03.01.2015 Views

J. Irudayaraj - Center for Food Safety Engineering - Purdue University

J. Irudayaraj - Center for Food Safety Engineering - Purdue University

J. Irudayaraj - Center for Food Safety Engineering - Purdue University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Nanoparticle-based DNA multiplexed<br />

probes <strong>for</strong> pathogen detection using<br />

confocal raman microscopy<br />

PI: Joseph <strong>Irudayaraj</strong>, <strong>Purdue</strong> <strong>University</strong><br />

Collaborator: Chobi Debroy, Penn State <strong>University</strong><br />

Graduate Researcher: Lan Sun<br />

Agricultural and Biological <strong>Engineering</strong><br />

<strong>Food</strong> Science<br />

Bindley Bioscience <strong>Center</strong><br />

Funding: New Investigator Grant, <strong>Center</strong> <strong>for</strong> <strong>Food</strong> <strong>Safety</strong> <strong>Engineering</strong>


Specific Aims<br />

‣ investigate the effectiveness of several fluorescent or nonfluorescent<br />

dyes as raman labels to be used as SERRS tags<br />

‣ synthesize SERRS-DNA probes to detect species-specific<br />

DNA sequences of E. coli O157:H7, Campylobacter sp.,<br />

Staphylococcus aureus, Listeria monocytogenes, and<br />

Salmonella sp. as targets<br />

‣ develop a one-pot multiplex protocol using optimized<br />

SERRS DNA probe to simultaneously detect E. coli<br />

O157:H7, Campylobacter sp., and Salmonella sp. in milk<br />

and/or water samples


Probe fabrication<br />

Raman tag<br />

Au particle<br />

dsDNA<br />

Biotin<br />

Streptavidin<br />

Magnetic<br />

particle


S<br />

Multiplex Detection Schematic


Procedures to fabricate<br />

SERS-DNA probes<br />

Step 1:<br />

Direct attachment of thiol modified oligos to<br />

gold nanoparticles<br />

Step 2<br />

Direct attachment of non-fluorescent Raman<br />

tags to gold nanoparticles


Confirmation of the Attachment of<br />

DNA Primer to Gold Nanoparticles<br />

UV-Vis spectroscopy<br />

A shift of 4nm was observed when thiolated<br />

DNA primer was bound to gold particles.<br />

Absorption at 260 nm<br />

Surface coverage: ~8.3 pmol/cm 2<br />

Raman spectroscopy<br />

Characteristic peaks from DNA was<br />

observed when DNA primer was bound to<br />

gold particles<br />

Theoretical Calculation<br />

Surface coverage: ~19.2 pmol/cm 2


Visible shift in absorbance when DNA primer is bound to gold particles<br />

[With non isotropic structures more pronounced shift can be observed]


Band assignment of the Raman signatures<br />

Bands (cm -1 )<br />

Tentative<br />

assignments<br />

Molecular origin<br />

~726 Adenine Nucleic acids 6<br />

~781 Cytosine Nucleic acids 6<br />

~1090 O-P-O - Nucleic acids 6<br />

~1335 Adenine, Guanine Nucleic acids 6<br />

~1372 Adenine,Guanine,<br />

Thymine<br />

DNA 26<br />

References<br />

Primer sequence: 5’ AAA AAA AAA AGC TAG TTC TGT GGT GGA TTG TTG TC 3’<br />

Observed peaks in experiments<br />

Adenine Guanine Cytosine Thymine O-P-O -<br />

DNA primer 728,<br />

1331,1373<br />

1331, 1373 784 1373 1096<br />

DNA primer<br />

bound to gold<br />

particles<br />

728 1338 781 1092


Raman spectra of (A) glass slide (B) gold particles on glass slide (C) DNA primer (3µM) on gold slide<br />

(D) DNA primer (3µM) bound to gold particles. Acquisition parameters: 785nm excitation, 50× objective, 20s<br />

integration, 3 co-additions, 100mW of laser power <strong>for</strong> (C) and 10mW of laser power <strong>for</strong> (A)(B)(D).


0.9<br />

0.8<br />

0.7<br />

0.6<br />

dye-1:DNA dye-2:DNA dye-3:DNA dye-4:DNA<br />

dye-5:DNA dye-6:DNA dye-7:DNA dye-8:DNA<br />

Dye-1:<br />

4-Mercaptopyridine<br />

Dye-2:<br />

2-Thiazoline-2-thiol<br />

Dye-3:<br />

4,6-Dimethyl-2-pyrimidinethiol<br />

Intensity (a.u.)<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Dye-4:<br />

2-Thiouracil<br />

Dye-5:<br />

1,2-Di(4-pyridyl)ethylene<br />

Dye-6:<br />

3-Amino-1,2,4-triazole-5-thiol<br />

Dye-7:<br />

1H-1,2,4-Triazole-3-thiol<br />

0<br />

0 500 1000 1500 2000<br />

Wavenumber (cm -1 )<br />

Dye-8:<br />

Pyrazinecarboxamide<br />

Raman spectra of individual SERS-DNA probes


Characterization of the eight SERS-DNA probes<br />

Dye-1:DNA 1606, 1465, 1264, 1204, 1194, 1173, 1089, 1026, 998, 813, 712, 696, 660, 646,<br />

494, 416<br />

Dye-2:DNA 1487, 1345, 1293, 1255, 1192, 1145, 1069, 1021, 999, 959, 935, 862, 759, 730,<br />

691, 650, 593, 575, 524, 489, 450, 413<br />

Dye-3:DNA 1579, 1518, 1471, 1419, 1378, 1334, 1234, 1186, 1098, 1000, 977, 870, 747, 726,<br />

667, 569, 484, 441<br />

Dye-4:DNA 1689, 1559, 1470, 1439, 1381, 1315, 1251, 1216, 1158, 1063, 997, 960, 920, 853,<br />

815, 710, 638, 565, 505, 438<br />

Dye-5:DNA 1636, 1607, 1543, 1489, 1335, 1314, 1242, 1198, 1061, 1016, 968, 880, 843, 794,<br />

733, 683, 660, 540, 506<br />

Dye-6:DNA 1537,1480, 1425, 1319, 1271, 1151, 1098, 1016, 816, 781, 728, 651, 562, 483<br />

Dye-7:DNA 1477, 1320, 1173, 1072, 1017, 998, 981, 958, 848, 815, 728, 687, 651, 540, 495<br />

Dye-8:DNA 1558, 1468, 1317, 1259, 1128, 1108, 1047, 1022, 1016, 999, 952, 910, 853, 828,<br />

813, 784, 731, 675, 645, 555, 540, 498, 456


An 8-level multiplexing scheme<br />

1<br />

0.9<br />

mixture-3 dye-1:DNA dye-2:DNA<br />

dye-3:DNA dye-4:DNA dye-5:DNA<br />

dye-6:DNA dye-7:DNA dye-8:DNA<br />

0.8<br />

0.7<br />

Intensity (a.u.)<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 500 1000 1500 2000<br />

Wavenumber (cm -1 )


Characteristic peaks observed in mixture-3<br />

Bands from<br />

mixture-2<br />

Assignment<br />

Bands from<br />

dye-1:DNA<br />

Bands from<br />

dye-2:DNA<br />

Bands from<br />

dye-3:DNA<br />

Bands from<br />

dye-4:DNA<br />

Bands from<br />

dye-5:DNA<br />

Bands from<br />

dye-6:DNA<br />

Bands from<br />

dye-7:DNA<br />

Bands from<br />

dye-8:DNA<br />

451 dye-2:DNA 450<br />

489 dye-2:DNA 489<br />

571 dye-3:DNA 569<br />

677 dye-8:DNA 675<br />

683 dye-3:DNA 683<br />

761 dye-2:DNA 759<br />

795 dye-5:DNA 794<br />

826 dye-8:DNA 828<br />

868 dye-3:DNA 870<br />

923 dye-4:DNA 920<br />

981 dye-7:DNA 981<br />

1091 dye-1:DNA 1089<br />

1158 dye-4:DNA 1158<br />

1206 dye-1:DNA 1204<br />

1269 dye-6:DNA 1271<br />

1295 dye-2:DNA 1293<br />

1376 dye-3:DNA 1378<br />

1533 dye-6:DNA 1537


Analysis Steps<br />

Select Primers


Table 1. Primer sequences <strong>for</strong> the detection of bacterial targets<br />

____________________________________________________________________________<br />

Species Target Gene Primer sequence (5’-3’) Amplicon size<br />

------------------------------------------------------------------------------------------------------------------<br />

E. coli O157:H7 * hlyA gene GTAGGGAAGCGAACAGAG 361 bp<br />

AAGCTCCGTGTGCCTGAA<br />

Campylobacter 16S rRNA GGATGACACTTTTCGGAGC 816 bp<br />

genus **<br />

CATTGTAGCACGTGTGTC<br />

Salmonella sp. * InvA gene TATCGCCACGTTCGGGCAA 275 bp<br />

TCGCACCGTCAAAGGAACC<br />

Staphylococcus nuclease gene GCGATTGATGGTGATACGGTT 276 bp<br />

aureus *<br />

CAAGAATTGACGAACTAAAGC<br />

Listeria mono- hemolysin CGGAGGTTCCGCAAAAGATG 234 bp<br />

cytogenes *<br />

CCTCCAGAGTGATCGATGTT<br />

--------------------------------------------------------------------------------------------------------------------


TEM images of anisotropic gold nanostructures<br />

Cubes and low aspect ratio rods Star Hexagon<br />

Group of irregular particles<br />

Bird Wing<br />

Dog bone


Deliverables<br />

Optimization of SERRS effect of dye/gold particle<br />

size and excitation wavelength and concentrations<br />

with multiplexing (4 months)<br />

Fabrication of SERRS tagged DNA probes <strong>for</strong><br />

each of the five target pathogens and multiplex<br />

demonstration (3 months) - In progress<br />

Design and implementation of a one-pot analysis<br />

assay <strong>for</strong> pathogen detection using SERRS DNA<br />

probes (5 months)


IGAuN Concept


Nucleus<br />

Blank Passive uptake IGAuN<br />

Laser scanning confocal reflectance imaging with silver enhanced visualization of IGAuNs


Dark-field imaging to visualize nanoparticles in live cells<br />

and SER Raman <strong>for</strong> molecular fingerprinting<br />

Acknowledgement: Rajwa, B., Robinson P<br />

IGAuN<br />

IGAuN induced SERS spectra are indicative of<br />

sensing cytoplasmic or nuclear matrix


An IR-Biosensor via Chalcogenide (Ge 28 Sb 12 Se 60 ) film<br />

Ultimate Goal:<br />

To develop a microarray<br />

type biosensor using the<br />

Chalcogenide (Ge 28 Sb 12 Se 60 )<br />

film as supporting substrate<br />

and build-in waveguides as<br />

signal collecting channels.<br />

300~500 nm<br />

Evanescent wave<br />

absorption<br />

Incoming<br />

IR beam<br />

HOOC-xxx-S-<br />

Chalcogenide film (GeSbSe)<br />

Key points:<br />

1. Chalcogenide film has good IR<br />

transparency allowing strong evanescent<br />

wave to produce good IR signals.<br />

2. Multilayer (anchor layer, capturing layer<br />

and target layer) structure can be<br />

constructed on the film.<br />

3. Target binding event can be monitored<br />

by characteristic IR spectral signatures<br />

To<br />

detector<br />

IR spectra measurement<br />

>300 nm<br />

GeSe 2<br />

cladding layer<br />

~30 nm<br />

Gold<br />

coating<br />

Silicon substrate<br />

antibody<br />

Target (bacterial cells)<br />

<strong>Irudayaraj</strong>, Jain, Pantano groups


Detection of binding of the bacterial targets to the sensor film:<br />

Specificity study<br />

Notes:<br />

Sensor film surface is functionalized with anti E. coli. O157:H7 antibodies, the<br />

specificity of the sensor is investigated by exposing the sensor to different<br />

bacterial samples and compare the responses.<br />

Absorbance, arbitrary unit<br />

treated with E. coli K12<br />

treated with S. enteriditis<br />

treated with E. coli O157:H7<br />

untreated functionalized blank film<br />

Si band<br />

700 800 900 1000 1100 1200 1300 1400<br />

Wave numbers, cm -1<br />

E. coli K12 and S. enteriditis cells are<br />

not specifically bound to the sensor<br />

film, which is functionalized with anti E.<br />

coli O157:H7 antibodies. Hence treating<br />

with these two bacterial suspensions<br />

should have no effect and their<br />

spectral signatures should be<br />

comparable to untreated “blank” film.<br />

On the other hand, treating with E. coli<br />

O157:H7 will trigger specific binding,<br />

hence completely different response of<br />

the sensor.


Further confirmation: S. enteriditis as targets<br />

Sensor film surface is functionalized with anti S. enteriditis antibodies, the<br />

specificity of the sensor is investigated by exposing the sensor to different<br />

bacterial samples and to bacterial cocktails (mixture of three different bacterial<br />

suspensions).<br />

absorbance, arbitrary unit<br />

treated with E. coli K12<br />

treated with S. enteriditis<br />

treated with E. coli O157:H7<br />

treated with PBS buffer<br />

treated with E. coli cocktail<br />

treated with all-three cocktail<br />

Good specificity is achieved in<br />

case of bacterial cocktails as well,<br />

the presence/absence of the target<br />

strain (S. enteriditis) in a bacterial<br />

cocktail is correctly reported by<br />

the sensor.<br />

700 800 900 1000 1100 1200 1300 1400<br />

Wave numbers, cm -1


10 8 CFU/ml, 5 mins<br />

10 3 CFU/ml, 45 mins<br />

10 6 CFU/ml, 5 mins<br />

Results obtained after prolonged<br />

treatment with low concentration<br />

sample yield almost identical<br />

signatures as results obtained from<br />

high concentration samples,<br />

suggesting that sample<br />

concentration is not the main factor<br />

dictate the lower limit of the<br />

sensitivity.<br />

800 900 1000 1100 1200 1300 1400<br />

Nevertheless, the sensor is<br />

sensitive enough to detect<br />

target bacterial cells at a low<br />

concentration (10 3 CFU/ml)


Biomimetic color nanocomposites<br />

50 %<br />

Diynoic acid<br />

+<br />

50 %<br />

Natural Lipids<br />

1. Sonication<br />

2. UV irradiation<br />

50 – 300 nm<br />

Ben Gurion Univ (Collaborator: Jelenik group)


agar<br />

Bacterial colony<br />

Lipid/PDA film<br />

Color coding<br />

S. typhimurium E. coli


Elucidating antibiotic resistance of bacteria<br />

Kanamycin present in agar/polymer matrix<br />

Salmonella WT<br />

Salmonella<br />

(kanamycin-resistant)<br />

E.Coli MC4100


Application: Colorimetric screening of bacterial contamination<br />

Control<br />

Fresh milk<br />

“fresh” liver


Thank You

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!