03.01.2015 Views

Solubility of Acetaminophen and Ibuprofen in Polyethylene Glycol ...

Solubility of Acetaminophen and Ibuprofen in Polyethylene Glycol ...

Solubility of Acetaminophen and Ibuprofen in Polyethylene Glycol ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

J Solution Chem (2011) 40:2032–2045<br />

DOI 10.1007/s10953-011-9767-2<br />

<strong>Solubility</strong> <strong>of</strong> <strong>Acetam<strong>in</strong>ophen</strong> <strong>and</strong> Ibupr<strong>of</strong>en<br />

<strong>in</strong> <strong>Polyethylene</strong> <strong>Glycol</strong> 600, N-Methyl Pyrrolidone<br />

<strong>and</strong> Water Mixtures<br />

Shahla Soltanpour · Abolghasem Jouyban<br />

Received: 24 July 2010 / Accepted: 10 April 2011 / Published onl<strong>in</strong>e: 17 November 2011<br />

© Spr<strong>in</strong>ger Science+Bus<strong>in</strong>ess Media, LLC 2011<br />

Abstract The solubility <strong>of</strong> acetam<strong>in</strong>ophen <strong>and</strong> ibupr<strong>of</strong>en <strong>in</strong> b<strong>in</strong>ary <strong>and</strong> ternary mixtures<br />

<strong>of</strong> N-methyl pyrrolidone, polyethylene glycol 600 <strong>and</strong> water at 25 °C were determ<strong>in</strong>ed <strong>and</strong><br />

the solubilities are mathematically represented by the Jouyban–Acree model. The density<br />

<strong>of</strong> the solute-free solvent mixtures was measured <strong>and</strong> employed to tra<strong>in</strong> the Jouyban–Acree<br />

model <strong>and</strong> then the densities <strong>of</strong> the saturated solutions were predicted. The overall mean<br />

relative deviations (OMRDs) for fitt<strong>in</strong>g the solubility data <strong>of</strong> acetam<strong>in</strong>ophen <strong>and</strong> ibupr<strong>of</strong>en<br />

<strong>in</strong> b<strong>in</strong>ary mixtures are 3.2% <strong>and</strong> 6.0%, respectively. The OMRDs for fitt<strong>in</strong>g the solubilities<br />

<strong>in</strong> ternary solvent mixtures for acetam<strong>in</strong>ophen <strong>and</strong> ibupr<strong>of</strong>en are 15.0% <strong>and</strong> 28.6%, respectively,<br />

<strong>and</strong> the OMRD values for predict<strong>in</strong>g all solubilities <strong>of</strong> acetam<strong>in</strong>ophen <strong>and</strong> ibupr<strong>of</strong>en<br />

by a tra<strong>in</strong>ed version <strong>of</strong> the Jouyban–Acree model are 9.4% <strong>and</strong> 17.8%, respectively. The<br />

prediction OMRD for the density <strong>of</strong> saturated solutions is 1.9%.<br />

Keywords Jouyban–Acree model · <strong>Acetam<strong>in</strong>ophen</strong> · Ibupr<strong>of</strong>en · <strong>Solubility</strong> · N-methyl<br />

pyrrolidone<br />

1 Introduction<br />

Solutions, especially concentrated solutions, <strong>of</strong> pharmaceutical compounds have many advantages<br />

compared to solid forms. Solutions are easy to use <strong>and</strong> make excellent vehicles<br />

for carry<strong>in</strong>g the uniform pharmaceutical compounds. They provide rapid pharmacological<br />

S. Soltanpour<br />

Liver <strong>and</strong> Gastro<strong>in</strong>test<strong>in</strong>al Diseases Research Center, Tabriz University <strong>of</strong> Medical Sciences, Tabriz<br />

51664, Iran<br />

Present address:<br />

S. Soltanpour<br />

Faculty <strong>of</strong> Pharmacy, Zanjan University <strong>of</strong> Medical Sciences, Zanjan 45139, Iran<br />

A. Jouyban ()<br />

Drug Applied Research Center <strong>and</strong> Faculty <strong>of</strong> Pharmacy, Tabriz University <strong>of</strong> Medical Sciences, Tabriz<br />

51664, Iran<br />

e-mail: ajouyban@hotmail.com


J Solution Chem (2011) 40:2032–2045 2033<br />

action, because it is not necessary to dis<strong>in</strong>tegrate <strong>and</strong> dissolve the compounds <strong>in</strong> the gastro<strong>in</strong>test<strong>in</strong>al<br />

fluids. Despite these advantages, some pharmaceutical compounds are not marketed<br />

<strong>in</strong> solution form due to their low solubility <strong>and</strong>/or chemical <strong>in</strong>stability. Many pharmaceutically<br />

active compounds have low solubility <strong>and</strong> require relatively high volumes <strong>of</strong> the solvent<br />

for dissolution. Because <strong>of</strong> safety, compatibility, stability <strong>and</strong> economic considerations,<br />

the number <strong>of</strong> solvents to be used for mak<strong>in</strong>g the liquid solutions is limited. Furthermore,<br />

us<strong>in</strong>g high volumes <strong>of</strong> solvents for solubiliz<strong>in</strong>g pharmaceuticals is not advised because there<br />

are some restrictions, e.g. for <strong>in</strong>jections. One solution for overcom<strong>in</strong>g this solubility problem<br />

is the addition <strong>of</strong> water-miscible co-solvents or surfactants to the formulation [1].<br />

N-methyl pyrrolidone (NMP) is a chemically stable <strong>and</strong> powerful polar solvent. These<br />

properties are very useful <strong>in</strong> some chemical reactions <strong>in</strong> which an <strong>in</strong>ert medium is needed.<br />

Despite the stability <strong>of</strong> NMP, it can play an active role <strong>in</strong> certa<strong>in</strong> reactions such as hydrolysis,<br />

oxidation, condensation, etc. NMP is a very strong solubiliz<strong>in</strong>g agent <strong>and</strong> is currently<br />

used <strong>in</strong> some commercially available pharmaceutical products [2]. NMP has various applications<br />

<strong>in</strong> pharmaceutical <strong>and</strong> medic<strong>in</strong>al fields such as a permeation enhancer <strong>in</strong> transdermal<br />

formulations [3, 4], improv<strong>in</strong>g the transdermal flux <strong>of</strong> both hydrophilic <strong>and</strong> hydrophobic<br />

drugs [5], is a solubiliz<strong>in</strong>g agent for poorly soluble drugs [6], provides entrapment <strong>of</strong> poorly<br />

water-soluble drugs <strong>in</strong> hybrid nanoparticles [7], enhances aqueous phase transdermal transport<br />

[5], <strong>in</strong>creases the sk<strong>in</strong> permeation <strong>of</strong> drugs [8] <strong>and</strong> is a co-surfactant <strong>in</strong> microemulsion<br />

systems [9]. Furthermore, various medical devices like self-harden<strong>in</strong>g bone graft substitutes<br />

[10], dental barrier membranes [11] <strong>and</strong> subcutaneous drug delivery systems [12, 13]<br />

conta<strong>in</strong> small amounts <strong>of</strong> NMP. The pharmaceutical applications <strong>of</strong> NMP have been reviewed<br />

<strong>in</strong> a recent work [14].<br />

<strong>Polyethylene</strong> glycols (PEGs), called macrogols <strong>in</strong> the European pharmaceutical <strong>in</strong>dustry,<br />

are produced by polymerization <strong>of</strong> ethylene oxide [15, 16]. PEGs with a mean molecular<br />

weight up to 400 are non-volatile liquids at room temperature. PEG 600 shows a melt<strong>in</strong>g<br />

po<strong>in</strong>t <strong>of</strong> 17 to 22 °C, so it may be a liquid at room temperature but a paste at lower temperatures.<br />

<strong>Solubility</strong> <strong>of</strong> PEGs <strong>in</strong> water is an important property, which makes them suitable <strong>in</strong><br />

different applications. Liquid PEGs up to 600 are freely miscible with water [17]. The liquid<br />

PEGs have a slightly bitter taste, but it can be adjusted easily by suitable additives (sweeteners)<br />

<strong>and</strong> solid PEG grades have no taste. Solid PEGs are not soluble <strong>in</strong> liquid PEGs, but<br />

blend<strong>in</strong>g them with liquid PEGs leads to a white, pasty o<strong>in</strong>tment with good solubility <strong>in</strong><br />

water, good dissolv<strong>in</strong>g properties <strong>and</strong> suitable vehicles for many substances <strong>and</strong> o<strong>in</strong>tment<br />

bases [18–20]. Solid PEGs are preferred bases for suppositories [21]. Produc<strong>in</strong>g tablets requires<br />

variable excipients with different functions, several <strong>of</strong> them covered by PEGs. They<br />

may act as carriers, solubilizers, absorption improvers for active substances, lubricants <strong>and</strong><br />

b<strong>in</strong>ders [22]. The relatively low melt<strong>in</strong>g po<strong>in</strong>t favors a s<strong>in</strong>ter<strong>in</strong>g or compression technique.<br />

At the same time the PEG has a plasticiz<strong>in</strong>g effect, which facilitates the shap<strong>in</strong>g <strong>of</strong> the tablet<br />

mass <strong>in</strong> the compression process <strong>and</strong> may counteract capp<strong>in</strong>g. The flexibility <strong>of</strong> sugar-coated<br />

tablets is <strong>in</strong>creased by PEGs <strong>and</strong>, s<strong>in</strong>ce PEG acts as an anticak<strong>in</strong>g agent, the cores are prevented<br />

from stick<strong>in</strong>g together. With film formers <strong>in</strong> sugar-free coat<strong>in</strong>g processes, PEGs act<br />

as a s<strong>of</strong>tener. PEGs 300 <strong>and</strong> 400 are listed as the active <strong>in</strong>gredients <strong>in</strong> ophthalmic demulcents<br />

[23]. With the two OH groups at the end <strong>of</strong> the PEG molecules, all typical reactions <strong>of</strong><br />

alcohols, such as ester, carbonate <strong>and</strong> carbamate formation are possible. Methylether-capped<br />

PEGs, are available to avoid cha<strong>in</strong>-build<strong>in</strong>g reactions, s<strong>in</strong>ce these PEGs are only able to react<br />

at one end <strong>of</strong> the molecule. The PEG conjugation <strong>of</strong> drugs, e.g. anticancer drugs, makes<br />

them safer therapeutic agents which target malignant tissues with more selectivity [24, 25].<br />

For achiev<strong>in</strong>g an optimized solvent mixture for dissolv<strong>in</strong>g a certa<strong>in</strong> amount <strong>of</strong> a drug <strong>in</strong> a<br />

given volume <strong>of</strong> the solvent, the trial-<strong>and</strong>-error approach is usually employed, which is timeconsum<strong>in</strong>g<br />

<strong>and</strong> expensive; therefore, employ<strong>in</strong>g cosolvency models could be an appropriate


2034 J Solution Chem (2011) 40:2032–2045<br />

solution. Among the developed cosolvency models, the Jouyban–Acree model is one <strong>of</strong><br />

the most versatile. It provides accurate mathematical descriptions <strong>and</strong> shows how the solute<br />

solubility varies with both temperature <strong>and</strong> solvent composition. The model for represent<strong>in</strong>g<br />

the solubility <strong>of</strong> a solute <strong>in</strong> b<strong>in</strong>ary solvent mixtures at various temperatures is:<br />

[<br />

]<br />

w 1 w 2<br />

2∑<br />

log 10 C m,T = w 1 log 10 C 1,T + w 2 log 10 C 2,T +<br />

J i (w 1 − w 2 ) i (1)<br />

T<br />

i=0<br />

where C m,T is the solute’s molar solubility <strong>in</strong> the b<strong>in</strong>ary solvent mixtures at temperature T ,<br />

w 1 <strong>and</strong> w 2 are the mass fractions <strong>of</strong> the solvents 1 <strong>and</strong> 2 <strong>in</strong> the absence <strong>of</strong> the solute,<br />

<strong>and</strong> C 1,T <strong>and</strong> C 2,T denote the molar solubility <strong>of</strong> the solute <strong>in</strong> the neat solvents 1 <strong>and</strong> 2,<br />

respectively. The J i terms are constants <strong>of</strong> the model <strong>and</strong> are computed by regress<strong>in</strong>g<br />

(log 10 C m,T − w 1 log 10 C 1,T − w 2 log 10 C 2,T ) aga<strong>in</strong>st w 1w 2 w<br />

, 1 w 2 (w 1 −w 2 )<br />

,<strong>and</strong> w 1w 2 (w 1 −w 2 ) 2<br />

.<br />

T T T<br />

This model was used to calculate multiple solubility maxima [26] <strong>and</strong> also to correlate other<br />

physico-chemical properties <strong>in</strong> solvent mixtures [27–32] <strong>and</strong> promises accurate mathematical<br />

representations.<br />

Equation 1 can be used to model the solubility data <strong>of</strong> a solute <strong>in</strong> a b<strong>in</strong>ary solvent at various<br />

temperatures. It requires C 1,T <strong>and</strong> C 2,T data <strong>and</strong> also a m<strong>in</strong>imum number <strong>of</strong> solubility<br />

data <strong>in</strong> mixed solvents for the tra<strong>in</strong><strong>in</strong>g process, which restricts its applications for prediction<br />

purposes. A number <strong>of</strong> attempts have been made to overcome this limitation. These <strong>in</strong>cludes<br />

the presentation <strong>of</strong> tra<strong>in</strong>ed versions <strong>of</strong> the Jouyban–Acree model for specific cosolvents. The<br />

tra<strong>in</strong>ed version <strong>of</strong> the model can be employed for predict<strong>in</strong>g the solutes solubility <strong>in</strong> aqueous<br />

<strong>and</strong> non-aqueous solvent mixtures at various temperatures by us<strong>in</strong>g only C 1,T <strong>and</strong> C 2,T<br />

data. For PEG 400 {1} (to avoid reader confusion the solvent numbers used <strong>in</strong> the equations<br />

are reported <strong>in</strong> {})–water {2} mixtures, Eq. 1 was tra<strong>in</strong>ed us<strong>in</strong>g experimental solubilities <strong>of</strong><br />

drugs <strong>and</strong> the obta<strong>in</strong>ed model is [33]:<br />

log 10 C m,T = w 1 log 10 C 1,T + w 2 log 10 C 2,T<br />

+ w 1w 2 [<br />

394.82 − 355.28(w1 − w 2 ) + 388.89(w 1 − w 2 ) 2] , (2)<br />

T<br />

for propylene glycol {1}–water {2} mixtures is [34]:<br />

log 10 C m,T = w 1 log 10 C 1,T + w 2 log 10 C 2,T + w 1w 2 [<br />

37.030 + 319.490(w1 − w 2 ) ] , (3)<br />

T<br />

for ethanol {1}–water {2} mixtures is [35]:<br />

log 10 C m,T = w 1 log 10 C 1,T + w 2 log 10 C 2,T<br />

+ w 1w 2 [<br />

724.21 + 485.17(w1 − w 2 ) + 194.41(w 1 − w 2 ) 2] , (4)<br />

T<br />

<strong>and</strong> its updated version [36]:<br />

log 10 C m,T = w 1 log 10 C 1,T + w 2 log 10 C 2,T<br />

+ w 1w 2 [<br />

724.21 + 485.17(w1 − w 2 ) + 194.41(w 1 − w 2 ) 2]<br />

T<br />

− 0.314w 1 w 2 log 10 P (5)<br />

<strong>in</strong> which log 10 P is the logarithm <strong>of</strong> the octanol–water partition coefficient <strong>of</strong> the drug.<br />

The model for dioxane {1}–water {2} mixtures is [37]:<br />

log 10 C m,T = w 1 log 10 C 1,T + w 2 log 10 C 2,T<br />

+ w 1w 2 [<br />

958.44 + 509.45(w1 − w 2 ) + 867.44(w 1 − w 2 ) 2] (6)<br />

T


J Solution Chem (2011) 40:2032–2045 2035<br />

for glycerol {1}–water {2} mixtures is [38]:<br />

( )<br />

w1 w 2<br />

log 10 C m,T = w 1 log 10 C 1,T + w 2 log 10 C 2,T + 1048.364<br />

T<br />

− 1.232w 1 w 2 log 10 P, (7)<br />

<strong>and</strong> for ethyl acetate {1}–ethanol {2} mixtures the tra<strong>in</strong>ed model is [39]:<br />

log 10 C m,T = w 1 log 10 C 1,T + w 2 log 10 C 2,T<br />

+ w 1w 2 [<br />

382.99 + 125.66(w1 − w 2 ) + 214.58(w 1 − w 2 ) 2] . (8)<br />

T<br />

It should be noted that the solvent composition <strong>of</strong> the mixtures <strong>and</strong> also the solute concentration<br />

can be expressed us<strong>in</strong>g different units. Our results (not shown here) revealed that<br />

these different expressions have no effect on the prediction capability <strong>of</strong> the model.<br />

The accuracies <strong>of</strong> Eqs. 2–8 were evaluated us<strong>in</strong>g various numbers <strong>of</strong> data sets (NDS) by<br />

comput<strong>in</strong>g the MRDs. The OMRDs (± SD) for the equations <strong>and</strong> their NDSs are 39.8%<br />

(SD = 46.7, NDS = 80), 24.1% (SD = 15.1, NDS = 27), 49.4% (SD = 88.3, NDS = 26),<br />

35.5% (SD = 22.5, NDS = 32), 27.2% (SD = 14.3, NDS = 36), 40.7% (SD = 35.8,<br />

NDS = 5) <strong>and</strong> 13.1% (SD = 8.1, NDS = 26), respectively. As a general po<strong>in</strong>t, greater<br />

NDS <strong>and</strong> less diversity <strong>of</strong> the <strong>in</strong>vestigated solutes resulted <strong>in</strong> greater accuracy for the model.<br />

As it is shown <strong>in</strong> Eq. 5, addition <strong>of</strong> a term represent<strong>in</strong>g the solute’s structure improves the<br />

prediction capability <strong>of</strong> the model.<br />

The Jouyban–Acree model has theoretical justifications [40], among other cosolvency<br />

models it shows the most accurate results [41], <strong>and</strong> by employ<strong>in</strong>g the solubility data <strong>in</strong><br />

mono-solvents, the solubility data <strong>in</strong> solvent mixtures at various temperatures can be easily<br />

predicted [33–39]. In addition to the b<strong>in</strong>ary solvent mixtures, the extended models for<br />

predict<strong>in</strong>g the solubility data <strong>of</strong> drugs <strong>in</strong> ternary solvent mixtures are:<br />

[<br />

]<br />

w 1 w 2<br />

2∑<br />

log 10 C m,T = w 1 log 10 C 1,T + w 2 log 10 C 2,T + w 3 log 10 C 3,T +<br />

J i (w 1 − w 2 ) i<br />

T<br />

i=0<br />

[<br />

] [<br />

]<br />

w 1 w 3<br />

2∑<br />

+<br />

J i ′<br />

T<br />

(w 1 − w 3 ) i w 2 w 3<br />

2∑<br />

+<br />

J i ′′<br />

T<br />

(w 2 − w 3 ) i (9)<br />

i=0<br />

log 10 C m,T = w 1 log 10 C 1,T + w 2 log 10 C 2,T + w 3 log 10 C 3,T<br />

[<br />

] [<br />

]<br />

w 1 w 2<br />

2∑<br />

+<br />

J i (w 1 − w 2 ) i w 1 w 3<br />

2∑<br />

+<br />

J i ′<br />

T<br />

T<br />

(w 1 − w 3 ) i<br />

i=0<br />

i=0<br />

[<br />

] [<br />

]<br />

w 2 w 3<br />

2∑<br />

+<br />

J i ′′<br />

T<br />

(w 2 − w 3 ) i w 1 w 2 w 3<br />

2∑<br />

+<br />

J i ′′′ (w 1 − w 2 − w 3 ) i (10)<br />

T<br />

i=0<br />

i=0<br />

where C 3,T is the solute molar solubility <strong>in</strong> the solvent 3 at temperature T ,<strong>and</strong>w 3 is the<br />

mass fraction <strong>of</strong> the solvent 3 <strong>in</strong> the absence <strong>of</strong> the solute. The J<br />

i ′ ′′<br />

<strong>and</strong> J<br />

i<br />

terms are computed<br />

us<strong>in</strong>g the same procedure as for the J i terms. The J<br />

i<br />

′′′ terms are the ternary solvent <strong>in</strong>teraction<br />

terms <strong>and</strong> are computed by regress<strong>in</strong>g:<br />

⎧<br />

[<br />

] ⎫<br />

⎪⎨<br />

log 10 Cm,T Sat − w 1 log 10 C1,T Sat − w 2 log 10 C2,T Sat − w 3 log 10 C3,T Sat − w 1 w 2<br />

2∑<br />

J i (w 1 − w 2 ) i<br />

T<br />

⎪⎬<br />

[<br />

] [<br />

] i=0<br />

w 1 w 3<br />

2∑<br />

⎪⎩ −<br />

J i ′<br />

T<br />

(w 1 − w 3 ) i w 2 w 3<br />

2∑<br />

−<br />

J i ′′<br />

T<br />

(w 2 − w 3 ) i ⎪⎭<br />

i=0<br />

i=0<br />

i=0


2036 J Solution Chem (2011) 40:2032–2045<br />

aga<strong>in</strong>st w 1w 2 w 3<br />

, w 1w 2 w 3 (w 1 −w 2 −w 3 )<br />

,<strong>and</strong> w 1w 2 w 3 (w 1 −w 2 −w 3 ) 2<br />

. The existence <strong>of</strong> these model constants,<br />

which require a number <strong>of</strong> solubility data <strong>in</strong> solvent mixtures for the tra<strong>in</strong><strong>in</strong>g process,<br />

T T T<br />

is a limitation for the model when the solubility predictions are the goal <strong>of</strong> the computations<br />

<strong>in</strong> early drug discovery studies.<br />

Experimental solubilities <strong>of</strong> acetam<strong>in</strong>ophen <strong>and</strong> ibupr<strong>of</strong>en <strong>in</strong> PEG 600 {1}–water {3}<br />

mixtures were reported <strong>in</strong> a previous work [42]. In this work, the experimental solubility<br />

<strong>of</strong> these drugs <strong>in</strong> NMP {2}–water {3}, PEG 600 {1}–NMP {2} <strong>and</strong> PEG 600 {1}–<br />

NMP {2}–water {3} mixtures at 25 °C are reported <strong>and</strong> the applicability <strong>of</strong> the Jouyban–<br />

Acree model to predict the measured solubility data is shown. In addition, the applicability<br />

<strong>of</strong> the Jouyban–Acree model for predict<strong>in</strong>g the density <strong>of</strong> the saturated solutions by employ<strong>in</strong>g<br />

density <strong>of</strong> solute-free solutions <strong>of</strong> mixed solvents is shown.<br />

2 Experimental Method<br />

2.1 Materials<br />

<strong>Acetam<strong>in</strong>ophen</strong> was purchased from Arastoo Pharmaceutical Company (Iran) <strong>and</strong> ibupr<strong>of</strong>en<br />

was purchased from Sobhan Pharmaceutical Company (Iran). The purity <strong>of</strong> the drugs was<br />

checked by determ<strong>in</strong>ation <strong>of</strong> their melt<strong>in</strong>g po<strong>in</strong>ts <strong>and</strong> compar<strong>in</strong>g the measured solubilities <strong>in</strong><br />

mono-solvents with the correspond<strong>in</strong>g data from the literature [43, 44]. NMP was purchased<br />

from Merck (Germany), PEG 600 was a gift from Daana pharmaceutical company (Iran),<br />

<strong>and</strong> double distilled water was used for preparation <strong>of</strong> the solutions.<br />

2.2 Apparatus <strong>and</strong> Procedures<br />

The b<strong>in</strong>ary solvent mixtures (100.0 g) were prepared by mix<strong>in</strong>g the appropriate weights <strong>of</strong><br />

the solvents with the uncerta<strong>in</strong>ty <strong>of</strong> 0.10 g. The solubilities <strong>of</strong> acetam<strong>in</strong>ophen <strong>and</strong> ibupr<strong>of</strong>en<br />

<strong>in</strong> the solvent mixtures were determ<strong>in</strong>ed by equilibrat<strong>in</strong>g excess amounts <strong>of</strong> drugs at 25 °C<br />

us<strong>in</strong>g a shaker (Behdad, Tehran, Iran) placed <strong>in</strong> an <strong>in</strong>cubator equipped with a temperature<br />

controll<strong>in</strong>g system ma<strong>in</strong>ta<strong>in</strong>ed constant with<strong>in</strong> ±0.2 °C (Nabziran, Tabriz, Iran). Because <strong>of</strong><br />

the high viscosity <strong>of</strong> PEG 600, after sufficient time (> 98 h), the saturated solutions <strong>of</strong> the<br />

drugs were centrifuged at 13,000 rpm for 15 m<strong>in</strong>, diluted with water for acetam<strong>in</strong>ophen <strong>and</strong><br />

methanol for ibupr<strong>of</strong>en, <strong>and</strong> then assayed at 243 nm <strong>and</strong> 222 nm, respectively, us<strong>in</strong>g a UV–<br />

vis spectrophotometer (Beckman DU-650, Fullerton, USA). Concentrations <strong>of</strong> the diluted<br />

solutions were determ<strong>in</strong>ed from the calibration curves. Each experimental data po<strong>in</strong>t represents<br />

the average <strong>of</strong> at least three replicate experiments with the measured molar solubilities<br />

be<strong>in</strong>g reproducible to with<strong>in</strong> ±3.1%. Densities <strong>of</strong> the saturated solutions <strong>and</strong> the solvent<br />

mixtures <strong>in</strong> the absence <strong>of</strong> the solute were measured us<strong>in</strong>g a 5 mL pycnometer.<br />

2.3 Computational Methods<br />

The experimental solubility data for each drug, <strong>in</strong> the b<strong>in</strong>ary solvents, were fitted to Eq. 1,the<br />

model constants were computed, <strong>and</strong> the back-calculated solubilities were used to compute<br />

the MRD values. In the next analysis, Eq. 9 was used to calculate the solubility <strong>of</strong> each drug<br />

<strong>in</strong> the ternary solvents. In order to provide better predictions, the ternary <strong>in</strong>teraction terms<br />

<strong>of</strong> Eq. 10 were calculated us<strong>in</strong>g a l<strong>in</strong>ear regression analysis.<br />

As discussed above, Eq. 1 should be tra<strong>in</strong>ed us<strong>in</strong>g experimental solubility data. To provide<br />

generally tra<strong>in</strong>ed versions <strong>of</strong> the model for PEG 600 {1}–water {2} <strong>and</strong> NMP {1}–<br />

water {2} mixtures, the generated data <strong>and</strong> collected data from the literature [42, 45–48]


J Solution Chem (2011) 40:2032–2045 2037<br />

were used to tra<strong>in</strong> the model. In order to show the capability <strong>of</strong> the Jouyban–Acree model<br />

for a predict<strong>in</strong>g drug’s solubility <strong>in</strong> PEG 600 {1}–water {2} <strong>and</strong> NMP {1}–water {2} mixtures,<br />

one data set was excluded from the tra<strong>in</strong><strong>in</strong>g process <strong>and</strong> its solubility values were<br />

predicted us<strong>in</strong>g the tra<strong>in</strong>ed version <strong>of</strong> the model. This method is called leave one out crossvalidation.<br />

Densities <strong>of</strong> the saturated solutions are required to convert the molar solubilities <strong>in</strong>to<br />

mole fraction solubilities. Any attempt to predict the density <strong>of</strong> the saturated solutions can<br />

save time <strong>and</strong> the cost <strong>of</strong> the experimental efforts. In a previous paper [49], the applicability<br />

<strong>of</strong> the Jouyban–Acree model for the prediction <strong>of</strong> the densities <strong>of</strong> liquid mixtures at<br />

various temperatures was shown. The <strong>in</strong>vestigated liquid mixtures were solute free, so for<br />

show<strong>in</strong>g the model applicability <strong>in</strong> predict<strong>in</strong>g the densities <strong>of</strong> the saturated solutions composed<br />

<strong>of</strong> liquid mixtures, the model was fitted to the density <strong>of</strong> solute-free b<strong>in</strong>ary mixtures<br />

<strong>and</strong> the sub-b<strong>in</strong>ary constants were calculated for each system. Then, by us<strong>in</strong>g these constants,<br />

the model constants for ternary mixtures were obta<strong>in</strong>ed <strong>and</strong> the tra<strong>in</strong>ed version <strong>of</strong><br />

the model was used to predict the densities <strong>of</strong> the saturated solutions <strong>and</strong> the result<strong>in</strong>g prediction<br />

errors were with<strong>in</strong> an acceptable range [42]. Therefore, the same procedure can be<br />

used to predict the densities <strong>of</strong> saturated solutions <strong>in</strong>vestigated <strong>in</strong> this work. The experimental<br />

<strong>and</strong> calculated densities were used to convert the molar solubilities to the mole fraction<br />

scale.<br />

The mean relative deviation (MRD) between the calculated <strong>and</strong> observed (solubility/density)<br />

values are used to evaluate the accuracy <strong>of</strong> the model. The MRD values are<br />

calculated us<strong>in</strong>g:<br />

∑{ |Calculated − Observed|<br />

}<br />

Observed<br />

MRD = 100<br />

(11)<br />

N<br />

where N is the number <strong>of</strong> data po<strong>in</strong>ts <strong>in</strong> each set.<br />

3 Results<br />

Tables 1 <strong>and</strong> 2 list the experimental solubilities <strong>of</strong> acetam<strong>in</strong>ophen <strong>and</strong> ibupr<strong>of</strong>en <strong>in</strong> the b<strong>in</strong>ary<br />

<strong>and</strong> ternary solvent mixtures along with the measured density <strong>of</strong> the saturated solutions<br />

at 25 °C, respectively. The densities <strong>of</strong> the solute-free solvent mixtures are also listed <strong>in</strong> Table<br />

1. The m<strong>in</strong>imum solubility <strong>of</strong> acetam<strong>in</strong>ophen (9.89 × 10 −2 mol·L −1 ) is observed for the<br />

aqueous solution <strong>and</strong> is <strong>in</strong> good agreement with previous data [50–52]. The maximum solubility<br />

<strong>of</strong> acetam<strong>in</strong>ophen (8.60 mol·L −1 ) <strong>in</strong> the solvent mixtures is observed for the PEG 600<br />

{1}–NMP {2}–water {3} (0.3 + 0.6 + 0.1 mass fractions) mixture. The aqueous solubility<br />

<strong>of</strong> ibupr<strong>of</strong>en is 4 × 10 −4 mol·L −1 (or 6.72 × 10 −6 as mole fraction) <strong>and</strong> is comparable with<br />

the correspond<strong>in</strong>g values from the literature [53, 54]. The maximum solubility <strong>of</strong> ibupr<strong>of</strong>en<br />

(8.95 mol·L −1 ) <strong>in</strong> the solvent mixtures studied is observed <strong>in</strong> the PEG 600 {1}–NMP {2}–<br />

water {3} (0.1 + 0.6 + 0.3 mass fractions) mixture. There are no published experimental<br />

data for drugs <strong>in</strong> the <strong>in</strong>vestigated solvent mixtures.<br />

Equations 9 <strong>and</strong> 10 were used to fit the data sets <strong>of</strong> acetam<strong>in</strong>ophen <strong>and</strong> ibupr<strong>of</strong>en; the<br />

constants <strong>and</strong> MRD values are shown <strong>in</strong> Table 3. In the b<strong>in</strong>ary mixtures <strong>of</strong> acetam<strong>in</strong>ophen<br />

the lowest MRD value is for PEG 600 {1}–NMP {2} mixtures with 1.0% <strong>and</strong> the highest<br />

MRD value belongs to NMP {2}–water {3} mixtures with 7.4%. For ibupr<strong>of</strong>en <strong>in</strong> b<strong>in</strong>ary<br />

mixtures the lowest MRD is for PEG 600 {1}–NMP {2} mixtures with 0.8% <strong>and</strong> the highest<br />

MRD value belongs to PEG 600 {1}–water {3} mixtures with 9.3%. In the b<strong>in</strong>ary mixtures,<br />

the overall MRD (OMRD) values are 3.2% <strong>and</strong> 6.0%, respectively, for acetam<strong>in</strong>ophen <strong>and</strong><br />

ibupr<strong>of</strong>en. The MRD values for ternary mixtures are 15.0% <strong>and</strong> 28.6%, respectively, for


2038 J Solution Chem (2011) 40:2032–2045<br />

Table 1 Experimental molar solubilities (C m,T ) <strong>of</strong> acetam<strong>in</strong>ophen <strong>in</strong> PEG 600 {1}–NMP {2}–water {3}<br />

mixtures at 25 °C <strong>and</strong> densities <strong>of</strong> the saturated <strong>and</strong> solute-free solutions<br />

w 1 w 2 w 3 C m,T<br />

(mol·L −1 )<br />

Density <strong>of</strong> the saturated<br />

solutions (g·mL −1 )<br />

Density <strong>of</strong> solute-free<br />

solvent mixtures (g·mL −1 )<br />

1.00 0.00 – 1.4531 1.1556 1.1291<br />

0.90 0.10 – 1.5118 1.1536 1.1198<br />

0.80 0.20 – 1.7102 1.1412 1.1119<br />

0.70 0.30 – 2.1035 1.1330 1.1021<br />

0.60 0.40 – 2.4669 1.1248 1.0962<br />

0.50 0.50 – 2.8706 1.1165 1.0863<br />

0.40 0.60 – 3.1281 1.1103 1.0745<br />

0.30 0.70 – 3.4581 1.1021 1.0667<br />

0.20 0.80 – 3.8479 1.0918 1.0509<br />

0.10 0.90 – 4.2377 1.0815 1.0391<br />

0.00 1.00 – 5.0451 1.0703 1.0293<br />

– 0.00 1.00 0.0989 1.0162 0.9837<br />

– 0.10 0.90 0.4595 1.0216 0.9978<br />

– 0.20 0.80 0.7507 1.0288 1.0017<br />

– 0.30 0.70 1.1614 1.0360 1.0056<br />

– 0.40 0.60 1.6455 1.0414 1.0096<br />

– 0.50 0.50 2.1397 1.0486 1.0135<br />

– 0.60 0.40 2.8358 1.0559 1.0155<br />

– 0.70 0.30 3.4999 1.0613 1.0175<br />

– 0.80 0.20 3.7783 1.0649 1.0214<br />

– 0.90 0.10 4.1124 1.0667 1.0253<br />

– 1.00 0.00 5.0451 1.0703 1.0293<br />

0.10 0.10 0.80 0.5670 1.0897 1.0300<br />

0.20 0.10 0.70 0.8370 1.0939 1.0465<br />

0.10 0.20 0.70 0.8788 1.0877 1.0382<br />

0.10 0.30 0.60 1.4698 1.0794 1.0465<br />

0.20 0.20 0.60 1.0592 1.0836 1.0527<br />

0.30 0.10 0.60 1.0209 1.0877 1.0650<br />

0.40 0.10 0.50 1.3097 1.1165 1.0836<br />

0.30 0.20 0.50 1.7168 1.1103 1.0733<br />

0.20 0.30 0.50 1.9882 1.0980 1.0630<br />

0.10 0.40 0.50 2.6145 1.0918 1.0527<br />

0.50 0.10 0.40 1.6271 1.1495 1.0918<br />

0.40 0.20 0.40 1.7983 1.1412 1.0877<br />

0.30 0.30 0.40 2.2297 1.1330 1.0733<br />

0.20 0.40 0.40 2.2437 1.1289 1.0650<br />

0.10 0.50 0.40 2.3550 1.1145 1.0547<br />

0.60 0.10 0.30 2.1810 1.1454 1.1062<br />

0.50 0.20 0.30 2.4107 1.1412 1.1000<br />

0.40 0.30 0.30 2.8282 1.1392 1.0918<br />

0.30 0.40 0.30 3.1205 1.1392 1.0774


J Solution Chem (2011) 40:2032–2045 2039<br />

Table 1 (Cont<strong>in</strong>ued)<br />

w 1 w 2 w 3 C m,T<br />

(mol·L −1 )<br />

Density <strong>of</strong> the saturated<br />

solutions (g·mL −1 )<br />

Density <strong>of</strong> solute-free<br />

solvent mixtures (g·mL −1 )<br />

0.20 0.50 0.30 3.1692 1.1371 1.0691<br />

0.10 0.60 0.30 3.1831 1.1268 1.0630<br />

0.70 0.10 0.20 2.2048 1.1186 1.1165<br />

0.60 0.20 0.20 2.6780 1.1103 1.1103<br />

0.50 0.30 0.20 3.3043 1.1042 1.1042<br />

0.40 0.40 0.20 3.3600 1.0959 1.0897<br />

0.30 0.50 0.20 3.4852 1.0877 1.0774<br />

0.20 0.60 0.20 4.4595 1.0794 1.0691<br />

0.10 0.70 0.20 4.0656 1.0691 1.0630<br />

0.80 0.10 0.10 2.4833 1.1836 1.1186<br />

0.70 0.20 0.10 2.5263 1.1745 1.1124<br />

0.60 0.30 0.10 3.4901 1.1691 1.1042<br />

0.50 0.40 0.10 3.5548 1.1618 1.0897<br />

0.40 0.50 0.10 7.9486 1.1564 1.0836<br />

0.30 0.60 0.10 8.5972 1.1418 1.0774<br />

0.20 0.70 0.10 6.3619 1.1309 1.0691<br />

0.10 0.80 0.10 6.3202 1.1273 1.0547<br />

Table 2 Experimental molar solubilities (C m,T ) <strong>of</strong> ibupr<strong>of</strong>en <strong>in</strong> PEG 600 {1}–NMP {2}–water {3} mixtures<br />

at 25 °C <strong>and</strong> density <strong>of</strong> the saturated solutions<br />

w 1 w 2 w 3 C m,T (mol·L −1 ) Density <strong>of</strong> the saturated<br />

solutions (g·mL −1 )<br />

1.00 0.00 – 1.4425 1.1364<br />

0.90 0.10 – 1.9340 1.1083<br />

0.80 0.20 – 2.3699 1.0980<br />

0.70 0.30 – 2.7695 1.0918<br />

0.60 0.40 – 3.2418 1.0856<br />

0.50 0.50 – 3.5324 1.0753<br />

0.40 0.60 – 3.6501 1.0712<br />

0.30 0.70 – 3.7954 1.0650<br />

0.20 0.80 – 4.0860 1.0609<br />

0.10 0.90 – 4.5582 1.0527<br />

0.00 1.00 – 5.5121 1.0444<br />

– 0.00 1.00 0.0004 0.9873<br />

– 0.10 0.90 0.0201 0.9888<br />

– 0.20 0.80 0.1532 0.9950<br />

– 0.30 0.70 0.3333 1.0032<br />

– 0.40 0.60 0.6057 1.0156<br />

– 0.50 0.50 0.9955 1.0218<br />

– 0.60 0.40 1.4799 1.0279


2040 J Solution Chem (2011) 40:2032–2045<br />

Table 2 (Cont<strong>in</strong>ued)<br />

w 1 w 2 w 3 C m,T (mol·L −1 ) Density <strong>of</strong> the saturated<br />

solutions (g·mL −1 )<br />

– 0.70 0.30 2.5152 1.0321<br />

– 0.80 0.20 4.1862 1.0362<br />

– 0.90 0.10 5.2942 1.0403<br />

– 1.00 0.00 5.5121 1.0444<br />

0.10 0.10 0.80 0.0479 1.0609<br />

0.20 0.10 0.70 0.0583 1.0671<br />

0.10 0.20 0.70 0.2131 1.0774<br />

0.10 0.30 0.60 0.3148 1.0465<br />

0.20 0.20 0.60 0.2593 1.0506<br />

0.30 0.10 0.60 0.0759 1.0568<br />

0.40 0.10 0.50 0.0941 1.0733<br />

0.30 0.20 0.50 0.2376 1.0568<br />

0.20 0.30 0.50 0.4464 1.0424<br />

0.10 0.40 0.50 0.5118 1.0238<br />

0.50 0.10 0.40 0.2352 1.1042<br />

0.40 0.20 0.40 0.3623 1.0918<br />

0.30 0.30 0.40 0.5939 1.0733<br />

0.20 0.40 0.40 0.7891 1.0568<br />

0.10 0.50 0.40 1.1342 1.0424<br />

0.60 0.10 0.30 1.2976 1.1165<br />

0.50 0.20 0.30 1.4656 1.1062<br />

0.40 0.30 0.30 1.6200 1.0712<br />

0.30 0.40 0.30 1.7925 1.0527<br />

0.20 0.50 0.30 1.9696 1.0341<br />

0.10 0.60 0.30 8.9499 1.6336<br />

0.70 0.10 0.20 1.9396 1.1392<br />

0.60 0.20 0.20 2.5026 1.1227<br />

0.50 0.30 0.20 3.5560 1.1103<br />

0.40 0.40 0.20 3.4915 1.0939<br />

0.30 0.50 0.20 3.0475 1.0815<br />

0.20 0.60 0.20 4.3769 1.0691<br />

0.10 0.70 0.20 7.1919 1.0527<br />

0.80 0.10 0.10 3.2472 1.0873<br />

0.70 0.20 0.10 2.4663 1.0745<br />

0.60 0.30 0.10 2.5953 1.0636<br />

0.50 0.40 0.10 2.9222 1.0509<br />

0.40 0.50 0.10 3.7739 1.0400<br />

0.30 0.60 0.10 3.5923 1.0309<br />

0.20 0.70 0.10 3.0475 1.0218<br />

0.10 0.80 0.10 3.1564 1.0127


J Solution Chem (2011) 40:2032–2045 2041<br />

Table 3 The constants <strong>of</strong> the Jouyban–Acree model <strong>and</strong> the mean relative deviations (MRD) <strong>of</strong> backcalculation<br />

for the solubility <strong>of</strong> acetam<strong>in</strong>ophen <strong>and</strong> ibupr<strong>of</strong>en <strong>in</strong> b<strong>in</strong>ary <strong>and</strong> ternary solvent mixtures<br />

Drug N Solvent system J 0 J 1 J 2 MRD%<br />

<strong>Acetam<strong>in</strong>ophen</strong> 11 PEG 600 {1}–NMP {2} 25.595 21.946 −190.757 1.0<br />

<strong>Acetam<strong>in</strong>ophen</strong> a 11 PEG 600 {1}–water {3} 525.287 178.733 110.211 1.3<br />

<strong>Acetam<strong>in</strong>ophen</strong> 11 NMP {2}–water {3} 573.236 −520.733 480.948 7.4<br />

<strong>Acetam<strong>in</strong>ophen</strong> 36 PEG 600 {1}–NMP {2}–water {3} 1549.527 4400.519 3805.727 15.0<br />

OMRD 6.2<br />

Ibupr<strong>of</strong>en 11 PEG 600 {1}–NMP {2} 108.590 −180.307 −77.088 0.8<br />

Ibupr<strong>of</strong>en a 11 PEG 600 {1}–water {3} −196.127 693.573 2546.005 9.3<br />

Ibupr<strong>of</strong>en 11 NMP {2}–water {3} 1549.194 −1575.793 1968.898 8.0<br />

Ibupr<strong>of</strong>en 36 PEG 600 {1}–NMP {2}–water {3} 2867.939 3246.069 7430.691 28.6<br />

OMRD 11.7<br />

a <strong>Solubility</strong> data taken from a previous work [42]<br />

acetam<strong>in</strong>ophen <strong>and</strong> ibupr<strong>of</strong>en. The MRD values for ternary solvent mixtures are higher<br />

than those <strong>of</strong> the b<strong>in</strong>ary solvent mixtures. After calculat<strong>in</strong>g the sub-b<strong>in</strong>ary <strong>and</strong> ternary constants<br />

for each drug (details are shown <strong>in</strong> Table 3), the tra<strong>in</strong>ed versions <strong>of</strong> the Jouyban–<br />

Acree model were used to predict the solubility <strong>of</strong> acetam<strong>in</strong>ophen <strong>and</strong> ibupr<strong>of</strong>en <strong>in</strong> both<br />

b<strong>in</strong>ary <strong>and</strong> ternary solvent mixtures. The OMRD values for predict<strong>in</strong>g the acetam<strong>in</strong>ophen<br />

<strong>and</strong> ibupr<strong>of</strong>en solubility <strong>in</strong> b<strong>in</strong>ary <strong>and</strong> ternary solvent mixtures are 6.2% <strong>and</strong> 11.7%, respectively.<br />

In addition to those tra<strong>in</strong>ed versions <strong>of</strong> the Jouyban–Acree model, two generally tra<strong>in</strong>ed<br />

models for PEG 600 {1}–water {2} <strong>and</strong> NMP {1}–water {2} mixtures, us<strong>in</strong>g data sets<br />

taken from previous work [42, 45–48], are presented <strong>in</strong> this work. The tra<strong>in</strong>ed version for<br />

PEG 600 {1}–water {2} mixtures is:<br />

log 10 C m,T = w 1 log 10 C 1,T + w 2 log 10 C 2,T + 213.21 w 1w 2<br />

T<br />

<strong>and</strong> the tra<strong>in</strong>ed version for NMP {1}–water {2} mixtures is:<br />

(12)<br />

log 10 C m,T = w 1 log 10 C 1,T + w 2 log 10 C 2,T<br />

+ w 1w 2 [<br />

668.67 − 678.59(w1 − w 2 ) + 1220.13(w 1 − w 2 ) 2] . (13)<br />

T<br />

The back-calculated MRDs <strong>of</strong> Eqs. 12 <strong>and</strong> 13 <strong>and</strong> the references <strong>of</strong> the data sets are shown<br />

<strong>in</strong> Table 4. In PEG 600 {1}–water {2} mixtures the lowest (18.4%) <strong>and</strong> highest (127.9%)<br />

MRDs are observed for lamotrig<strong>in</strong>e <strong>and</strong> clonazepam, respectively. Also <strong>in</strong> NMP {1}–<br />

water {2} mixtures the lowest <strong>and</strong> highest MRDs belong to lamotrig<strong>in</strong>e (25.6%) <strong>and</strong> clonazepam<br />

(149.9%), respectively. The OMRD values for Eqs. 12 <strong>and</strong> 13 are 56.9% <strong>and</strong> 58.1%,<br />

respectively. Compar<strong>in</strong>g the MRD values <strong>of</strong> Eqs. 12 <strong>and</strong> 13 with those <strong>of</strong> Eq. 1 (listed <strong>in</strong><br />

Table 3) reveal that the MRD values <strong>of</strong> Eq. 1 are less than those <strong>of</strong> Eqs. 12 <strong>and</strong> 13. Butthe<br />

ma<strong>in</strong> advantage <strong>of</strong> Eqs. 12 <strong>and</strong> 13 is that they need experimental solubility data <strong>of</strong> drugs<br />

<strong>in</strong> mono-solvents, but for comput<strong>in</strong>g the constants <strong>of</strong> Eq. 1 at least three solubility data <strong>in</strong><br />

mixed solvents are required. Therefore, with the advantage <strong>and</strong> weakness <strong>of</strong> Eqs. 12 <strong>and</strong> 13,<br />

the MRD values <strong>of</strong> these equations are acceptable.<br />

In the leave one out cross-validation method, one drug was excluded from the tra<strong>in</strong><strong>in</strong>g<br />

sets <strong>and</strong> Eq. 1 was tra<strong>in</strong>ed with the rest <strong>of</strong> the data sets, <strong>and</strong> then by us<strong>in</strong>g the tra<strong>in</strong>ed ver-


2042 J Solution Chem (2011) 40:2032–2045<br />

Table 4 The details <strong>of</strong> data sets <strong>and</strong> the mean relative deviations (MRD) <strong>of</strong> the back-calculation <strong>and</strong> leave<br />

one out methods<br />

Drug N Solvent system Reference MRD%<br />

(backcalculation)<br />

MRD%<br />

(leave one<br />

out)<br />

<strong>Acetam<strong>in</strong>ophen</strong> 11 PEG 600 {1}–water {3} [42] 30.0 34.4<br />

Ibupr<strong>of</strong>en 11 PEG 600 {1}–water {3} [42] 52.4 53.2<br />

Pioglitazone HCl 12 PEG 600 {1}–water {3} [48] 54.9 59.7<br />

Diazepam 11 PEG 600 {1}–water {3} [46] 57.9 74.3<br />

Lamotrig<strong>in</strong>e 11 PEG 600 {1}–water {3} [46] 18.4 20.4<br />

Clonazepam 11 PEG 600 {1}–water {3} [46] 127.9 172.9<br />

OMRD 56.9 69.2<br />

<strong>Acetam<strong>in</strong>ophen</strong> 11 NMP {2}–water {3} This work 34.1 40.9<br />

Ibupr<strong>of</strong>en 11 NMP {2}–water {3} This work 58.6 62.1<br />

Pioglitazone HCl 14 NMP {2}–water {3} [45] 56.9 70.2<br />

Diazepam 11 NMP {2}–water {3} [47] 41.8 49.2<br />

Lamotrig<strong>in</strong>e 11 NMP {2}–water {3} [47] 25.6 30.1<br />

Clonazepam 11 NMP {2}–water {3} [47] 149.9 198.8<br />

Phenobarbital 11 NMP {2}–water {3} [47] 39.7 44.0<br />

OMRD 58.1 70.8<br />

sion, the solubility <strong>of</strong> the excluded drug was predicted. The details <strong>of</strong> the MRD values for<br />

the leave one out method are shown <strong>in</strong> Table 4. In PEG 600 {1}–water {2} mixtures the<br />

lowest <strong>and</strong> highest MRDs belong to lamotrig<strong>in</strong>e (20.4%) <strong>and</strong> clonazepam (172.9%), respectively,<br />

<strong>and</strong> for NMP {1}–water {2} mixtures the lowest <strong>and</strong> highest MRDs belong aga<strong>in</strong> to<br />

lamotrig<strong>in</strong>e (30.1%) <strong>and</strong> clonazepam (198.8%), respectively. The OMRD values for PEG<br />

600 {1}–water {2} <strong>and</strong> NMP {1}–water {2} mixtures are 69.2% <strong>and</strong> 70.8%, respectively.<br />

For predict<strong>in</strong>g the density <strong>of</strong> the saturated solutions, the densities <strong>of</strong> solute free b<strong>in</strong>ary<br />

<strong>and</strong> ternary solvent mixtures were measured. Then, by the density <strong>of</strong> the b<strong>in</strong>ary mixtures,<br />

the constants <strong>of</strong> Eq. 14 were computed:<br />

[<br />

]<br />

w 1 w 2<br />

2∑<br />

log 10 ρ m,T = w 1 log 10 ρ 1,T + w 2 log 10 ρ 2,T + w 3 log 10 ρ 3,T +<br />

J i (w 1 − w 2 ) i<br />

T<br />

+<br />

[<br />

w 1 w 3<br />

T<br />

2∑<br />

i=0<br />

] [<br />

J i ′ (w 1 − w 3 ) i w 2 w 3<br />

+<br />

T<br />

2∑<br />

i=0<br />

i=0<br />

J ′′<br />

i (w 2 − w 3 ) i ]. (14)<br />

Then by us<strong>in</strong>g these sub-b<strong>in</strong>ary constants, the ternary constants <strong>of</strong> Eq. 15 were computed:<br />

log 10 ρ m,T = w 1 log 10 ρ 1,T + w 2 log 10 ρ 2,T + w 3 log 10 ρ 3,T<br />

[<br />

] [<br />

]<br />

w 1 w 2<br />

2∑<br />

+<br />

J i (w 1 − w 2 ) i w 1 w 3<br />

2∑<br />

+<br />

J i ′<br />

T<br />

T<br />

(w 1 − w 3 ) i<br />

+<br />

[<br />

w 2 w 3<br />

T<br />

i=0<br />

2∑<br />

i=0<br />

i=0<br />

] [<br />

J i ′′ (w 2 − w 3 ) i w 1 w 2 w 3<br />

+<br />

T<br />

2∑<br />

i=0<br />

J ′′′<br />

i (w 1 − w 2 − w 3 ) i ]. (15)


J Solution Chem (2011) 40:2032–2045 2043<br />

The f<strong>in</strong>al tra<strong>in</strong>ed version is:<br />

log 10 ρ m,T = w 1 log 10 ρ 1,T + w 2 log 10 ρ 2,T + w 3 log 10 ρ 3,T + 0.290 (w 1w 2 )<br />

T<br />

+ 1.403 (w 1w 3 )<br />

+ w 2w 3 [<br />

0.266 − 0.504(w2 − w 3 ) + 0.336(w 2 − w 3 ) 2]<br />

T T<br />

+ w 1w 2 w 3 [<br />

3.108 − 7.474(w1 − w 2 − w 3 ) ] . (16)<br />

T<br />

Equation 16 was used to predict the densities <strong>of</strong> the saturated solutions. The prediction<br />

MRDs were 1.4% <strong>and</strong> 2.4%, respectively, for acetam<strong>in</strong>ophen <strong>and</strong> ibupr<strong>of</strong>en <strong>and</strong> the OMRD<br />

was 1.9%. The experimental <strong>and</strong> calculated densities were used to convert the molar solubility<br />

to the mole fraction solubility, <strong>and</strong> the OMRD value for the difference <strong>of</strong> mole fraction<br />

solubilities from experimental <strong>and</strong> predicted densities was 1.9%.<br />

4 Discussion<br />

Experimental solubilities <strong>of</strong> acetam<strong>in</strong>ophen <strong>and</strong> ibupr<strong>of</strong>en are reported <strong>in</strong> aqueous <strong>and</strong> nonaqueous<br />

mixtures <strong>of</strong> PEG 600 <strong>and</strong> NMP. Aqueous mixtures data could be used <strong>in</strong> liquid<br />

drug formulation whereas non-aqueous data could be used <strong>in</strong> other formulations such as<br />

s<strong>of</strong>tgels. The Jouyban–Acree model fits well to the experimental solubility data for drugs<br />

at all compositions <strong>of</strong> the solvent mixtures. Also, it fits well to the experimental solubilities<br />

<strong>of</strong> drugs <strong>in</strong> ternary solvents with given fractions <strong>of</strong> the cosolvents. These f<strong>in</strong>d<strong>in</strong>gs are<br />

also supported by the small MRD values <strong>of</strong> the back-calculated <strong>and</strong> experimental solubility<br />

data. Although the MRDs are very low, especially for sub-b<strong>in</strong>ary solvents, it should be<br />

kept <strong>in</strong> m<strong>in</strong>d that the constants are computed us<strong>in</strong>g the solubility <strong>of</strong> acetam<strong>in</strong>ophen <strong>and</strong>/or<br />

ibupr<strong>of</strong>en, which need experimental measurements. Generally, the overall MRDs observed<br />

<strong>in</strong> these predictions show that the Jouyban–Acree model provided more accurate predictions<br />

<strong>in</strong> the presence <strong>of</strong> one or two cosolvents. Accord<strong>in</strong>g to the density prediction results, it’s not<br />

necessary to measure the density <strong>of</strong> all saturated solutions, <strong>and</strong> by measur<strong>in</strong>g the density <strong>of</strong><br />

the solute-free solvent mixtures <strong>and</strong> with tra<strong>in</strong>ed version <strong>of</strong> the Jouyban–Acree model, the<br />

density <strong>of</strong> the saturated solutions could be predicted with<strong>in</strong> an acceptable MRD.<br />

Acknowledgements The authors would like to thank the Research Affairs <strong>of</strong> Tabriz University <strong>of</strong> Medical<br />

Sciences for the partial f<strong>in</strong>ancial support under grant No. 5/4/5452, <strong>and</strong> also Daana pharmaceutical company<br />

for supply<strong>in</strong>g the drug powders <strong>and</strong> materials used <strong>in</strong> this work.<br />

References<br />

1. Coapman, S.D.: Progress for solubiliz<strong>in</strong>g difficulty soluble pharmaceutical actives. Patent No. 5141961,<br />

25 August 1992<br />

2. Strickly, A.: Solubiliz<strong>in</strong>g excipients <strong>in</strong> oral <strong>and</strong> <strong>in</strong>jectable formulations. Pharm. Res. 21, 201–229 (2004)<br />

3. Sasaki, H., Kojima, M., Mori, Y., Nakamura, J., Shibasaki, J.: Enhanc<strong>in</strong>g effect <strong>of</strong> pyrrolidone derivatives<br />

on transdermal drug delivery I. Int. J. Pharm. 44, 15–24 (1988)<br />

4. Yoneto, K., Li, S.K., Ghanem, A.H., Crommel<strong>in</strong>, D.J., Higuchi, W.I.: A mechanistic study <strong>of</strong> the effects<br />

<strong>of</strong> the 1-alkyl-2-pyrrolidones on bilayer permeability <strong>of</strong> stratum corneum lipid liposome: a comparison<br />

with hairless mouse sk<strong>in</strong> studies. J. Pharm. Sci. 84, 853–860 (1955)<br />

5. Lee, P.J., Langer, R., Shastri, V.P.: Role <strong>of</strong> N-methyl pyrrolidone <strong>in</strong> the enhancement <strong>of</strong> aqueous phase<br />

transdermal transport. J. Pharm. Sci. 94, 912–917 (2005)<br />

6. Uch, A.S., Hesse, U., Dressman, J.B.: Use <strong>of</strong> 1-methyl-pyrrolidone as a solubiliz<strong>in</strong>g agent for determ<strong>in</strong><strong>in</strong>g<br />

the uptake <strong>of</strong> poorly soluble drugs. Pharm. Res. 16, 968–971 (1999)


2044 J Solution Chem (2011) 40:2032–2045<br />

7. Ishihara, T., Goto, M., Kanazawa, H., Higaki, M., Mizushima, Y.: Efficient entrapment <strong>of</strong> poorly watersoluble<br />

pharmaceuticals <strong>in</strong> hybrid nanoparticles. J. Pharm. Sci. 98, 2357–2563 (2008)<br />

8. Koizumi, A., Makiko, F., Kondoh, M., Watanabe, Y.: Effect <strong>of</strong> N-methyl pyrrolidone on sk<strong>in</strong> permeation<br />

<strong>of</strong> estradiol. Eur. J. Pharm. Biopharm. 57, 473–847 (2004)<br />

9. Bachhav, Y.G., Date, A.A., Patravale, V.B.: Explor<strong>in</strong>g the potential <strong>of</strong> N-methyl pyrrolidone as a cosurfactant<br />

<strong>in</strong> the microemulsion systems. Int. J. Pharm. 326, 186–189 (2006)<br />

10. Hellerbr<strong>and</strong>, K., Siedler, M., Schutz, A., Pompe, C., Friess, W.: In situ harden<strong>in</strong>g paste, its manufactur<strong>in</strong>g<br />

<strong>and</strong> use. Publication No. US 2009/0048145, 19 February 2009<br />

11. Pirhonen, E., Nieuwenhuis, J., Kaikkonen, A., Niem<strong>in</strong>en, T., Weber, F.: Resorbable polymer compositions,<br />

implant <strong>and</strong> method <strong>of</strong> mak<strong>in</strong>g implant. Patent No. 6926903, 9 August 2005<br />

12. Malook, S.U., Boon, P.F.G., Morgan, J.P.: Method <strong>of</strong> reduc<strong>in</strong>g the swell<strong>in</strong>g or pa<strong>in</strong> associated with<br />

antibiotics compositions. Patent No. 4772460, 20 September 1988<br />

13. Dornh<strong>of</strong>er, W., Embrechts, E.: Injection solution for <strong>in</strong>tramascular <strong>and</strong> subcutaneous adm<strong>in</strong>istration to<br />

animal. Patent No. 5753636, 19 May 1998<br />

14. Jouyban, A., Fakhree, M.A.A., Shayanfar, A.: Review <strong>of</strong> pharmaceutical applications <strong>of</strong> N-methyl-2-<br />

pyrrolidone. J. Pharm. Pharmaceut. Sci. 13, 524–535 (2010)<br />

15. Cheng, G., Fan, X., Tian, W., Liu, Y., Liu, G.: Study on anionic polymerization <strong>of</strong> ethylene oxide <strong>in</strong>itiated<br />

by ammonium/triisobutylalum<strong>in</strong>um. J. Polym. Res. 17, 529–534 (2010)<br />

16. Mark, H.F. (ed.): 1,2-Epoxide Polymers: Ethylene Oxide Polymers <strong>and</strong> Copolymers. In: Encyclopedia<br />

<strong>of</strong> Polymer Science <strong>and</strong> Eng<strong>in</strong>eer<strong>in</strong>g, pp. 225–273. Wiley, New York (1986)<br />

17. <strong>Polyethylene</strong> <strong>Glycol</strong>s (PEGs) <strong>and</strong> the pharmaceutical <strong>in</strong>dustry. http://www.clariant.com (2009). Accessed<br />

on 22 November 2009<br />

18. <strong>Polyethylene</strong> <strong>Glycol</strong> O<strong>in</strong>tment (PEG O<strong>in</strong>tment), USP 24th revision, p. 2495 (2000)<br />

19. Macrogol O<strong>in</strong>tment (<strong>Polyethylene</strong> <strong>Glycol</strong> O<strong>in</strong>tment), 13th edn., p. 826. The Japanese Pharmacopoeia<br />

(1996)<br />

20. Macrogol 1500 (<strong>Polyethylene</strong> <strong>Glycol</strong> 1500), 13th edn., pp. 823–824. The Japanese Pharmacopoeia<br />

(1996)<br />

21. Nagatomi, A., Mishima, M., Tsuzuki, O., Ohdo, S., Higuchi, S.: Utility <strong>of</strong> a rectal suppository conta<strong>in</strong><strong>in</strong>g<br />

the antiepileptic drug zonisamide. Biol. Pharm. Bull. 20, 892–896 (1997)<br />

22. Al-Nasassrah, M., Podczeck, F., Newton, J.M.: The effect on an <strong>in</strong>crease <strong>in</strong> cha<strong>in</strong> lengthon the mechanical<br />

properties <strong>of</strong> polyethylene glycols. Eur. J. Pharm. Biopharm. 46, 31–38 (1998)<br />

23. FDA, Ophthalmic drug products for over-the-counter human use: active <strong>in</strong>gredients: ophthalmic demulcents.<br />

Code <strong>of</strong> Federal Regulation 21, Part 349.12. URL http://www.accessdata.fda.gov/scripts/cdrh/<br />

cfdocs/cfcfr/CFRSearch.cfmfr=349.12 (2009). Accessed 22 Nov 2009<br />

24. Parnaud, G.: <strong>Polyethylene</strong> glycol suppresses colon cancer. Cancer Res. 59, 5143–5147 (1999)<br />

25. Sakanoue, Y.: The efficacy <strong>of</strong> whole gut irrigation with polyethylene glycol electrolyte solution. Acta<br />

Chim. Sc<strong>and</strong>. 156, 463–466 (1990)<br />

26. Jouyban-Gharamaleki, A., Acree, W.E. Jr.: Comparison <strong>of</strong> models for describ<strong>in</strong>g multiple peaks <strong>in</strong> solubility<br />

pr<strong>of</strong>iles. Int. J. Pharm. 167, 177–182 (1998)<br />

27. Jouyban-Gharamaleki, A., Khaledi, M.G., Clark, B.J.: Calculation <strong>of</strong> electrophoretic mobilities <strong>in</strong> water<br />

organic modifier mixtures <strong>in</strong> capillary electrophoresis. J. Chromatogr. A 868, 277–284 (2000)<br />

28. Jouyban, A., Fathi-Azarbayjani, A., Acree, W.E. Jr.: Surface tension calculation <strong>of</strong> mixed solvents with<br />

respect to solvent composition <strong>and</strong> temperature by us<strong>in</strong>g Jouyban–Acree model. Chem. Pharm. Bull. 52,<br />

1219–1222 (2004)<br />

29. Jouyban, A., Khoubnasabjafari, M., Vaez-Gharamaleki, Z., Fekari, Z., Acree, W.E. Jr.: Calculation <strong>of</strong><br />

the viscosity <strong>of</strong> b<strong>in</strong>ary liquids at various temperatures us<strong>in</strong>g Jouyban–Acree model. Chem. Pharm. Bull.<br />

53, 519–523 (2005)<br />

30. Jouyban, A., Chan, H.K., Barzegar-Jalali, M., Acree, W.E. Jr.: A model to represent solvent effects on<br />

the chemical stability <strong>of</strong> solutes <strong>in</strong> mixed solvent systems. Int. J. Pharm. 243, 167–172 (2002)<br />

31. Jouyban, A., Soltani, S., Chan, H.K., Acree, W.E. Jr.: Model<strong>in</strong>g acid dissociation constant <strong>of</strong> analytes <strong>in</strong><br />

b<strong>in</strong>ary solvents at various temperatures us<strong>in</strong>g Jouyban–Acree model. Thermochim. Acta 428, 119–123<br />

(2005)<br />

32. Jouyban, A., Rashidi, M.R., Vaez-Gharamaleki, Z., Mat<strong>in</strong>, A.A., Djozan, D.j.: Mathematical representation<br />

<strong>of</strong> analyte’s capacity factor <strong>in</strong> b<strong>in</strong>ary solvent mobile phases us<strong>in</strong>g Jouyban–Acree model. Pharmazie<br />

60, 827–829 (2005)<br />

33. Jouyban, A.: <strong>Solubility</strong> prediction <strong>of</strong> drugs <strong>in</strong> water–polyethylene glycol 400 mixtures us<strong>in</strong>g Jouyban–<br />

Acree model. Chem. Pharm. Bull. 54, 1561–1566 (2006)<br />

34. Jouyban, A.: Prediction <strong>of</strong> drug solubility <strong>in</strong> water–propylene glycol mixtures us<strong>in</strong>g Jouyban–Acree<br />

model. Pharmazie 62, 365–367 (2007)<br />

35. Jouyban, A., Acree, W.E. Jr.: In silico prediction <strong>of</strong> drug solubility <strong>in</strong> water–ethanol mixtures us<strong>in</strong>g<br />

Jouyban–Acree model. J. Pharm. Pharmaceut. Sci. 9, 262–269 (2006)


J Solution Chem (2011) 40:2032–2045 2045<br />

36. Jouyban, A., Soltanpour, Sh., Acree, W.E. Jr.: Improved prediction <strong>of</strong> drug solubilities <strong>in</strong> ethanol +<br />

water mixtures at various temperatures. Biomed. Int. 1, 19–24 (2010)<br />

37. Jouyban, A.: In silico prediction <strong>of</strong> drug solubility <strong>in</strong> water–dioxane mixtures us<strong>in</strong>g the Jouyban–Acree<br />

model. Pharmazie 62, 46–50 (2007)<br />

38. Jouyban, A., Fakhree, M.A.A., Mirzaei, Sh., Ghafourian, T., Soltanpour, Sh., Nokhodchi, A.: <strong>Solubility</strong><br />

prediction <strong>of</strong> paracetamol <strong>in</strong> water–glycerol mixtures at 25 <strong>and</strong> 30 °C us<strong>in</strong>g the Jouyban–Acree model.<br />

Asian J. Chem. 21, 7249–7253 (2009)<br />

39. Jouyban, A., Acree, W.E. Jr.: Prediction <strong>of</strong> drug solubility <strong>in</strong> ethanol–ethyl acetate mixtures at various<br />

temperatures us<strong>in</strong>g the Jouyban–Acree model. J. Drug Deliv. Sci. Technol. 17, 159–160 (2007)<br />

40. Acree, W.E. Jr.: Mathematical representation <strong>of</strong> thermodynamic properties. Part II. Derivation <strong>of</strong> the<br />

comb<strong>in</strong>ed nearly ideal b<strong>in</strong>ary solvent (NIBS)/Redlich-Kister mathematical representation from a twobody<br />

<strong>and</strong> three-body <strong>in</strong>teractional mix<strong>in</strong>g model. Thermochim. Acta 198, 71–77 (1992)<br />

41. Jouyban-Gharamaleki, A., Valaee, L., Barzegar-Jalali, M., Clark, B.J., Acree, W.E. Jr.: Comparison <strong>of</strong><br />

various cosolvency models for calculat<strong>in</strong>g solute solubility <strong>in</strong> water–cosolvent mixtures. Int. J. Pharm.<br />

177, 93–101 (1999)<br />

42. Soltanpour, Sh., Jouyban, A.: <strong>Solubility</strong> <strong>of</strong> acetam<strong>in</strong>ophen <strong>and</strong> ibupr<strong>of</strong>en <strong>in</strong> b<strong>in</strong>ary <strong>and</strong> ternary mixtures<br />

<strong>of</strong> polyethylene glycol 600, ethanol <strong>and</strong> water. Chem. Pharm. Bull. 58, 219–224 (2010)<br />

43. Pacheco, D.P., Manrique, Y.J., Mart<strong>in</strong>ez, F.: Thermodynamic study <strong>of</strong> the solubility <strong>of</strong> ibupr<strong>of</strong>en <strong>and</strong><br />

naproxen <strong>in</strong> some ethanol + propylene glycol mixtures. Fluid Phase Equilib. 262, 23–31 (2007)<br />

44. Manzo, R.H., Ahumada, A.A.: Effects <strong>of</strong> solvent medium on solubility. V. Enthalpic <strong>and</strong> entropic<br />

contributions to the free energy changes <strong>of</strong> disubstituted benzene derivatives <strong>in</strong> ethanol:water <strong>and</strong><br />

ethanol:cyclohexane mixtures. J. Pharm. Sci. 79, 1109–1115 (1990)<br />

45. Soltanpour, Sh., Jouyban, A.: <strong>Solubility</strong> <strong>of</strong> pioglitazone hydrochloride <strong>in</strong> aqueous solutions <strong>of</strong> ethanol,<br />

propylene glycol, <strong>and</strong> N-methyl-2-pyrrolidone at 298.2 K. AAPS Pharm. Sci. Tech. 10, 1153–1157<br />

(2009)<br />

46. Soltanpour, Sh., Acree, W.E. Jr., Jouyban, A.: <strong>Solubility</strong> <strong>of</strong> 5-(2-chlorophenyl)-7-nitro-1,3-dihydro-1,4-benzodiazep<strong>in</strong>-2-one,<br />

7-chloro-1-methyl-5-phenyl-3H-1,4-benzodiazep<strong>in</strong>-2-one, <strong>and</strong> 6-(2,3-<br />

dichlorophenyl)-1,2,4-triaz<strong>in</strong>e-3,5-diam<strong>in</strong>e <strong>in</strong> the mixtures <strong>of</strong> polyethylene glycol 600, ethanol, <strong>and</strong> water<br />

at 298.2 K. J. Chem. Eng. Data 55, 1727–1731 (2010)<br />

47. Shayanfar, A., Acree, W.E. Jr., Jouyban, A.: <strong>Solubility</strong> <strong>of</strong> clonazepam, diazepam, lamotrig<strong>in</strong>e <strong>and</strong> phenobarbital<br />

<strong>in</strong> N-methyl-2-pyrrolidone + water mixtures at 298.2 K. J. Chem. Eng. Data 54, 2964–2966<br />

(2009)<br />

48. Jouyban, A., Soltanpour, Sh.: <strong>Solubility</strong> <strong>of</strong> pioglitazone hydrochloride <strong>in</strong> polyethylene glycol 600–<br />

ethanol–water mixtures at 25 °C. Lat<strong>in</strong> Am. J. Pharm. 29, 825–829 (2010)<br />

49. Jouyban, A., Fathi-Azarbayjani, A., Khoubnasabjafari, M., Acree, W.E. Jr.: Mathematical representation<br />

<strong>of</strong> the density <strong>of</strong> liquid mixtures at various temperatures us<strong>in</strong>g Jouyban–Acree model. Indian J. Chem.<br />

A 44, 1553–1560 (2005)<br />

50. Jouyban, A., Chan, H.K., Chew, N.Y.K., Khoubnasabjafari, M., Acree, W.E. Jr.: <strong>Solubility</strong> prediction<br />

<strong>of</strong> paracetamol <strong>in</strong> b<strong>in</strong>ary <strong>and</strong> ternary solvent mixtures us<strong>in</strong>g Jouyban–Acree model. Chem. Pharm. Bull.<br />

54, 428–431 (2006)<br />

51. Dearden, J.C., Patel, N.C.: Dissolution k<strong>in</strong>etics <strong>of</strong> some alkyl derivatives <strong>of</strong> acetam<strong>in</strong>ophen. Drug Dev.<br />

Ind. Pharm. 4, 529–535 (1978)<br />

52. Paruta, A.N., Irani, S.A.: Dielectric solubility pr<strong>of</strong>iles <strong>in</strong> dioxane–water mixtures for several antipyretic<br />

drugs. Effect <strong>of</strong> substituents. J. Pharm. Sci. 54, 1334–1338 (1965)<br />

53. Rytt<strong>in</strong>g, E., Lentz, K.A., Chen, X.Q., Qian, F., Venkatesh, S.: Aqueous <strong>and</strong> cosolvent solubility data for<br />

drug-like organic compounds. AAPS J., 7, E78–E105 (2005)<br />

54. F<strong>in</strong>i, A., Laus, M., Orienti, I., Zecchi, V.: Dissolution <strong>and</strong> partition thermodynamic functions <strong>of</strong> some<br />

nonsteroidal anti-<strong>in</strong>flammatory drugs. J. Pharm. Sci. 75, 23–25 (1986)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!