03.01.2015 Views

Experiences with Fluorescence Methods in Ultra-High Throughput ...

Experiences with Fluorescence Methods in Ultra-High Throughput ...

Experiences with Fluorescence Methods in Ultra-High Throughput ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Experiences</strong> <strong>with</strong> <strong>Fluorescence</strong> <strong>Methods</strong> <strong>in</strong><br />

<strong>Ultra</strong>-<strong>High</strong> <strong>Throughput</strong> Screen<strong>in</strong>g and<br />

Drug Discovery Us<strong>in</strong>g the Analyst<br />

Michael Helms, Ph.D.<br />

New Lead Discovery<br />

Exelixis, Inc.<br />

South San Francisco, CA


Outl<strong>in</strong>e<br />

• Introduction to drug discovery at Exelixis<br />

• FP assay on Analyst<br />

• Fluorogenic assay on Analyst


New Lead Discovery at Exelixis<br />

Assay<br />

Development<br />

<strong>High</strong>-<strong>Throughput</strong><br />

Screen<strong>in</strong>g<br />

Confirmation<br />

of “hits”<br />

Determ<strong>in</strong>ation<br />

of potency (IC 50 )<br />

Resynthesis<br />

of most potent<br />

compounds<br />

Selectivity assays<br />

Determ<strong>in</strong>ation<br />

of potency (IC 50 )<br />

Determ<strong>in</strong>ation<br />

of cytotoxicity<br />

Lead optimization and pharmacology:<br />

determ<strong>in</strong>e drug properties<br />

(ADMET and PK) <strong>in</strong> vivo and <strong>in</strong> vitro


Justification of Large Compound Library<br />

• Currently near 2 million compounds<br />

• Automated comb<strong>in</strong>atorial chemistry produces 2 million<br />

compounds per year<br />

• Screen<strong>in</strong>g must be rapid, reliable and <strong>in</strong>expensive<br />

Random screen of<br />

large, diverse<br />

library<br />

Focused screen of<br />

selected set of<br />

compounds<br />

predicted to be<br />

active<br />

Advantage:<br />

Yields diverse core<br />

structures<br />

Advantage:<br />

Faster and lower<br />

cost<br />

Disadvantage:<br />

More screen<strong>in</strong>g,<br />

therefore slower and<br />

higher cost<br />

Disadvantage:<br />

Yields less diversity,<br />

requires<br />

assumptions


Screen<strong>in</strong>g Facility<br />

Capacity: over 20 screens per year


Requirements of Assays<br />

• Z’-factor 0.5<br />

• Signal:background 10<br />

• DMSO tolerance up to 2%<br />

• Consistent across plates and days<br />

• Stable reagents<br />

• Predictive: assay corresponds to events <strong>in</strong> vivo<br />

• Identifies active compounds (IC 50 as predicted)<br />

• Resistant to <strong>in</strong>terference from test compounds<br />

• Acceptable cost (less than 10 cents/well)


Source: Zhang et al. 1999, J. Biomolecular Screen<strong>in</strong>g 4: 67-73.<br />

Quality Control of an Assay: The Z Factor<br />

<br />

Z' 1<br />

<br />

<br />

Good range: Z’ = 0.5 to 1<br />

Standard deviations are<br />

small compared to change<br />

3<br />

SD <br />

3<br />

SD <br />

1<br />

mean<br />

1<br />

<br />

mean<br />

2<br />

2<br />

<br />

<br />

<br />

Bad range: Z’ < 0.5<br />

Standard deviations are<br />

large compared to change<br />

Z'-Factor = 0.67<br />

Z'-Factor = 0<br />

150<br />

100<br />

Value<br />

100<br />

50<br />

Value<br />

75<br />

50<br />

25<br />

0<br />

100% Activity 0% Activity<br />

0<br />

100% Activity 0% Activity


Example of Assay Data<br />

Plate 933 from K<strong>in</strong>ase Screen.<br />

Z' Factor = 0.84, S/B = 2.5<br />

Lum<strong>in</strong>escence (cps)<br />

400000<br />

300000<br />

200000<br />

100000<br />

100% Inhibition<br />

Sample Wells<br />

0% Inhibition<br />

0<br />

0 100 200 300 400<br />

Well Number


Advantages of Different Assay Formats<br />

Advantages:<br />

Optical<br />

<strong>Methods</strong><br />

Non-Optical<br />

<strong>Methods</strong><br />

<strong>Fluorescence</strong> Lum<strong>in</strong>escence Radiometric<br />

Fast,<br />

sensitive,<br />

homogeneous<br />

Less prone to<br />

<strong>in</strong>terference<br />

Direct,<br />

robust,<br />

sensitive<br />

Disadvantages<br />

Prone to<br />

Interference<br />

Complex, slow<br />

Hazardous,<br />

complex,<br />

slow,<br />

expensive<br />

disposal


Types of <strong>Fluorescence</strong> Assays Amenable to <strong>High</strong>-<br />

<strong>Throughput</strong> Screen<strong>in</strong>g<br />

•<strong>Fluorescence</strong> Intensity: change <strong>in</strong> <strong>in</strong>tensity<br />

• <strong>Fluorescence</strong> Resonance Energy Transfer (FRET):<br />

change <strong>in</strong> <strong>in</strong>tensity based on distance<br />

•<strong>Fluorescence</strong> Polarization (FP): change <strong>in</strong> polarization<br />

based on size<br />

•<strong>Fluorescence</strong> Lifetime: based on lifetime change<br />

•<strong>Fluorescence</strong> Correlation Spectroscopy (FCS): based on<br />

translational diffusion (size)


Small molecule<br />

Rotates rapidly<br />

Low Polarization Value<br />

(P near 0)<br />

Large molecule<br />

Rotates slowly<br />

<strong>High</strong> Polarization Value<br />

(P up to 0.5, or 500mP)<br />

<strong>Fluorescence</strong> Polarization (FP)<br />

I<br />

P <br />

<br />

I<br />

P α V<br />

II<br />

II<br />

<br />

<br />

I<br />

I


Advantages of FP Assays <strong>in</strong> <strong>High</strong>-<strong>Throughput</strong><br />

Screen<strong>in</strong>g<br />

• Only one fluorophore required<br />

• Homogeneous (mix and read, no wash<strong>in</strong>g)<br />

Fast<br />

Simple<br />

• Good for small ligands b<strong>in</strong>d<strong>in</strong>g to prote<strong>in</strong>s,<br />

but not for prote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teractions


Analyst<br />

Analyst Instrument<br />

from LJL BioSystems<br />

Light Source<br />

Filter<br />

Dichroic<br />

Mirror<br />

Polarizer<br />

or<br />

PMT<br />

Plate


Ser<strong>in</strong>e/Threon<strong>in</strong>e K<strong>in</strong>ase FP Assay (STX Assay)<br />

Anti-P-Ser Ab<br />

K<strong>in</strong>ase + Mg-ATP +<br />

S<br />

+<br />

P<br />

S<br />

Fluor<br />

P<br />

S<br />

Fluor<br />

P<br />

S<br />

Fluor bound to Ab<br />

<strong>High</strong> Polarization<br />

Activity<br />

Fluor free from Ab<br />

Low Polarization


Optimization of STX Assay <strong>with</strong> a Target K<strong>in</strong>ase<br />

L<strong>in</strong>ear activity over time: Substrate concentration near K m :<br />

Km determ<strong>in</strong>ation for K<strong>in</strong>ase 1.<br />

Vary<strong>in</strong>g concentrations of peptide<br />

<strong>with</strong> 10 nM K<strong>in</strong>ase 1 and 40 M ATP.<br />

Km of peptide for K<strong>in</strong>ase 1.<br />

Km = 2.5 0.6 M, R 2 = 0.98.<br />

Data from 1-9-01.<br />

Polarization (mP)<br />

250<br />

200<br />

150<br />

100<br />

0uM<br />

0.3uM<br />

1uM<br />

3uM<br />

10uM<br />

30uM<br />

Rate (mP/m<strong>in</strong>ute)<br />

4<br />

3<br />

2<br />

1<br />

50<br />

0 25 50 75 100 125 150<br />

Time (m<strong>in</strong>utes)<br />

0<br />

0 10 20 30 40<br />

[Peptide] (M)


Comparison of Potency Assays:<br />

FP versus Radiometric Assays<br />

Staurospor<strong>in</strong>e, a general k<strong>in</strong>ase <strong>in</strong>hibitor:<br />

Staurospor<strong>in</strong>e <strong>in</strong>hibition curve.<br />

20 nM K<strong>in</strong>ase 2, 3 M peptide<br />

substrate, 50 M ATP.<br />

IC 50 from fit = 121 2 nM, R 2 =0.83.<br />

10000<br />

Staurospor<strong>in</strong>e <strong>in</strong>hibition of K<strong>in</strong>ase 2.<br />

IC 50 = 135 1 nM, R 2 = 0.996.<br />

Polarization (mP)<br />

150<br />

100<br />

50<br />

Uncorrected cpm<br />

7500<br />

5000<br />

2500<br />

0<br />

0 1 2 3 4<br />

log (Staurospor<strong>in</strong>e (nM))<br />

0<br />

0 1 2 3 4<br />

Log [Staurospor<strong>in</strong>e] (nM)


Radiometric Assay Concept<br />

33<br />

P-ATP ADP<br />

K<strong>in</strong>ase<br />

33<br />

P<br />

Prote<strong>in</strong> or Peptide Substrate<br />

384-Well Microplate<br />

Advantages:<br />

Direct, sensitive, robust<br />

Disadvantages:<br />

Expensive, hazardous,<br />

heterogeneous


Sensitivity of FP Assay to Interference from Library<br />

Compounds<br />

30000000<br />

Intensity<br />

20000000<br />

10000000<br />

0<br />

384-Well Plate


Reduction of Fluorescent Interference at Rhodam<strong>in</strong>e<br />

Wavelengths<br />

For 8000 test compounds, rhodam<strong>in</strong>e wavelengths give a 4-fold reduction <strong>in</strong><br />

the number of <strong>in</strong>terfer<strong>in</strong>g compounds (<strong>in</strong>tensity > 2-fold over background)<br />

Plate # Compound Fold improvement<br />

1 1 uM 4.0<br />

2 1 uM 3.1<br />

3 1 uM 2.9<br />

4 1 uM 2.4<br />

5 1 uM 4.0<br />

1 10 uM 9.2<br />

2 10 uM 2.8<br />

3 10 uM 3.2<br />

4 10 uM 2.8<br />

5 10 uM 5.5<br />

4.0 AVG


In Vitro ADME <strong>in</strong> Drug Discovery<br />

Confirmed hits from HTS<br />

<strong>High</strong> potency <strong>in</strong> vitro<br />

and <strong>in</strong> cells<br />

CYP Assays<br />

Liver Microsomal Assays


Cytochrome P 450 Monooxygenase Assays<br />

• CYPs are the ma<strong>in</strong> drug metaboliz<strong>in</strong>g enzymes<br />

• Six important isozymes: 1A2, 2C8, 2C9, 2C19, 2D6, and<br />

3A4.<br />

• Net oxidative reaction:<br />

NADPH + O 2 + R-H → NADP + + H 2 O + R-OH<br />

• Homogenous format, high-throughput (up to 1000<br />

compounds per week)<br />

• Enzymes and substrates from BD Gentest


CYP Assay Concept<br />

Dibenzylfluoresce<strong>in</strong> (DBF)<br />

Non-fluorescent<br />

CYP 3A4<br />

X<br />

Inhibitor or<br />

Substrate, e.g.<br />

Ketoconazole<br />

Fluoresce<strong>in</strong><br />

Fluorescent<br />

Other substrates: coumar<strong>in</strong>s


Example Data from CYP Assay<br />

Inhibition of CYP 1A2 and 3A4<br />

by Ketoconazole<br />

Inhibition (%)<br />

100<br />

CYP 3A4<br />

50<br />

0<br />

CYP 1A2<br />

-1 0 1 2 3 4<br />

Log (Concentration (nM))<br />

CYP 3A4:<br />

IC 50 = 2 1 nM<br />

Hill Slope = 1.1<br />

R 2 = 0.98<br />

CYP 1A2:<br />

IC 50 > 1 M<br />

Hill Slope = 1.6<br />

R 2 = 0.96<br />

Ketoconazole<br />

Mass = 531.4305<br />

CA 65277-42-1<br />

N<br />

O<br />

N<br />

O<br />

N<br />

N<br />

O<br />

H<br />

O<br />

Cl<br />

Cl


Conclusions<br />

• <strong>Fluorescence</strong> and lum<strong>in</strong>escence methods can be<br />

applied to a variety of drug discovery applications<br />

• Persist<strong>in</strong>g needs: fast, robust and <strong>in</strong>expensive<br />

technologies<br />

• Interest<strong>in</strong>g technologies:<br />

microarrays<br />

microfluidics<br />

s<strong>in</strong>gle-molecule methods


Exelixis, Inc.<br />

www.exelixis.com Nasdaq: EXEL<br />

Acknowledgments:<br />

Stefan Engst and Stephen Quashnick (ADME)<br />

Shaun Nguyen and Pengguang Wu (HTS)<br />

Kirk McMillan, Alison Joly, Scott Robertson, Wentao Zhang, J<strong>in</strong>g<br />

Wang, Herman Ng, Teecia Kimura, Chris Jaeger, Lillian Mock (NLD)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!