strong>face</strong>, which may lead to collapse <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>face</strong> in very<br />

coarse soils.<br />

This infiltrati<strong>on</strong> occurs not <strong>on</strong>ly during stand-still,<br />

but also during <strong>the</strong> actual excavati<strong>on</strong> process. As<br />

<strong>the</strong> cutter bits c<strong>on</strong>stantly remove <strong>the</strong> established filter<br />

cake, <strong>the</strong>re is also a c<strong>on</strong>tinuous infiltrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> slurry<br />

1


J. Saveur (ed.) (Re)Claiming <strong>the</strong> Underground Space, ITA, Amsterdam, 2003, pp. 759–765.<br />

z<br />

x<br />

y<br />

C<br />

D<br />

Figure 1. Wedge and silo <strong>stability</strong> model.<br />

F<br />

B<br />

A<br />

ϑ<br />

B<br />

E<br />

h<br />

z = zh<br />

C<br />

z = z t<br />

D<br />

z = z b<br />

into <strong>the</strong> soil in order to rebuild <strong>the</strong> filter cake. The<br />

time required to establish a perfectly sealing filter cake,<br />

however, is normally greater than <strong>the</strong> time between<br />

subsequent passages <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> cutter bits. As a result, during<br />

excavati<strong>on</strong>, <strong>the</strong>re is a c<strong>on</strong>tinuous inflow <str<strong>on</strong>g>of</str<strong>on</strong>g> filtrate<br />

water into <strong>the</strong> soil. This infiltrati<strong>on</strong> results in <str<strong>on</strong>g>excess</str<strong>on</strong>g><br />

<str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> TBM and <strong>the</strong>se <str<strong>on</strong>g>excess</str<strong>on</strong>g><br />

<str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> lower <strong>the</strong> effective stresses <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> soil.<br />

They also lower <strong>the</strong> effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> slurry infiltrati<strong>on</strong><br />

and <strong>the</strong> combined effect is a reduced <strong>stability</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> <strong>tunnel</strong> <strong>face</strong>.<br />

In an EPB shield <strong>the</strong> excavated soil is used to support<br />

<strong>the</strong> <strong>tunnel</strong> <strong>face</strong>, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten c<strong>on</strong>diti<strong>on</strong>ed with additives like<br />

bent<strong>on</strong>ite slurry or foam. These additives are injected<br />

into <strong>the</strong> working chamber at <str<strong>on</strong>g>pressures</str<strong>on</strong>g> above <strong>the</strong> <str<strong>on</strong>g>pore</str<strong>on</strong>g><br />

water pressure and will infiltrate <strong>the</strong> soil in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

TBM, displacing <strong>the</strong> <str<strong>on</strong>g>pore</str<strong>on</strong>g> water present <strong>the</strong>re. Part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> foam treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> soil rests<br />

in <strong>the</strong> fact that <strong>the</strong> foam replaces part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>pore</str<strong>on</strong>g> water,<br />

lowering <strong>the</strong> water c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> soil (Maidl 1995). As<br />

a result <str<strong>on</strong>g>of</str<strong>on</strong>g> this infiltrati<strong>on</strong> process <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> pressure<br />

are generated in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>face</strong>. Although <strong>the</strong> underlying<br />

infiltrati<strong>on</strong> process differs slightly, <strong>the</strong> resulting<br />

<str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> are much <strong>the</strong> same as observed<br />

for a slurry machine.<br />

2.1 Wedge <strong>stability</strong> model<br />

The aforementi<strong>on</strong>ed <strong>stability</strong> calculati<strong>on</strong>s by Jancsecz<br />

& Steiner (1994), as well as Anagnostou & Kovári<br />

(1994), are based <strong>on</strong> <strong>the</strong> limit equilibrium analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a wedge shaped soil body in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> TBM, as<br />

proposed by Horn (1961). The basic wedge <strong>stability</strong><br />

model is a limit equilibrium analysis, in which <strong>the</strong><br />

collapsing soil in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> TBM is schematised as a<br />

triangular wedge, loaded by a soil silo (see Figure 1).<br />

This wedge is assumed to be a rigid body, loaded its<br />

effective weight and <strong>the</strong> overburden resulting from <strong>the</strong><br />

soil silo.<br />

From <strong>the</strong> equilibrium <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> forces acting <strong>on</strong> <strong>the</strong> <strong>the</strong><br />

wedge, <strong>the</strong> effective earth pressure acting towards <strong>the</strong><br />

<strong>tunnel</strong> <strong>face</strong> can be calculated. This force has to be<br />

countered by <strong>the</strong> effective support force, which is <strong>the</strong><br />

difference between <strong>the</strong> total support pressure and <strong>the</strong><br />

<str<strong>on</strong>g>pore</str<strong>on</strong>g> pressure in <strong>the</strong> soil. In most models, <strong>the</strong> effective<br />

earth pressure can <strong>on</strong>ly be found for a given wedge<br />

angle θ, and as a result <strong>the</strong> required minimal support<br />

pressure is <strong>the</strong>n found by iterating over all possible<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> angle θ and maximising <strong>the</strong> effective<br />

earth pressure.<br />

Anagnostou & Kovári (1996) and Broere (2001)<br />

have shown that a wedge <strong>stability</strong> model can also be<br />

used to determine <strong>the</strong> <strong>face</strong> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> in EPB shield <strong>tunnel</strong>ling.<br />

Although <strong>the</strong> <strong>stability</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>face</strong> is in general<br />

not c<strong>on</strong>sidered a problem in EPB shield <strong>tunnel</strong>ling, an<br />

accurate indicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> minimal required support<br />

pressure is required to c<strong>on</strong>trol <strong>the</strong> sur<strong>face</strong> settlements<br />

and to prevent a <strong>face</strong> collapse in <strong>the</strong> event <str<strong>on</strong>g>of</str<strong>on</strong>g> a partially<br />

filled working chamber.<br />

2.2 <str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> infiltrati<strong>on</strong><br />

The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> infiltrati<strong>on</strong> during excavati<strong>on</strong> and <strong>the</strong><br />

resulting <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> can be included in a<br />

wedge <strong>stability</strong> analysis using a stati<strong>on</strong>ary groundwater<br />

flow model, as shown by Broere & van Tol (2000).<br />

This model assumes that <strong>the</strong> c<strong>on</strong>tinuous infiltrati<strong>on</strong><br />

process results in a partial filter cake during <strong>the</strong> excavati<strong>on</strong><br />

process, and that part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> support pressure is<br />

transferred <strong>on</strong>to <strong>the</strong> soil skelet<strong>on</strong> by this partial filter<br />

cake. The remaining pressurep p is taken as input for<br />

a simple <strong>on</strong>e-dimensi<strong>on</strong>al groundwater flow model, so<br />

that <strong>the</strong> <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> at a distance x in fr<strong>on</strong>t<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>face</strong> are given by<br />

( ) e − x<br />

p(x) = p p exp , (1)<br />

λ<br />

wheree is <strong>the</strong> infiltrati<strong>on</strong> length <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> partial filter cake<br />

andλis <strong>the</strong> leakage length <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> aquifer. The resulting<br />

<str<strong>on</strong>g>pore</str<strong>on</strong>g> pressure distributi<strong>on</strong> is sketched in Figure 2.<br />

The <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> lower <strong>the</strong> effective<br />

stresses in <strong>the</strong> soil, <strong>the</strong>reby reducing <strong>the</strong> fricti<strong>on</strong><br />

between <strong>the</strong> collapsing soil body and <strong>the</strong> remaining<br />

soil. This requires an increase in <strong>the</strong> support pressure<br />

in order to stabilise <strong>the</strong> soil. Fur<strong>the</strong>rmore, <strong>the</strong><br />

effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> support is reduced, as <strong>on</strong>ly part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> support pressure is transferred <strong>on</strong>to <strong>the</strong> soil skelet<strong>on</strong>.<br />

The remainder <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> support pressure drives <strong>the</strong><br />

groundwater flow and generates <strong>the</strong> <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g>.<br />

The combined result <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se effects is that a<br />

higher support pressure is required than in case a perfectly<br />

sealing filter cake is assumed. The effect is most<br />

significant in fine to medium sands, and negligible in<br />

clays where hardly any infiltrati<strong>on</strong> occurs.<br />

2


J. Saveur (ed.) (Re)Claiming <strong>the</strong> Underground Space, ITA, Amsterdam, 2003, pp. 759–765.<br />

∆p fc<br />

∆s<br />

(kPa)<br />

50<br />

40<br />

30<br />

∆s<br />

20<br />

∆p p<br />

x<br />

∆p(w(z), z))<br />

e<br />

s p 0<br />

ϑ<br />

p(x, z)<br />

Figure 2. Schematic overview <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pressure drop over <strong>the</strong><br />

slurry infiltrati<strong>on</strong> z<strong>on</strong>e and <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> pressure distributi<strong>on</strong><br />

in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>face</strong>.<br />

Table 1. Input parameters for various soil types to determine<br />

influence <str<strong>on</strong>g>of</str<strong>on</strong>g> permeability <strong>on</strong> calculated support pressure.<br />

γ φ c k d 10 a τ F<br />

No. (kN/m 3 ) ( ◦ ) (kPa) (m/s) (µm) (s) (Pa)<br />

1 16 15 2 10 −10 2 1 1<br />

2 17 17.5 10 10 −9 5 1 1<br />

3 17 17.5 5 10 −8 5 5 1<br />

4 18 22.5 5 10 −7 10 10 5<br />

5 18 27.5 2 10 −6 10 60 5<br />

6 19 30 0 10 −5 50 120 5<br />

7 20 30 0 10 −4 100 180 10<br />

8 20 32.5 0 10 −3 500 120 10<br />

9 20 35 0 10 −2 1000 60 15<br />

10 20 35 0 10 −1 2000 60 20<br />

11 20 40 0 10 0 4000 60 30<br />

This is illustrated by a parameter analysis in Broere<br />

(2001), where calculati<strong>on</strong>s have been made for several<br />

soil types with increasing permeability. The properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se soils are listed in Table 1, where k is <strong>the</strong><br />

permeability and d 10 <strong>the</strong> characteristic grain size. The<br />

infiltrati<strong>on</strong> half-timea and yield strength τ F characterise<br />

<strong>the</strong> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> slurry in combinati<strong>on</strong> with <strong>the</strong><br />

soil type. The parameters are indicative for soils ranging<br />

from clayey (1) to sandy (7) to gravelly (11). The<br />

resulting minimal <str<strong>on</strong>g>excess</str<strong>on</strong>g> support <str<strong>on</strong>g>pressures</str<strong>on</strong>g> (<strong>the</strong> difference<br />

between total support pressure and <str<strong>on</strong>g>pore</str<strong>on</strong>g> pressure<br />

in rest) for a 10 m diameter TBM with a cover <str<strong>on</strong>g>of</str<strong>on</strong>g> 15<br />

m are shown in Figure 3.<br />

It can be seen that <strong>the</strong> highest <str<strong>on</strong>g>excess</str<strong>on</strong>g> support <str<strong>on</strong>g>pressures</str<strong>on</strong>g><br />

are needed in sandy soils with permeabilities<br />

10 −5 < k < 10 −3 m/s. This corresp<strong>on</strong>ds with <strong>the</strong><br />

field observati<strong>on</strong>s by Mori (1995) that <strong>the</strong> reducti<strong>on</strong><br />

in effective support pressure due to <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g><br />

can become a major problem in soils with permeabilities<br />

within <strong>the</strong> indicated range, as well as with<br />

field observati<strong>on</strong>s made during <strong>the</strong> c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

Sec<strong>on</strong>d Heinenoord<strong>tunnel</strong> in <strong>the</strong> Ne<strong>the</strong>rlands.<br />

10<br />

0<br />

1 2 3 4 5 6 7 8 9 10 11<br />

No.<br />

Figure 3. <str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil types listed in Table 1 <strong>on</strong> <strong>the</strong><br />

minimal <str<strong>on</strong>g>excess</str<strong>on</strong>g> support pressure (difference between total<br />

support pressure and <str<strong>on</strong>g>pore</str<strong>on</strong>g> pressure in rest).<br />

3 SECOND HEINENOORD<br />

The Sec<strong>on</strong>d Heinenoord Tunnel is a twin-tube, 8.3m<br />

outer diameter, 950m l<strong>on</strong>g bored <strong>tunnel</strong> under <strong>the</strong><br />

River Oude Maas in <strong>the</strong> vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> Rotterdam, c<strong>on</strong>structed<br />

between 1996 and 1999. As <strong>the</strong> first large<br />

bored <strong>tunnel</strong> in s<str<strong>on</strong>g>of</str<strong>on</strong>g>t to very s<str<strong>on</strong>g>of</str<strong>on</strong>g>t soils with high water<br />

<str<strong>on</strong>g>pressures</str<strong>on</strong>g> in <strong>the</strong> Ne<strong>the</strong>rlands, <strong>the</strong> <strong>tunnel</strong> was extensively<br />

m<strong>on</strong>itored. See Bakker et al. (2000) for a descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> soil c<strong>on</strong>diti<strong>on</strong>s and <strong>the</strong> test programme.<br />

At <strong>the</strong> north bank <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> river a m<strong>on</strong>itoring site was<br />

instrumented with piezometers placed in <strong>the</strong> path <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> TBM. At this locati<strong>on</strong> <strong>the</strong> <strong>tunnel</strong> was excavated in<br />

a highly stratified soil, with Holocene fine sands and<br />

several s<str<strong>on</strong>g>of</str<strong>on</strong>g>t clay layers al<strong>on</strong>g <strong>the</strong> top part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>tunnel</strong><br />

and with Pleistocene, medium to coarse, sands at <strong>the</strong><br />

bottom part. The <strong>tunnel</strong> axis is situated approximately<br />

15 m below ground level and <strong>the</strong> average piezometric<br />

head lies 12.4 m above <strong>the</strong> <strong>tunnel</strong>. A small tidal variati<strong>on</strong><br />

can be observed in this head, slightly delayed<br />

with respect to <strong>the</strong> tidal fluctuati<strong>on</strong> observed in <strong>the</strong><br />

river.<br />

The piezometer placed in <strong>the</strong> soil was c<strong>on</strong>stantly<br />

m<strong>on</strong>itored during <strong>the</strong> approach <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> TBM, up to <strong>the</strong><br />

time <strong>the</strong> piezometer was excavated by <strong>the</strong> TBM and<br />

destroyed. The <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> are plotted in Figure 4<br />

as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> distance between <strong>the</strong> TBM and <strong>the</strong><br />

piezometer, and are compared with <strong>the</strong> <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g><br />

<str<strong>on</strong>g>pressures</str<strong>on</strong>g> according to (1). The <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> pressure<br />

increase as so<strong>on</strong> as excavati<strong>on</strong> starts and rises over time<br />

as <strong>the</strong> TBM approaches <strong>the</strong> piezometer. The vertical<br />

downward spikes at 1.5 m intervals are caused by <strong>the</strong><br />

dissipati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> during stand-still.<br />

The peak <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> corresp<strong>on</strong>d well with<br />

<strong>the</strong> calculated pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile.<br />

4 TRANSIENT GROUNDWATER FLOW<br />

For <strong>the</strong> soil c<strong>on</strong>diti<strong>on</strong>s at <strong>the</strong> Sec<strong>on</strong>d Heinenoord, <strong>the</strong><br />

groundwater flow in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> TBM reached stati<strong>on</strong>ary<br />

c<strong>on</strong>diti<strong>on</strong>s after approximately 5 min. And within<br />

30 min. after <strong>the</strong> TBM was stopped, no <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g><br />

3


180 200<br />

170 190<br />

160 150 140 130 120 110<br />

<str<strong>on</strong>g>pore</str<strong>on</strong>g>pressurepinkPa<br />

0<br />

5<br />

Figure 4. Measured <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> TBM<br />

at <strong>the</strong> Sec<strong>on</strong>d Heinenoord, compared with <str<strong>on</strong>g>pore</str<strong>on</strong>g> pressure<br />

according to (1) (dashed)<br />

<str<strong>on</strong>g>pressures</str<strong>on</strong>g> remained. For <strong>the</strong>se c<strong>on</strong>diti<strong>on</strong>s <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

stati<strong>on</strong>ary groundwater flow model to predict <strong>the</strong> influence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> infiltrati<strong>on</strong> is sufficient. However, for many<br />

cases where <strong>the</strong> infiltrati<strong>on</strong> has a significant effect <strong>on</strong><br />

<strong>the</strong> <strong>stability</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>face</strong>, <strong>the</strong> permeability and storage<br />

capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> aquifers are such that stati<strong>on</strong>ary flow<br />

is not reached within <strong>the</strong> 30 to 60 minutes it normally<br />

takes to excavate a lining ring.<br />

In <strong>the</strong>se cases <strong>the</strong> infiltrati<strong>on</strong> process can be modelled<br />

using a transient groundwater flow model<br />

coupled to <strong>the</strong> wedge <strong>stability</strong> calculati<strong>on</strong>. A similar<br />

transient groundwater flow model can be used to<br />

evaluate <strong>the</strong> dissipati<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> generated <str<strong>on</strong>g>excess</str<strong>on</strong>g><br />

<str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g>, as <strong>the</strong> <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> will not<br />

always be fully dissipated when <strong>the</strong> next excavati<strong>on</strong><br />

cycle starts. Combining <strong>the</strong>se effects in a <strong>stability</strong><br />

analysis allows <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> infiltrati<strong>on</strong> process <strong>on</strong><br />

<strong>the</strong> <strong>stability</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>tunnel</strong> <strong>face</strong> to be quantified, without<br />

overestimating <strong>the</strong>ir influence.<br />

A problem with this approach forms <strong>the</strong> fact that <strong>the</strong><br />

soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> basic differential equati<strong>on</strong>s for transient<br />

flow can become ra<strong>the</strong>r complex. For <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

semi-c<strong>on</strong>fined aquifer, <strong>the</strong> basic equati<strong>on</strong>s are given<br />

by Strack (1989) as<br />

∇ 2 = λ 2 + S s<br />

k ∂ t (2)<br />

where <strong>the</strong> potential in <strong>the</strong> aquifer defined as =<br />

kH(ϕ−ϕ 0 ), ϕ <strong>the</strong> piezometric head, S s <strong>the</strong> coefficient<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> specific storage and k <strong>the</strong> permeability.<br />

If <strong>the</strong> problem is simplified to a single, <strong>on</strong>edimensi<strong>on</strong>al<br />

aquifer <str<strong>on</strong>g>of</str<strong>on</strong>g> height H , with a discharge Q<br />

at x = 0 and has a c<strong>on</strong>stant head ϕ 0 at infinity, <strong>the</strong><br />

soluti<strong>on</strong> to (2) has been given by Bruggeman (1999)<br />

as<br />

ϕ − ϕ 0 = Qλ<br />

4kH<br />

[ ( xu<br />

erfc<br />

−erfc<br />

√ t<br />

2 √ t + uλ<br />

( √ xu t<br />

2 √ t − uλ<br />

) ( x<br />

exp<br />

λ)<br />

) (<br />

exp − x λ<br />

(3)<br />

J. Saveur (ed.) (Re)Claiming <strong>the</strong> Underground Space, ITA, Amsterdam, 2003, pp. 759–765.<br />

TBM x gauge<br />

withu = √ S s /k and erfc(x) <strong>the</strong> complementary error-<br />

10distancetogaugexinm<br />

15 20 25 30 35<br />

) ]<br />

functi<strong>on</strong>. In order to use this equati<strong>on</strong> to predict <strong>the</strong><br />

<str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>tunnel</strong> <strong>face</strong>, an<br />

estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> discharge Q is needed. For a slurry<br />

shield Mohkam (1985) reports that <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> water<br />

displaced by <strong>the</strong> infiltrating slurry is roughly equal to<br />

<strong>the</strong> porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> excavated material. This leads to<br />

an estimated discharge per unit area <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>tunnel</strong><br />

q = −nv (4)<br />

with n <strong>the</strong> porosity and v <strong>the</strong> advance rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> TBM.<br />

In a foam-c<strong>on</strong>diti<strong>on</strong>ed EPB machine <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> water<br />

displaced depends <strong>on</strong> <strong>the</strong> foam injecti<strong>on</strong> rate, but<br />

as <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> foam injected is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> same<br />

order as <strong>the</strong> porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> excavated material, and<br />

displaces <strong>the</strong> <str<strong>on</strong>g>pore</str<strong>on</strong>g> water originally present, <strong>the</strong> above<br />

relati<strong>on</strong> can also be used to get an estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> discharge<br />

in this case.<br />

The calculated piezometric head can be used instead<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> (1) in <strong>the</strong> wedge <strong>stability</strong> analysis. In that<br />

way <strong>the</strong> minimal required support pressure, at time t<br />

after boring has started, can be calculated, as well as<br />

<strong>the</strong> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> generated in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>face</strong>. If <strong>the</strong><br />

discharge Q has been estimated correctly, <strong>the</strong> <str<strong>on</strong>g>excess</str<strong>on</strong>g><br />

<str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> predicted by (3) will approach those<br />

given by (1) over time.<br />

When <strong>the</strong> <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> pressure distributi<strong>on</strong> at <strong>the</strong><br />

time <strong>the</strong> TBM stops are known, <strong>the</strong>se can be used as<br />

input to calculate <strong>the</strong> dissipati<strong>on</strong> over time. This will,<br />

however, lead to a ra<strong>the</strong>r complex soluti<strong>on</strong> or require<br />

<strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> numerical soluti<strong>on</strong> methods. Assuming that<br />

stati<strong>on</strong>ary flow c<strong>on</strong>diti<strong>on</strong>s according to (1) have been<br />

reached as <strong>the</strong> excavati<strong>on</strong> ends, simplifies <strong>the</strong> problem<br />

somewhat. In that case <strong>the</strong> <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g><br />

remaining at time t after boring has stopped can be<br />

estimated from (see Bruggeman 1999)<br />

ϕ − ϕ 0 = p [ ( √ )<br />

p xu t<br />

( x<br />

erfc<br />

2γ w 2 √ t + exp<br />

uλ λ)<br />

(<br />

+erfc − xu √ ) t<br />

(<br />

2 √ t + exp − x uλ λ) ] ,<br />

(5)<br />

which is remarkably similar to (3).<br />

From <strong>the</strong> equati<strong>on</strong>s (3) and (5) it can be found that,<br />

in those cases where <strong>the</strong> <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> do not<br />

reach equilibrium shortly after boring has started and<br />

a transient flow model is needed to accurately describe<br />

<strong>the</strong> build-up <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g>, <strong>the</strong> time required<br />

for <strong>the</strong> <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> to fully dissipate will also<br />

be large. If in an undisturbed boring process <strong>the</strong> standstill<br />

period, between <strong>the</strong> boring <str<strong>on</strong>g>of</str<strong>on</strong>g> two subsequent <strong>tunnel</strong><br />

rings, is <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> same order as <strong>the</strong> time needed to<br />

excavate a <strong>tunnel</strong> ring, part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> generated<br />

during <strong>the</strong> first excavati<strong>on</strong> period will remain<br />

when <strong>the</strong> boring <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> next ring is started. This will<br />

be illustrated using an example.<br />

4


J. Saveur (ed.) (Re)Claiming <strong>the</strong> Underground Space, ITA, Amsterdam, 2003, pp. 759–765.<br />

∆p(kPa)<br />

140<br />

120<br />

∆p(kPa)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 2 4 6 8 10 12<br />

t (h)<br />

Figure 5. Excess <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> at <strong>the</strong> <strong>face</strong> due to infiltrati<strong>on</strong><br />

and dissipati<strong>on</strong> over time.<br />

4.1 Predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pore Pressures at <strong>the</strong> Face<br />

Alternating (3) and (5) during boring and stand-still,<br />

<strong>the</strong> time-dependant <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> in an aquifer<br />

resulting from <strong>the</strong> infiltrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> slurry or foam can be<br />

predicted. For a fine, silty sand layer with λ = 9m,<br />

S s = 7 · 10 −4 m −1 , k = 10 −5 m/s and n = 0.4<br />

this is illustrated in figure 5. The average advance<br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> TBM has been chosen v = 5cm/min and<br />

H/D = 1.33, with D <strong>the</strong> diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> TBM. It is<br />

fur<strong>the</strong>r assumed that <strong>the</strong> excavati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a single <strong>tunnel</strong><br />

ring takes 45 minutes and <strong>the</strong> stand-still between<br />

subsequent excavati<strong>on</strong> periods is 75 minutes. For two<br />

c<strong>on</strong>secutive rings <strong>the</strong> <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> pressure at <strong>the</strong> <strong>face</strong><br />

has been plotted as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> time. It can be clearly<br />

seen that <strong>the</strong> time needed for <strong>the</strong> generated <str<strong>on</strong>g>excess</str<strong>on</strong>g><br />

<str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> to fully dissipate is l<strong>on</strong>ger than <strong>the</strong> time<br />

between subsequent excavati<strong>on</strong> periods. At <strong>the</strong> start<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sec<strong>on</strong>d excavati<strong>on</strong> approximately 20% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

generated <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> remains.<br />

5 BOTLEK RAIL TUNNEL<br />

The Botlek rail <strong>tunnel</strong> is a 9.65m diameter twin-<strong>tunnel</strong><br />

bored through Holocene and Pleistocene sand, clay<br />

and peat layers in <strong>the</strong> vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> Rotterdam, <strong>the</strong> Ne<strong>the</strong>rlands.<br />

The soil c<strong>on</strong>diti<strong>on</strong>s are roughly similar to<br />

those at <strong>the</strong> Sec<strong>on</strong>d Heinenoord, s<str<strong>on</strong>g>of</str<strong>on</strong>g>t Holocene clays<br />

and sands over a Pleistocene sand layer. The Holocene<br />

sand layer in which <strong>the</strong> first part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>tunnel</strong><br />

was c<strong>on</strong>structed can be simplified as in <strong>the</strong> example<br />

in §4.1. The <strong>tunnel</strong> has been c<strong>on</strong>structed using a<br />

foam-c<strong>on</strong>diti<strong>on</strong>ed earth-pressure balance shield and at<br />

several points al<strong>on</strong>g <strong>the</strong> <strong>tunnel</strong> alignment piezometers<br />

have been placed in <strong>the</strong> projected path <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> TBM, as<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> an extensive research program (COB 2001).<br />

The <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> measured at locati<strong>on</strong><br />

MQ1 have been plotted against time in figure 6. The<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 1 2 3 4 5 6 7<br />

t (day)<br />

Figure 6. Pore pressure measurements at Botlek Rail, MQ1<br />

as functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> time (BTC/NS-RIB 2000).<br />

peak <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> are measured during <strong>the</strong> actual<br />

excavati<strong>on</strong> periods and <strong>the</strong> subsequent drops with<br />

<strong>the</strong> periods <str<strong>on</strong>g>of</str<strong>on</strong>g> ring building and maintenance. The<br />

measurements made at day 4 show clearly that <strong>the</strong><br />

<str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> are not fully dissipated as <strong>the</strong><br />

excavati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> next <strong>tunnel</strong> ring starts. Only during<br />

<strong>the</strong> stop <strong>on</strong> day 5 <strong>the</strong> TBM is halted l<strong>on</strong>g enough for<br />

<strong>the</strong> <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> to fully dissipate.<br />

The measurements are also plotted in figure 7 as a<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> distance between <strong>the</strong> piezometer and<br />

<strong>the</strong> TBM. In this way <strong>the</strong>y can be compared with <strong>the</strong><br />

predicted <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> from (3) at 45 minutes<br />

after boring has started, and from (5) 90 minutes after<br />

boring has stopped. It should be noted that <strong>the</strong> <str<strong>on</strong>g>excess</str<strong>on</strong>g><br />

<str<strong>on</strong>g>pore</str<strong>on</strong>g> pressure distributi<strong>on</strong> in <strong>the</strong> first few metres<br />

from <strong>the</strong> <strong>face</strong> has <strong>the</strong> greatest influence <strong>on</strong> <strong>the</strong> <strong>face</strong><br />

<strong>stability</strong>. Even with <strong>the</strong> ra<strong>the</strong>r simplified groundwater<br />

flow model, <strong>the</strong> comparis<strong>on</strong> between predicti<strong>on</strong> and<br />

measurements is reas<strong>on</strong>able.<br />

6 CONCLUSIONS<br />

During excavati<strong>on</strong> with a slurry shield or a foamc<strong>on</strong>diti<strong>on</strong>ed<br />

EPB shield in a medium or fine sand layer,<br />

<strong>the</strong> infiltrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bent<strong>on</strong>ite slurry or foam into <strong>the</strong><br />

soil will generate <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

<strong>face</strong>. These <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> lower <strong>the</strong> effective<br />

stresses in <strong>the</strong> soil as well as <strong>the</strong> effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

support medium. These effects lower <strong>the</strong> <strong>stability</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> <strong>face</strong> and a significantly higher effective support<br />

pressure may be required to prevent a <strong>face</strong> collapse.<br />

The effect can be included in a wedge <strong>stability</strong> analysis<br />

using a simplified analytical groundwater flow<br />

model. The influence <strong>on</strong> <strong>the</strong> minimal required support<br />

pressure is greatest in fine sands with a permeability<br />

in <strong>the</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 −5 < k < 10 −3 m/s. Fur<strong>the</strong>rmore,<br />

depending <strong>on</strong> <strong>the</strong> geohydrological c<strong>on</strong>diti<strong>on</strong>s, a transient<br />

flow model may be needed to accurately predict <strong>the</strong><br />

<str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> TBM during excavati<strong>on</strong>,<br />

5


J. Saveur (ed.) (Re)Claiming <strong>the</strong> Underground Space, ITA, Amsterdam, 2003, pp. 759–765.<br />

∆p (kPa)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

(5)<br />

(3)<br />

0 10 20 30 40 50<br />

x (m)<br />

Figure 7. Excess <str<strong>on</strong>g>pore</str<strong>on</strong>g> pressure pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles according to (3) at<br />

t = 0.75h and (5) at t = 1.5h, compared with measurements<br />

at Botlek Rail, MQ1.<br />

as <strong>the</strong> time required to reach equilibrium flow can be<br />

larger than <strong>the</strong> time needed to excavate a single <strong>tunnel</strong><br />

ring. Using a stati<strong>on</strong>ary flow model overpredicts <strong>the</strong><br />

influence in <strong>the</strong>se cases.<br />

Transient flow calculati<strong>on</strong>s show that close to <strong>the</strong><br />

<strong>face</strong> <strong>the</strong> <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> will increase quickly<br />

after excavating has started and also that it generally<br />

takes l<strong>on</strong>ger for <strong>the</strong> <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g> to completely<br />

dissipate than <strong>the</strong> average ring-building time.<br />

For a presented case approximately 20% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>excess</str<strong>on</strong>g><br />

<str<strong>on</strong>g>pore</str<strong>on</strong>g> pressure generated remained after 75 minutes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> stand-still. The calculated <str<strong>on</strong>g>excess</str<strong>on</strong>g> <str<strong>on</strong>g>pore</str<strong>on</strong>g> <str<strong>on</strong>g>pressures</str<strong>on</strong>g><br />

are comparable to those observed in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> a foamc<strong>on</strong>diti<strong>on</strong>ed<br />

earth pressure balance shield in a fine<br />

sandy soil during c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Botlek Rail <strong>tunnel</strong>.<br />

REFERENCES<br />

Anagnostou, G. & K. Kovári 1994. The <strong>face</strong> <strong>stability</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> slurry-shield-driven <strong>tunnel</strong>s. Tunneling and Underground<br />

Space Technology, 9(2):165–174.<br />

Anagnostou, G. & K. Kovári 1996. Face <strong>stability</strong> in slurry<br />

and EPB shield <strong>tunnel</strong>ing. In Mair, R.J. & R.N. Taylor<br />

(eds), Geotechnical Aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> Underground C<strong>on</strong>structi<strong>on</strong><br />

in S<str<strong>on</strong>g>of</str<strong>on</strong>g>t Ground, pp. 453–458. Rotterdam, Balkema.<br />

Bakker, K.J., F. de Boer & J.B.M. Admiraal 2000. M<strong>on</strong>itoring<br />

<strong>the</strong> Sec<strong>on</strong>d Heinenoord <strong>tunnel</strong> and <strong>the</strong> Botlek<br />

Rail <strong>tunnel</strong>, two independent research programs <strong>on</strong> bored<br />

<strong>tunnel</strong>ing in s<str<strong>on</strong>g>of</str<strong>on</strong>g>t soil. In Kusakabe, O., K. Fujita &<br />

Y. Miyazaki (eds), Geotechnical Aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> Underground<br />

C<strong>on</strong>structi<strong>on</strong> in S<str<strong>on</strong>g>of</str<strong>on</strong>g>t Ground, pp. 191–196. Balkema.<br />

Broere, W. 2001. Tunnel Face Stability & New CPT Applicati<strong>on</strong>s.<br />

PhD <strong>the</strong>sis, Delft University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology,<br />

Delft.<br />

Broere, W. & A.F. van Tol 2000. <str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> infiltrati<strong>on</strong> and<br />

groundwater flow <strong>on</strong> <strong>tunnel</strong> <strong>face</strong> <strong>stability</strong>. In Kusakabe,<br />

O., K. Fujita & Y. Miyazaki (eds), Geotechnical Aspects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Underground C<strong>on</strong>structi<strong>on</strong> in S<str<strong>on</strong>g>of</str<strong>on</strong>g>t Ground, pp. 339–<br />

344. Balkema.<br />

Bruggeman, G.A. 1999. Analytical Soluti<strong>on</strong>s in Geohydrological<br />

Problems. Elsevier.<br />

BTC/NS-RIB 2000. Waterspanningsmeting MQ1. Pers<strong>on</strong>al<br />

Communicati<strong>on</strong>.<br />

COB 2001. Praktijk<strong>on</strong>derzoek botlekspoor<strong>tunnel</strong>. Technical<br />

Report F300, COB.<br />

Horn, N. 1961. Horiz<strong>on</strong>taler Erddruck auf senkrechte Abschlussflächen<br />

v<strong>on</strong> Tunnelröhren. In Landesk<strong>on</strong>ferenz<br />

der Ungarischen Tiefbauindustrie, pp. 7–16.<br />

Jancsecz, S. & W. Steiner 1994. Face support for a large<br />

mix-shield in heterogenous ground c<strong>on</strong>diti<strong>on</strong>s. In Tunneling<br />

’94. L<strong>on</strong>d<strong>on</strong>, Instituti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mining and Metallurgy.<br />

Kanayasu, S., I. Kubota & N. Shikibu 1995. Stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>face</strong><br />

during shield <strong>tunnel</strong>ing – A survey <str<strong>on</strong>g>of</str<strong>on</strong>g> Japanese shield<br />

<strong>tunnel</strong>ing. In Fujita, K. & Kusakabe (eds), Underground<br />

C<strong>on</strong>structi<strong>on</strong> in S<str<strong>on</strong>g>of</str<strong>on</strong>g>t Ground, pp. 337–343. Rotterdam,<br />

Balkema.<br />

Krause, T. 1987. Schildvortrieb mit flüssigkeits- und erdgestützter<br />

Ortsbrust. PhD <strong>the</strong>sis, Technischen Universität<br />

Carolo-Wilhelmina, Braunschweig.<br />

Leca, E. & L. Dormieux 1990. Upper and lower bound<br />

soluti<strong>on</strong>s for <strong>the</strong> <strong>face</strong> <strong>stability</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> shallow circular <strong>tunnel</strong>s<br />

in fricti<strong>on</strong>al material. Géotechnique, 40(4):581–606.<br />

Maidl, U. 1995. Erweiterung der Einsatzbereiche der Erddruckschilde<br />

durch Bodenk<strong>on</strong>diti<strong>on</strong>erung mit Schaum.<br />

PhD <strong>the</strong>sis, Ruhr Universität Bochum.<br />

Mohkam, M. & C. Bouyat 1985. Research studies for slurry<br />

shield <strong>tunnel</strong>ing. In 4th Internati<strong>on</strong>al C<strong>on</strong>ference <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

Instituti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mining and Metallurgy, pp. 235–241.<br />

Mori, A., K. Kurihara & H. Mori 1995. A study <strong>on</strong> <strong>face</strong><br />

<strong>stability</strong> during slurry type shield <strong>tunnel</strong>ing. In Fujita,<br />

K. & Kusakabe (eds), Underground C<strong>on</strong>structi<strong>on</strong> in S<str<strong>on</strong>g>of</str<strong>on</strong>g>t<br />

Ground, pp. 261–264. Rotterdam, Balkema.<br />

Strack, O.D.L. 1989. Groundwater Mechanics. Prentice<br />

Hall.<br />

6

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!