03.01.2015 Views

Environments of Deposition and Petroleum Geology of Tuscaloosa ...

Environments of Deposition and Petroleum Geology of Tuscaloosa ...

Environments of Deposition and Petroleum Geology of Tuscaloosa ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

The Ainoiicyn Association <strong>of</strong> <strong>Petroleum</strong> Cicologi^l^ Biiilciin<br />

V.-LNo. 10(Oaobci iy.S7|. P, li2S-ll42, I7i"i^s..2 Tables<br />

<strong>Environments</strong> <strong>of</strong> <strong>Deposition</strong> <strong>and</strong> <strong>Petroleum</strong> <strong>Geology</strong> <strong>of</strong><br />

<strong>Tuscaloosa</strong> Group (Upper Cretaceous), South Carlton <strong>and</strong><br />

Pollard Fields, Southwestern Alabama^<br />

ERNEST A. MANCINI/ ROBERT M. MINK/ J. WAYNE PAYTON;<br />

<strong>and</strong> BENNETT L. BEARDEN'<br />

ABSTRACT<br />

INTRODUCTION<br />

In southwestern Alabama, the lower <strong>Tuscaloosa</strong><br />

Group (Upper Cretaceous) consists <strong>of</strong> two informally<br />

defined units, the Massive <strong>and</strong> Pilot s<strong>and</strong> intervals. The<br />

Massive s<strong>and</strong> interval accumulated principally as s<strong>and</strong>s<br />

in a wave-dominated, high-destructive delta system.<br />

These s<strong>and</strong>stones are structureless, well sorted, micaceous,<br />

locally fossiliferous, calcareous, glauconitic, fine<br />

grained, <strong>and</strong> quartz rich, containing angular to subangular<br />

quartz grains. The Massive s<strong>and</strong> interval unconf ormably<br />

overlies fluvial-deltaic sediments <strong>of</strong> Lower<br />

Cretaceous strata.<br />

The Pilot s<strong>and</strong> interval, which overlies the Massive<br />

s<strong>and</strong> interval, accumulated as shelf s<strong>and</strong>s <strong>and</strong> clays during<br />

a marine transgression. The s<strong>and</strong>stones are well<br />

sorted, micaceous, fossiliferous, calcareous, glauconitic,<br />

very fine to fine grained, <strong>and</strong> quartz rich, containing subangular<br />

to subrounded quartz grains. The s<strong>and</strong>stones<br />

appear massive but may be structureless as a result <strong>of</strong><br />

extensive bioturbation. Marine bivalves, such as<br />

inoceramids, are present in the s<strong>and</strong>stones <strong>and</strong> claystones.<br />

The Pilot s<strong>and</strong> interval is overlain by a marine claystone<br />

(Marine shale) containing a diverse faunal assemblage<br />

<strong>of</strong> macroinvertebrates, including ammonites,<br />

inoceramids <strong>and</strong> other bivalves, <strong>and</strong> a rich micr<strong>of</strong>ossil<br />

assemblage <strong>of</strong> planktonic foraminifera <strong>and</strong> calcareous<br />

nann<strong>of</strong>ossils. The Marine shale accumulated in an openmarine<br />

shelf environment.<br />

<strong>Petroleum</strong> traps in the <strong>Tuscaloosa</strong> are structural traps<br />

involving salt anticlines (South Carlton field) <strong>and</strong> extensional<br />

fault traps associated with salt movement (Pollard<br />

field). Reservoir-grade porosity occurs in the Massive<br />

<strong>and</strong> Pilot s<strong>and</strong>stone units as primary intergranular<br />

porosity. Although Ibscaloosa marine claystones contain<br />

significant amounts <strong>of</strong> organic carbon, these rocks<br />

are thermally too immature to be the petroleum source<br />

rocks for the <strong>Tuscaloosa</strong> crude oils in South Carlton <strong>and</strong><br />

Pollard fields.<br />

©Copyright 1987. The American Association <strong>of</strong> <strong>Petroleum</strong> Geologists. All<br />

rights reserved.<br />

''Manuscript received, May 12,1986; accepted, April 20,1987.<br />

Geological Survey <strong>of</strong> Alabama <strong>and</strong> University <strong>of</strong> Alabama, <strong>Tuscaloosa</strong>, Alabama<br />

35486.<br />

•'state Oil <strong>and</strong> Gas Board <strong>of</strong> Alabama, <strong>Tuscaloosa</strong>, Alabama 35486.<br />

*42 Mayfair, <strong>Tuscaloosa</strong>, Alabama 35404.<br />

1128<br />

The first hydrocarbon discovery in the <strong>Tuscaloosa</strong><br />

Group (Upper Cretaceous) in Alabama was made in 1950<br />

at South Carlton field, Clarke <strong>and</strong> Baldwin Counties<br />

(Figure 1). In 1952, the <strong>Tuscaloosa</strong> was proven productive<br />

at Pollard field, Escambia County, Alabama. To<br />

date. South CarUon <strong>and</strong> Pollard fields have had a cumulative<br />

production <strong>of</strong> more than 18 million bbl (2.86 X 10**<br />

m^) <strong>of</strong> oil. Renewed interest in drilling wells for <strong>Tuscaloosa</strong><br />

prospects in Alabama should occur as a result <strong>of</strong> a<br />

recent discovery north <strong>of</strong> Pollard field in Escambia<br />

County, Alabama (Figure 1).<br />

A key to exploring for <strong>Tuscaloosa</strong> hydrocarbons is an<br />

underst<strong>and</strong>ing <strong>of</strong> the stratigraphic, structural, <strong>and</strong> paleoenvironmental<br />

relationships in which the s<strong>and</strong>stones <strong>and</strong><br />

claystones accumulated. We describe the stratigraphic<br />

<strong>and</strong> structural relationships associated with the <strong>Tuscaloosa</strong><br />

in the South Carhon <strong>and</strong> Pollard fields <strong>and</strong> interpret<br />

the depositional environments for the s<strong>and</strong>stones<br />

<strong>and</strong> claystones in the area <strong>of</strong> these two fields. An underst<strong>and</strong>ing<br />

<strong>of</strong> the geologic factors that make South Carlton<br />

<strong>and</strong> Pollard fields productive will help geologists formulate<br />

petroleum exploration strategies in southwestern<br />

Alabama.<br />

STRUCTURAL SETTING<br />

The major structural features in southwestern Alabama<br />

are numerous salt domes <strong>and</strong> anticlines, the Wiggins<br />

arch, the Mobile graben, <strong>and</strong> the regional peripheral<br />

fault trend (Figure 1). Some <strong>of</strong> the more important salt<br />

domes <strong>and</strong> anticlines include the Mcintosh <strong>and</strong> Klepac<br />

piercement domes; the Chatom, Citronelle, <strong>and</strong> South<br />

Carlton domes (the petroleum trap at South Carlton<br />

field) (Figure 2); <strong>and</strong> the Hatchetigbee anticline (Moore,<br />

1971; Wilson, 1975). The Wiggins arch, which extends<br />

westward into Mississippi, is a Paleozoic basement high.<br />

The north-south-trending Mobile graben is associated<br />

with the easternmost extent <strong>of</strong> thick saU in the eastcentral<br />

part <strong>of</strong> the northern Gulf Coast basin (Murray,<br />

1961).<br />

The regional peripheral fault trend is associated with<br />

the updip limit <strong>of</strong> Jurassic Louann Salt deposition in the<br />

Gulf <strong>of</strong> Mexico region (Moore, 1971; Martin, 1978). In<br />

southwestern Alabama, the fault trend consists <strong>of</strong> a


Ernest A. Mancini et al 1129<br />

EXPLANATION<br />

Normal Fault<br />

(hachures on downthrown side)<br />

Salt Anticline or Basement Arth<br />

Salt Dome or Uplift<br />

Fields<br />

Gilbertown<br />

Little Mill Ci<br />

upper Creticeoui<br />

Lower Cretaceous<br />

Jurassic<br />

Recent <strong>Tuscaloosa</strong> Discovery<br />

Well Permit Number<br />

Line <strong>of</strong> Cross Section<br />

SCALE<br />

ilometers<br />

Figure 1—Major structural features <strong>and</strong> location <strong>of</strong> lower Ibscaloosa oil fields in soutliwestern Alabama.<br />

group <strong>of</strong> related fault systems, including the Pickens-<br />

Gilbertown, West Bend, <strong>and</strong> PoUard-Foshee fault systems.<br />

These faults are extensional features having<br />

variable throws <strong>and</strong> lengths (Wilson, 1975). Displacements<br />

<strong>of</strong> 200-1,000 ft (61-305 m) are evident in the <strong>Tuscaloosa</strong><br />

at depths <strong>of</strong> around 4,000-6,000 ft (1,220-1,830 m)<br />

along this fault trend (Moore, 1971). The petroleum trap<br />

at Pollard field is a faulted salt anticline along the Pollard<br />

fault system (Figure 3).<br />

STRATIGRAPHY<br />

In the subsurface <strong>of</strong> southwestern Alabama, the Tliscaloosa<br />

Group unconformably overlies Lower Cretaceous<br />

terrigenous clastic deposits. Lower Cretaceous sedimentation<br />

was principally fluvial-deltaic (Eaves, 1976).<br />

Smith <strong>and</strong> Johnson (1887) first used the term "<strong>Tuscaloosa</strong>"<br />

to describe surface sediments occurring between<br />

Paleozoic rocks <strong>and</strong> the Cretaceous Eutaw Formation.<br />

The unit was named for exposures along the Black Warrior<br />

River <strong>and</strong> near the town <strong>of</strong> Tbscaloosa in Tliscaloosa<br />

County, Alabama (Stephenson, 1926). Monroe et al<br />

(1946) introduced a fourfold division for the Tbscaloosa,<br />

which they designated as the Tbscaloosa Group. In<br />

ascending order, the Tbscaloosa Group consisted <strong>of</strong> the<br />

Cottondale, Eoline, Coker, <strong>and</strong> Gordo formations.<br />

Drcnnen (1953) divided the Tbscaloosa into two formations<br />

using the names "Coker" <strong>and</strong> "Gordo." The lower<br />

formation, the Coker, consists <strong>of</strong> glauconitic crossbedded<br />

s<strong>and</strong> interbedded with carbonaceous, laminated<br />

clay (Eoline Member), <strong>and</strong> micaceous, cross-bedded<br />

s<strong>and</strong> <strong>and</strong> purple, carbonaceous clay. The Gordo Formation<br />

is composed <strong>of</strong> gravelly, cross-bedded s<strong>and</strong> <strong>and</strong> red,<br />

purple, <strong>and</strong>/or gray-mottled clay. The Tbscaloosa sediments<br />

in western Alabama, northeastern Mississippi,<br />

<strong>and</strong> western Tennessee accumulated in a fluvial-deltaiccoastal<br />

marine complex (Russell et al, 1980). In eastern<br />

Alabama, the Gordo is poorly sorted, kaolinitic, arkosic<br />

s<strong>and</strong> <strong>and</strong> the Coker consists <strong>of</strong> interbedded red <strong>and</strong><br />

green, mottled, kaolinitic clay (Reinhardt <strong>and</strong> Gibson,<br />

1980). These deposits represent me<strong>and</strong>ering stream,


1130 <strong>Deposition</strong> <strong>and</strong> <strong>Petroleum</strong> <strong>Geology</strong> <strong>of</strong> <strong>Tuscaloosa</strong> Group, Southwestern Alabama<br />

• oil WELL<br />

EXPLANATION<br />

+ ABANDONIDOILWELL<br />

^<br />

^<br />

DRY HOLE<br />

SALTWATERDISP05ALWELL<br />

ORIGINAL OIL-WATERCONTACT<br />

IN THE PILOT SANDSTOME UNIT<br />

269 WELLPERMITNUMBER<br />

* JURASSICTESTWELL<br />

Figure 2—Structure map <strong>of</strong> top <strong>of</strong> lower <strong>Tuscaloosa</strong>, South<br />

Carlton field, Clarke <strong>and</strong> Baldwin Counties, Alabama.<br />

point-bar, channel, <strong>and</strong> flood-plain sedimentation<br />

(Reinhardt, 1980).<br />

In the subsurface, the <strong>Tuscaloosa</strong> <strong>of</strong> Mississippi <strong>and</strong><br />

western Alabama has been divided into two units by<br />

McGlothlin (1944): the lower <strong>Tuscaloosa</strong>—including the<br />

Massive s<strong>and</strong>, Marine, <strong>and</strong> shale <strong>and</strong> s<strong>and</strong> units—<strong>and</strong> the<br />

upper <strong>Tuscaloosa</strong>. Winter (1954) recognized three distinct<br />

subsurface <strong>Tuscaloosa</strong> units in Pollard field. In<br />

ascending order, these units are the lower <strong>Tuscaloosa</strong>,<br />

including the Massive s<strong>and</strong> <strong>and</strong> the Pilot (Moye) s<strong>and</strong>,<br />

the Marine shale (marine <strong>Tuscaloosa</strong>), <strong>and</strong> the upper <strong>Tuscaloosa</strong>,<br />

including the Miller s<strong>and</strong>. We use the subsurface<br />

stratigraphic nomenclature <strong>of</strong> Winter (1954) in this paper<br />

(Figure 4).<br />

The Massive s<strong>and</strong> interval <strong>of</strong> the lower <strong>Tuscaloosa</strong><br />

unconformably overlies Lower Cretaceous strata in the<br />

subsurface <strong>of</strong> the study area (Figure 5). The Massive s<strong>and</strong><br />

interval exp<strong>and</strong>s downdip in coastal <strong>and</strong> <strong>of</strong>fshore Alabama<br />

<strong>and</strong> thins updip in Choctaw <strong>and</strong> Butler Counties<br />

(Figures 6, 7). The Massive is more than 450 ft (137 m)<br />

thick <strong>and</strong> includes, in ascending order, a basal s<strong>and</strong>stone<br />

unit, an interbedded s<strong>and</strong>stone <strong>and</strong> claystone unit, <strong>and</strong><br />

an upper unit consisting predominately <strong>of</strong> massive s<strong>and</strong>stone<br />

in the South Carlton <strong>and</strong> Pollard field area (Figure<br />

5). The upper s<strong>and</strong>stone unit (Massive s<strong>and</strong>stone unit) is<br />

up to 270 ft (82 m) thick in South Carlton field <strong>and</strong> 240 ft<br />

(73 m) in Pollard field <strong>and</strong> consists <strong>of</strong> light gray to greenbrown,<br />

micaceous, calcareous, locally fossiliferous,<br />

glauconitic, very fine to fine grained, quartz-rich s<strong>and</strong>stone.<br />

The Pilot s<strong>and</strong> interval <strong>of</strong> the lower Tbscaloosa overlies<br />

the Massive s<strong>and</strong> interval. The Pilot s<strong>and</strong> interval attains<br />

maximum thickness in Washington County <strong>and</strong> in South<br />

Carlton <strong>and</strong> Pollard fields (Figure 8). The Pilot s<strong>and</strong><br />

thins in Choctaw County (Figure 6) <strong>and</strong> pinches out in<br />

Butler County (Figure 7). The Pilot is more than 150 ft<br />

(46 m) thick <strong>and</strong> includes a claystone unit <strong>and</strong> an upper<br />

EXPLANATION<br />

• OIL WELL<br />

• ABANDONEDOILWELL<br />

• PLUGQED AND ABANDONED DRY HOLE<br />

A SALTWATEROISPOSALWELL<br />

^ ^ ^ FAULT {hachures on downthrown side)<br />

~~ —-ORIGINAL OIL-WATERCONTACT<br />

IN PILOT SANDSTONE UNIT<br />

40O WELL PERMIT NUMBER<br />

CONTOUR INTERVAL 20 FEET<br />

1/2 MILE<br />

1/2 KILOMETER<br />

Figure 3—Structure map <strong>of</strong> top <strong>of</strong> lower <strong>Tuscaloosa</strong>, Pollard field, Escambia County, Alabama.


Ernest A. Mancini et al 1131<br />

1/1<br />

c<br />

w<br />

a<br />

o<br />

3<br />

D<br />

0<br />

»<br />

»<br />

I<br />

d<br />

Maestrlchtian<br />

Campanian<br />

Santonian<br />

Coniacian<br />

Turonian<br />

Cenomanian<br />

Surface Lithostratigraphy<br />

West-Centra! Alabama<br />

<strong>Tuscaloosa</strong><br />

Group<br />

Prairie Bluff Chalk<br />

Ripley Formation<br />

Demopolii Chalk<br />

Mooreville Chalk<br />

Eutaw Formation<br />

Paleozoic rocks<br />

Gordo<br />

Formation<br />

Coker<br />

Formation<br />

Subsurface Lithostratigraphy<br />

Southwest Alabama<br />

upper <strong>Tuscaloosa</strong><br />

marine <strong>Tuscaloosa</strong><br />

lower <strong>Tuscaloosa</strong><br />

Selma Group<br />

Eutaw Formation<br />

Miller s<strong>and</strong><br />

(Warine shale<br />

Pilot s<strong>and</strong><br />

Massive s<strong>and</strong><br />

Lower Cretaceous undifferentiated<br />

Figure 4—Upper Cretaceous surface <strong>and</strong> subsurface stratigraphy<br />

in Alabama.<br />

GEOLOGIC UNIT<br />

SELMA CHALK<br />

EUTAW SAND<br />

UPPER TUSCALOOSA<br />

ENVIRONMENT OF<br />

SP RESISTIVITY DEPOSITION<br />

Marginal Marine<br />

<strong>and</strong><br />

Marine Stielf<br />

unit consisting predominately <strong>of</strong> s<strong>and</strong>stone in South<br />

Carlton <strong>and</strong> Pollard fields. The s<strong>and</strong>stone unit (Pilot) is<br />

about 100 ft (30 m) thick in South Carlton field <strong>and</strong> about<br />

110 ft (34 m) in Pollard field, <strong>and</strong> consists <strong>of</strong> greenish<br />

gray to green-brown, micaceous, fossiliferous, glauconitic,<br />

calcareous, very fine to fine grained quartz-rich<br />

s<strong>and</strong>stone (Figure 9c-f).<br />

The Marine shale conformably overlies the Pilot s<strong>and</strong><br />

interval. The Marine shale exp<strong>and</strong>s downdip in coastal<br />

<strong>and</strong> <strong>of</strong>fshore Alabama <strong>and</strong> thins updip in Choctaw <strong>and</strong><br />

Butler Counties (Figures 6, 7). The Marine shale consists<br />

primarily <strong>of</strong> about 220 ft (67 m) <strong>of</strong> dark gray, silty, micaceous,<br />

fossiliferous, calcareous, laminated claystone<br />

interbedded with dark gray, silty, micaceous, fossiliferous,<br />

glauconitic, calcareous siltstone <strong>and</strong> very finegrained<br />

s<strong>and</strong>stone in South Carlton <strong>and</strong> Pollard fields<br />

(Figure 9a). A gray, silty, oyster packstone is present at<br />

the base <strong>of</strong> the Marine shale in parts <strong>of</strong> South Carlton<br />

field (Figure 9b).<br />

The upper <strong>Tuscaloosa</strong> overlies the Marine shale <strong>and</strong><br />

consists<strong>of</strong> about 375 ft (114 m) <strong>of</strong> greenish gray, glauconitic,<br />

fossiliferous, fine to medium grained s<strong>and</strong>stone<br />

interbedded with gray <strong>and</strong> green shales in South Carlton<br />

<strong>and</strong> Pollard fields. These sediments accumulated in marginal<br />

marine <strong>and</strong> marine-shelf environments (Figure 5).<br />

The Eutaw Formation conformably overlies the upper<br />

<strong>Tuscaloosa</strong>. The Eutaw mainly consists <strong>of</strong> micaceous,<br />

calcareous, glauconitic, fine-grained s<strong>and</strong>stone <strong>and</strong> fossiliferous,<br />

calcareous claystone. The Eutaw <strong>and</strong> the overlying<br />

Selma chalk deposits represent marine-shelf<br />

deposition (Figure 5).<br />

ENVIRONMENTS OF DEPOSITION<br />

The age <strong>of</strong> the lower <strong>Tuscaloosa</strong> in the South Carlton<br />

field is Cenomanian (Figure 4) with a late Cenomanian<br />

planktonic foraminiferal assemblage being recovered<br />

from the Marine shale beds immediately overlying the<br />

Pilot s<strong>and</strong> interval (Mancini et al, 1980). A major rise in<br />

sea level occurred worldwide during the Cenomanian<br />

(Vail et al, 1977); therefore, the lower <strong>Tuscaloosa</strong> in the<br />

eastern Gulf Coast region has been interpreted as transgressive<br />

with upward gradation from fluvial <strong>and</strong> deltaic<br />

MARINE TUSCALOOSA<br />

(Marine Shalel<br />

Piloi<br />

S<strong>and</strong><br />

Interval<br />

Sard<br />

Interval<br />

LOWER CRETACEOUS<br />

Pilot S<strong>and</strong>stone<br />

Unit<br />

Claystone Unit<br />

Massive<br />

S<strong>and</strong>stone<br />

Intetbedded S<strong>and</strong>stone ^<br />

<strong>and</strong> Claystone Unit<br />

Basal S<strong>and</strong>stone Un<br />

Transgresslve Shell S<strong>and</strong><br />

(Composite Barrier—Shoal)<br />

rStr<strong>and</strong> Plain-Shelf-LagoDna<br />

Slacked<br />

Coastal<br />

Barrier<br />

Str<strong>and</strong> Plain-Shelf<br />

Deltaic-Fluvial<br />

Fluvial-Deltaic<br />

Figure 5—Well log for Belden <strong>and</strong> Blake Wall 3-9 (permit 2182),<br />

South Carlton field, illustrating <strong>Tuscaloosa</strong> units in subsurface<br />

<strong>of</strong> South Carlton <strong>and</strong> Pollard fields, southwestern Alabama,<br />

<strong>and</strong> their respective depositional environments. See Figure 2 for<br />

vfell location.<br />

sedimentation to shelf deposition (Berg <strong>and</strong> Cook, 1968).<br />

From the study <strong>of</strong> 12 cores from South Carlton <strong>and</strong> Pollard<br />

fields, well logs from over 100 wells, <strong>and</strong> well cuttings<br />

from 35 wells drilled in southwestern <strong>and</strong> <strong>of</strong>fshore<br />

Alabama, the following depositional environments, in<br />

ascending order, have been identified in lower <strong>Tuscaloosa</strong><br />

strata in the study area: fluvial or fluvial-dominated deltaic<br />

deposition (basal s<strong>and</strong>stone unit); str<strong>and</strong>-plain <strong>and</strong><br />

shelf deposition (interbedded s<strong>and</strong>stone <strong>and</strong> claystone<br />

unit); stacked coastal barrier s<strong>and</strong>s (Massive s<strong>and</strong>stone<br />

unit); str<strong>and</strong>-plain, shelf, <strong>and</strong> lagoonal deposition (claystone<br />

unit); <strong>and</strong> transgresslve shelf s<strong>and</strong>s (Pilot s<strong>and</strong>stone<br />

unit) (Figure 5).<br />

The oyster packstone <strong>and</strong> claystone <strong>of</strong> the marine <strong>Tuscaloosa</strong><br />

(Marine shale) overlying the Pilot s<strong>and</strong> interval<br />

contain a diverse faunal assemblage <strong>of</strong> macroinvertebrates,<br />

which includes ammonites, gastropods,<br />

inoceramids <strong>and</strong> other bivalves, <strong>and</strong> a rich micro fossil<br />

assemblage <strong>of</strong> planktonic foraminifera (Figure lOf) <strong>and</strong>


1132 <strong>Deposition</strong> <strong>and</strong> <strong>Petroleum</strong> <strong>Geology</strong> <strong>of</strong> <strong>Tuscaloosa</strong> Group, Southwestern Alabama<br />

South<br />

> A'<br />

Permit No. 1535<br />

Placid Oil Company<br />

Permit No 1264-A<br />

George H )ett Dnding Company<br />

PermitNo 199<br />

nbleOil<strong>and</strong> Refning Company<br />

PermitNo 3309<br />

Amoco Production Company<br />

Permit No. 2069<br />

Saga <strong>Petroleum</strong> US., Inc.<br />

No 1 Tyson 9-14<br />

H M Wilson No 1<br />

J H. Wall Estate No '<br />

No 1 Middle River Unit<br />

No- 11-6 0thaO Dees el ux No 1<br />

Sec.9,T 12N.R 2W<br />

Sec 28, T 7N ,R<br />

1 W<br />

Sec. 15, T 3N .R 2E<br />

Sec 13, T 2S,R IE<br />

Sec.11,T 6S,R<br />

2W<br />

Choctaw County<br />

Washington Count/<br />

SoulhCarltoi Field<br />

Baldwin County<br />

Mobile County<br />

Datum: Top<strong>of</strong> Marine Shale<br />

Logs are Electrical with<br />

SP on the left <strong>and</strong><br />

Resistivity on the right<br />

r<br />

VerlKal<br />

100 X<br />

Figure 6—Regional cross section AA' from Choctaw County to Mobile County, Alabama. See Figure 1 for line <strong>of</strong> cross section.<br />

calcareous nann<strong>of</strong>ossils. The fauna is dominated by macr<strong>of</strong>ossil<br />

<strong>and</strong> micr<strong>of</strong>ossil species that have been described<br />

by Kauffman (1967), Mancini (1977), <strong>and</strong> Smith <strong>and</strong><br />

Mancini (1983) as being typical <strong>of</strong> a Cretaceous openmarine<br />

shelf environment. Therefore, this claystone was<br />

probably deposited on a shallow open-marine shelf.<br />

The characteristics <strong>of</strong> the Massive s<strong>and</strong> interval indicate<br />

these sediments principally accumulated as part <strong>of</strong> a<br />

marine high-destructive delta system. In such deltaic settings,<br />

both fluvial <strong>and</strong> marine processes are active but<br />

marine processes dominate (Galloway, 1975). The Massive<br />

s<strong>and</strong> interval is interpreted to represent primarily<br />

deposition in a wave-dominated, high-destructive delta<br />

system similar to the modern Rhone delta complex <strong>of</strong><br />

southern France described by Oomkens (1970) <strong>and</strong> the<br />

ancient Gulf Coast deltas described by Fisher (1969),<br />

Fisher et al (1970), <strong>and</strong> Ricoy <strong>and</strong> Brown (1977). The<br />

major lith<strong>of</strong>acies recognized in these delta complexes<br />

include fluvial s<strong>and</strong>s; channel-mouth bar s<strong>and</strong>s; str<strong>and</strong>plain,<br />

lagoonal, <strong>and</strong> marsh sediments; coastal barrier<br />

Hft (Jurassic)<br />

PermitNo 308<br />

Gulf Refining Company<br />

K. Hooks No. 1<br />

Set. 36, T 7N,R 13 E<br />

PermitNo. 367<br />

Stanolind Oil <strong>and</strong> Gas Company<br />

Si Regis Paper Company "A'No 2<br />

Set II,T 1N.R BE<br />

PermitNo. 1777<br />

Watson Oil Company<br />

International Paper Company No 2<br />

Sec. 17, T 4S,R 6E<br />

PermitNo 2339<br />

Phillip] <strong>Petroleum</strong> Company<br />

International Paper Compeny "A" No. t<br />

Sec 32,T 6S,R 6E<br />

Permit No 4436<br />

EMQH Company, USA.<br />

State Lease 624 No. 1<br />

Mobile Bay Slock 114<br />

Butler County<br />

Pollard Field<br />

Baldwin County<br />

Baldwin County<br />

Offshore Alabama<br />

Datum. Top <strong>of</strong> Marine Shale<br />

Logs are Electrical with<br />

SP on the left <strong>and</strong><br />

Resistivity on the right<br />

Figure 7—Regional cross section BB ' from Butler County, Alabama, to <strong>of</strong>fshore Alabama. See Figure 1 for line <strong>of</strong> cross section.


Ernest A. Mancini et al 1133<br />

East<br />

Permit No. 1643<br />

Placid Oil Company<br />

No 5-12McCI(jre<br />

Sec 5, T 5N.R 2W<br />

Washington County<br />

Permit No. 199<br />

Humble Oil <strong>and</strong> Refinmg Company<br />

J. H. Wall Estate No 1<br />

Sec 15, T 3N,R 2E<br />

South Carlton fiefd<br />

PermitNo 1742<br />

Shell Oil Company<br />

Wefel Estate No. 1<br />

Sec 3, T 2 N , R 4 E<br />

Baldwin County<br />

PermitNo 367<br />

5tanolind Oil <strong>and</strong> Gas Company<br />

F. A. Stewart No. 1<br />

Sec 11, T 1N,R 8E<br />

Pollard Field<br />

* "•'<br />

Permit No, 286<br />

Socony Mobil Oil Company<br />

Mo. 1 St. Regis Paper Company <strong>and</strong><br />

Florida Oil <strong>and</strong>GasCompan/<br />

Sec 35, T 4N,R 30W<br />

Santa Rosa County, Florida<br />

Datum; Top <strong>of</strong> Marine Shaie<br />

Logs are Electrical with<br />

SP on the left <strong>and</strong><br />

Resistivity on the right<br />

v,n^csi<br />

OTO<br />

rt<br />

Figure 8—Regional cross section CC' from Washington County, Alabama, to Santa Rosa County, Florida. See Figure 1 for line <strong>of</strong><br />

cross section.<br />

s<strong>and</strong>s; <strong>and</strong> str<strong>and</strong>-plain <strong>and</strong> shelf sediments (Fisher,<br />

1969; Oomkens, 1970; Ricoy <strong>and</strong> Brown, 1977).<br />

Only the basal s<strong>and</strong>stone unit <strong>of</strong> the Massive s<strong>and</strong><br />

interval lacks glauconite, marine shells, <strong>and</strong> bioturbation<br />

in the South Carlton <strong>and</strong> Pollard fields. In addition, the<br />

textural characteristics <strong>of</strong> this s<strong>and</strong>stone—medium<br />

grained, moderately well sorted, argillaceous, <strong>and</strong> containing<br />

angular quartz grains (Figure 10a)—-suggest fluvial<br />

or fluvial-dominated deltaic deposition. Such<br />

textural characteristics are typical <strong>of</strong> fluvial-dominated<br />

delta systems (Potter, 1967; Berg, 1970; Fisher et al,<br />

1970). The Lower Cretaceous strata underlying the Massive<br />

s<strong>and</strong> interval have been interpreted as fluvial <strong>and</strong><br />

fluvial-dominated deltaic deposition (Eaves, 1976). The<br />

basal s<strong>and</strong>stone unit probably represents a continuation<br />

<strong>of</strong> such deposition. This unit is present both updip <strong>and</strong><br />

downdip in southwestern Alabama (Figures 6, 7). In outcrop<br />

north <strong>and</strong> east <strong>of</strong> the study area, the <strong>Tuscaloosa</strong> is<br />

characterized by fluvial <strong>and</strong> fluvial-dominated deltaic<br />

deposition (Reinhardt, 1980; Russell et al, 1980).<br />

The interbedded s<strong>and</strong>stone <strong>and</strong> claystone unit <strong>of</strong> the<br />

Massive s<strong>and</strong> interval marks a change from fluvialdominated<br />

deltaic deposition to marine-dominated<br />

deposition. These s<strong>and</strong>stones are thinly bedded, discontinuous,<br />

bioturbated, moderately well sorted, locally fossiliferous,<br />

calcareous, slightly glauconitic, argillaceous,<br />

<strong>and</strong> fine grained, containing angular to subangular<br />

quartz grains (Figure 10b). Marine bivalves occur in the<br />

s<strong>and</strong>stones <strong>and</strong> interbedded claystones. The interbedded<br />

unit probably represents str<strong>and</strong>-plain <strong>and</strong> shelf deposition.<br />

The presence <strong>of</strong> marine bivalves <strong>and</strong> glauconite<br />

indicates marine depositional conditions. The textural<br />

characteristics <strong>of</strong> the interbedded s<strong>and</strong>stones are similar<br />

to the characteristics for str<strong>and</strong>-plain s<strong>and</strong>s as described<br />

by Oomkens (1970) for the Rhone delta <strong>and</strong> by Fisher<br />

(1969) <strong>and</strong> Ricoy <strong>and</strong> Brown (1977) for ancient Gulf<br />

Coast delta systems. The interbedded s<strong>and</strong>stone <strong>and</strong><br />

claystone unit becomes a more dominant lith<strong>of</strong>acies <strong>of</strong><br />

the Massive s<strong>and</strong> interval downdip in coastal <strong>and</strong> <strong>of</strong>fshore<br />

Alabama (Figures 6,7).<br />

The s<strong>and</strong>stones <strong>of</strong> the Massive s<strong>and</strong> s<strong>and</strong>stone unit<br />

probably accumulated as stacked coastal barrier s<strong>and</strong>s.<br />

The s<strong>and</strong>stones are well sorted, micaceous, locally fossiliferous,<br />

calcareous, glauconitic, fine grained, <strong>and</strong> quartz<br />

rich, containing angular to subangular quartz grains<br />

(Figure 10c). These s<strong>and</strong>stones are thick, structureless,<br />

<strong>and</strong> bioturbated with thin, silty, claystone interbeds. The<br />

s<strong>and</strong>stones are principally quartzarenites, subarkoses,<br />

<strong>and</strong> sublitharenites with an average composition <strong>of</strong><br />

60.0% quartz; 12.2% accessory minerals, including chlorite<br />

<strong>and</strong> shell fragments; 9.7% clay matrix; 6.6% glauconite;<br />

4.5% cement, primarily calcite; 3.9% potassium<br />

<strong>and</strong> plagioclase feldspars; <strong>and</strong> 3.1% rock fragments, primarily<br />

muscovite (Figure 10c). The presence <strong>of</strong> marine<br />

bivalves <strong>and</strong> glauconite in the s<strong>and</strong>stones indicates<br />

marine depositional conditions. The sedimentologic<br />

characteristics <strong>of</strong> the upper s<strong>and</strong>stone unit are like those<br />

described by Oomkens (1970) for modern coastal barrier<br />

s<strong>and</strong>s <strong>and</strong> by Fisher (1969), Fisher et al (1970), <strong>and</strong> Ricoy<br />

<strong>and</strong> Brown (1977) for ancient coastal barrier s<strong>and</strong>s. Typically,<br />

coastal barrier s<strong>and</strong>s are thick, massive units that<br />

contain marine organisms <strong>and</strong> glauconite (Fisher, 1969;<br />

Oomkens, 1970; Ricoy <strong>and</strong> Brown, 1977). These s<strong>and</strong>s<br />

are usually fine grained <strong>and</strong> well sorted <strong>and</strong> contain subangular<br />

quartz grains (Fisher et al, 1970; Oomkens,<br />

1970). Also, they have a characteristic spontaneous<br />

potential pattern. The spontaneous potential pattern <strong>of</strong><br />

the Massive s<strong>and</strong>stone unit (Figure 5) compares favorably<br />

with that pattern described by Fisher (1969) for<br />

stacked coastal barrier s<strong>and</strong>s associated with wave-


1134 <strong>Deposition</strong> <strong>and</strong> <strong>Petroleum</strong> <strong>Geology</strong> <strong>of</strong> <strong>Tuscaloosa</strong> Group, Southwestern Alabama<br />

Figure 9—Core slabs <strong>of</strong> lower <strong>Tuscaloosa</strong> from Belden <strong>and</strong><br />

Blake Wall 3-9 core (permit 2182): (A) Marine shale, 5,272 ft<br />

(1,606.9 m); (B) oyster packstone, 5,281 ft (1,609.6 m); (C)<br />

structureless s<strong>and</strong>stone in Pilot s<strong>and</strong>stone unit, 5,285 ft<br />

(1,610.8 m); (D) oil-saturated s<strong>and</strong>stone in Pilot s<strong>and</strong>stone<br />

unit, 5,295 ft (1,613.9 m); (E) fossiliferous s<strong>and</strong>stone in Pilot<br />

s<strong>and</strong>stone unit, 5,300 ft (1,615.4 m); <strong>and</strong> (F) bioturbated s<strong>and</strong>stone<br />

in Pilot s<strong>and</strong>stone unit, 5,316 ft (1,620.3 m). See Figure 2<br />

for well location <strong>and</strong> Figure 11 for location <strong>of</strong> core slabs.<br />

dominated, high-destructive ancient Gulf Coast deltas.<br />

The Massive s<strong>and</strong>stone unit attains maximum thickness<br />

in Washington County <strong>and</strong> near South Carlton <strong>and</strong> Pollard<br />

fields (Figures 6-8).<br />

The claystone unit <strong>of</strong> the Pilot s<strong>and</strong> interval marks a<br />

return to str<strong>and</strong>-plain <strong>and</strong> shelf deposition downdip in<br />

coastal <strong>and</strong> <strong>of</strong>fshore Alabama, <strong>and</strong> represents str<strong>and</strong>plain,<br />

shelf, <strong>and</strong> lagoonal deposition throughout most <strong>of</strong><br />

southwestern Alabama. This unit pinches out updip in<br />

Butler County (Figure 7). These s<strong>and</strong>stones are fossiliferous,<br />

calcareous, <strong>and</strong> very fine to fine grained in the South<br />

Carlton <strong>and</strong> Pollard fields. Marine bivalves, such as<br />

inoceramids, are present in the s<strong>and</strong>stones <strong>and</strong> interbedded<br />

claystones.<br />

The Pilot s<strong>and</strong>stone unit <strong>of</strong> the Pilot s<strong>and</strong> interval<br />

accumulated as shelf s<strong>and</strong>s during a marine transgression.<br />

This unit consists <strong>of</strong> well-sorted, micaceous, fossiliferous,<br />

calcareous, glauconitic, very fine to fine grained,<br />

quartz-rich s<strong>and</strong>stones, containing subangular to subrounded<br />

quartz grains (Figure lOd, e). These s<strong>and</strong>stones<br />

generally appear massive, but may be structureless as a<br />

result <strong>of</strong> extensive bioturbation <strong>and</strong>/or oil saturation<br />

(Figure 9c-f). The s<strong>and</strong>stones are principally quartzarenites<br />

<strong>and</strong> subarkoses with an average composition <strong>of</strong><br />

61.0% quartz; 14.5% cement, primarily calcite; 9.4%<br />

clay matrix; 5.2% glauconite; 3.1% potassium <strong>and</strong><br />

plagioclase feldspars; 2.9% rock fragments, primarily<br />

sedimentary <strong>and</strong> metamorphic; 2.9% accessory minerals,<br />

including chlorite <strong>and</strong> shell fragments; <strong>and</strong> 1% muscovite<br />

(Figure lOd, e). The mean <strong>and</strong> maximum quartz<br />

grain sizes decrease upward within individual bed sets<br />

(Figure 11). Marine bivalves, such as inoceramids, are<br />

present in the s<strong>and</strong>stones. The characteristics <strong>of</strong> these<br />

s<strong>and</strong>stones are similar to those s<strong>and</strong>s associated with the<br />

modern transgressive barrier shorelines <strong>of</strong> the Mississippi<br />

River delta plain as described by Penl<strong>and</strong> et al<br />

(1981), Penl<strong>and</strong> <strong>and</strong> Suter (1983), Moslow (1984),<br />

Penl<strong>and</strong> (1985), <strong>and</strong> Penl<strong>and</strong> et al (1985). These transgressive<br />

barrier shorelines, which are a result <strong>of</strong> delta<br />

ab<strong>and</strong>onment, have a complex history consisting <strong>of</strong> three<br />

stages: stage 1, an erosional headl<strong>and</strong> with flanking barriers;<br />

stage 2, a transgressive barrier isl<strong>and</strong> arc; <strong>and</strong> stage<br />

3, a subaqueous inner shelf shoal (Penl<strong>and</strong> et al, 1981;<br />

Penl<strong>and</strong> <strong>and</strong> Suter, 1983). The s<strong>and</strong>s <strong>of</strong> the transgressive<br />

barrier isl<strong>and</strong> arcs <strong>and</strong> inner shelf shoals are fine grained,<br />

well sorted, quartz rich, calcareous, glauconitic, bioturbated,<br />

exhibit good quartz roundness, <strong>and</strong> are associated<br />

with a marine fauna (Krawiec, 1966; Moslow, 1984;<br />

Penl<strong>and</strong>, 1985).<br />

The transgressive barrier isl<strong>and</strong> arcs are 20-47 mi (32.1-<br />

75.6 km) long, 1-1.5 mi (1.6-2.4 km) wide, <strong>and</strong> 7-16 ft<br />

(2.1-4.9 m) high (Penl<strong>and</strong>, 1985; Penl<strong>and</strong> et al, 1985).<br />

The inner shelf shoals are 20-22 mi (32.1-35.4 km) long,<br />

1-6 mi (1.6-9.7 km) wide, <strong>and</strong> 7-23 ft (2.1-7.0 m) high<br />

(Moslow, 1984). These shelf s<strong>and</strong>s are a function <strong>of</strong> a<br />

sediment supply <strong>and</strong> dispersal pattern associated with<br />

reworking <strong>of</strong> delta plain deposits <strong>and</strong> sea level rise<br />

(Penl<strong>and</strong> <strong>and</strong> Suter, 1983). Long-term relative sea level<br />

rise <strong>and</strong> erosional shoreface retreat leads to the barrier<br />

shoreline detaching from the mainl<strong>and</strong>, forming a barrier<br />

isl<strong>and</strong> arc (Penl<strong>and</strong> et al, 1985). With continued<br />

transgression, the morphology <strong>of</strong> the barrier shoreline<br />

can be further modified or destroyed, resulting in a<br />

seaward-extending s<strong>and</strong> sheet upon which inner shelf<br />

shoals or ridges can develop (Penl<strong>and</strong>, 1985). Storms<br />

erode the seaward slope <strong>and</strong> crest <strong>of</strong> those shoals <strong>and</strong><br />

transport the sediment l<strong>and</strong>ward; as the shoal migrates<br />

l<strong>and</strong>ward, the seaward extent <strong>of</strong> the shoal is reworked<br />

<strong>and</strong> deposited as a seaward-extending s<strong>and</strong> sheet<br />

(Penl<strong>and</strong>, 1985).


Ernest A. Mancini et al<br />

.10 mm T nwn<br />

Figure 10—Photomicrographs <strong>of</strong> lower <strong>Tuscaloosa</strong> strata: (A) moderately well-sorted s<strong>and</strong>stone in basal s<strong>and</strong>stone unit in Massive<br />

s<strong>and</strong> interval, 5,837 ft (1,779.1 m), from Clarkwin J. H. Wall Estate 1 core (permit 199); (B) s<strong>and</strong>stone with calcite cement in<br />

the interbedded s<strong>and</strong>stone <strong>and</strong> claystone unit in Massive s<strong>and</strong> interval, 5,770 ft (1,758.6 m), from Clarkwin J. H. Wall Estate 1 core<br />

(permit 199); (C) well-sorted s<strong>and</strong>stone in Massive s<strong>and</strong>stone unit in Massive s<strong>and</strong> interval, 5,540 ft (1,688.5 m), from Clarkwin J.<br />

H. Wall Estate 1 core (permit 199); (D) well-sorted s<strong>and</strong>stone in Pilot s<strong>and</strong>stone unit in Pilot s<strong>and</strong> interval, 5,330 ft (1,624.5 m),<br />

from Clarkwin J. H. Wall Estate 1 core (permit 199); (E) s<strong>and</strong>stone with calcite cement in Pilot s<strong>and</strong>stone unit in Pilot s<strong>and</strong> interval,<br />

5,298 ft (1,614.8 m), from Humble Wall 6 core (permit 275); <strong>and</strong> (F) oyster packstone above the Pilot s<strong>and</strong> interval, 5,281 ft<br />

(1,609.6 m), from Belden <strong>and</strong> Blake Wall 3-9 core (permit 2182). See Figure 2 for well locations.


1136 <strong>Deposition</strong> <strong>and</strong> <strong>Petroleum</strong> <strong>Geology</strong> <strong>of</strong> <strong>Tuscaloosa</strong> Group, Southwestern Alabama<br />

Quartz grain size (mm)<br />

DM 0.66 0.46 0.36 0.26 0.16 0.06<br />

I I - 1<br />

0.5<br />

medium 0.26^1 0.1251<br />

fine' veryfine<br />

Permit No. 2182<br />

Belden <strong>and</strong> Blake<br />

WalI.etal 3-9<br />

Sec. 3, T 3 N, R 2 E<br />

Clarke County, Alabama<br />

SP<br />

Rosiitivity<br />

S<strong>and</strong>stone composition (.%)<br />

0 20 40 60 80 10O<br />

•y •y -r<br />

Feldspir, Rock Fraginenti,<br />

<strong>and</strong> others<br />

Quartz<br />

Glauconite<br />

r.-..:l S<strong>and</strong>stone I ° I Glauconitic<br />

I—I Silty Claystone I " I Micaceous<br />

l-'-rl Limestone I ^ I Fossiliferous<br />

EZI Oil CT] Biotjrbated<br />

A, B, C,D, E, F Key to core photographs<br />

Figure 11—Vertical change in quartz grain size <strong>and</strong> s<strong>and</strong>stone composition in Pilot s<strong>and</strong>stone unit in Belden <strong>and</strong> Blake Wall 3-9<br />

well (permit 2182). See Figure 2 for well location.<br />

The composite barrier <strong>and</strong> shoal lith<strong>of</strong>acies <strong>of</strong> the<br />

Pilot s<strong>and</strong>stone unit at South Carlton field are oriented<br />

northeast to southwest <strong>and</strong> are at least 3 mi (4.8 km) long,<br />

1.5 mi (2.4 km) wide, <strong>and</strong> 40-70 ft (12.2-21.3 m) high<br />

(Figure 12). The Pilot s<strong>and</strong>stone unit overlies str<strong>and</strong>plain,<br />

shelf, <strong>and</strong> lagoonal sediments <strong>and</strong> is overlain by<br />

marine shelf deposits (Figure 5). At South Carlton field,<br />

the Pilot represents a fining-upward sequence (Figure 11)<br />

that developed over a salt dome. The Pilot s<strong>and</strong>stone unit<br />

penetrated in the South Carlton field principally represents<br />

the transgressive barrier isl<strong>and</strong> arc <strong>and</strong> inner shelf<br />

shoal environments <strong>of</strong> Penl<strong>and</strong> (1985) <strong>and</strong> Penl<strong>and</strong> et al<br />

(1985). Stratigraphic cross section DD' indicates the<br />

composite barrier <strong>and</strong> shoal lith<strong>of</strong>acies are in the central<br />

portion <strong>of</strong> South Carlton field <strong>and</strong> the back-barrier <strong>and</strong><br />

back-shoal lith<strong>of</strong>acies are probably west <strong>of</strong> the field (Figure<br />

13). Although the transgressive barrier isl<strong>and</strong> arcs<br />

<strong>and</strong> inner shelf shoals described by Penl<strong>and</strong> (1985) represent<br />

coarsening-upward sequences. Potter (1967) <strong>and</strong><br />

Bourgeois (1980) report fining-upwardsequences as typical<br />

for transgressive shelf s<strong>and</strong>s. The Pilot s<strong>and</strong>stone unit<br />

is present throughout most <strong>of</strong> southwestern Alabama,<br />

but is thickest in Washington County <strong>and</strong> in South<br />

Carlton <strong>and</strong> Pollard fields (Figures 6,8). The Pilot s<strong>and</strong>stone<br />

unit thins updip in Choctaw County, downdip in<br />

coastal <strong>and</strong> <strong>of</strong>fshore Alabama (Figures 6,7), <strong>and</strong> pinches<br />

out in Butler County (Figure 7). The Pilot s<strong>and</strong>stone unit<br />

probably accumulated as transgressive s<strong>and</strong> bodies on a<br />

storm-traversed, shallow marine shelf.<br />

PETROLEUM GEOLOGY<br />

<strong>Petroleum</strong> traps involving <strong>Tuscaloosa</strong> strata in southwestern<br />

Alabama are structural traps involving salt anticlines<br />

<strong>and</strong> extensional fault traps associated with salt<br />

movement. The South Carlton structure is a low-relief<br />

feature (Figures 2, 14) overlying a deep-seated Jurassic<br />

Louann Salt dome, which had structural growth in the<br />

latest Cretaceous. The Getty Barbour 2-12 (permit 2149)<br />

drilled as a Jurassic wildcat in the field penetrated the<br />

Louann Salt below 16,000 ft (4,876.8 m) subsea (Figure<br />

2). The feature encompasses approximately 4,500 acres<br />

(1,822.5 ha.) <strong>and</strong> has about 80 ft (24.3 m) <strong>of</strong> structural<br />

closure on top <strong>of</strong> the lower <strong>Tuscaloosa</strong> (Figure 2).<br />

The structure in Pollard field includes a westnorthwest-trending<br />

graben system associated with the<br />

PoUard-Foshee fault systems (Figures 1,15). These fault<br />

systems are part <strong>of</strong> the regional peripheral fault trend<br />

associated with Louann Sah movement. Faulting along<br />

this trend began in the Jurassic <strong>and</strong> continued in the Miocene,<br />

with maximum movement observed in Cretaceous<br />

strata (Murray, 1961; Martin, 1978). The Pollard fault,<br />

which is downthrown to the north, is the main fault<br />

forming the petroleum trap at Pollard field (Figures 3,<br />

15). The Exxon Loper 1 (permit 1459A) drilled as a Jurassic<br />

wildcat south <strong>of</strong> the fieldpenetrated the Louann Salt<br />

below 15,300 ft (4,633.4 m) subsea (Figure 15). Displacements<br />

<strong>of</strong> up to 50 ft (15.2 m) are evident in Eocene strata<br />

at Pollard field,indicating that faulting was active in the<br />

Tertiary. The Pollard feature encompasses approximately<br />

4,700 acres (1,903.5 ha.) <strong>and</strong> has up to 80 ft (24.4<br />

m) <strong>of</strong> structural closure on top <strong>of</strong> the lower <strong>Tuscaloosa</strong><br />

(Figure 3).<br />

The recent <strong>Tuscaloosa</strong> discovery by Hughes Eastern<br />

Corporation in the Pilot s<strong>and</strong>stone unit is located about<br />

1.5mi (2.4 km)north<strong>of</strong>Pollard field (Figure 1). This discovery<br />

is along the Pollard-Foshee fault trend, <strong>and</strong> the<br />

petroleum trap is interpreted to be similar to the trap at<br />

Pollard field.<br />

At South Carlton <strong>and</strong> Pollard fields,the major petroleum<br />

reservoirs are the stacked coastal barrier s<strong>and</strong>stones


Ernest A. Mancini et a! 1137<br />

<strong>of</strong> the Massive s<strong>and</strong>stone unit <strong>and</strong> the transgressive shelf<br />

s<strong>and</strong>stones <strong>of</strong> the Pilot s<strong>and</strong>stone unit. Although reservoir<br />

geometry is principally structurally controlled in<br />

these fields, lith<strong>of</strong>acies distribution in the Pilot s<strong>and</strong><br />

interval affects reservoir quality. Stratigraphic cross sections<br />

(Figures 13, 16) indicate that maximum s<strong>and</strong>stone<br />

<strong>and</strong> reservoir development is in the composite barrier <strong>and</strong><br />

shoal lith<strong>of</strong>acies in the central parts <strong>of</strong> South Carlton <strong>and</strong><br />

Pollard fields. In the Belden <strong>and</strong> Blake Wall 3-9 well (Figure<br />

11), located in the north-central portion <strong>of</strong> South<br />

CarUon field, at least 17 ft (5.2 m) <strong>of</strong> s<strong>and</strong>stone is oil<br />

bearing (Figure 9d).<br />

Core analyses from 12 wells indicate that porosities in<br />

the stacked coastal barrier s<strong>and</strong>stones <strong>of</strong> the Massive<br />

s<strong>and</strong>stone unit average 28.5% at Pollard field with permeabilities<br />

<strong>of</strong> 100-900 md; they average 21% at South<br />

Carlton field with permeabilities <strong>of</strong> 50-600 md. Porosities<br />

in the transgressive shelf s<strong>and</strong>stones <strong>of</strong> the Pilot<br />

s<strong>and</strong>stone unit average 29.5% at Pollard field with permeabilities<br />

<strong>of</strong> 250-1,000 md; they average 25% at South<br />

CarUon field with permeabilities <strong>of</strong> 150-500 md. Porosity<br />

is primarily intergranular (Figure 10c, d). A reduction in<br />

porosity in the Pilot s<strong>and</strong>stone unit at South Carlton field<br />

is a result <strong>of</strong> compaction <strong>and</strong> calcite cementation (Figure<br />

lOe).<br />

ORGANIC GEOCHEMISTRY<br />

EXPLANATION<br />

• OIL WELL<br />

>- AaANDONEOOILWELL<br />

^<br />

DRY HOLE<br />

- • SALTWATERDISPOSALWELL<br />

2182 WELLPERMIT NUMBER<br />

CONTOUBINTERVAl . 6<br />

Figure 12—Isolith map <strong>of</strong> net s<strong>and</strong> in Pilot s<strong>and</strong>stone unit,<br />

South Carlton field, Clarke <strong>and</strong> Baldwin Counties, Alabama.<br />

Htl<br />

The Upper Cretaceous crude oils in southwestern Alabama<br />

are considered heavy oils for the most part (Table<br />

1). The <strong>Tuscaloosa</strong> crude oils have hydrocarbon compositions<br />

<strong>of</strong> 91.1-94.9% C|5+ hydrocarbons. The low percentage<br />

<strong>of</strong> light hydrocarbons may be attributed, in part,<br />

to the maturation state. In addition, at South Carlton<br />

field the light hydrocarbons (normal paraffins) that<br />

migrated into the reservoir probably were destroyed by<br />

biodegradation or removed through water washing as a<br />

result <strong>of</strong> the reservoir being invaded by an influx <strong>of</strong><br />

freshwater-containing bacteria (Figure 17b). Microbial<br />

alteration (biodegradation) <strong>and</strong> removal <strong>of</strong> water-<br />

PermitNo 3262<br />

Betd«n <strong>and</strong> Blake Ccvporalion<br />

Barbour I«-1S<br />

S«c 16, T 3 N , R 2 E<br />

Permit No 1023<br />

Ctark«in Oil Corporation<br />

State olAlabamatnit No I<br />

Sec 10, T JN .R 3E<br />

Permit No 3332<br />

Selden <strong>and</strong> Blake Corporation<br />

Uo 1 Wall 11-3<br />

Se( 11, T 3 N , fl 2 E<br />

Permit No 1531<br />

Houston Oil <strong>and</strong> Minerals Corporation<br />

No S Oanner<br />

Sec 11,1 3N .R 2E<br />

Datum: Top<strong>of</strong> Marine Shale<br />

LogtareElectncal witli<br />

SRontheleft<strong>and</strong><br />

Resistivity on tile right<br />

Figure 13—Stratigraphic cross section DD' across South Carlton field, Clarke <strong>and</strong> Baldwin Counties, Alabama.


1138 <strong>Deposition</strong> <strong>and</strong> <strong>Petroleum</strong> <strong>Geology</strong> <strong>of</strong> <strong>Tuscaloosa</strong> Group, Southwestern Alabanna<br />

North<br />

E<br />

Permit No 3331<br />

Belden <strong>and</strong> Blake Corporation<br />

No 1 Wall n-4<br />

Sec. n,T 3N , R 2E<br />

Sojth<br />

E'<br />

Permit No. 2025<br />

Canton Oil <strong>and</strong> Gas Company<br />

Wall 35-9 No. 1<br />

Sec 35,T 4N,P 2E<br />

Permit No 1023<br />

Clarkwin Oil Corporation<br />

Stale<strong>of</strong> Alabama Unit No •<br />

Sec 10, T 3N ,R 2E<br />

Permit No 3252<br />

Belden <strong>and</strong> Blake Corporati<br />

Barbour 16-15<br />

Sec 15, T 3 N ,R 2 E<br />

Permit No 3510<br />

Belden <strong>and</strong> Blake Corporation<br />

Ferguson 5-10 No. 1<br />

Sec 5,T 2rJ ,R 2E<br />

Figure 14—Structural cross section E£' across South Carlton field, Clarke <strong>and</strong> Baldwin Counties, Alabama.<br />

soluble compounds (water washing) from crude oils are<br />

common in areas invaded by surface-derived meteoric<br />

formation waters (Tissot <strong>and</strong> Welte, 1984).<br />

The compositions <strong>of</strong> the C15+ extracts from the <strong>Tuscaloosa</strong><br />

crude oils consist <strong>of</strong> 69.2-69.3% hydrocarbons.<br />

The C15+ composition <strong>of</strong> these oils is comprised <strong>of</strong> 35.7-<br />

43.1% saturates, 26.2-33.5% aromatics, 20.9-23.3%<br />

asphaltenes, <strong>and</strong> 7.5-9.8% nitrogen-sulfur-oxygen<br />

(NSO) compounds. The carbon isotope (5C^^) values<br />

based on PDB st<strong>and</strong>ard for the saturate fraction are from<br />

-24.7 to -25.4 %o, <strong>and</strong> the aromatic fractions are<br />

from -23.9 to -25.2 0/00. These geochemical <strong>and</strong> carbon<br />

isotope values are consistent with the C15+ compositional<br />

data (40-47% naphthenes, 5-12% paraffins, <strong>and</strong><br />

22-33% aromatics) <strong>and</strong> carbon isotope (from -25.7 to<br />

-25.8 Voo for the saturate fraction <strong>and</strong> from -24.6 to<br />

- 25.2%o for the aromatic fraction) values published by<br />

Koons et al (1974) for Tbscaloosa crude oils from South<br />

Carlton <strong>and</strong> Pollard fields. Crude oils from the Selma<br />

<strong>and</strong> Eutaw reservoirs at Gilbertown field have composi-<br />

Permit No. 3B4<br />

GuH Refining Company<br />

T F Miller Mill Company No 4<br />

Se


Ernest A. Mancini et al 1139<br />

Permit No 406<br />

Stanolind Oil ary] Qn Comp^n^<br />

St. RegrsPaperCompany No 7<br />

Sfc.n.T IN.R 8E<br />

Permit No. 403<br />

Stanolind Oil <strong>and</strong> Gas Company<br />

Gra/UnilNo 2<br />

Sec 12, T I N,R 8E<br />

Permit No 422<br />

Gulf Refining Company<br />

T R Miller Mill Company No 5<br />

Sec 12, T 1 N, R 8E<br />

PermilNo 357<br />

Humble Oil <strong>and</strong> Refining Company<br />

G A Carter No 1<br />

Sec 1B,T 1 N,R 9E<br />

Datum: Top <strong>of</strong> Marine Shale<br />

Logsar«EI«ctrical with<br />

SPon the left <strong>and</strong><br />

Kesiitivity on the right<br />

Figure 16—Stratigraphic cross section GG' across Pollard field, Escambia County, Alabama.<br />

tion <strong>and</strong> isotope values similar to the <strong>Tuscaloosa</strong> crude<br />

oils (Table 1).<br />

The organic geochemical composition, C,5+ saturate<br />

distributions (Figure 17c), <strong>and</strong> carbon isotope data for<br />

the crude oils from the <strong>Tuscaloosa</strong> reservoirs indicate the<br />

origin <strong>of</strong> the oil was more likely from organic matter<br />

formed in normal saline water <strong>of</strong> an open ocean than<br />

from organic matter from brackish-water or terrestrial<br />

environments. Marine organic matter usually generates<br />

crude oils consisting <strong>of</strong> 30-70% saturated (paraffins <strong>and</strong><br />

naphthenes) hydrocarbons (Tissot <strong>and</strong> Welte, 1984).<br />

Most l<strong>and</strong> plants have carbon isotope values that range<br />

from -24 to -34 %o, <strong>and</strong> marine organisms usually<br />

have 6C" values heavier than -24 %o (Waples, 1981).<br />

Eckelmann et al (1962) suggests that the more negative<br />

6C" values indicate a greater contribution to oil generation<br />

from organic matter formed in terrestrial or<br />

brackish-water environments.<br />

From their analysis <strong>of</strong> <strong>Tuscaloosa</strong> crude oils from Alabama<br />

<strong>and</strong> Mississippi, Koons et al (1974) conclude that<br />

the <strong>Tuscaloosa</strong> crude oils originated from two distinct<br />

sources. Ibscaloosa claystones were one source rock,<br />

while the second source was unidentified. The crude oils,<br />

including those at South Carlton <strong>and</strong> Pollard fields that<br />

were derived from the unidentified source (which was<br />

probably older geologically than the <strong>Tuscaloosa</strong> crude<br />

oils), were believed to have migrated into the Thscaloosa<br />

reservoirs along faults (Koons et al, 1974). Such a<br />

hypothesis is plausible for Pollard field because <strong>of</strong> the<br />

nature <strong>of</strong> the faulting; however, to date, no faults have<br />

been mapped at South Cariton field. To test this hypothesis<br />

further, source rock analyses were performed on the<br />

Ibscaloosa claystones in the South Carlton <strong>and</strong> Pollard<br />

fields <strong>and</strong> on other crude oils in southwestern Alabama.<br />

Although the <strong>Tuscaloosa</strong> marine claystones contain<br />

significant amounts <strong>of</strong> organic carbon, these claystones<br />

are thermally too immature to be the petroleum source<br />

rocks for the Ibscaloosa crude oils in South Carlton <strong>and</strong><br />

Pollard fields. The total organic carbon content for these<br />

claystones ranges up to 2.91% (Table 2). The dominant<br />

kerogen type is amorphous (algal) <strong>and</strong> herbaceous. However,<br />

these rocks have been only moderately thermally<br />

altered, as evidenced by their thermal alteration indices<br />

<strong>of</strong> 1 -I- to 2 +; therefore, any hydrocarbons generated from<br />

these claystones should be immature. The C15+ paraffinnaphthene<br />

distributions (Figure 17a) from the Marine<br />

shale illustrate an immature state for hydrocarbon generation.<br />

On the other h<strong>and</strong>, the carbon isotope values for<br />

the saturate fraction (- 26.3 %o) <strong>and</strong> the aromatic fraction<br />

(-24.5 %o) <strong>and</strong> the hydrocarbon composition<br />

(22.3% saturates, 27.8% aromatics, 33.1% asphahenes,<br />

<strong>and</strong> 16.8% NSO compounds) compare favorably with<br />

the characteristics <strong>of</strong> the <strong>Tuscaloosa</strong> crude oils. With<br />

increased burial depth, these marine claystones, with<br />

their mixture <strong>of</strong> marine <strong>and</strong> terrestrial organic matter,<br />

could be a source for the crude oils <strong>of</strong> the <strong>Tuscaloosa</strong> reservoirs.<br />

However, regional cross sections (Figures 6-8)<br />

indicate that <strong>Tuscaloosa</strong> deep basinal fades have not<br />

been identified in southwestern <strong>and</strong> <strong>of</strong>fshore Alabama.<br />

Koons et al (1974) indicate the <strong>Tuscaloosa</strong> claystones in<br />

the deeper portions <strong>of</strong> the Mississippi interior salt basin<br />

had seen sufficient burial depth <strong>and</strong> thermal maturation<br />

to generate crude oil; however, the hydrocarbon composition<br />

(27% paraffins as compared to 5-12% paraffins<br />

for South Carlton <strong>and</strong> Pollard crude oils) <strong>and</strong> carbon isotopic<br />

values (- 27.9 ± 0.6 %o as compared to - 25.4 to<br />

- 24.7 %o for South Carlton <strong>and</strong> Pollard crude oils) for<br />

the saturate fraction <strong>of</strong> these crude oils differ from the<br />

South Carlton <strong>and</strong> Pollard crude oils.<br />

Analysis <strong>of</strong> the other crude oils in southwestern Alabama<br />

indicate that Lower Cretaceous <strong>and</strong> Upper Jurassic<br />

crude oils are similar in some respects to the Upper Cretaceous<br />

crude oils (Table 1). Lower Cretaceous crude oil<br />

(Figure 17d) from Citronelle field (a salt dome without<br />

faulting) has a saturated hydrocarbon content <strong>of</strong> 56.3%<br />

<strong>and</strong> carbon isotope values <strong>of</strong> - 25.6 %o for the saturate<br />

fraction <strong>and</strong> - 25.0 %o for the aromatic fraction. Upper<br />

Jurassic crude oils from fields (Little Mill Creek <strong>and</strong> Lit-


1140 <strong>Deposition</strong> <strong>and</strong> <strong>Petroleum</strong> <strong>Geology</strong> <strong>of</strong> <strong>Tuscaloosa</strong> Group, Southwestern Alabama<br />

Table 1. Analyses <strong>of</strong> Crude Oils from Fields in Southwestern Alabama'<br />

Field2<br />

Gilbert own<br />

County<br />

Choctaw<br />

Formation<br />

Selma<br />

Age<br />

Late<br />

Cretaceous<br />

"API<br />

gravity<br />

18.7<br />

Asphal<br />

-tene<br />

(%)<br />

28.6<br />

Saturate<br />

(%)<br />

23.8<br />

Aroma<br />

-tic<br />

(%)<br />

34.3<br />

NSO<br />

compounds<br />

(%)<br />

13.3<br />

513C<br />

Saturates<br />

(%o)<br />

-25.0<br />

813C<br />

Aroma<br />

-tic3<br />

(%•)<br />

-25.1<br />

Gilbertown<br />

South Carlton<br />

Choctaw<br />

Clarke &<br />

Baldwin<br />

Eutaw<br />

Lower<br />

<strong>Tuscaloosa</strong><br />

Late<br />

Cretaceous<br />

Late<br />

Cretaceous<br />

15.3<br />

15.6<br />

28.1<br />

23.3<br />

21.9<br />

35.7<br />

37.7<br />

335<br />

12.2<br />

7.5<br />

-25.0<br />

-25.4<br />

-25.0<br />

-25.2<br />

Pollard<br />

Esambia<br />

Lower<br />

<strong>Tuscaloosa</strong><br />

Late<br />

Cretaceous<br />

29.0<br />

20.9<br />

43.1<br />

26.2<br />

9.8<br />

-24.7<br />

-23.9<br />

Citronelle<br />

Mobile<br />

Rodessa<br />

Donovan<br />

Early<br />

Cretaceous<br />

42.0<br />

19.1<br />

56.3<br />

15.6<br />

9.0<br />

-25.6<br />

-250<br />

Little Mill Creek<br />

Choctaw<br />

Smackover<br />

Late<br />

Jurassic<br />

46.2<br />

33.2<br />

37.8<br />

17.9<br />

11.1<br />

-23.3<br />

-23.0<br />

Little Escambia<br />

Creek<br />

Escambia<br />

Smackover<br />

Late<br />

Jurassic<br />

48.5<br />

21.2<br />

50.5<br />

12.8<br />

15.5<br />

-24.1<br />

-22.9<br />

Oil composition analyses by ARCO Oil <strong>and</strong> Gas Company <strong>and</strong> carbon isotope analyses by U.S. Geological Survey.<br />

'See Figure 1 for field locations<br />

3PDB st<strong>and</strong>ard<br />

tie Escambia Creek) along the regional peripheral fault<br />

trend have saturated hydrocarbon contents from 37.8-<br />

50.5% <strong>and</strong> carbon isotope values that range from -23.3<br />

to - 24.1 %o for the saturate fraction <strong>and</strong> from -22.9<br />

to -23.0 %o for the aromatic fraction. These Jurassic<br />

crude oils are similar in saturate composition but isotopically<br />

are somewhat heavier than the crude oil from Pollard<br />

field. The organic geochemical (Figure lie, f) <strong>and</strong><br />

carbon isotope data (Ikble 1) for the Upper Jurassic<br />

crude oils indicate these oils were probably generated<br />

from organic matter that formed in normal saline waters<br />

similar to the environment in which the organic matter<br />

that generated the <strong>Tuscaloosa</strong> crude oils accumulated.<br />

Other authors (Mancini <strong>and</strong> Benson, 1980; Oehler, 1984)<br />

have proposed that the Smackover Formation is the<br />

source for the Upper Jurassic hydrocarbons. The Smackover<br />

algal mudstones also have the potential to be the<br />

unidentified older source rocks <strong>of</strong> Koons et al (1974) that<br />

generated the Upper Cretaceous crude oils that migrated<br />

up the faults along the regional peripheral fault trend,<br />

including the <strong>Tuscaloosa</strong> crude oil at Pollard field. The<br />

source <strong>of</strong> the Tliscaloosa crude oil at South CarUon field<br />

remains problematic. Perhaps the Smackover is the<br />

source for this crude oil or perhaps the <strong>Tuscaloosa</strong> claystones<br />

to the west in the deeper portions <strong>of</strong> the Mississippi<br />

interior salt basin are the source rocks. Because the<br />

crude oil at South Carhon field has been altered through<br />

biodegradation <strong>and</strong>/or water washing, the task <strong>of</strong> tracing<br />

its origin is difficult.<br />

EXPLORATION STRATEGY<br />

Although the <strong>Tuscaloosa</strong> is productive at both South<br />

Carlton <strong>and</strong> Pollard fields, the results <strong>of</strong> this study indicate<br />

that exploring for Tliscaloosa prospects similar to<br />

Pollard field holds the most promise. The petroleum trap<br />

at Pollard fieldis structural <strong>and</strong> involves salt movement<br />

along the Pollard fault system. Recent Jurassic Smackover<br />

<strong>and</strong> Norphlet <strong>and</strong> Cretaceous <strong>Tuscaloosa</strong> discoveries<br />

along the regional peripheral fault trend, <strong>of</strong> which<br />

the Pollard fault system is a part, also support the strategy<br />

<strong>of</strong> exploring for <strong>Tuscaloosa</strong> oil along this fault trend.<br />

The <strong>Tuscaloosa</strong> oils encountered are anticipated to be<br />

intermediate gravity oils (30°-40° API), unlike the<br />

degraded heavy oils associated with the salt dome at<br />

South Carlton field. If indeed the oil trapped at Pollard<br />

had as its source the Smackover carbonate mudstones,<br />

Jurassic oil had the opportunity to migrate up the fault<br />

planes <strong>of</strong> the Pickens-Gilbertown, West Bend, <strong>and</strong><br />

Foshee fault systems in addition to the Pollard fault system<br />

because displacement in Tertiary strata is evident in<br />

all <strong>of</strong> these fault systems. Reservoir grade porosities <strong>and</strong><br />

permeabilities should be preserved in stacked coastal barrier<br />

s<strong>and</strong>stones <strong>and</strong> transgressive shelf s<strong>and</strong>stones.<br />

REFERENCES CITED<br />

Berg.R. L., 1970, Identification <strong>of</strong> sedimentary environments in reservoir<br />

s<strong>and</strong>stones: Gulf Coast Association <strong>of</strong> Geological Societies<br />

Transactions, v. 20, p. 137-143.<br />

<strong>and</strong> B. C. Cook, 1968, Petrography <strong>and</strong> origin <strong>of</strong> lower Tliscaloosa<br />

s<strong>and</strong>stones, Mallalieu field, Lincoln County, Mississippi:<br />

Gulf Coast Association <strong>of</strong> Geological Societies Transactions, v. 18,<br />

p. 242-255.<br />

Bourgeois, J., 1980, A transgressive shelf sequence exhibiting hummocky<br />

stratification: the Cape Sebastian S<strong>and</strong>stone (Upper Cretaceous),<br />

southwestern Oregon: Journal <strong>of</strong> Sedimentary Petrology, v.<br />

50, p. 681-702.<br />

Drennen, C. W., 1953, Reclassification <strong>of</strong> outcropping Tliscaloosa<br />

Group in Alabama: AAPG Bulletin, v. 37, p. 522-538.<br />

Eaves, E., 1976, Citronelle oil field, Mobile County, Alabama: AAPG<br />

Memoir 24, p. 259-275.<br />

Eckelmann, W. R., W. S. Broecker, D. W. Whitlock, <strong>and</strong> J. R. AUsup,<br />

1962, Implications <strong>of</strong> carbon isotopic composition <strong>of</strong> total organic


Ernest A. Mancini et a! 1141<br />

Figure 17—C,5 ^ saturate gas chromatograms for (A) Upper Cretaceous Marine shale sample, 5,265 ft (1,604.7 m), from Clarkwin<br />

J. H. Wall Estate 4 core (permit 245); (B) Upper Cretaceous lower lUscaloosa (Pilot s<strong>and</strong>) oil sample from Belden <strong>and</strong> Blake Wall 3-<br />

9 well (permit 2182); (C) Upper Cretaceous lower Itascaloosa (Pilot s<strong>and</strong>) oil sample from Tidewater A. W. Moye 4 well (permit<br />

400), Pollard field, Escambia County; (D) Lower Cretaceous Rodessa (Donovan) oil sample from Citronelle Unit Harry Fisher 18-<br />

4 well (permit 933), Citronelle field. Mobile County; (E) Upper Jurassic Smackover oO sample from Midroc Tims 8-21 well (permit<br />

2463), Little Mill Creek field, Choctaw County; <strong>and</strong> (F) Upper Jurassic Smackover oil sample from Exxon McDavid L<strong>and</strong>s 30-2B<br />

well (permit 2533), Little Escambia Creek field, Escambia County. See Figures 1-3 for well <strong>and</strong> field locations.


1142 <strong>Deposition</strong> <strong>and</strong> <strong>Petroleum</strong> <strong>Geology</strong> <strong>of</strong> <strong>Tuscaloosa</strong> Group, Southwestern Alabama<br />

Table 2. Organic Carbon <strong>and</strong> Kerogen Analyses from<br />

Ibscaloosa Clay stones'<br />

Well 2<br />

Clarkwin Oil<br />

J. H. Wall Estate No. t<br />

Sec. 15,T3N, R2E<br />

ClarkeCo. (Permit 199)<br />

Clarkwin Oil<br />

J.H. WallNo. 1-D<br />

Sec. 10,T3N, R2E<br />

Clarke Co. (Permit 243)<br />

Clarkwin Oil<br />

J. H. Wall Estate No. 4<br />

Sec. 11,T3N,R2E<br />

Clarke Co. (Permit 245)<br />

Humble Oil<br />

J.H. Wall Estate No. 5<br />

Sec.15,T3N,R2E<br />

Clarke Co. (Permit 257)<br />

Clarkwin Oil<br />

J.H. Wall Estate No. 1-B<br />

Sec. 10, T3N,R2E<br />

Clarke Co.(Permit 269)<br />

Belden & Blake<br />

Wall No 3-9<br />

Sec. 3,T3N,R2E<br />

ClarkeCo. (Permit 2182)<br />

(ft)<br />

5223<br />

5275<br />

5256<br />

5400<br />

5420<br />

5250<br />

5255<br />

5265<br />

5305<br />

5345<br />

5420<br />

6562<br />

5450<br />

5290<br />

5410<br />

5270<br />

5273<br />

Sample<br />

depth<br />

(m)<br />

1593.0<br />

1608.9<br />

1603.1<br />

1647.0<br />

1653.1<br />

1601.2<br />

1602.8<br />

1605.8<br />

1618.0<br />

1630.2<br />

1653.1<br />

2001.4<br />

1662.2<br />

1613.4<br />

1650.0<br />

1607.4<br />

1608.3<br />

0rgani<<br />

carbon<br />

I'M,)<br />

0.76<br />

2.90<br />

1.79<br />

1.10<br />

0.79<br />

0.8a<br />

1.85<br />

2.91<br />

1.34<br />

0.44<br />

0.54<br />

0.08<br />

0.92<br />

1.14<br />

0.44<br />

1.63<br />

1.35<br />

type<br />

Herbaceous<br />

Amorphous (Algal)<br />

Amorphous<br />

Woody<br />

Herbaceous<br />

Herbaceous<br />

Amorphous (Algal)<br />

Amorphous (Algal)<br />

Amorphous (Algal)<br />

Amorphous<br />

Woody<br />

Woody<br />

Herbaceous<br />

Herbaceous<br />

Herbaceous<br />

Amorphous<br />

Amorphous (Algal)<br />

''Analyses were done by Geochem Laboratories, Houston, Texas.<br />

^see Figure 2 for well locations.<br />

Thermal<br />

alteration<br />

(1-5 scale)<br />

1+to2-<br />

1 +to2-<br />

l•^to2-<br />

l•^to2-<br />

1+to2-<br />

1+to2-<br />

1+to2-<br />

1tto2-<br />

1tto2-<br />

1 +to2-<br />

1 + to 2-<br />

1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!