03.01.2015 Views

5- S-CDMA FWA Overview - Ministère de la poste et des ...

5- S-CDMA FWA Overview - Ministère de la poste et des ...

5- S-CDMA FWA Overview - Ministère de la poste et des ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

S-<strong>CDMA</strong> Fixed Wireless<br />

Access <strong>Overview</strong><br />

Presenter:<br />

Brian Bolon<br />

Director of Mark<strong>et</strong>ing<br />

L-3 PrimeWave Communications


S-<strong>CDMA</strong> Fixed Wireless Access <strong>Overview</strong><br />

<strong>Overview</strong> of S-<strong>CDMA</strong><br />

Comparison to Other <strong>FWA</strong><br />

Technologies<br />

Applications & Advantages<br />

–Circuit Switched Voice and Data<br />

–Pack<strong>et</strong> Switched Voice & Data<br />

–Intern<strong>et</strong> Access Implementations<br />

–Quality of Service and VoIP


What is S-<strong>CDMA</strong> <br />

Synchronous<br />

- Co<strong>de</strong><br />

Division<br />

Multiple<br />

Access<br />

–A Multiple<br />

Access<br />

Technique is a m<strong>et</strong>hod of<br />

merging multiple data streams into a single<br />

carrier<br />

–Co<strong>de</strong><br />

Division<br />

is a mo<strong>de</strong>rn Multiple Access<br />

Technique using PN co<strong>de</strong>s to spread data<br />

–Synchronous<br />

is an improvement to <strong>CDMA</strong><br />

which increases capacity and efficiency by<br />

using orthogonal co<strong>de</strong>s


Common <strong>FWA</strong> Multiple Access Techniques<br />

Fb<br />

TDMA<br />

Fb<br />

FDMA/OFDMA<br />

<strong>CDMA</strong><br />

User 1<br />

Cod<br />

e<br />

Frequency<br />

User 1<br />

Guard Band<br />

User 2<br />

Guard Band<br />

User 3<br />

Frequency<br />

Guard Band<br />

User 2<br />

Guard Band<br />

User 3<br />

Fa<br />

Fb<br />

User 1<br />

User 2<br />

Fa<br />

Time<br />

Fa<br />

Time<br />

User 3<br />

• Time Division Multiple<br />

Access<br />

• Divi<strong>de</strong>s a channel into<br />

time slices and transfers<br />

different sub-channels<br />

at different times<br />

• (Orthogonal)<br />

Frequency Division<br />

Multiple Access<br />

• Divi<strong>de</strong>s a channel<br />

into different subfrequencies<br />

and<br />

transmits subchannels<br />

at<br />

different<br />

frequencies<br />

• Co<strong>de</strong> Division Multiple<br />

Access<br />

• Spreads a sub-channel in<br />

frequency and time, use<br />

multiple PN co<strong>de</strong>s within<br />

same space


Impossible d'afficher l'image. Votre ordinateur<br />

manque peut-être <strong>de</strong> mémoire pour ouvrir<br />

l'image ou l'image est endommagée. Redémarrez<br />

l'ordinateur, puis ouvrez à nouveau le fichier. Si<br />

le x rouge est toujours affiché, vous <strong>de</strong>vrez peutêtre<br />

supprimer l'image avant <strong>de</strong> <strong>la</strong> réinsérer.<br />

Synchronizing the Forward Link in S-<strong>CDMA</strong><br />

The basestation adjusts its transmissions so that its signals<br />

arrive at all Subscribers at the same time.<br />

This synchronous timing, if used at the Chip and Symbol<br />

levels, allows all “Co<strong>de</strong>s” to be orthogonal to one another.<br />

Many <strong>CDMA</strong> systems employ this in the forward link.<br />

S1<br />

S2<br />

Time X & X’<br />

Subscriber<br />

S1<br />

Time Y<br />

S2<br />

Time Y<br />

Basestation<br />

Subscriber


Impossible d'afficher l'image. Votre ordinateur<br />

manque peut-être <strong>de</strong> mémoire pour ouvrir<br />

l'image ou l'image est endommagée. Redémarrez<br />

l'ordinateur, puis ouvrez à nouveau le fichier. Si<br />

le x rouge est toujours affiché, vous <strong>de</strong>vrez peutêtre<br />

supprimer l'image avant <strong>de</strong> <strong>la</strong> réinsérer.<br />

Synchronizing the Reverse Link in S-<strong>CDMA</strong><br />

Timing <strong>de</strong><strong>la</strong>y information is fed back from the basestation to<br />

each subscriber.<br />

All subscribers adjust their transmissions so that their<br />

signals arrive at the basestation at the same time.<br />

Few systems employ this in the reverse link.<br />

S1<br />

S2<br />

time<br />

Subscriber<br />

S1<br />

time<br />

S2<br />

time<br />

Basestation<br />

Subscriber


S-<strong>CDMA</strong> Permits Orthogonal PN Co<strong>de</strong>s<br />

By synchronizing at the chip and<br />

symbol level, , it is possible to use<br />

orthogonal spreading co<strong>de</strong>s.<br />

# of spreading co<strong>de</strong>s per carrier<br />

= “Processing Gain”<br />

Co<strong>de</strong> #1<br />

Orthogonality allows for the<br />

elimination of interference thus<br />

the capacity limitation is # of PN<br />

co<strong>de</strong>s (optimal)<br />

Co<strong>de</strong> #2<br />

L-3 PrimeWave’s PW-2000<br />

2000 has<br />

128 co<strong>de</strong>s per 3.5 MHz carrier in<br />

128 dimensional space<br />

Co<strong>de</strong> #3


So What does S-<strong>CDMA</strong> do for me<br />

S-<strong>CDMA</strong> is chip and symbol synchronous using orthogonal spreading<br />

co<strong>de</strong>s and offering co<strong>de</strong>-limited performance.<br />

– S-<strong>CDMA</strong> offers high fa<strong>de</strong> margins and avai<strong>la</strong>bilities far higher than<br />

comp<strong>et</strong>ing approaches<br />

– S-<strong>CDMA</strong> offers peak rates and system capacities that are among the best<br />

of comp<strong>et</strong>ing approaches<br />

– With lower frequency reuse, S-<strong>CDMA</strong> offers a b<strong>et</strong>ter spectral efficiency than<br />

other approaches<br />

– S-<strong>CDMA</strong> provi<strong>de</strong>s higher range cells than TDMA due to the ability to tra<strong>de</strong><br />

range for high data rates.<br />

– Equalization and diversity techniques allow S-<strong>CDMA</strong> to perform as well or<br />

b<strong>et</strong>ter in multipath environments than any other approach (including OFDM)<br />

– S-<strong>CDMA</strong> is more robust to jamming than non-spread spectrum comp<strong>et</strong>ing<br />

technologies.


S-<strong>CDMA</strong> Fixed Wireless Access <strong>Overview</strong><br />

<strong>Overview</strong> of S-<strong>CDMA</strong><br />

Comparison to Other <strong>FWA</strong><br />

Technologies<br />

Applications & Advantages<br />

–Circuit Switched Voice and Data<br />

–Pack<strong>et</strong> Switched Voice & Data<br />

–Intern<strong>et</strong> Access Implementations<br />

–Quality of Service and VoIP


Common <strong>FWA</strong> Multiple Access Techniques<br />

Fb<br />

TDMA<br />

Fb<br />

FDMA/OFDMA<br />

<strong>CDMA</strong><br />

User 1<br />

Cod<br />

e<br />

Frequency<br />

User 1<br />

Guard Band<br />

User 2<br />

Guard Band<br />

User 3<br />

Frequency<br />

Guard Band<br />

User 2<br />

Guard Band<br />

User 3<br />

Fa<br />

Fb<br />

User 1<br />

User 2<br />

Fa<br />

Time<br />

Fa<br />

Time<br />

User 3<br />

• Data bursted at peak<br />

system rate<br />

• Time-slot aggregation<br />

and/or increased slot<br />

duration for increased<br />

throughput<br />

• Low data rates in<br />

each frequency bin<br />

• Frequency bin<br />

aggregation and/or<br />

increased bin size<br />

for increased<br />

throughput<br />

• Low to mo<strong>de</strong>rate data<br />

rates in each <strong>CDMA</strong><br />

channel<br />

• <strong>CDMA</strong> channel<br />

aggregation for increased<br />

rate or reduced spreading<br />

factor for increased<br />

throughput


Orthogonal Multiplexing Schemes<br />

Orthogonal Frequency Division Multiplexing (OFDM)<br />

Total Data Rate = 4.096 Mbps<br />

• Carrier aggregation<br />

for high rate support.<br />

32 kbps 32 kbps 32 kbps 32 kbps<br />

f 1 f 2<br />

f 127<br />

f 128<br />

Frequency<br />

Total RF Bandwidth = 3.5 MHz<br />

Orthogonal Co<strong>de</strong> Division Multiplexing (OCDM)<br />

c 128<br />

Orthogonal<br />

Spreading<br />

Co<strong>de</strong>s<br />

c 2<br />

c 1<br />

Total Data Rate = 4.096 Mbps<br />

32 kbps<br />

32 kbps<br />

32 kbps<br />

f c<br />

Total RF Bandwidth = 3.5 MHz<br />

• Spreading Co<strong>de</strong><br />

aggregation for high<br />

rate support.<br />

• Multi-co<strong>de</strong> <strong>CDMA</strong><br />

• Multiple, robust<br />

lower rate channels.<br />

Frequency


Range vs Throughput (Assuming The Same Tx Amplifier)<br />

TDMA range is limited by the burst rate<br />

(true for either single-carrier or OFDM-based TDMA systems)<br />

4 Mbps<br />

4 Mbps<br />

<strong>CDMA</strong> can tra<strong>de</strong> range for rate in the reverse link<br />

4 Mbps<br />

4 Mbps<br />

2 Mbps<br />

512 kbps<br />

32 kbps


Reverse Link Capacity and Margin: A-<strong>CDMA</strong> vs. S-<strong>CDMA</strong><br />

Spreading Factor = 128<br />

E b /N 0 = 20 dB<br />

40<br />

35<br />

S-<strong>CDMA</strong>:<br />

Orthogonal Co<strong>de</strong>s<br />

with 40 dB of in-sector<br />

co<strong>de</strong> iso<strong>la</strong>tion<br />

Reverse Link SNR (dB)<br />

A-<strong>CDMA</strong>:<br />

15<br />

Non-orthogonal Co<strong>de</strong>s<br />

with 10 log10(128) = 21 dB<br />

10<br />

of in-sector co<strong>de</strong> iso<strong>la</strong>tion<br />

30<br />

25<br />

20<br />

5<br />

0<br />

Eb/Io (S-<strong>CDMA</strong>)<br />

Eb/No<br />

Eb/Io (A-<strong>CDMA</strong>)<br />

Eb/(Io+No) (A-<strong>CDMA</strong>)<br />

Eb/(Io+No) (S-<strong>CDMA</strong>)<br />

Margin against Fading,<br />

Jamming and Adjacent<br />

Cell/sector interference<br />

Typical threshold for<br />

QPSK and BER


Synchronous vs. Asynchronous <strong>CDMA</strong><br />

140<br />

120<br />

100<br />

80<br />

Number of Supported Channels per Sector<br />

(Processing Gain 128)<br />

60<br />

40<br />

20<br />

0<br />

Co<strong>de</strong> Limited Region<br />

Asynchronous<br />

<strong>CDMA</strong><br />

Synchronous<br />

<strong>CDMA</strong><br />

Interference<br />

Limited<br />

Region<br />

0 2 4 6 8 10 12 14<br />

Spreading Factor<br />

Of 128<br />

chips/symbol<br />

Fa<strong>de</strong> Margin (dB)<br />

Asynchronous <strong>CDMA</strong> is always<br />

interference limited and non-orthogonal<br />

co<strong>de</strong>s mean higher interference & lower capacity


Wire-line Quality Links Possible w/ S-<strong>CDMA</strong><br />

Synchronous <strong>CDMA</strong> permits<br />

– Co<strong>de</strong>-limited performance (high capacity)<br />

– High fa<strong>de</strong> margins and avai<strong>la</strong>bility<br />

– Wire-line quality service<br />

– Ability to tra<strong>de</strong> data rate for range<br />

Avai<strong>la</strong>bility (%)<br />

90<br />

99<br />

99.9<br />

99.99<br />

Fading Channel's<br />

Rice Factor<br />

k = 5<br />

k = 7.5<br />

k = 10<br />

0 5 10 15 20 25 30<br />

Fa<strong>de</strong> Margin (dB)<br />

Number of Supported Channels per Sector<br />

(Processing Gain 128)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Asynchronous<br />

<strong>CDMA</strong><br />

0<br />

0 2 4 6 8 10 12 14<br />

Fa<strong>de</strong> Margin (dB)<br />

Synchronous<br />

<strong>CDMA</strong>


Measuring Spectral Efficiency with S-<strong>CDMA</strong><br />

Spectral Efficiency – Per <strong>CDMA</strong> channel:<br />

– <strong>CDMA</strong> Data Rate / Spread Bandwidth<br />

– Typically low<br />

– E.g. 32 kbps / 3.5 MHz = 0.0091 bps/Hz<br />

Spectral Efficiency – Per SU Aggregate Channel:<br />

– SU Aggregate Data Rate / Spread Bandwidth<br />

– Low to mo<strong>de</strong>rate <strong>de</strong>pending on modu<strong>la</strong>tion and channel aggregation<br />

– E.g. 256 kbps / 3.5 MHz = 0.073 bps/Hz<br />

Spectral Efficiency – Iso<strong>la</strong>ted Cell:<br />

– Cell Capacity / Spread Bandwidth<br />

– Comparable to Single-carrier and multi-carrier TDMA approaches<br />

– E.g. 4.096 Mbps / 3.5 MHz = 1.1703 bps/Hz<br />

Spectral Efficiency – Multi-cell/multi<br />

cell/multi-sector:<br />

– Total System Capacity / Total Required RF Bandwidth / Number of Cells<br />

– Much b<strong>et</strong>ter than single-carrier and multi-carrier TDMA approaches<br />

– E.g. 4.096 / 3.5 = 1.1702 bps/Hz/cell (multi-cell, single-sector, sector, reuse =1)<br />

– E.g. 4.096 * 4 / (3.5 * 2) = 2.3406 bps/Hz/cell (multi-cell, four-sector, reuse=2)


Spectral Efficiency: S-<strong>CDMA</strong> vs. TDMA<br />

System<br />

Spectral<br />

Efficiency<br />

=<br />

Total System Capacity (bps)<br />

Required RF Bandwidth (Hz) × #Cells<br />

Co<strong>de</strong>-limited S-<strong>CDMA</strong><br />

Assuming No Guard Time,<br />

Pilots or Cyclic Preamble<br />

Spectral Efficiency<br />

S-<strong>CDMA</strong><br />

QPSK 16-QAM 64-QAM<br />

TDMA (OFDM or Single Carrier)<br />

Freq.<br />

Reuse QPSK 16-QAM 64-QAM<br />

Freq.<br />

Reuse<br />

Waveform<br />

(bits/sym) 2 4 6 NA 2 4 6 NA<br />

Single Cell (bps/Hz) 2 4 6 NA 2 4 6 NA<br />

Multi-cell w/ 1<br />

sector (bps/Hz/Cell) 2 4 6 1 0.5 1 2 4<br />

Multi-cell w/ 4<br />

sector (bps/Hz/Cell) 4 8 12 2 0.8 1.6 2.4 5<br />

* Suppose a 1M baud rate occupying an RF bandwidth of 1 MHz


PrimeWave 2000 vs. other technologies<br />

Prime Wave 2000<br />

IS-95<br />

GSM<br />

Other Synch <strong>CDMA</strong>s<br />

Core Technology Synch <strong>CDMA</strong> Async <strong>CDMA</strong> TDMA Synch <strong>CDMA</strong><br />

Frequency (MHz) 2100, 2200, 2600, 3500 800/1900 800/900/1800/1900 1300 - 3600<br />

Services POTS, Data, ISDN POTS POTS, Limited Data POTS, Data, ISDN<br />

RF Bandwidth 3.5 MHz 1.25 MHz 200 KHz 3.5 MHz<br />

Users/Carriers 100(128) @ 32 kb/s 45 4/8 52<br />

Spectral Efficiency<br />

(Bits/Sec/Hz)<br />

1.2 0.4 .13 (4x3 Freq Reuse) 0.68<br />

Bit Error Rate @ Cap. 10 -6 to 10<br />

-9<br />

Voice Coding Rate 32 and 64 Kbps 8/13 Kbps 4.8/13 Kbps 32 - 64 Kb/s ADPCM<br />

Voice Coding Type ADPCM and None QCELP ADPCM and None<br />

Voice Quality Score Wireline 2.7 Wireline<br />

Digital Data Rate 64, 128, and 256 Kbps 9.6 Kbps 32/64/512 Kbps<br />

Analog Mo<strong>de</strong>m Rate 56 Kbps 9.6 9.6 Kbps 56 Kbps


S-<strong>CDMA</strong> Fixed Wireless Access <strong>Overview</strong><br />

<strong>Overview</strong> of S-<strong>CDMA</strong><br />

Comparison to Other <strong>FWA</strong><br />

Technologies<br />

Applications & Advantages<br />

–Circuit Switched Voice and Data<br />

–Pack<strong>et</strong> Switched Voice & Data<br />

–Intern<strong>et</strong> Access Implementations<br />

–Quality of Service and VoIP


Circuit-Switching Versus Pack<strong>et</strong>-Switching<br />

Comp<strong>et</strong>itor's paradigm:<br />

– Carry both pack<strong>et</strong> and circuit-oriented services over pack<strong>et</strong> switched<br />

physical <strong>la</strong>yer<br />

OR<br />

– Carry both pack<strong>et</strong> and circuit-oriented services over a circuit-switched<br />

physical <strong>la</strong>yer<br />

PrimeWave's paradigm:<br />

– Use a physical <strong>la</strong>yer that has both circuit switched S-<strong>CDMA</strong> channels and<br />

pack<strong>et</strong> switched S-<strong>CDMA</strong> channels<br />

– Provi<strong>de</strong> each service with unique S-<strong>CDMA</strong> channels having the <strong>de</strong>sired<br />

<strong>la</strong>tency, jitter and bit error rate<br />

Providing circuit-switched services on a purely pack<strong>et</strong>-switched<br />

physical <strong>la</strong>yer leads to lower quality<br />

PrimeWave's circuit-switching quality will be maintained in the future


Circuit-Switched Telephony Application<br />

Analog<br />

Phones<br />

Fax<br />

Up to 8 discr<strong>et</strong>e<br />

tip and ring<br />

interfaces<br />

Intern<strong>et</strong><br />

POTS<br />

V.90 mo<strong>de</strong>m<br />

at 56 kbps<br />

SU<br />

PSTN<br />

SU<br />

ES4<br />

E1<br />

RBU<br />

NIU<br />

SU


V.35 Application<br />

Intern<strong>et</strong><br />

Router<br />

Router<br />

V.35<br />

SU<br />

ES4<br />

Router<br />

Or SMS<br />

E1 or 100BaseT<br />

NIU<br />

Rates up to 256 kbps in PW2K<br />

Rates up to 4.096 Mbps in PW4K<br />

RBU<br />

E1<br />

PSTN


Integrated Services Digital N<strong>et</strong>work (ISDN)<br />

ISDN provi<strong>de</strong>s circuit-switched<br />

data/voice service<br />

POTS<br />

64 kbps<br />

fax<br />

PSTN<br />

Intern<strong>et</strong><br />

Data<br />

Terminal<br />

ISDN<br />

PBX<br />

S/T<br />

Interface<br />

2B+D<br />

Rate only<br />

SU<br />

ES4<br />

ISDN<br />

central<br />

office<br />

E1<br />

ISDN<br />

Router/Bridge<br />

Ethern<strong>et</strong><br />

LAN<br />

SU<br />

RBU<br />

NIU


S-<strong>CDMA</strong> Fixed Wireless Access <strong>Overview</strong><br />

<strong>Overview</strong> of S-<strong>CDMA</strong><br />

Comparison to Other <strong>FWA</strong><br />

Technologies<br />

Applications & Advantages<br />

–Circuit Switched Voice and Data<br />

–Pack<strong>et</strong> Switched Voice & Data<br />

–Intern<strong>et</strong> Access Implementations<br />

–Quality of Service and VoIP


PrimeWave 2000 Data N<strong>et</strong>work Architecture<br />

10BaseT<br />

RJ-45<br />

Ethern<strong>et</strong><br />

SU<br />

Ethern<strong>et</strong><br />

LAN<br />

Ethern<strong>et</strong><br />

SU<br />

IP Router/<br />

Firewall<br />

IP Router/SMS/<br />

VoIP Gateway<br />

Ethern<strong>et</strong><br />

Hub/Bridge<br />

Ethern<strong>et</strong><br />

SU<br />

10BaseT<br />

RJ-45<br />

Intern<strong>et</strong><br />

POTS<br />

RJ-11<br />

VoIP<br />

Gateway/<br />

IP Router<br />

10BaseT<br />

RJ-45<br />

10BaseT<br />

RJ-45<br />

Ethern<strong>et</strong><br />

SU<br />

PrimeWave<br />

RBU<br />

E1<br />

PrimeWave<br />

NIU<br />

PSTN


PrimeWave 2000 Data N<strong>et</strong>work Architecture<br />

PrimeWave offers pack<strong>et</strong> data services using an Ethern<strong>et</strong><br />

10BaseT interface<br />

PrimeWave is a Wireless Ethern<strong>et</strong> Switch<br />

– Switch: A n<strong>et</strong>work <strong>de</strong>vice connecting multiple LANs that use i<strong>de</strong>ntical LAN<br />

protocols. The switch acts as an address filter, switching pack<strong>et</strong>s b<strong>et</strong>ween<br />

b<strong>et</strong>ween LANs without modifying the contents of the pack<strong>et</strong>s.<br />

IP<br />

Switch<br />

Switch<br />

IP<br />

<br />

Ethern<strong>et</strong>/<br />

IEEE<br />

802.3<br />

Ethern<strong>et</strong>/<br />

IEEE 802.3<br />

Ethern<strong>et</strong>/<br />

IEEE 802.3<br />

Ethern<strong>et</strong>/<br />

IEEE<br />

802.3<br />

<br />

<br />

10BaseT<br />

10BaseT<br />

Prime<br />

Wave<br />

PHY<br />

Prime<br />

Wave<br />

PHY<br />

10/<br />

100BaseT<br />

10/<br />

100BaseT<br />

<br />

Intern<strong>et</strong><br />

Or<br />

Local IP<br />

N<strong>et</strong>work<br />

PC or other<br />

IP-based<br />

LAN <strong>de</strong>vice<br />

PrimeWave<br />

SU<br />

PrimeWave<br />

RBU<br />

IP Router/SMS


Bandwidth Allocation and System Loading<br />

Light loading (Load < 25%)<br />

– Connect rate = Provisioned rate<br />

– Connection hold time = Long (60 seconds)<br />

Mo<strong>de</strong>rate Loading (25% < Load < 75%)<br />

– Connect rate = Provisioned rate<br />

– Connection hold time = Mo<strong>de</strong>rate (5 seconds)<br />

Heavy Loading (Load > 75%)<br />

– Connect rate = min{ Provisioned rate, 128 kbps }<br />

– Connection hold time = Short (2/3 seconds)<br />

Very Heavy Loading (Load > 90%)<br />

– Connect rate = min{ Provisioned rate, 64 kbps }<br />

– Connection hold time = Short (2/3 seconds)


S-<strong>CDMA</strong> Fixed Wireless Access <strong>Overview</strong><br />

<strong>Overview</strong> of S-<strong>CDMA</strong><br />

Comparison to Other <strong>FWA</strong><br />

Technologies<br />

Applications & Advantages<br />

–Circuit Switched Voice and Data<br />

–Pack<strong>et</strong> Switched Voice & Data<br />

–Intern<strong>et</strong> Access Implementations<br />

–Quality of Service and VoIP


Intern<strong>et</strong> Access Implementations<br />

IP Router-based:<br />

– IP Router connected to RBU<br />

– Configured for <strong>de</strong>sired QoS and n<strong>et</strong>work connectivity<br />

– Router may perform accounting and IP address<br />

management (e.g. NAT or DHCP)<br />

– Wireless authentication via PW2K<br />

– Users always on (e.g. no log-in)<br />

– An external <strong>de</strong>vice, such as the Allot<br />

N<strong>et</strong>Enforcer, could be used for enhanced QoS,<br />

accounting and billing features.<br />

– Perhaps cheaper than VPN approach<br />

– Cisco router vs. Redback SMS


Example: ISP using an IP Router<br />

Ethern<strong>et</strong>/<br />

802.3<br />

10/100BaseT<br />

Ethern<strong>et</strong>/<br />

802.3<br />

LAN<br />

SU<br />

Intern<strong>et</strong><br />

IP Router<br />

SU<br />

Ethern<strong>et</strong>/<br />

802.3<br />

10/100BaseT<br />

Ethern<strong>et</strong>/<br />

802.3<br />

10/100BaseT<br />

SU<br />

RBU<br />

IP Router<br />

(Cisco 2600)


Intern<strong>et</strong> Access Implementations<br />

VPN-based:<br />

– Layer 2 VPN (IEEE 802.1Q)<br />

– Layer 3 VPN (PPPoE, PPTP, L2TP or IPSec)<br />

– Requires Management <strong>de</strong>vice<br />

Advantages:<br />

– B<strong>et</strong>ter control of AAA (Accounting,<br />

Authorization and Authentication)<br />

– More secure<br />

– Industry standard for DSL, cable mo<strong>de</strong>ms, <strong>et</strong>c.


Example: Layer 2 VLAN using 802.1Q<br />

VLAN #N<br />

10BaseT<br />

SU<br />

Intern<strong>et</strong><br />

Or Local IP N<strong>et</strong>work<br />

VLAN #2<br />

10BaseT<br />

SU<br />

10BaseT<br />

VPN Access<br />

Concentrator<br />

VLAN #1<br />

10BaseT<br />

SU<br />

SU<br />

RBU #1<br />

10/100BaseT<br />

10/100BaseT<br />

Or<br />

ATM<br />

Or<br />

FR<br />

Ethern<strong>et</strong><br />

Switch<br />

10/100BaseT<br />

VLAN Aware<br />

Ethern<strong>et</strong><br />

Switch<br />

Ethern<strong>et</strong><br />

LAN<br />

10BaseT<br />

SU<br />

RBU #15<br />

NIU


Virtual Private N<strong>et</strong>working Using PW2K<br />

Layer 2 VPN:<br />

– Based on IEEE 802.1Q VLAN standard<br />

– Each SU has a VLAN i<strong>de</strong>ntifier which is inserted<br />

into every pack<strong>et</strong><br />

– RBU and SU are VLAN aware, switching<br />

pack<strong>et</strong>s based solely on VLAN ID<br />

– RBU can switch pack<strong>et</strong>s from SU-to-SU<br />

– Ability to <strong>de</strong>fine closed user groups based on<br />

VLAN Id (e.g. give multiple SUs the same VLAN<br />

ID)<br />

– Consi<strong>de</strong>red for future <strong>de</strong>velopment


Layer 3 VPN<br />

Use Layer 3 protocols including PPPoE, L2TP,<br />

PPTP and IPSec to create a secure VPN<br />

– Common m<strong>et</strong>hodology for DSL and Cable Mo<strong>de</strong>ms<br />

– Layer 2 transport is Ethern<strong>et</strong> carried over PW2K wireless<br />

air interface<br />

Requires a subscriber management system (SMS)<br />

or VPN Concentrator along with client software.<br />

– PPPoE Example:<br />

– Redback SMS 500 + WinPoET Client Software by Fine Point<br />

Technologies<br />

– PPTP/L2TP/IPSec Example:<br />

– Cisco 3060 VPN Concentrator + Cisco client Software<br />

Avai<strong>la</strong>ble today


Example: Layer 3 VPN Using PPPoE<br />

10BaseT<br />

10BaseT<br />

SU<br />

Intern<strong>et</strong><br />

Or Local IP N<strong>et</strong>work<br />

SU<br />

10BaseT<br />

SU<br />

10BaseT<br />

SU<br />

10/100BaseT<br />

Ethern<strong>et</strong> LAN<br />

Router<br />

RBU #1<br />

10/100BaseT<br />

Redback SMS 500<br />

NIU<br />

RBU #15


S-<strong>CDMA</strong> Fixed Wireless Access <strong>Overview</strong><br />

<strong>Overview</strong> of S-<strong>CDMA</strong><br />

Comparison to Other <strong>FWA</strong><br />

Technologies<br />

Applications & Advantages<br />

–Circuit Switched Voice and Data<br />

–Pack<strong>et</strong> Switched Voice & Data<br />

–Intern<strong>et</strong> Access Implementations<br />

–Quality of Service and VoIP


Pack<strong>et</strong>-Switched Voice (VoIP)<br />

Alternative to circuit-switched voice lines carried over IP using SIP<br />

or H.323<br />

Carried over Ethern<strong>et</strong> Interface in PrimeWave 2000<br />

Customers/operators can tra<strong>de</strong> quality for capacity<br />

– Variable compression from 6 kbps up to 64 kbps voice<br />

– Allow up to 3 times more simultaneous voice calls<br />

– Typical <strong>de</strong><strong>la</strong>ys up to 150 ms compared to 10 ms for circuit-switching<br />

Local Concentration at the SU<br />

– Access Concentrators convert Analog POTS lines to IP over Ethern<strong>et</strong><br />

Allows a single IP-based backbone n<strong>et</strong>work for voice and a data<br />

– Potential cost savings<br />

Supported today<br />

I<strong>de</strong>al for Apartment Buildings, Businesses


VoIP Using PrimeWave 2000<br />

Components<br />

– POP Gateways<br />

– Located at N<strong>et</strong>work Edge (e.g. RBU)<br />

– Responsible for call control, signalling and<br />

accounting<br />

– Responsible for interaction with PSTN or IP n<strong>et</strong>work<br />

– Resi<strong>de</strong>ntial Gateways<br />

– Located at SU<br />

– Allow concentration at the SU<br />

– User Devices:<br />

– Softphone and VoIP Phones<br />

– Companies:<br />

– Mediatrix, Oki, Cisco, <strong>et</strong>c.


Pack<strong>et</strong>-Switched Telephony Application<br />

Analog<br />

Phone/Fax<br />

802.3<br />

POTS (RJ-11)<br />

Mediatrix<br />

802.3<br />

LAN<br />

SU<br />

PSTN<br />

SU<br />

POTS (RJ-11)<br />

Router/Gateway<br />

w/ QoS<br />

10/100BaseT<br />

Cisco AS-8<br />

IP Phone/Fax<br />

802.3<br />

LAN<br />

RBU<br />

Router/<br />

VoIP Gateway<br />

Router/Gateway<br />

w/ QoS<br />

SU<br />

Intern<strong>et</strong>


Quality of Service<br />

PrimeWave offers QoS appropriate for both circuit<br />

and pack<strong>et</strong>-based applications<br />

Circuit-based QoS Criteria (e.g. telephony)<br />

– Avai<strong>la</strong>bility<br />

– Bit error rate<br />

– Latency<br />

– Voice quality<br />

Pack<strong>et</strong>-based QoS Criteria<br />

– Throughput or data rate<br />

– Bit or pack<strong>et</strong> error rate<br />

– Pack<strong>et</strong> jitter and <strong>la</strong>tency<br />

– Pack<strong>et</strong> prioritization and bandwidth reservation (for real-<br />

time applications)


Pack<strong>et</strong>-based QoS Today<br />

Pack<strong>et</strong>-based QoS<br />

– Nominal BER


Thank You<br />

Presenter:<br />

Brian Bolon<br />

Director of Mark<strong>et</strong>ing<br />

L-3 PrimeWave Communications

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!