02.01.2015 Views

AdS/QCD and Light-Front Holography Stan Brodsky

AdS/QCD and Light-Front Holography Stan Brodsky

AdS/QCD and Light-Front Holography Stan Brodsky

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>AdS</strong>/<strong>QCD</strong> <strong>and</strong> <strong>Light</strong>-<strong>Front</strong> <strong>Holography</strong><br />

P + = P 0 + P z<br />

Fixed ⌅ = t + z/c<br />

Guy de Teramond<br />

Hans Günter Dosch<br />

c<br />

c<br />

x i = k+<br />

P + = k0 +k 3<br />

P 0 +P z<br />

¯c<br />

⇧(⇤, b )<br />

⇥ = d s(Q 2 )<br />

d ln Q 2 < 0<br />

Exploring <strong>QCD</strong>, Cambridge, August 20-24, 2007<br />

Page<br />

u<br />

<strong>Stan</strong> <strong>Brodsky</strong><br />

International Conference on Nuclear Theory in the Supercomputing Era - 2013<br />

LC 2013<br />

May 21, 2013<br />

Valparaiso, Chile May 19-20, 2011<br />

Skiathos, Greece<br />

1


<strong>QCD</strong> Lagrangian<br />

L <strong>QCD</strong> = 1 4 Tr(Gµ⌫ G µ⌫ )+<br />

n f<br />

X<br />

f=1<br />

i ¯ f D µ<br />

µ<br />

f +<br />

n f<br />

X<br />

f=1<br />

m f ¯ f f<br />

iD µ = i@ µ gA µ G µ⌫ = @ µ A µ @ ⌫ A µ g[A µ ,A ⌫ ]<br />

Chiral Lagrangian is Conformally Invariant<br />

Where does the <strong>QCD</strong> Mass Scale Λ <strong>QCD</strong> come from<br />

How does color confinement arise<br />

Scale<br />

•<br />

de Alfaro, Fubini, Furlan:<br />

can appear in Hamiltonian <strong>and</strong> EQM<br />

without affecting conformal invariance of action!<br />

Unique potential!<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

2


de Teramond, Dosch, sjb<br />

<strong>AdS</strong>/<strong>QCD</strong><br />

Soft-Wall Model<br />

Exploring <strong>QCD</strong>, Cambridge, August 20-24, 2007 Page 9<br />

<strong>Light</strong>-<strong>Front</strong> <strong>Holography</strong><br />

Semi-Classical Approximation to <strong>QCD</strong><br />

Relativistic, frame-independent<br />

Unique color-confining potential<br />

Zero mass pion for massless quarks<br />

Regge trajectories with equal slopes in n <strong>and</strong> L<br />

<strong>Light</strong>-<strong>Front</strong> Wavefunctions<br />

<strong>Light</strong>-<strong>Front</strong> Schrödinger Equation<br />

Conformal<br />

Symmetry<br />

of the action<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

3


de Teramond, Dosch, sjb<br />

<strong>AdS</strong>/<strong>QCD</strong><br />

Soft-Wall Model<br />

Exploring <strong>QCD</strong>, Cambridge, August 20-24, 2007 Page 9<br />

<strong>Light</strong>-<strong>Front</strong> <strong>Holography</strong><br />

⇥<br />

⇥<br />

d 2<br />

d 2<br />

+ d⇣ 2 1V<br />

( 4L2 ) = M 2 ⇥(<br />

4⇣ 2 + U(⇣) ⇤ )<br />

(⇣) =M 2 (⇣)<br />

⇥<br />

d 2<br />

d 2 + V ( ) = M 2 ⇥( )<br />

U(⇣) =apple 4 ⇣ 2 +2apple 2 (L + S 1)<br />

<strong>Light</strong>-<strong>Front</strong> Schrödinger Equation<br />

2 = x(1 x)b 2 ⇥ .<br />

Confinement scale: apple ' 0.5 GeV<br />

J z = S z 1/apple ' 0.4 fm<br />

p = ⇤ n<br />

i=1<br />

Si z + ⇤ n 1<br />

Conformal Symmetry<br />

of the action<br />

i=1 ⌥z i = 1 2<br />

Unique<br />

Confinement Potential!<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

4


m q =0<br />

Massless pion in Chiral Limit!<br />

Same slope in n <strong>and</strong> L!<br />

Mass ratio of the ρ <strong>and</strong> the a1 mesons: coincides with Weinberg sum rules<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

5


⇤(z)<br />

• <strong>Light</strong>-<strong>Front</strong> <strong>Holography</strong><br />

⇥ = (x(1 x)|b ⇤ |<br />

General remarks about orbita<br />

z<br />

(x, k )<br />

xploring <strong>QCD</strong>, Cambridge, August 20-24, 2007 Page 9<br />

mentum<br />

0.8 0.60.40.2<br />

0.2<br />

z<br />

0.15<br />

z 0 = 1<br />

• <strong>Light</strong> <strong>Front</strong> Wavefunctions:<br />

⇥ <strong>QCD</strong><br />

d ⇥ np<br />

n(x i , k i , i)<br />

n<br />

Schrödinger Wavefunctions<br />

of Hadron Physics<br />

i=1 (x iR + b i ) = R<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

x R<br />

+ b<br />

0.1<br />

0.05<br />

0<br />

1.3<br />

(x, k )(GeV)<br />

1.4<br />

1.5


Prediction from <strong>AdS</strong>/<strong>QCD</strong>: Meson LFWF<br />

(x, k )<br />

⇥ M (x, Q 0 ) ⇥ 0.8 x(1 0.60.40.2 x)<br />

0.2<br />

de Teramond,<br />

sjb<br />

⇤ M (x, k 2 ⇤ )<br />

µ R<br />

Note coupling<br />

µ R = Q<br />

k 2 , x<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

1.3<br />

1.4<br />

(x, k ) (GeV)<br />

1.5<br />

“Soft Wall”<br />

model<br />

massless quarks<br />

x<br />

1 x<br />

µ F = µ R<br />

⇤ M (x, k ⇥ ) =<br />

4⇥<br />

x(1 x) e k 2 ⇥<br />

2 2 x(1 x)<br />

Provides Q/2 < Connection µ R < 2Q of Confinement<br />

µ<br />

to TMDs<br />

R<br />

⇥ M (x, Q 0 ) ⇥ x(1 x)<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

7


J. R. Forshaw,<br />

R. S<strong>and</strong>apen<br />

L<br />

T<br />

⇤ p ! ⇢ 0 p 0<br />

9


0.6<br />

Q 2 F Π Q 2 <br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Q 2 GeV 2<br />

0.0<br />

0 1 2 3 4 5 6 7<br />

10


Each element of<br />

flash photograph<br />

illuminated<br />

at same LF time<br />

= t + z/c<br />

Evolve in LF time<br />

P<br />

= i d<br />

d<br />

Eigenvalue<br />

P = M2 + ~ P 2 <br />

P +<br />

H <strong>QCD</strong><br />

LF | h >= M 2 h| h ><br />

11


<strong>Light</strong>-<strong>Front</strong> Quantization<br />

Causal, Frame-independent, Simple Vacuum,<br />

Current Matrix Elements are overlap of LFWFS<br />

12


<strong>Light</strong>-<strong>Front</strong> Wavefunctions: rigorous representation of<br />

composite systems in quantum<br />

P + = P 0 field<br />

+ P z<br />

theory<br />

x = k+<br />

P + = k0 + k 3<br />

P 0 + P 3<br />

Fixed ⌅ = t + z/c<br />

x i = k+<br />

P + , ↵ P +<br />

P + = k0 +k 3<br />

P 0 +P z<br />

General remark<br />

mentum<br />

A(⇤, ⇤) =<br />

General<br />

2⇥ 1 d e2 i ⇤ M( , ⇤)<br />

remarksx i P + about<br />

, x i<br />

↵<br />

orbi<br />

⇧(⇤, b ) P⇤ + ↵ k⌃R<br />

⇤i<br />

P + , P apple ⇤<br />

mentum<br />

ẑ<br />

x iR<br />

⌃ + ⌃ b i<br />

x i P + , x iP⇤ apple + apple ⇥ = d s(Q 2 )<br />

k<br />

d ln Q 2 < 0<br />

⇤i<br />

↵L = R ↵ ⇥ P ↵<br />

u<br />

n<br />

ni ⌃ b i = ⌃0<br />

= Q2<br />

i=1 (x iP ⌃ + ⌃ k<br />

2p·q<br />

i<br />

↵L i = (x iR⇤ ↵ + ↵ b ⇤i ) ⇥ P ↵<br />

n<br />

n(x<br />

i x i = 1<br />

ẑ<br />

i , k<br />

x iP<br />

⌃ + ⌃<br />

i , i)<br />

k i<br />

↵ ⇧i = ↵ b ⇤i ⇥ ↵ k ⇤i<br />

appleL = R apple ⇥ P apple n<br />

i ⌃ k i = ⌃0<br />

↵ ⇧i = L ↵ i x iR⇤ ↵ ⇥ P ↵ = ↵ b ⇤i ⇥ P ↵<br />

appleL i = (x iR⇤ apple + apple b ⇤i ) ⇥ P apple n<br />

i x i = 1<br />

Invariant under boosts! Independent of P <br />

n<br />

i=1 (x iR + b i ) = R<br />

Bethe-Salpeter WF integrated over k -<br />

13


Hadron Distribution Amplitudes<br />

M (x, Q) =<br />

Q<br />

d 2 k ⇥ q¯q (x, k )<br />

i<br />

x i = 1<br />

P + = P 0 + P z<br />

Fixed ⌅ = t + z/c<br />

x<br />

1 x<br />

k 2 < Q 2<br />

• Fundamental gauge invariant non-perturbative<br />

x i =<br />

input k+<br />

Pto 0 +P hard z<br />

P + = k0 +k 3<br />

exclusive processes, heavy hadron decays. Defined for<br />

⇧(⇤, b )<br />

Mesons, Baryons<br />

• Evolution Equations from P<strong>QCD</strong>, OPE<br />

• Conformal Expansions<br />

Lepage, sjb<br />

Efremov, Radyushkin<br />

⇥ = d s(Q 2 )<br />

d ln Q<br />

Sachrajda, 2 < 0<br />

Frishman Lepage, sjb<br />

u<br />

Braun, Gardi<br />

• Compute from valence light-front wavefunction in light-cone<br />

gauge<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong>


<strong>Light</strong>-<strong>Front</strong> <strong>QCD</strong><br />

Physical gauge: A + = 0<br />

Exact frame-independent formulation of<br />

nonperturbative <strong>QCD</strong>! 338<br />

L <strong>QCD</strong> H <strong>QCD</strong><br />

LF<br />

H <strong>QCD</strong> = [ m2 + k 2<br />

]<br />

LF i + H int<br />

x<br />

LF<br />

i<br />

HLF int:<br />

Matrix in Fock Space<br />

H <strong>QCD</strong><br />

LF | h >= M 2 h| h ><br />

|p, J z >= X n=3<br />

n(x i , ~ k i , i)|n; x i , ~ k i , i ><br />

Eigenvalues <strong>and</strong> Eigensolutions give Hadronic<br />

Spectrum <strong>and</strong> <strong>Light</strong>-<strong>Front</strong> wavefunctions<br />

LFWFs: Off-shell in P- <strong>and</strong> invariant mass<br />

15<br />

Fig. 6. A few selected<br />

H int<br />

LF


illustrated in Fig. 2 in terms of the block matrix n : x , k , λ Hn : x, k , λ . The structure of th<br />

<br />

<strong>Light</strong>-<strong>Front</strong> matrix depends <strong>QCD</strong> of course on<br />

H <strong>QCD</strong> the way<br />

S.J. <strong>Brodsky</strong> et LC al. / Physics | one has arranged<br />

h⇧<br />

Reports<br />

= M301 2 h | the FockDLCQ: space, see Solve Eq. <strong>QCD</strong>(1+1) (3.7). Note that for mo<br />

of the block matrix elements vanish due to the nature (1998) h⇧ of the 299—486 any light-cone quark interaction mass <strong>and</strong> asflavors<br />

defined<br />

Heisenberg Equation<br />

Hornbostel, Pauli, sjb<br />

ig. 6. A few selected matrix elements of the <strong>QCD</strong> front form Hamiltonian H"P <br />

in LB-convention.<br />

Minkowski space; frame-independent; no fermion doubling; no ghosts<br />

trivial vacuum<br />

Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. With<br />

r the instantaneous each block they fermion are all of the lines sameuse type: eitherfactor vertex, fork ¼or seagull in Fig. diagrams. 5 or Zero Fig. matrices 6, or are thedenoted correspond by a dot (<br />

The single gluon is absent since it cannot be color 16 neutral. <br />

les in Section 4. For the instantaneous boson lines use the factor ¼ .


LIGHT-FRONT MATRIX EQUATION<br />

the interaction part of HLC. Diagrammatically, V involves<br />

number Rigorous of coupled Method integral eigenvalue for Solving equations, Non-Perturbative <strong>QCD</strong>!<br />

interactions--i.e. diagrams having no internal propagators-c<br />

(Fig. 5). These equations determine the hadronic spe<br />

-<br />

0<br />

.<br />

where V is the<br />

xJ=<br />

interaction part of HLC. Diagrammatically, V involves completely<br />

irreducible interactions--i.e. diagrams having no internal propagators-coupling<br />

Fock states :(Fig. 3 II - IL 7 -<br />

A<br />

. .<br />

+ = 0<br />

0 l . f<br />

⇥ ggg<br />

5). These equations determine the hadronic spectrum <strong>and</strong><br />

xJ=<br />

: 3 II<br />

0<br />

IL 7<br />

⇥ ggg<br />

.<br />

- -.<br />

I- .<br />

R = (⇥<br />

l . . f<br />

(⇥ ¯p<br />

1 II<br />

Minkowski space; frame-independent; 0<br />

no fermion doubling; no ghosts<br />

.<br />

R = C<br />

.<br />

• <strong>Light</strong>-<strong>Front</strong> I- .<br />

1 II<br />

Vacuum = vacuum of free Hamiltonian!<br />

ū(x) ⇥= ¯d(x<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

Figure 5. Coupled eigenvalue equations 17 for the light-cone wa.vefunctious of a<br />

re 5. Coupled eigenvalue equations for the light-cone wa.vefunctio


DLCQ: Solve <strong>QCD</strong>(1+1) for any quark mass <strong>and</strong> flavors<br />

Hornbostel, Pauli, sjb<br />

18


Kinks in Discrete <strong>Light</strong>-Cone Quantization<br />

Chakrabarti, Harindranath, Martinovic, Vary<br />

3<br />

2<br />

1<br />

0<br />

(a)<br />

K = 24<br />

K = 32<br />

K = 41<br />

-1<br />

-2<br />

φ c<br />

(x - )<br />

-3<br />

3<br />

2<br />

1<br />

0<br />

(b)<br />

DLCQ K = 41<br />

Constrained Variational<br />

= 41<br />

-1<br />

-2<br />

-3<br />

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1<br />

x -<br />

19


Wavefunction at fixed LF time: Arbitrarily Off-Shell in Invariant Mass<br />

Eigenstate: all Fock states contribute<br />

c<br />

¯c<br />

Higher Fock States of the Proton<br />

Fixed LF time<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

21


n=3<br />

|p,S z >= ∑<br />

n=3<br />

The <strong>Light</strong> <strong>Front</strong> Fock State Wavefunctions<br />

Ψ n (x i ,~k i ,λ i )<br />

Ψ n (x i ,~k i ,λ i )|n;~k i ,λ i ><br />

are boost invariant; they are independent of the hadron’s energy<br />

<strong>and</strong> momentum P µ .<br />

The light-cone momentum fraction<br />

are boost invariant.<br />

sum over states with n=3, 4, ...constituents<br />

n<br />

∑k i + = P + ,<br />

i<br />

x i = k+ i<br />

p + = k0 i + kz i<br />

P 0 + P z<br />

n<br />

∑x i = 1,<br />

i<br />

Intrinsic heavy quarks<br />

n<br />

∑<br />

i<br />

s(x), c(x), b(x) at high x !<br />

Mueller: gluon Fock states<br />

~k i =~0 .<br />

ep ⇥ e + n<br />

P /p ⇤ 30%<br />

Violation of Gottfried sum rule<br />

¯s(x) ⇤= s(x)<br />

Fixed LF time<br />

ū(x) ⌅= ¯d(x)<br />

⇥ M (x, Q 0 ) ⇥ x(1 x)<br />

BFKL Pomeron<br />

Hidden Color


E866/NuSea (Drell-Yan)<br />

¯d(x) = ū(x)<br />

s(x) = ¯s(x)<br />

Intrinsic glue, sea,<br />

heavy quarks<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

23


Proton Self Energy<br />

Intrinsic Heavy Quarks<br />

Fixed LF time<br />

x Q (m 2 Q + k 2 ) 1/2<br />

p<br />

Q<br />

p<br />

Q<br />

Probability (QED)<br />

1<br />

M 4 Probability (<strong>QCD</strong>)<br />

1<br />

M 2 Q<br />

Collins, Ellis, Gunion, Mueller, sjb<br />

M. Polyakov, et al.<br />

24


Fixed LF time<br />

Proton 5-quark Fock State :<br />

Intrinsic Heavy Quarks<br />

p<br />

Q<br />

<strong>QCD</strong> predicts<br />

Intrinsic Heavy<br />

p<br />

Quarks at high x!<br />

Q<br />

Minimal off-shellness<br />

x Q (m 2 Q + k 2 ) 1/2<br />

Probability (QED)<br />

1<br />

M 4 Probability (<strong>QCD</strong>)<br />

1<br />

M 2 Q<br />

Collins, Ellis, Gunion, Mueller, sjb<br />

Polyakov, et al.<br />

25


W. C. Chang <strong>and</strong><br />

J.-C. Peng<br />

arXiv:1105.2381<br />

HERMES: Two components to s(x,Q 2 )!<br />

x(s+s − x(s+s<br />

) − )<br />

0.3<br />

0.3<br />

0.2<br />

0.2<br />

0.1<br />

0.1<br />

0<br />

0<br />

BHPS (µ=0.5 GeV)<br />

HERMES BHPS (µ=0.3 GeV)<br />

BHPS (µ=0.5 GeV)<br />

BHPS (µ=0.3 GeV)<br />

10 -1<br />

10 -1<br />

HERMES<br />

Extrinsic (DGLAP)<br />

strangeness!<br />

Figure 2: Comparison of the HERMES x(s(x)+¯s(x)) data with the Figure 3: Comparison<br />

calculations based on the BHPS model. The solid <strong>and</strong> dashed curves calculations based on t<br />

Figure are obtained 2: Comparison by evolving of the the HERMES BHPS x(s(x)+¯s(x)) result to Q 2 =2.5 data with GeVthe<br />

2 usingFigure are 3: from Comparison the HERME of the<br />

calculations<br />

µ =0.5 GeV<strong>and</strong>µ<br />

based on the<br />

=0.3<br />

BHPS<br />

GeV,respectively.<br />

model. The solid <strong>and</strong> dashed curves calculations based on the BH<br />

are obtained by evolving the BHPS result to Q 2 Thenormalizationsof<br />

=2.5 GeV 2 are obtained from the<br />

the calculations are adjusted to fit the data at x>0.1 withstatistical<br />

using are from<br />

curves<br />

the<br />

are<br />

HERMES<br />

obtained<br />

expe<br />

by<br />

µ =0.5 GeV<strong>and</strong>µ =0.3 GeV,respectively. Thenormalizationsof are obtained from the PDF s<br />

errors only, denoted by solid circles.<br />

using µ =0.5 GeV<strong>and</strong><br />

the calculations are adjusted to fit the data at x>0.1 withstatistical curves are obtained by evolv<br />

of the calculations are<br />

errors only, denoted by solid circles.<br />

using µ =0.5 GeV<strong>and</strong>µ =0<br />

of the calculations are adjust<br />

x<br />

x<br />

their measurement of charged kaon production in SIDIS reaction<br />

measurement [6]. The HERMES of charged data, kaon production shown in Fig. in SIDIS 2, exhibits their rex(d<br />

− +u − -s-s − )<br />

x(d − +u − -s-s − )<br />

BHPS: Hoyer, Sakai,<br />

Peterson, sjb<br />

0.3<br />

0.2<br />

0.3<br />

0.2<br />

0.1<br />

Intrinsic<br />

strangeness! 0.1<br />

0<br />

Consistent with<br />

0<br />

intrinsic charm 10 -2<br />

data<br />

s(x, Q 2 )=s(x, Q 2 ) extrinsic + s(x, Q 2 ) intrinsic<br />

10 -2<br />

<strong>QCD</strong>:<br />

1<br />

M 2 Q<br />

scaling<br />

the x( ¯d(x)+ū(x)) 26


0.024<br />

(7)<br />

.5 GeV) (6)<br />

It is re<strong>and</strong><br />

the<br />

to0.029<br />

check<br />

.3 GeV) (7)<br />

k states,<br />

lities for<br />

cale W. µ. C. Chang It is re-<strong>and</strong><br />

+¯s(x), J.-C. <strong>and</strong> Peng the<br />

allow ilityus for to check<br />

uark Fock states,<br />

%.<br />

probabilities<br />

It is<br />

for<br />

0.08<br />

0.06<br />

c −<br />

0.1<br />

0.08<br />

0.04<br />

0.06<br />

0.02<br />

0.04<br />

0.02<br />

0<br />

BHPS (µ=0.5 GeV)<br />

<strong>QCD</strong> (1/m Q 2 ) scaling: predict IC !<br />

BHPS<br />

BHPS (µ=3.0 GeV)<br />

BHPS (µ=0.5 GeV)<br />

Hoyer, Peterson, Sakai, sjb<br />

ta in the<br />

% prob-<br />

d probability for<br />

e<br />

round<br />

[13], arXiv:1105.2381<br />

0 0.2 0.4 0.6 0.8 1<br />

40%. It is<br />

¯d−ū in<br />

data in the<br />

y.<br />

has<br />

A∼60% sign<br />

of state the[13], in<br />

probleon<br />

0<br />

x<br />

0 0.2 0.4 0.6 0.8 1<br />

he thiskaon-<br />

so worth<br />

study. A sigextraction<br />

of the Figure 4: Calculations of the ¯c(x) distributionsbasedontheBHPS<br />

x<br />

ted to the kaonl.<br />

〉 Itstates<br />

is also worth <strong>and</strong> the dashed <strong>and</strong> dotted curves are obtained by evolving the BHPS<br />

model. The solid curve corresponds to the calculation using Eq. 1<br />

Figure 4: Calculations of the ¯c(x) distributionsbasedontheBHPS<br />

|uudQ ¯Q〉<br />

model. The solid curve corresponds to the calculation using Eq. 1<br />

etic mo- states result<strong>and</strong> tothe Qdashed 2 = 75 <strong>and</strong>GeV dotted 2 curves using are µ obtained = 3.0by GeV,<strong>and</strong>µ evolving the BHPS = 0.5 GeV,<br />

n’s magnetic moe<br />

Q <strong>and</strong> ¯Q in the<br />

result to Q 2 = 75 GeV 2 using µ = 3.0 GeV,<strong>and</strong>µ = 0.5 GeV,<br />

¯Q in the<br />

respectively. The normalization is set at P c¯c<br />

respectively. The normalization is set at P5 c¯c =0.01.<br />

Intrinsic Charm<br />

5<br />

Consistent with EMC<br />

=0.01. 27


Measurement of Charm Structure<br />

Function!<br />

J. J. Aubert et al. [European Muon Collaboration], “Production<br />

Of Charmed Particles In 250-Gev Mu+ - Iron Interactions,”<br />

Nucl. Phys. B 213, 31 (1983).<br />

First Evidence for Intrinsic Charm<br />

Hoyer, Peterson, Sakai, sjb<br />

factor of 30 !<br />

gluon splitting<br />

(DGLAP)<br />

DGLAP / Photon-Gluon Fusion: factor of 30 too small<br />

Two Components (separate evolution):<br />

c(x, Q 2 )=c(x, Q 2 ) extrinsic + c(x, Q 2 ) intrinsic


Goldhaber, Kopeliovich, Schmidt, sjb<br />

Intrinsic Charm Mechanism for Inclusive<br />

High-X F Higgs Production<br />

p<br />

¯c<br />

c<br />

g<br />

H<br />

pp<br />

HX<br />

p<br />

Also: intrinsic bottom, top<br />

Higgs can have 80% of Proton Momentum!<br />

New production mechanism for Higgs<br />

29


Intrinsic Bottom Contribution to Inclusive<br />

Higgs Production<br />

⌅ = t + z/c<br />

d⇤<br />

dx F<br />

(pp ⇥ HX)[fb]<br />

fb<br />

LHC :<br />

⇥q ⇥<br />

s = 14TeV<br />

q<br />

⇥<br />

Tevatron :<br />

s = 2TeV<br />

p<br />

Goldhaber, Kopeliovich, Schmidt, sjb<br />

30


=2p + F (q 2 )<br />

P + = P 0 + P z<br />

⇤<br />

q 2 = Q 2 = q 2 Fixed ⌅ = t + z/c<br />

Interaction<br />

picture<br />

q + =0<br />

~q <br />

x i = k+<br />

⇧(⇤, b )<br />

Form Factors are<br />

Overlaps of LFWFs<br />

P + = k0 +k 3<br />

P 0 +P z<br />

p<br />

x, ~ k x, ~ k + ~q <br />

⇥ = d s(Q 2 )<br />

d ln Q 2 < 0<br />

u<br />

(x (x i , ~ ki)<br />

0 i , ~ k i )<br />

p + q<br />

Drell &Yan, West<br />

Exact LF formula!<br />

struck<br />

spectators<br />

~ k<br />

0<br />

i = ~ k i +(1 x i )~q <br />

~ k<br />

0<br />

i = ~ k i x i ~q <br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

31


P + = P 0 + P z<br />

<strong>Light</strong>-<strong>Front</strong> Wavefunctions <strong>and</strong> Electron-Proton Collisions<br />

Fixed ⌅ = t + z/c<br />

Hoyer<br />

CF<br />

p<br />

|I><br />

x i = k+<br />

P + = k0 +k 3<br />

P 0 +P z<br />

⇧(⇤, b )<br />

⇥ = d s(Q 2 )<br />

d ln Q 2 < 0<br />

CF<br />

p+q<br />

|F><br />

(x i , ~ k i )<br />

u<br />

q<br />

(x i , ~ k 0 i)<br />

e’<br />

e<br />

q 2 = Q 2 = q 2 |F> = resonances, multiparticle states.<br />

q + =0<br />

~q <br />

All final states |F> in electroproduction produced<br />

Diagonal n to n overlap of LFWFs<br />

Confinement:Only Color Singlets!<br />

32


Calculation of Form Factors in Equal-Time Theory<br />

Instant Form<br />

Need vacuum-induced currents<br />

Calculation of Form Factors in <strong>Light</strong>-<strong>Front</strong> Theory<br />

<strong>Front</strong> Form<br />

Exact Answer!<br />

Absent zero for forq + q + = 00 zero !!<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

33<br />

No vacuum graphs


Calculation of proton form factor in Instant Form<br />

<br />

p<br />

p + q p<br />

p + q<br />

• Need to boost proton wavefunction from p to p<br />

+q: Extremely complicated dynamical problem;<br />

particle number changes<br />

• Need to couple to all currents arising from<br />

vacuum!! Remains even after normal-ordering<br />

• Each time-ordered contribution is framedependent<br />

• Divide by disconnected vacuum diagrams<br />

• Instant form: Violates causality<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong>


eas the Pauli <strong>and</strong> electric [dx] [d kdipole ⇧ ] ⇤ form factors are given by 16⇤ 1 x<br />

Exact LF<br />

i,c ,f i i=1<br />

2(2⇤) 3 i<br />

te between the struck <strong>and</strong> spectator constituents; namely, we<br />

i=1<br />

F 2 (q 2 )<br />

A(⇤,<br />

2M<br />

⇧ ⌅) ⌥ = 1<br />

Formula<br />

2⇥<br />

d<br />

[dx][d 2 k ⇧ ] ⇧ e2 i ⇤ for Pauli Form Factor<br />

1<br />

M( , ⌅)<br />

e j<br />

a<br />

j<br />

2 ⇥<br />

Drell, sjb<br />

where n denotes the number of constituents in Fock state a<br />

k ⌅ ⇧j = k ⇧j + (1 x j )q ⇧ (14)<br />

P<br />

1<br />

+ , Ppossible {⇥ i }, {c i }, <strong>and</strong> {f i }<br />

q L ⌅⇥ a (x i , k ⌅ ⇧i, ⇥ i ) ⌅a(x ⇤ i , k ⇧i , ⇥ i ) + 1<br />

in state a. The arguments of the<br />

⌅<br />

t j <strong>and</strong> wave function di erentiate between<br />

q R ⌅⇤ a (xthe i , k ⌅ struck<br />

⇧i, ⇥ i ) ⌅<strong>and</strong> a(x ⇥ = spectator i , 0k ⇧i , ⇥ i ) co ,<br />

have [13, 15]<br />

xk i ⌅ P +<br />

⇧i = , kx k ⌅ ⇧i i P ⌅ x+ i qk ⇧ ⌅i<br />

⇧j = k ⇧j + (15) B(0) x j )q= ⇧ 0 Fock<br />

⌥<br />

re i<br />

F<br />

⌅= 3 (q<br />

j. 2 )<br />

Note<br />

2M<br />

⇧ for the struck<br />

[dx][d 2 constituent<br />

k ⇧ ] ⇧ i<br />

e j<br />

a<br />

j<br />

2 ⇥ j <strong>and</strong><br />

= Q2 that because of the frame choice q + = 0, onlyq R,L = q x ± iq y<br />

2p·q<br />

s of the light-front Fock states appear [14].<br />

k ⌅ ⇧i = k ⇧i x<br />

1<br />

q L ⌅⇥ a (x i , k ⌅ ⇧i, ⇥ i ) ⌅a(x ⇤ 1<br />

⇤(x, i q ⇧ b ⌅ )<br />

ˆx, ŷ plane<br />

i , k ⇧i , ⇥ i )<br />

q R ⌅⇤ a (x i , k ⌅ ⇧i, ⇥ i ) ⌅a(x ⇥ i , k ⇧i , ⇥ i ) .<br />

for6each spectator i, where i ⌅= j. Note that because x of the fra<br />

diagonal (n ⌅ = n) overlaps of the light-front Fock states appea<br />

ummations M 2 are (L) over ⇤ all L-<br />

contributing Fock states a <strong>and</strong> struck constituent cha<br />

b<br />

Here, as earlier, we refrain from including the constituents’ ⌅ (GeV)<br />

color <strong>and</strong> 1<br />

fl<br />

6<br />

ndence in the arguments of the light-front wave functions. The phase-s<br />

Must have ↵<br />

ration is<br />

z = ±1 to have nonzero F 2 (q 2 )<br />

x] [d 2 k ⇧ ] ⇤ ⇧ i,c i ,f i<br />

⇤ n ⌃<br />

Nonzero Proton Anomalous Moment --><br />

⌥ ⌥<br />

⇥⌅<br />

Nonzero orbital quark angular momentum<br />

dxi d 2 k ⇧i<br />

2(2⇤) 3<br />

16⇤ 3 1<br />

May 21, 2013 LC2013 i=1 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> i=1 <strong>Brodsky</strong><br />

35<br />

n⇧<br />

x i<br />

⇥<br />

Identify z ⇤ ⇥ =<br />

(2)<br />

⇥<br />

n⇧<br />

k ⇧i<br />

i=1<br />

,


Vanishing Anomalous gravitomagnetic moment B(0)<br />

Terayev, Okun, et al: B(0) Must vanish because of<br />

Equivalence Theorem<br />

graviton<br />

sum over constituents<br />

-<br />

Hwang, Schmidt, sjb;<br />

Holstein et al<br />

B(0) = 0<br />

Each Fock State<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

36


In general the light-cone wavefunctions satisfy cons<br />

y conservation of the z projection of<br />

Angular Momentum on the <strong>Light</strong>-<strong>Front</strong><br />

ngular momentum:<br />

J z =<br />

n∑<br />

i=1<br />

si z ∑n−1<br />

+<br />

j=1<br />

l z j .<br />

Conserved<br />

LF Fock-State by Fock-State<br />

Every (62) Vertex<br />

he sum over si<br />

z represents the contribution of the intr<br />

onstituents. The sum over orbital angular momenta lj z =<br />

the intrinsic spins of the n Fock state<br />

ta l z j = −i( k 1 ∂ − k 2 ∂ )<br />

derives from<br />

j j<br />

e n−1 relative momenta. This excludes the contribution<br />

∂k 2 j<br />

∂k 1 j<br />

ibution to the orbital angular momentum<br />

ue to the motion of the center of mass, which is not an in<br />

Parke-Taylor Amplitudes<br />

Stasto<br />

ot an intrinsic property of the hadron.<br />

We can see how the angular momentum sum rule<br />

avefunctions Eqs. (20) <strong>and</strong> (23) of the QED model sys<br />

m rule Eq. (62) is satisfied for the<br />

n-1 orbital angular<br />

momenta<br />

Nonzero Anomalous Moment Nonzero orbital angular momentum<br />

Drell, sjb<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

37


Advantages of the Dirac’s <strong>Front</strong> Form for Hadron Physics<br />

• Measurements are made at fixed τ<br />

• Causality is automatic<br />

• Structure Functions are squares of LFWFs<br />

• Form Factors are overlap of LFWFs<br />

• LFWFs are frame-independent -- no boosts<br />

• No dependence on observer’s frame<br />

• Dual to <strong>AdS</strong>/<strong>QCD</strong><br />

• LF Vacuum trivial -- no condensates<br />

• Implications for Cosmological Constant<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong>


<strong>Light</strong>-<strong>Front</strong> Wave Function Overlap Representation<br />

Diehl, Hwang, sjb, NPB596, 2001<br />

See also: Diehl, Feldmann, Jakob, Kroll<br />

DVCS/GPD<br />

DGLAP<br />

region<br />

N<br />

N<br />

N+1<br />

N-1<br />

ERBL<br />

region<br />

N<br />

N<br />

DGLAP<br />

region<br />

Bakker & JI<br />

Lorce<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

39


General remarks about orbital angular momentum<br />

• <strong>Light</strong> <strong>Front</strong> Wavefunctions:<br />

n(x i , k i , i)<br />

GTMDs<br />

Momentum space<br />

Position space<br />

Transverse density in<br />

n<br />

momentum space<br />

i=1 (x iR + b i ) = R<br />

Transverse density in position<br />

space<br />

x i R<br />

+<br />

TMDs<br />

b i<br />

TMFFs<br />

GPDs<br />

Transverse<br />

n<br />

i b i = 0<br />

Lorce,<br />

Pasquini<br />

TMSDs<br />

n<br />

i x i = 1<br />

PDFs<br />

FFs<br />

Longitudinal<br />

Sivers, T-odd from lensing<br />

Charges<br />

40


Leading-Twist Contribution to Real Part of DVCS<br />

LF Instantaneous interaction<br />

⇤<br />

⇤<br />

T =<br />

2 X q<br />

e 2 q<br />

x q<br />

~✏ · ~✏ 0<br />

T / s 0 F C=+ (t =0)<br />

Origin of ‘D-Term’<br />

in <strong>QCD</strong><br />

s-independent<br />

‘J=0 fixed pole’<br />

p<br />

Damashek, Gilman<br />

Close, Gunion, sjb<br />

Szczepaniak,<br />

Llanes Estrada, sjb<br />

p<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

41


Static<br />

Dynamic<br />

• Square of Target LFWFs<br />

• No Wilson Line<br />

• Probability Distributions<br />

• Process-Independent<br />

• T-even Observables<br />

• No Shadowing, Anti-Shadowing<br />

• Sum Rules: Momentum <strong>and</strong> J z<br />

Modified by Rescattering: ISI & FSI<br />

Contains Wilson Line, Phases<br />

No Probabilistic Interpretation<br />

Process-Dependent - From Collision<br />

T-Odd (Sivers, Boer-Mulders, etc.)<br />

Shadowing, Anti-Shadowing, Saturation<br />

Sum Rules Not Proven<br />

Hwang,<br />

Schmidt, sjb,<br />

Mulders, Boer<br />

Qiu, Sterman<br />

Collins, Qiu<br />

Pasquini, Xiao,<br />

Yuan, sjb<br />

• DGLAP Evolution; mod. at large x DGLAP Evolution<br />

• No Diffractive DIS<br />

Hard Pomeron <strong>and</strong> Odderon Diffractive DIS<br />

General remarks about orbital e angular momentum<br />

current<br />

2<br />

– quark jet<br />

!*<br />

e –<br />

n(x i , ⇥ k i , i)<br />

S<br />

proton<br />

quark<br />

final state<br />

interaction<br />

spectator<br />

system<br />

11-2001<br />

8624A06<br />

n<br />

May 21, 2013 LC2013<br />

i=1 (x iR ⇥ + ⇥ b<br />

<strong>AdS</strong>/<strong>QCD</strong> i ) = R ⇥ & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

42


• LF wavefunctions play the role of Schrödinger wavefunctions<br />

in Atomic Physics<br />

• LFWFs=Hadron Eigensolutions: Direct Connection to <strong>QCD</strong><br />

Lagrangian<br />

• Relativistic, frame-independent: no boosts, no disc<br />

contraction, Melosh built into LF spinors<br />

• Hadronic observables computed from LFWFs: Form factors,<br />

Structure Functions, Distribution Amplitudes, GPDs, TMDs,<br />

Weak Decays, .... modulo `lensing’ from ISIs, FSIs<br />

• Cannot compute current matrix elements using instant form<br />

from eigensolutions alone -- need to include vacuum currents!<br />

n<br />

• Hadron Physics without LFWFs is like Biology without DNA!<br />

General remark<br />

mentum<br />

n(x i , k i , i)<br />

n<br />

i=1 (x iR + b<br />

x i R<br />

n<br />

+ b i<br />

i b i = 0<br />

i x i = 1<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong>


•Hadron Physics without LFWFs is like Biology without DNA!<br />

General remarks about orbital angular<br />

mentum<br />

n(x i , k i , i)<br />

n<br />

i=1 (x iR + b i ) = R<br />

x i R<br />

+ b i<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

44


<strong>Light</strong>-<strong>Front</strong> Wavefunctions<br />

Dirac’s <strong>Front</strong> Form: Fixed τ = t + z/c<br />

(x i , ~ k i , i)<br />

x i = k+ i<br />

P +<br />

Invariant under boosts. Independent of P μ<br />

H <strong>QCD</strong><br />

LF |ψ >= M2 |ψ ><br />

0 < x i < 1<br />

Direct connection to <strong>QCD</strong> Lagrangian<br />

Remarkable new insights from <strong>AdS</strong>/CFT,<br />

the duality between conformal field theory<br />

<strong>and</strong> Anti-de Sitter Space<br />

n<br />

i=1<br />

x i = 1<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

45


[<br />

[<br />

H QED<br />

QED atoms: positronium <strong>and</strong><br />

muonium<br />

2<br />

Effective two-particle equation<br />

Includes Lamb Shift, quantum corrections<br />

Spherical Basis<br />

V<br />

Coulomb potential<br />

eff ⇥ V C (r) = r<br />

(H 0 + H int ) | >= E | > Coupled Fock states<br />

2m red<br />

+ V e (S, r)] (r) = E (r)<br />

1 d 2<br />

2m red dr 2 + 1 ⌃(⌃ + 1)<br />

2m red r 2 + V e (r, S, ⌃)] (r) = E (r)<br />

r, , ⇥<br />

Semiclassical first approximation to QED --> Bohr Spectrum<br />

46


<strong>Light</strong>-<strong>Front</strong> <strong>QCD</strong><br />

H LF<br />

QED<br />

<strong>QCD</strong><br />

(H 0 LF + H I LF )| >= M 2 | ><br />

Coupled Fock states<br />

[ k2 + m 2<br />

x(1 x) + V LF<br />

e ] LF (x, k ) = M 2 LF (x, k )<br />

4<br />

Effective two-particle equation<br />

2 = x(1 x)b 2<br />

Azimuthal Basis<br />

, ⇥<br />

U(⇣) =apple 4 ⇣ 2 +2apple 2 (L + S 1)<br />

Confining <strong>AdS</strong>/<strong>QCD</strong><br />

potential!<br />

Semiclassical first approximation to <strong>QCD</strong> 47


⇥<br />

<strong>Light</strong>-<strong>Front</strong> Schrödinger d 2<br />

+ V ( ) Equation<br />

= M 2 ⇥( )<br />

d 2<br />

Relativistic LF single-variable radial<br />

equation for <strong>QCD</strong> & QED<br />

4<br />

⇥<br />

d 2<br />

d 2 + V ( )<br />

2 = x(1 x)b 2 ⇥ .<br />

G. de Teramond, sjb<br />

Frame Independent!<br />

= M 2 ⇥( )<br />

<strong>AdS</strong>/<strong>QCD</strong>:<br />

J z = x S(1<br />

p z = x) ⇤ b n<br />

i=1<br />

Si z + ⇤<br />

⇥<br />

n 1<br />

⇤(x, b ⇥ ) = ⇤( )<br />

each Fock State<br />

⇥(z)<br />

= x(1 x)b 2 ⇥<br />

U(⇣) =apple 4 ⇣ 2 +2apple 2 (L + S 1)<br />

x (1<br />

x) b ⇥<br />

J z p = S z q + S z g + L z q + L z g = 1 2<br />

= x(1 x)b 2 ⇥<br />

z<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong> z<br />

48<br />

z<br />

i=1 ⌥z i = 1 2<br />

⇤(x, b ⇥ ) = ⇤( )<br />

x (1 x) b ⇥<br />

⇥(z)<br />

⇤(x, b ⇥ ) = ⇤( )<br />

⇥(z)<br />

z<br />

= x(1 x)b 2 ⇥


m q =0<br />

Same slope in n <strong>and</strong> L!<br />

Massless pion in Chiral Limit!<br />

Mass ratio of the ρ <strong>and</strong> the a1 mesons: coincides with Weinberg sum rules<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

49


⇥<br />

<strong>Light</strong>-<strong>Front</strong> Schrödinger d 2<br />

+ V ( ) Equation<br />

= M 2 ⇥( )<br />

d 2<br />

Relativistic LF single-variable radial<br />

equation for <strong>QCD</strong> & QED<br />

4<br />

⇥<br />

d 2<br />

d 2 + V ( )<br />

2 = x(1 x)b 2 ⇥ .<br />

G. de Teramond, sjb<br />

Frame Independent!<br />

= M 2 ⇥( )<br />

<strong>AdS</strong>/<strong>QCD</strong>:<br />

J z = x S(1<br />

p z = x) ⇤ b n<br />

i=1<br />

Si z + ⇤<br />

⇥<br />

n 1<br />

⇤(x, b ⇥ ) = ⇤( )<br />

U is the exact <strong>QCD</strong> potential<br />

Conjecture: ‘H’-diagrams generate<br />

each Fock State<br />

⇥(z)<br />

= x(1 x)b 2 ⇥<br />

U(⇣) =apple 4 ⇣ 2 +2apple 2 (L + S 1)<br />

x (1<br />

x) b ⇥<br />

J z p = S z q + S z g + L z q + L z g = 1 2<br />

= x(1 x)b 2 ⇥<br />

z<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong> z<br />

50<br />

z<br />

i=1 ⌥z i = 1 2<br />

⇤(x, b ⇥ ) = ⇤( )<br />

x (1 x) b ⇥<br />

⇥(z)<br />

⇤(x, b ⇥ ) = ⇤( )<br />

⇥(z)<br />

z<br />

= x(1 x)b 2 ⇥


Remarkable Features of<br />

<strong>Light</strong>-<strong>Front</strong> Schrödinger Equation<br />

• Relativistic, frame-independent<br />

• <strong>QCD</strong> scale appears spontaneously - unique LF potential<br />

• Reproduces spectroscopy <strong>and</strong> dynamics of light-quark hadrons with<br />

one parameter<br />

• Zero-mass pion for zero mass quarks!<br />

• Regge slope same for n <strong>and</strong> L -- not usual HO<br />

• Splitting in L persists to high mass -- contradicts conventional<br />

wisdom based on breakdown of chiral symmetry<br />

• Phenomenology: LFWFs, Form factors, electroproduction<br />

• Extension to heavy quarks<br />

U(⇣) =apple 4 ⇣ 2 +2apple 2 (L + S 1)<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong>


de Teramond, Dosch, sjb<br />

<strong>AdS</strong>/<strong>QCD</strong><br />

Soft-Wall Model<br />

Exploring <strong>QCD</strong>, Cambridge, August 20-24, 2007 Page 9<br />

<strong>Light</strong>-<strong>Front</strong> <strong>Holography</strong><br />

⇥ d 2<br />

d⇣ 2 + 1<br />

4L2<br />

4⇣ 2 + U(⇣) ⇤ (⇣) =M 2 (⇣)<br />

<strong>Light</strong>-<strong>Front</strong> Schrödinger Equation<br />

U(⇣) =apple 4 ⇣ 2 +2apple 2 (L + S 1)<br />

Confinement scale:<br />

apple ' 0.5 GeV<br />

1/apple ' 0.4 fm<br />

Conformal Symmetry<br />

of the action<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

52


The Holographic Correspondence<br />

In the “ semi-classical” approximation to <strong>QCD</strong> with massless quarks <strong>and</strong> no quantum loops the<br />

function is zero, <strong>and</strong> the approximate theory is scale <strong>and</strong> conformal invariant.<br />

Isomorphism of SO(4, 2) of conformal <strong>QCD</strong> with the group of isometries of <strong>AdS</strong> space<br />

ds 2 = R2<br />

z 2 (⇥ µ⇥dx µ dx ⇥ dz 2 ).<br />

Semi-classical correspondence as a first approximation to <strong>QCD</strong> (strongly coupled at all scales).<br />

x µ ⇤ ⇤x µ , z ⇤ ⇤z, maps scale transformations into the holographic coordinate z.<br />

Different values of z correspond to different scales at which the hadron is examined: <strong>AdS</strong> boundary at<br />

z ⇤ 0 corresponds to the Q ⇤ ⌅, UV zero separation limit.<br />

There is a maximum separation of quarks <strong>and</strong> a maximum value of z at the IR boundary<br />

Truncated <strong>AdS</strong>/CFT (Hard-Wall) model: cut-off at z 0 = 1/ <strong>QCD</strong> breaks conformal invariance <strong>and</strong><br />

allows the introduction of the <strong>QCD</strong> scale (Hard-Wall Model) Polchinski <strong>and</strong> Strassler (2001).<br />

Smooth cutoff: introduction of a background dilaton field ⌅(z) – usual linear Regge dependence can<br />

be obtained (Soft-Wall Model) Karch, Katz, Son <strong>and</strong> Stephanov (2006).<br />

Changes in<br />

physical<br />

length scale<br />

mapped to<br />

evolution in the<br />

5th dimension z<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong>


Scale Transformations<br />

• Isomorphism of SO(4, 2) of conformal <strong>QCD</strong> with the group of isometries of <strong>AdS</strong> space<br />

SO(1, 5)<br />

<strong>AdS</strong>/CFT<br />

ds 2 = R2<br />

z 2 ( µ⇥dx µ dx ⇥ dz 2 ),<br />

x µ ⇤ ⇥x µ , z ⇤ ⇥z, maps scale transformations into the holographic coordinate z.<br />

• <strong>AdS</strong> mode in z is the extension of the hadron wf into the fifth dimension.<br />

invariant measure<br />

• Different values of z correspond to different scales at which the hadron is examined.<br />

x 2 ⇤ ⇥ 2 x 2 ,<br />

z ⇤ ⇥z.<br />

x 2 = x µ x µ : invariant separation between quarks<br />

• The <strong>AdS</strong> boundary at z ⇤ 0 correspond to the Q ⇤ ⌅, UV zero separation limit.<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

54<br />

altech High Energy Seminar, Feb 6, 2006 Page 11


2 Bosonic Modes<br />

Bosonic Solutions: Hard Wall Model<br />

• Conformal metric: ds 2 = g ⌅m dx ⌅ dx m . x ⌅ = (x µ , z), g ⌅m ⇤ R 2 /z 2⇥ ⌅m .<br />

• Action for massive scalar modes on <strong>AdS</strong> d+1 :<br />

S[⇥] = 1 ⌥<br />

d d+1 x ⇧ g 1<br />

2<br />

2 g⌅m ⌃ ⌅ ⇥⌃ m ⇥ µ 2 ⇥ 2 ,<br />

⇧ g ⇤ (R/z) d+1 .<br />

• Equation of motion<br />

1 ⌃ ⇧<br />

⇧ g g<br />

⌅m ⌃<br />

g ⌃x ⌅ ⌃x m ⇥⇥ + µ 2 ⇥ = 0.<br />

• Factor out dependence along x µ -coordinates , ⇥ P (x, z) = e iP ·x ⇥(z), P µ P µ = M 2 :<br />

⇤<br />

z 2 ⌃ 2 z (d 1)z ⌃ z + z 2 M 2 (µR) 2⌅ ⇥(z) = 0.<br />

• Solution: ⇥(z) ⇤ z as z ⇤ 0,<br />

• Normalization<br />

⇥(x, z) = Cz d 2 J d<br />

2<br />

(z) = Cz d/2 J<br />

d/2(zM)<br />

R d 1 ⌥ ⇥<br />

1<br />

(zM) , = 1 2<br />

<strong>QCD</strong><br />

dz<br />

z d 1 ⇥2 S=0(z) = 1.<br />

⇧d + ⌦ d 2 + 4µ 2 R 2 ⌃<br />

= 2 + L d = 4 (µR) 2 = L 2 4<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & 0LF-<strong>Holography</strong><br />

<strong>Stan</strong> <strong>Brodsky</strong><br />

55<br />

.


e '(z) = e +apple2 z 2<br />

Positive-sign dilaton<br />

• de Teramond, sjb<br />

⇥ d 2<br />

<strong>AdS</strong> Soft-Wall Schrodinger Equation for<br />

bound state of two scalar constituents:<br />

⌅(x, b ⇤ ) = ⌅(⇥)<br />

1 4L 2 ⇤<br />

dz 2 4z 2 + U(z) (z) =M 2 (z)<br />

⇤(z)<br />

U(z) = 4 z 2 + 2 2 ⌅(x, (L b+ S 1)<br />

⇤ ) = ⌅(⇥)<br />

⇥ = x(1 x)b 2 ⇤<br />

Derived from variation of Action for Dilaton-Modified <strong>AdS</strong> 5<br />

⇤(z)<br />

Identical to <strong>Light</strong>-<strong>Front</strong> Bound State Equation!<br />

z<br />

⇥ = x(1 x)b 2 ⇤<br />

z<br />

56


LF(3+1) <strong>AdS</strong> 5<br />

57<br />

⌅(x, b ⇤ ) = ⌅(⇥)<br />

⇤(z)<br />

x (1 x) b ⇥<br />

⇤(x, b ⇥ ) = ⇤( )<br />

⇥(z)<br />

⇥ = x(1 x)b 2 ⇤<br />

⇤(z)<br />

⌅(x, b ⇤ ) = ⌅(⇥)<br />

⇥ = x(1<br />

⇤(z)<br />

⇥ = (x(1 x)<br />

z<br />

de Teramond, sjb<br />

z<br />

z<br />

z<br />

z<br />

z 0 = 1<br />

⇥ <strong>QCD</strong><br />

= x(1 x)b 2 ⇥<br />

x (1<br />

⇤(x, ) = x(1 x)<br />

z 0 = 1<br />

z<br />

x) b ⇥<br />

z<br />

z<br />

⇤(x, b ⇥ ) = ⇤( )<br />

⇥(z)<br />

= x(1 x)b 2 ⇥<br />

1/2 ⇥( )<br />

x (1<br />

z 0 = 1<br />

z 0 = 1<br />

x) b ⇥<br />

⇤(x, b ⇥ ) = ⇤( )<br />

x (1 x) b ⇥<br />

⇥(z)<br />

⇤(x, b ⇥ ) = ⇤( )<br />

⇥(z)<br />

= x(1 x)b 2 ⇥<br />

⇥ <strong>QCD</strong><br />

z<br />

= x(1 x)b 2 ⇥<br />

<strong>Light</strong> d <strong>Front</strong> ⇥ np<br />

<strong>Holography</strong>: ⇥ Unique mapping derived from equality of LF<br />

<strong>and</strong> <strong>AdS</strong> formula for EM <strong>QCD</strong><br />

<strong>and</strong> gravitational current matrix<br />

z<br />

⇥<br />

elements<br />

<strong>and</strong> identical equations of motion <strong>QCD</strong><br />

z


G. de Teramond <strong>and</strong> sjb, PRL 102 081601 (2009)<br />

Dual <strong>QCD</strong> <strong>Light</strong>-<strong>Front</strong> Wave Equation z ⌃ , P (z) ⌃ |⇧(P )<br />

[ GdT <strong>and</strong> S. J. <strong>Brodsky</strong>, PRL 102, 081601 (2009)]<br />

• Upon substitution z ⇧ <strong>and</strong> ⌅ J ( ) ⌅ 3/2+J e (z)/2 J( ) in A dS W E<br />

⇤<br />

z d 1 2J<br />

⇥ z<br />

z d 1 2J z + µR ⇥ ⌅ 2<br />

e '(z)<br />

J(z) =M 2<br />

z<br />

e (z)<br />

J(z)<br />

fi nd L F W E (d =4)<br />

d 2 1 4L 2 ⇥<br />

d 2 4 2 + U( ) ⌅ J ( )=M 2 ⌅ J ( )<br />

w ith<br />

A F e e q e L F Q c<br />

e A m e m e w e<br />

U( )= 1 2 ⌃⇥⇥ (z)+ 1 4 ⌃⇥ (z) 2 + 2J 3 ⌃ ⇥ (z)<br />

2z<br />

<strong>and</strong> (µR) 2 = (2 J) 2 + L 2<br />

• dS Bre ite nl oh ne r- re dm an bound (µR) 2 ⇤ 4 uiv al nt to Mstabil ity ondition L 2 ⇤ 0<br />

• Sc al ing dim nsion ⇤ of dS ode ˆ J is ⇤ =2+L in ag re nt ith tw ist sc al ing dim nsion of a<br />

tw o parton bound state in Q C D <strong>and</strong> de te rm ine d by Q Mstabil ity c ondition<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

58<br />

L C 2011 2011, D al l as, May 23 , 2011 Pag e 10


H. G. Dosch, G. de Teramond, sjb PRD 87 (2013)<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

59


General-Spin Hadrons<br />

de Teramond, Dosch, sjb<br />

• Obtain spin-J mode µ 1···µ J<br />

with all indices along 3+1 coordinates from by shifting dimensions<br />

J(z) =<br />

⇧ z<br />

R<br />

⌃ J<br />

(z)<br />

e '(z) = e +apple2 z 2<br />

• Substituting in the <strong>AdS</strong> scalar wave equation for<br />

⇤<br />

z 2 ⇧ 2 z 3 2J 2⇥ 2 z 2⇥ z ⇧ z + z 2 M 2 (µR) 2⌅ J =0<br />

• Upon substitution z ⌅<br />

⌅ J ( )⇤ 3/2+J e ⇥2 2 /2<br />

J( )<br />

we find the LF wave equation<br />

⌥ d<br />

2<br />

d 2 1 4L 2<br />

4 2 + ⇥ 4 2 +2⇥ 2 (L + S 1) ⌅ µ1···µ J<br />

= M 2 ⌅ µ1···µ J<br />

with (µR) 2 = (2 J) 2 + L 2<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

60


⇥<br />

<strong>Light</strong>-<strong>Front</strong> Schrödinger d 2<br />

+ V ( ) Equation<br />

= M 2 ⇥( )<br />

d 2<br />

Relativistic LF single-variable radial<br />

equation for <strong>QCD</strong> & QED<br />

⇥<br />

d 2<br />

d 2 + V ( )<br />

G. de Teramond, sjb<br />

Frame Independent!<br />

= M 2 ⇥( )<br />

2 = x(1 x)b 2 ⇥ .<br />

x (1<br />

x) b ⇥<br />

x (1 x) b ⇥<br />

⇤(x, b ⇥ ) = ⇤( )<br />

x (1 x) b ⇥<br />

⇤(x, b ⇥ ) = ⇤( )<br />

⇥(z)<br />

<strong>AdS</strong>/<strong>QCD</strong>:<br />

each Fock State⇤(x, b ⇥ ) = ⇤( )<br />

⇥(z)<br />

U(⇣) =apple 4 ⇣ 2 +2apple 2 (L + S 1)<br />

= x(1 x)b 2 ⇥<br />

⇥(z)<br />

Jp z =<br />

= Sq z x(1<br />

+ Sg z x)b 2 ⇥<br />

Semiclassical first approximation to <strong>QCD</strong><br />

+ L z z<br />

q + L<br />

potential z g = 1 = x(1 x)b 2 ⇥<br />

z<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong> z<br />

61<br />

z<br />

J z = S z p = ⇤ n<br />

i=1<br />

S z i + ⇤ n 1<br />

i=1 ⌥z i = 1 2<br />

Confining <strong>AdS</strong>/<strong>QCD</strong>


z ! ⇣<br />

U(⇣ 2 )=apple 4 ⇣ 2 +2apple 2 (J 1)<br />

G. de Teramond, sjb<br />

62


May 21, 2013 LC2013 <strong>Stan</strong> <strong>Brodsky</strong><br />

<strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong><br />

63


Quark separation<br />

increases with L<br />

6<br />

4<br />

5<br />

Φ(z)<br />

Φ(z)<br />

0<br />

2<br />

-5<br />

2-2007<br />

8721A20<br />

0<br />

0 4 8<br />

z<br />

2-2007<br />

8721A21<br />

0 4 8<br />

z<br />

Fig: Orbital <strong>and</strong> radial <strong>AdS</strong> modes in the soft wall model for = 0.6 GeV .<br />

(a)<br />

S = 0 (b) S = 0<br />

Soft Wall<br />

Model<br />

Pion has<br />

zero mass!<br />

(GeV 2 )<br />

4<br />

2<br />

π (140)<br />

b 1<br />

(1235)<br />

π 2<br />

(1670)<br />

π (140)<br />

π (1300) π (1800)<br />

Pion mass<br />

automatically zero!<br />

m q = 0<br />

0<br />

8-2007<br />

8694A19<br />

0 2 4<br />

L<br />

0 2 4<br />

n<br />

<strong>Light</strong> meson orbital (a) <strong>and</strong> radial (b) spectrum for<br />

= 0.6 GeV.<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

64<br />

Exploring <strong>QCD</strong>, Cambridge, August 20-24, 2007 Page 26


= apple 2<br />

J=2<br />

J=1<br />

J=0<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

65


Prediction from <strong>AdS</strong>/CFT: Meson LFWF<br />

(x, k )<br />

⇥ M (x, Q 0 ) ⇥ 0.8 x(1 0.60.40.2 x)<br />

0.2<br />

de Teramond,<br />

sjb<br />

⇤ M (x, k 2 ⇤ )<br />

0.15<br />

0.1<br />

0.05<br />

“Soft Wall”<br />

model<br />

µ R<br />

Note coupling<br />

µ R = Q<br />

k 2 , x<br />

0<br />

1.3<br />

1.4<br />

(x, k ) (GeV)<br />

1.5<br />

= 0.375 GeV<br />

massless quarks<br />

µ F = µ R<br />

⇤ M (x, k ⇥ ) =<br />

4⇥<br />

x(1 x) e k 2 ⇥<br />

2 2 x(1 x)<br />

⇥ M (x, Q 0 ) ⇥ x(1 x)<br />

Provides Q/2 < Connection µ R < 2Q of Confinement<br />

µ<br />

to TMDs<br />

R<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

66


0.6<br />

Q 2 F Π Q 2 <br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Q 2 GeV 2<br />

0.0<br />

0 1 2 3 4 5 6 7<br />

67


J. R. Forshaw,<br />

R. S<strong>and</strong>apen<br />

L<br />

T<br />

⇤ p ! ⇢ 0 p 0<br />

69


<strong>AdS</strong>/<strong>QCD</strong><br />

Soft-Wall Model<br />

Exploring <strong>QCD</strong>, Cambridge, August 20-24, 2007 Page 9<br />

<strong>Light</strong>-<strong>Front</strong> <strong>Holography</strong><br />

⇥ d 2<br />

d⇣ 2 + 1<br />

4L2<br />

4⇣ 2 + U(⇣) ⇤ (⇣) =M 2 (⇣)<br />

<strong>Light</strong>-<strong>Front</strong> Schrödinger Equation<br />

U(⇣) =apple 4 ⇣ 2 +2apple 2 (L + S 1)<br />

Confinement scale:<br />

apple ' 0.5 GeV<br />

1/apple ' 0.4 fm<br />

Unique<br />

Confinement Potential!<br />

Conformal Symmetry<br />

of the action<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

70


G| (⌧) >= i @<br />

@⌧ | (⌧) ><br />

G = uH + vD + wK<br />

•<br />

de Alfaro, Fubini, Furlan<br />

G = H ⌧ = 1 2<br />

d 2<br />

dx 2 + g x 2 + 4uw<br />

4<br />

v2<br />

x 2<br />

Retains conformal invariance of action despite mass scale!<br />

4uw<br />

Identical to LF Hamiltonian with unique potential <strong>and</strong> dilaton!<br />

⇥ d 2<br />

d⇣ 2 + 1<br />

v 2 = apple 4 =[M] 4 •<br />

4L2<br />

4⇣ 2 + U(⇣) ⇤ (⇣) =M 2 (⇣)<br />

Dosch, de Teramond, sjb<br />

U(⇣) =apple 4 ⇣ 2 +2apple 2 (L + S 1)<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

71


Uniqueness<br />

de Teramond, Dosch, sjb<br />

• ζ2 confinement potential <strong>and</strong> dilaton profile unique!<br />

•<br />

Linear Regge trajectories in n <strong>and</strong> L: same slope!<br />

•<br />

Massless pion in chiral limit! No vacuum condensate!<br />

•<br />

Derive from conformal invariance: conformally invariant action<br />

for massless quarks despite mass scale<br />

• Same principle, equation of motion as de Alfaro, Fubini,<br />

Furlan .<br />

• Conformal Invariance in Quantum Mechanics Nuovo Cim.<br />

A34 (1976) 569<br />

72


What determines the <strong>QCD</strong> mass scale <strong>QCD</strong> <br />

• Mass scale does not appear in the <strong>QCD</strong> Lagrangian<br />

(massless quarks)<br />

• Dimensional Transmutation Requires external constraint<br />

such as ↵ s (M Z )<br />

• dAFF: Confinement Scale κ appears spontaneously via the<br />

Hamiltonian:<br />

G = uH + vD + wK 4uw v 2 = apple 4 =[M] 4<br />

• The confinement scale regulates infrared divergences,<br />

connects <strong>QCD</strong> to the confinement scale κ<br />

• Only dimensionless mass ratios (<strong>and</strong> M times R ) predicted<br />

• Mass <strong>and</strong> time units [GeV] <strong>and</strong> [sec] from physics external<br />

to <strong>QCD</strong><br />

• New feature: bounded frame-independent relative time<br />

between constituents<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong>


Quigg <strong>and</strong> Rosner (1979:<br />

Excitation energies of quarkonia appear to be flavor-independent<br />

E GeV<br />

1.5<br />

1<br />

0.5<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

b¯b<br />

c¯c<br />

<br />

<br />

<br />

<br />

logarithmic<br />

potential<br />

0<br />

<br />

<br />

0 1 0 1 2 2 <br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

74


Heavy-Quark Systems <strong>and</strong> Conformal Invariance<br />

H.G. Dosch, G. de Teramond, sjb<br />

q ! p mr, ˙q ! 1 p m<br />

i d dr<br />

[q(t), ˙q(t)] = i<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

75


H.G. Dosch, G. de Teramond, sjb (in progress)<br />

! = ⇤ =0.28 GeV<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

76


for the excitation energies,<br />

state<br />

that is the mass di↵erence of<br />

onic oscillator in nonrelativistic quantum mechanics<br />

<strong>and</strong> the J✓ PC =1<br />

1<br />

FIG. 1: Excitation energies 1 @ of c¯c (red) <strong>and</strong> b¯b (blue) mesons in GeV: M(n, J, P, C) M(0, 1, , ).<br />

H =<br />

@ ground state ◆are plotted<br />

l(l +1)<br />

For c¯c <strong>and</strong> b¯b 2m only states r 2 with @r r2 well defined @r quantumr 2 + 1 for all quarkon<br />

numbers below open charm <strong>and</strong> beauty numbers below2 m thresholds.<br />

⇤2 r 2 ,<br />

open charm <strong>and</strong> open b<br />

threshold are shown. The data is from Ref. [6].<br />

ntified gFrom withthe theHamiltonian Casimir operator (14) weof obtain the rotation the spectrum: group, g<br />

n 3<br />

✓ ◆<br />

2 <br />

1.5<br />

n 2<br />

)/4 with<br />

<br />

eigenvalues<br />

1<br />

given by H ` = E` `. The spectrum o<br />

<br />

E n` = 2 n + ` + 3 ⇤,<br />

b¯b<br />

<br />

f H U 2<br />

<br />

.<br />

1 <br />

n 1<br />

<br />

0.5<br />

<br />

<strong>and</strong> the wave functions:<br />

<br />

⇤ =0.28 GeV<br />

t feature <br />

<br />

c¯c<br />

<br />

0.5<br />

of H is the<br />

<br />

independence of the spectrum from the m<br />

<br />

E GeV<br />

FIG. 2:<br />

E GeV<br />

0<br />

H.G. Dosch, G. de Teramond, sjb (in progress)<br />

seen directly from (14) by substituting n` = N p n` r` mr L`+1/2<br />

= y. This m⇤r n is 2 inde e m<br />

0 <br />

<br />

<br />

n 0<br />

0 1 2<br />

0 1 2<br />

L<br />

Flavor independent<br />

Universal confinement time!<br />

egree, as can be seen from Fig. 1. In this figure4the experime<br />

L<br />

Excitation energies of c¯c (red boxes) <strong>and</strong> b¯b (blue diamonds) with di↵erent values of<br />

energies, that is the mass di↵erence of the radial <strong>and</strong> orbital<br />

angular momentum `. Only well established states below open flavour threshold are shown. The<br />

linear trajectories are the theoretical predictions from the Hamiltonian (14) with⇤ =0.28 GeV.<br />

ground state are plotted for all quarkonia with well establishe<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

where the quantum numbers ` <strong>and</strong> n represent77<br />

the orbital angular <strong>and</strong> the radial excitation


Propagation of external perturbation suppressed inside <strong>AdS</strong>.<br />

At large enough Q ⇤ r/RX 2 , = thecū J(Q, interaction ¯dū z) = occurs zQK 1 in(zQ)<br />

the large-r conformal region. Importa<br />

contribution to the FF integral from the boundary near z ⇤ 1/Q.<br />

F (Q 2 ) I⇤F s(Q 2 = ) dz<br />

z 3 F (z)J(Q, z) I (z)<br />

J(Q, z), (z)<br />

⇥(Q 2 1 J(Q, ) = z) d s(Q 2 )<br />

High Q 2<br />

from<br />

small z ~ 1/Q<br />

high Q 2<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

1 2 3 4 5<br />

Consider a specific <strong>AdS</strong> mode ⇥ (n) dual to an n partonic Fock state |n⇧. At small z, ⇥ (<br />

scales as ⇥ (n) ⇤ z n . Thus:<br />

Hadron z Form Factors from <strong>AdS</strong>/<strong>QCD</strong><br />

i ⌅ m ⇧i = m 2 i + k2 ⇧<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

78<br />

⇥<br />

(Q 2 )<br />

15⇤<br />

Q 2


Holographic Mapping of <strong>AdS</strong> Modes to <strong>QCD</strong> LFWFs<br />

• Integrate Soper formula over angles:<br />

F (q 2 ) = 2⇥<br />

⇧ 1<br />

with ⌃⇤(x, ) <strong>QCD</strong> effective transverse charge density.<br />

• Transversality variable<br />

0<br />

Drell-Yan-West: Form Factors are<br />

Convolution of LFWFs<br />

⇧ ⇥ ⌥ ⇤<br />

(1 x)<br />

1 x<br />

dx d J 0 q ˜⇤(x, ),<br />

x<br />

x<br />

⌥ n x ⌅1<br />

⇥ = = x(1 x)b x 2 j b ⇥j .<br />

1 x ⇤<br />

• Compare <strong>AdS</strong> <strong>and</strong> <strong>QCD</strong> expressions of FFs for arbitrary Q<br />

z<br />

using identity:<br />

⇧ ⇥<br />

1<br />

⌥ ⇤<br />

1 x<br />

dxJ 0 Q = QK 1 ( Q),<br />

x<br />

the solution for J(Q, ) = QK 1 ( Q) !<br />

0<br />

⌅(x, b ⇤ ) = ⌅(⇥)<br />

⇤(z)<br />

z<br />

z 0 = 1<br />

⇥ <strong>QCD</strong><br />

Identical to Polchinski-Strassler Convolution of <strong>AdS</strong> Amplitudes<br />

j=1<br />

de Teramond, sjb<br />

79


Current Matrix Elements in <strong>AdS</strong> Space (SW)<br />

sjb <strong>and</strong> GdT<br />

Grigoryan <strong>and</strong> Radyushkin<br />

• Propagation of external current inside <strong>AdS</strong> space described by the <strong>AdS</strong> wave equation<br />

⇤<br />

z 2 ⇧ 2 z z 1 + 2 2 z 2⇥ ⇧ z Q 2 z 2⌅ J (Q, z) = 0.<br />

• Solution bulk-to-boundary propagator<br />

J (Q, z) =<br />

⌃ ⇧1 + Q2<br />

4 2 U<br />

where U(a, b, c) is the confluent hypergeometric function<br />

(a)U(a, b, z) =<br />

⌥ ⇥<br />

0<br />

⇧ Q<br />

2<br />

4 2 , 0, 2 z 2 ⌃<br />

,<br />

e zt t a 1 (1 + t) b a 1 dt.<br />

Dressed<br />

Current<br />

in Soft-Wall<br />

Model<br />

• Form factor in presence of the dilaton background ⇥ = 2 z 2<br />

• For large Q 2 ⇤ 4 2<br />

F (Q 2 ) = R 3 ⌥ dz<br />

z 3 e<br />

2 z 2 ⇥(z)J (Q, z)⇥(z).<br />

J (Q, z) ⌅ zQK 1 (zQ) = J(Q, z),<br />

the external current decouples from the dilaton field.<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

80<br />

Exploring <strong>QCD</strong>, Cambridge, August 20-24, 2007 Page 34


0.6<br />

Q 2 F Π Q 2 <br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Q 2 GeV 2<br />

0.0<br />

0 1 2 3 4 5 6 7<br />

81


Fermionic Modes <strong>and</strong> Baryon Spectrum<br />

[GdT <strong>and</strong> GdT S. J. <strong>and</strong> <strong>Brodsky</strong>, sjb, PRL PRL 94, 94, 201601 201601 (2005) (2005)]<br />

Yukawa interaction<br />

in 5 dimensions<br />

From Nick Evans<br />

• Action for Dirac field in <strong>AdS</strong> d+1 in presence of dilaton background ⇧(z) [Abidin <strong>and</strong> Carlson (2009)]<br />

⇧<br />

S = d d+1⌃ ge ⌅ (z) i⌅e M A A D M ⌅ + h.c + ⇧(z)⌅⌅ µ⌅⌅ ⇥<br />

• Factor out plane waves along 3+1:<br />

⌃<br />

i<br />

e '(z)<br />

• Solution (⌅ = µR 1 2 , ⌅ = L + 1)<br />

⌅ P (x µ ,z)=e iP ·x ⌅(z)<br />

⌅<br />

⌥<br />

⇤z ⌦m ⌦ m +2 z + µR + ⇥ 2 z ⌅(x ⌦ )=0.<br />

⌅ + (z) ⇤ z 5 2 +⇤ e<br />

2 z 2 /2 L ⇤ n(⇥ 2 z 2 ), ⌅ (z) ⇤ z 7 2 +⇤ e<br />

2 z 2 /2 L ⇤+1<br />

n (⇥ 2 z 2 )<br />

• Eigenvalues (how to fix the overall energy scale, see arXiv:1001.5193)<br />

M 2 =4⇥ 2 (n + L + 1)<br />

positive parity<br />

• Obtain spin-J mode ⇤ µ1···µ J<br />

1/2<br />

, J> 1 2<br />

, with all indices along 3+1 from ⌅ by shifting dimensions<br />

• Large N C : M 2 =4⇥ 2 (N C + n + L 2) =⌅ M ⇤ ⌃ N C ⇥ <strong>QCD</strong><br />

82


May 21, 2013 LC2013 <strong>Stan</strong> <strong>Brodsky</strong><br />

<strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong><br />

83


Fermionic Modes <strong>and</strong> Baryon Spectrum<br />

[Hard wall model: GdT <strong>and</strong> S. J. <strong>Brodsky</strong>, PRL 94, 201601 (2005)]<br />

[Soft wall model: GdT <strong>and</strong> S. J. <strong>Brodsky</strong>, (2005), arXiv:1001.5193]<br />

From Nick Evans<br />

• Nucleon LF modes<br />

⇤ + ( ) n,L = ⇥ 2+L ⌅<br />

2n!<br />

(n + L)!<br />

⌅<br />

⇤ ( ) n,L = ⇥ 3+L 1<br />

⇤<br />

n + L +2<br />

3/2+L e ⇥2 2 /2 L L+1<br />

n ⇥ 2 2⇥<br />

2n!<br />

(n + L)!<br />

5/2+L e ⇥2 2 /2 L L+2<br />

n ⇥ 2 2⇥<br />

• Normalization<br />

⇤<br />

d ⇤ 2 +( )=<br />

⇤<br />

d ⇤ 2 ( )=1<br />

• Eigenvalues<br />

• “Chiral partners”<br />

M 2 n,L,S=1/2 =4⇥2 (n + L + 1)<br />

M N(1535)<br />

M N(940)<br />

= ⇤ 2<br />

LC 2011 2011, Dallas, May 23, 2011 Page 13<br />

84


Table 1: SU(6) classification of confirmed baryons listed by the PDG. The labels S, L<br />

<strong>and</strong> n refer to the internal spin, orbital angular momentum <strong>and</strong> radial quantum number<br />

5<br />

respectively. The<br />

2<br />

(1930) does not fit the SU(6) classification since its mass is too low<br />

compared to other members 70-multiplet for n = 0, L = 3.<br />

SU(6) S L n Baryon State<br />

1<br />

56<br />

2<br />

0 0 N 1 +<br />

2 (940)<br />

1<br />

2<br />

0 1 N 1 +<br />

2 (1440)<br />

1<br />

2<br />

0 2 N 1 +<br />

2 (1710)<br />

3<br />

3 +<br />

2<br />

0 0<br />

2 (1232)<br />

3<br />

3 +<br />

2<br />

0 1<br />

2 (1600)<br />

70<br />

1<br />

2<br />

1 0 N 1 2 (1535) N 3 2 (1520)<br />

3<br />

2<br />

1 0 N 1 2 (1650) N 3 2 (1700) N 5 2 (1675)<br />

3<br />

2<br />

1 1 N 1 2<br />

N 3 2 (1875) N 5 2<br />

1<br />

1<br />

2<br />

1 0<br />

2 (1620) 3<br />

2 (1700)<br />

1<br />

56<br />

2<br />

2 0 N 3 +<br />

2 (1720) N<br />

5 +<br />

2 (1680)<br />

1<br />

2<br />

2 1 N 3 +<br />

2 (1900) N<br />

5 +<br />

2<br />

3<br />

1 +<br />

2<br />

2 0<br />

2 (1910)<br />

3 +<br />

2 (1920)<br />

5 +<br />

2 (1905)<br />

7 +<br />

2 (1950)<br />

70<br />

1<br />

2<br />

3 0 N 5 2<br />

N 7 2<br />

3<br />

2<br />

3 0 N 3 2<br />

N 5 2<br />

N 7 2 (2190) N 9 2 (2250)<br />

1<br />

5<br />

7<br />

2<br />

3 0<br />

2<br />

2<br />

1<br />

56<br />

2<br />

4 0 N 7 2<br />

3<br />

5<br />

2<br />

4 0<br />

2<br />

+ 7<br />

2<br />

+<br />

+ 9<br />

2<br />

1<br />

70<br />

2<br />

5 0 N 9 2<br />

N 11<br />

2<br />

N 9 2<br />

+ (2220)<br />

+ 11 +<br />

2 (2420)<br />

3<br />

2<br />

5 0 N 7 2<br />

N 9 2<br />

N 11<br />

2<br />

(2600) N 13<br />

2<br />

PDG 2012<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

85


May 21, 2013 LC2013 <strong>Stan</strong> <strong>Brodsky</strong><br />

<strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong><br />

86


Identify L with ν<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

87


Space-Like Dirac Proton Form Factor<br />

• Consider the spin non-flip form factors<br />

⇤<br />

F + (Q 2 ) = g +<br />

⇤<br />

F (Q 2 ) = g<br />

d J(Q, )|⇥ + ( )| 2 ,<br />

d J(Q, )|⇥ ( )| 2 ,<br />

where the effective charges g + <strong>and</strong> g<br />

are determined from the spin-flavor structure of the theory.<br />

• Choose the struck quark to have S z = +1/2. The two <strong>AdS</strong> solutions ⇥ + ( ) <strong>and</strong> ⇥ ( ) correspond<br />

to nucleons with J z = +1/2 <strong>and</strong> 1/2.<br />

• For SU(6) spin-flavor symmetry<br />

F p 1 (Q2 ) =<br />

F n 1 (Q 2 ) =<br />

⇤<br />

d J(Q, )|⇥ + ( )| 2 ,<br />

⇤<br />

1<br />

d J(Q, ) |⇥ + ( )| 2 |⇥ ( )| 2⇥ ,<br />

3<br />

where F p 1 (0) = 1, F n 1<br />

(0) = 0.<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

88<br />

Exploring <strong>QCD</strong>, Cambridge, August 20-24, 2007 Page 52


• Compute Dirac proton form factor using SU(6) flavor symmetry<br />

⇧<br />

F p dz<br />

1 (Q2 )=R 4 V (Q, z)<br />

2<br />

z4 +(z)<br />

• Nucleon <strong>AdS</strong> wave function<br />

+(z) =<br />

2+L<br />

R 2<br />

⌃<br />

2n!<br />

(n + L)! z7/2+L L L+1<br />

n<br />

2 z 2⇥ e<br />

2 z 2 /2<br />

• Normalization (F 1 p (0) = 1, V(Q =0,z) = 1)<br />

R 4 ⇧ dz<br />

z 4 2<br />

+ (z) =1<br />

• Bulk-to-boundary propagator [Grigoryan <strong>and</strong> Radyushkin (2007)]<br />

V (Q, z) = 2 z 2 ⇧ 1<br />

0<br />

dx<br />

(1 x) 2 x Q2<br />

4apple 2 e<br />

2 z 2 x/(1 x)<br />

• Find<br />

F p 1 (Q2 )=<br />

⇤<br />

1+ Q2<br />

M 2 ⇢<br />

1<br />

⌅⇤ ⌅<br />

1+ Q2<br />

M 2 ⇢ 0<br />

with M ⇥<br />

2<br />

n ⇤ 4 2 (n +1/2)<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

89<br />

LC 2011 2011, Dallas, May 23, 2011 Page 20


Using SU(6) flavor symmetry <strong>and</strong> normalization to static quantities<br />

1.2<br />

0<br />

Q 4 F p 1 (Q 2 ) (GeV 4 )<br />

0.8<br />

0.4<br />

Q 4 F n 1 (Q 2 ) (GeV 4 )<br />

-0.2<br />

0<br />

0<br />

10 20 30<br />

0<br />

10 20 30<br />

2-2012<br />

8820A18<br />

Q 2 (GeV 2 )<br />

2-2012<br />

8820A17<br />

Q 2 (GeV 2 )<br />

2<br />

0<br />

F np 2 (Q2 )<br />

1<br />

F n 2 (Q2 )<br />

-1<br />

0<br />

2-2012<br />

8820A8<br />

0 2 4 6<br />

Q 2 (GeV 2 )<br />

-2<br />

2-2012<br />

8820A7<br />

0 2 4 6<br />

Q 2 (GeV 2 )<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

Niccolò Cabeo 2012, Ferrara, May 25, 2011<br />

90<br />

Page 42


Nucleon Transition Form Factors<br />

• Compute spin non-flip EM transition N(940) ⇥ N (1440):<br />

n=0,L=0<br />

+ ⇥ n=1,L=0<br />

+<br />

• Transition form factor<br />

F 1<br />

p<br />

N⇥N (Q2 )=R 4 ⇧ dz<br />

z 4<br />

n=1,L=0<br />

+ (z)V (Q, z) n=0,L=0<br />

+ (z)<br />

• Orthonormality of Laguerre functions<br />

R 4 ⇧ dz<br />

F 1<br />

p<br />

N⇥N<br />

n ⇥ ,L<br />

z 4 +<br />

(0) = 0,<br />

(z)<br />

n,L<br />

+ (z) = n,n ⇥<br />

V(Q =0,z)=1⇥<br />

• Find<br />

F 1<br />

p<br />

N⇥N (Q2 )= 2⌅ 2<br />

3<br />

Q 2<br />

M 2 P<br />

⇤<br />

1+ Q2<br />

M 2 ⌅⇤<br />

1+ Q2<br />

M 2 ⇥<br />

⌅⇤<br />

1+ Q2<br />

M 2 ⇥⇥<br />

⌅<br />

with M 2 n ⇥ 4⇥2 (n +1/2)<br />

Consistent with counting rule, twist 3<br />

de Teramond, sjb<br />

LC 2011 2011, Dallas, May 23, 2011 Page 2<br />

91


Nucleon Transition Form Factors<br />

F p 1 N!N ⇤ (Q 2 )=<br />

p<br />

2<br />

3<br />

Q 2<br />

M 2 ⇢<br />

⇣ ⌘⇣ ⌘⇣ ⌘.<br />

1+ Q2<br />

1+ Q2<br />

1+ Q2<br />

M 2 ⇢ M 2 ⇢ 0 M 2 ⇢ 00<br />

F p 1N N* (Q 2 )<br />

0.1<br />

2-2012<br />

8820A16<br />

0<br />

0<br />

2 4<br />

Q 2 (GeV 2 )<br />

Proton transition form factor to the first radial excited state. Data from JLab<br />

May Niccolò 21, Cabeo 2013 2012, Ferrara, LC2013 May 25, 2011 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

92<br />

Page 43


Dressed soft-wall current brings in higher<br />

Fock states <strong>and</strong> more vector meson poles<br />

+<br />

e +<br />

e<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

93


Higher Fock Components in LF Holographic <strong>QCD</strong><br />

• Effective interaction leads to qq ! qq, qq ! qq but also to q ! qqq <strong>and</strong> q ! qqq<br />

• Higher Fock states can have any number of extra qq pairs, but surprisingly no dynamical gluons<br />

• Example of relevance of higher Fock states <strong>and</strong> the absence of dynamical gluons at the hadronic scale<br />

|⇡ i = qq/ ⇡ |qqi ⌧ =2 + qqqq|qqqqi ⌧ =4 + ···<br />

• Modify form factor formula introducing finite width: q 2 ! q 2 + p 2iM (P qqqq = 13 %)<br />

0.6<br />

2<br />

Q 2 F π (Q 2 ) (GeV 2 )<br />

0.4<br />

0.2<br />

Log I Fπ (q 2 )I<br />

0<br />

-2<br />

2-2012<br />

8820A21<br />

0<br />

0<br />

2 4 6<br />

Q 2 (GeV 2 )<br />

2-2012<br />

8820A22<br />

0<br />

2 4<br />

q 2 (GeV 2 )<br />

Niccolò Cabeo 2012, Ferrara, May 25, 2011<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

94<br />

Page 47


Timelike Pion Form Factor from <strong>AdS</strong>/<strong>QCD</strong><br />

<strong>and</strong> <strong>Light</strong>-<strong>Front</strong> <strong>Holography</strong><br />

log F Π q 2 <br />

2<br />

F ⇡ (s) =(1 )<br />

1<br />

(1<br />

s<br />

M 2 ⇢<br />

) + 1<br />

s<br />

s<br />

(1 )(1<br />

M 2 ⇢<br />

M 2 ⇢ 0 )(1<br />

s<br />

M 2 ⇢ 00 )<br />

log |F ⇡ (s)|<br />

1<br />

M 2 ⇢ n<br />

=4apple 2 (1/2+n)<br />

=0.17<br />

0<br />

Twist 2<br />

Twist 2+4<br />

Prescription for<br />

Timelike poles :<br />

s<br />

1<br />

M 2 + i p s<br />

1<br />

Frascati data<br />

14% four-quark<br />

probability<br />

2<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0<br />

s(GeV 2 )<br />

G. de Teramond & sjb<br />

95


2<br />

Pion Form Factor from <strong>AdS</strong>/<strong>QCD</strong> <strong>and</strong> <strong>Light</strong>-<strong>Front</strong> <strong>Holography</strong><br />

1<br />

log |F ⇡ (s)|<br />

G deTeramond, sjb<br />

Preliminary<br />

0<br />

spacelike<br />

timelike<br />

1<br />

Frascati<br />

2<br />

3<br />

JLab<br />

BaBar ISR<br />

4<br />

P twist 2 =91%,P twist 4 =3%,P twist 5 =6%<br />

apple determined by the ⇢ mass, PDG widths. ⇢ 000 = ⇢ 00.<br />

10 5 0 5<br />

q 2 (GeV 2 )<br />

96


log |F ⇡ (s)|<br />

q 2 (GeV 2 )<br />

Timelike<br />

Spacelike<br />

|q 2 F ⇡ (q 2 )| ! (1 )m 2 ⇢<br />

97


Meson Transition Form-Factors<br />

[S. J. <strong>Brodsky</strong>, Fu-Guang Cao <strong>and</strong> GdT, arXiv:1005.39XX]<br />

• Pion TFF from 5-dim Chern-Simons structure [Hill <strong>and</strong> Zachos (2005), Grigoryan <strong>and</strong> Radyushkin (2008)]<br />

⇤ ⇤<br />

d 4 x dz ⇥ LMNP Q A L M A N P A Q<br />

⇤ (2⌅) 4 (4) (p ⇧ + q<br />

k) F ⇧ (q 2 )⇥ µ⌅⌃⌥ ⇥ µ (q)(p ⇧ ) ⌅ ⇥ ⌃ (k)q ⌥<br />

• Take A z ⇧ ⇧ (z)/z, ⇧(z) = ⌃ 2P qq ⇤ z 2 e ⇥2 z 2 /2 , ⌥ ⇧ | ⇧ = P qq<br />

• Find ⇧(x) = ⌦ 3f ⇧ x(1 x), f ⇧ = ⌃ P qq ⇤/ ⌦ 2⌅ ⇥<br />

Q 2 F ⇧ (Q 2 )= 4 ⌦<br />

3<br />

⇤ 1<br />

0<br />

dx ⇧(x)<br />

1 x<br />

⌅1 e P qqQ 2 (1 x)/4⇧ 2 f 2 x ⇧<br />

normalized to the asymptotic DA [P qq =1⌅ Musatov <strong>and</strong> Radyushkin (1997)]<br />

• Large Q 2 TFF is identical to first principles asymptotic <strong>QCD</strong> result<br />

Q 2 F ⇧ (Q 2 ⌅⌃)=2f ⇧<br />

• The CS form is local in <strong>AdS</strong> space <strong>and</strong> projects out only the asymptotic form of the pion DA<br />

LC 2011 2011, Dallas, May 23, 2011 Page 25<br />

98


Q 2 F π γ (Q 2 )(GeV)<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

0 (1 + x) 3<br />

Photon-to-pion transition form factor<br />

nd term in Eq. (20) vanishes at the limit Q 2 ⇥⇤, one recovers<br />

ptotic prediction for Lepage, the pion sjbTFF:<br />

Q 2 F ⇤ (Q 2 ⇥⇤)=2f ⇤ .[11]<br />

ted with (19) forP q¯q =0.5 are shown as dashed curves in Figs. 1<br />

t the calculations with the dressed current are larger as compared<br />

uted with the free current <strong>and</strong> the experimental data at low- <strong>and</strong><br />

2 < 10 GeV 2 ). The new results again disagree with BABAR’s data<br />

11<br />

F.-G. Cao,<br />

G. de Teramond,<br />

sjb<br />

Belle<br />

BaBar<br />

CLEO<br />

CELLO<br />

Free current; Twist 2<br />

Dressed current; Twist 2<br />

Dressed current; Twist 2+4<br />

0 10 20 30 40<br />

Q 2 (GeV 2 )<br />

99


Non-Perturbative Running <strong>QCD</strong> Coupling from FromModified LF <strong>Holography</strong> <strong>AdS</strong>/<strong>QCD</strong><br />

With A. Deur <strong>and</strong> S. J. <strong>Brodsky</strong><br />

Deur, de Teramond, sjb<br />

• Consider five-dim gauge fields propagating in <strong>AdS</strong> 5 space in dilaton background ⇧(z) =⇤ 2 z 2<br />

S = 1 4<br />

d 4 xdz ⇧ ge ⇥(z) 1 g 2 5<br />

G 2<br />

• Flow equation<br />

1<br />

g5 2(z) = 1<br />

e⇥(z)<br />

g5 2(0) or g5(z) 2 =e<br />

2 z 2 g 2 5(0)<br />

where the coupling g 5 (z) incorporates the non-conformal dynamics of confinement<br />

• YM coupling<br />

s (⇥) =g 2 YM (⇥)/4⌅ is the five dim coupling up to a factor: g 5(z) ⌅ g YM (⇥)<br />

• Coupling measured at momentum scale Q<br />

<strong>AdS</strong><br />

s (Q) ⇤<br />

0<br />

⇥<br />

⇥d⇥J 0 (⇥Q)<br />

<strong>AdS</strong><br />

s (⇥)<br />

• Solution<br />

<strong>AdS</strong><br />

s (Q 2 )= s <strong>AdS</strong> (0) e Q2 /4 2 .<br />

where the coupling<br />

<strong>AdS</strong><br />

s<br />

incorporates the non-conformal dynamics of confinement<br />

100


Deur, Korsch, et al.<br />

! s<br />

/"<br />

1<br />

! s,g1<br />

/" JLab<br />

Fit<br />

GDH limit<br />

p<strong>QCD</strong> evol. eq.<br />

Burkert-Ioffe<br />

Bloch et al.<br />

10 -1<br />

Cornwall<br />

Godfrey-Isgur<br />

Bhagwat et al.<br />

Maris-T<strong>and</strong>y<br />

Lattice <strong>QCD</strong><br />

1<br />

Fischer et al.<br />

10 -1<br />

DSE gluon<br />

couplings<br />

10 -1 1 10 -1 1<br />

Q (GeV)<br />

Fig: Infrared conformal window ( from Deur et al., arXiv:0803.4119 )<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

101


Running Coupling from <strong>Light</strong>-<strong>Front</strong> <strong>Holography</strong> <strong>and</strong> <strong>AdS</strong>/<strong>QCD</strong><br />

Analytic, defined at all scales, IR Fixed Point<br />

s<br />

(Q)/<br />

1<br />

s(Q)<br />

⇥<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Modified <strong>AdS</strong><br />

<strong>AdS</strong><br />

g1<br />

/ (p<strong>QCD</strong>)<br />

g1<br />

/ world data<br />

GDH limit F3<br />

/<br />

<br />

/ OPAL<br />

g1<br />

/ JLab CLAS<br />

g1<br />

/ Hall A/CLAS<br />

Lattice <strong>QCD</strong> (2004) (2007)<br />

<strong>AdS</strong><br />

s (Q)/⇥ = e Q2 /4 2<br />

apple =0.54 GeV<br />

10 -1 1 10<br />

Q (GeV)<br />

<strong>AdS</strong>/<strong>QCD</strong> dilaton captures the higher twist corrections to effective charges for Q < 1 GeV<br />

Sublimated gluons below 1 GeV<br />

e ' = e +apple2 z 2<br />

Deur, de Teramond, sjb<br />

102


Chiral Features of Soft-Wall<br />

<strong>AdS</strong>/<strong>QCD</strong> Model<br />

• Boost Invariant<br />

• Trivial LF vacuum! No condensate, but consistent with GMOR<br />

• Massless Pion<br />

• Hadron Eigenstates have LF Fock components of different L z<br />

• Proton: equal probability<br />

S z =+1/2,L z = 0; S z = 1/2,L z =+1<br />

J z =+1/2 :=1/2,<br />

• Self-Dual Massive Eigenstates: Proton is its own chiral partner.<br />

• Label State by minimum L as in Atomic Physics<br />

• Minimum L dominates at short distances<br />

• <strong>AdS</strong>/<strong>QCD</strong> Dictionary: Match to Interpolating Operator Twist at z=0.<br />

103


Gell-Mann Oakes Renner Formula in <strong>QCD</strong><br />

m 2 ⇡ = (m u + m d )<br />

f 2 ⇡<br />

< 0|¯qq|0 ><br />

current algebra:<br />

effective pion field<br />

m 2 ⇡ = (m u + m d )<br />

f ⇡<br />

< 0|i¯q 5 q|⇡ ><br />

<strong>QCD</strong>: composite pion<br />

Bethe-Salpeter Eq.<br />

vacuum condensate actually is normal pion decay matrix element<br />

⇡<br />

< 0|¯q 5 q|⇡ ><br />

Maris, Roberts, T<strong>and</strong>y<br />

104


<strong>AdS</strong>/<strong>QCD</strong> <strong>and</strong> <strong>Light</strong>-<strong>Front</strong> <strong>Holography</strong><br />

• <strong>AdS</strong>/<strong>QCD</strong>: Incorporates scale transformations<br />

characteristic of <strong>QCD</strong> with a single scale -- RGE<br />

• <strong>Light</strong>-<strong>Front</strong> <strong>Holography</strong>; unique connection of<br />

<strong>AdS</strong>5 to <strong>Front</strong>-Form<br />

• Profound connection between gravity in 5th<br />

dimension <strong>and</strong> physical 3+1 space time at fixed LF<br />

time τ<br />

• Gives unique interpretation of z in <strong>AdS</strong> to<br />

physical variable ζ in 3+1 space-time<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong>


illustrated in Fig. 2 in terms of the block matrix n : x , k , λ Hn : x, k , λ . The structure of th<br />

<br />

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that mo<br />

<strong>Light</strong>-<strong>Front</strong> of the block <strong>QCD</strong> matrix elements<br />

H <strong>QCD</strong> vanish<br />

LC | due to the<br />

h⇧ = M 2 nature<br />

h | of the light-cone interaction as defined i<br />

h⇧<br />

Heisenberg Equation<br />

S.J. <strong>Brodsky</strong> et al. / Physics Reports 301 (1998) 299—486<br />

BLFQ: Use <strong>AdS</strong>/<strong>QCD</strong> basis functions!<br />

Fig. 6. A few selected matrix elements of the <strong>QCD</strong> front form Hamiltonian H"P <br />

in LB-convention.<br />

Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. With<br />

each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot (<br />

The single gluon is absent since it cannot be color neutral.<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

106


Basis <strong>Light</strong>-<strong>Front</strong> Quantization Approach<br />

to Quantum Field Theory<br />

Use <strong>AdS</strong>/<strong>QCD</strong> orthonormal <strong>Light</strong> <strong>Front</strong> Wavefunctions<br />

as a basis for diagonalizing the <strong>QCD</strong> LF Hamiltonian<br />

• Good initial approximation<br />

BLFQ<br />

• Better than plane wave basis<br />

• DLCQ discretization -- highly successful 1+1<br />

• Use independent HO LFWFs, remove CM motion<br />

• Similar to Shell Model calculations<br />

• Xingbo Zhao<br />

• Anton Ilderton,<br />

• Heli Honkanen<br />

• Pieter Maris,<br />

• James Vary<br />

• <strong>Stan</strong> <strong>Brodsky</strong><br />

• Hamiltonian light-front field theory within an <strong>AdS</strong>/<strong>QCD</strong> basis.<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong>


Set of transverse 2D HO modes for n =1<br />

J.P. Vary, H. Honkanen, Jun Li, P. Maris, S.J. <strong>Brodsky</strong>, A. Harindranath, G.F. de Teramond, P. Sternberg, E.G. Ng, C. Yang, PRC<br />

m=0 m=1 m=2<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

0.2<br />

0<br />

−0.2<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

5<br />

0<br />

−5<br />

−5<br />

0<br />

5<br />

−0.4<br />

5<br />

0<br />

−5<br />

−5<br />

0<br />

5<br />

−0.4<br />

5<br />

m=3 m=4<br />

0<br />

−5<br />

−5<br />

0<br />

5<br />

0.2<br />

0.2<br />

0<br />

0<br />

−0.2<br />

−0.2<br />

−0.4<br />

5<br />

0<br />

−5<br />

−5<br />

0<br />

5<br />

−0.4<br />

5<br />

0<br />

−5<br />

−5<br />

0<br />

5<br />

108


Hadronization 1 x, ↵ k⇥ at the Amplitude Level<br />

e +<br />

e<br />

⇥e +<br />

Event amplitude<br />

⇥<br />

generator<br />

⇥ = x +<br />

e +<br />

e<br />

e<br />

g<br />

¯q q<br />

¯q<br />

g<br />

q<br />

e +<br />

e<br />

g<br />

q<br />

⇥<br />

¯q<br />

pp ⇤ p + J/⇥ + p<br />

e<br />

¯q e<br />

⇥<br />

pp ⇤ p + J/⇥ + p<br />

May 21, 2013 LC2013 q<br />

<strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

109<br />

e<br />

e +<br />

⇥<br />

e +<br />

⇤ H (x, ↵ k ⇤ , ⇥ i )<br />

⇥<br />

g<br />

⇤ H (x,<br />

pp ⇤g<br />

p + J/⇥ ↵ k ⇤ , ⇥ i )<br />

+ p<br />

¯q<br />

e<br />

g<br />

q<br />

⇥<br />

¯q<br />

q<br />

pp ⇤ p + J/⇥ + p<br />

e<br />

pp ⇤ep + J/⇥ + p<br />

⇤(x, ↵ k ⇤ , ⇥ i )<br />

Construct helicity amplitude using <strong>Light</strong>-<strong>Front</strong> Perturbation<br />

theory; coalesce quarks via LFWFs e +<br />

p H<br />

x, ↵ k ⇤<br />

p H<br />

x, ↵ k ⇤<br />

1 x, ↵ k⇤<br />

1 x,<br />

e +<br />

↵ k⇤<br />

e +<br />

⇥<br />

e<br />

⇤ H (x, ↵ k ⇤ , ⇥ i )<br />

p H<br />

x, ↵ k ⇤<br />

1 x, ↵ k⇤<br />

e +


Off -Shell T-Matrix<br />

• Quarks <strong>and</strong> Gluons Off-Shell<br />

• LFPth: Minimal Time-Ordering Diagrams-Only positive e +<br />

k+<br />

• Jz Conservation at every vertex<br />

• Frame-Independent<br />

• Cluster Decomposition<br />

• “History”-Numerator structure universal<br />

• Renormalization- alternate denominators<br />

• LFWF takes Off-shell to On-shell<br />

• Tested in QED: g-2 to three loops<br />

Event amplitude generator<br />

Chueng Ji, sjb<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

e +<br />

e<br />

e ⇥<br />

+<br />

e<br />

g<br />

¯q<br />

g<br />

q<br />

⇥<br />

¯q<br />

pp ⇤ p + J/⇥ + p<br />

q<br />

e +<br />

e<br />

g<br />

¯q<br />

q<br />

⇥<br />

pp ⇤ p + J/⇥ + p<br />

e<br />

g<br />

¯q<br />

q<br />

⇥<br />

e +<br />

e<br />

g<br />

¯q<br />

q<br />

⇥<br />

pp ⇤ p + J/⇥ + p<br />

e<br />

pp ⇤ep + J/⇥ + p<br />

⇥<br />

pp ⇤ p + J/⇥ + p<br />

⇤ H (x, ↵ k ⇤ , ⇥ i )<br />

p H<br />

⇤ H (x, ↵ k ⇤ , ⇥ i )<br />

p H<br />

x, ↵ k ⇤<br />

x, ↵ k ⇤<br />

1 x, ↵ k⇤<br />

1 x,<br />

e +<br />

↵ k⇤<br />

e +<br />

⇤(x, ↵ k ⇤ , ⇥ i )<br />

e +<br />

Roskies, Suaya, sjb<br />

⇥<br />

e<br />

g<br />

⇥<br />

⇤ H (x<br />

p H<br />

x, ↵ k ⇤<br />

1 x<br />

e +<br />

e<br />


Features of LF T-Matrix Formalism<br />

“Event Amplitude Generator”<br />

• Same principle as antihydrogen production: off-shell coalescence<br />

• coalescence to hadron favored at equal rapidity, small transverse<br />

momenta<br />

• leading heavy hadron production: D <strong>and</strong> B mesons produced at<br />

large z<br />

• hadron helicity conservation if hadron LFWF has L z =0<br />

• Baryon <strong>AdS</strong>/<strong>QCD</strong> LFWF has aligned <strong>and</strong> anti-aligned quark spin<br />

P + , ↵ P +<br />

A(⇤, ⇤) = 1<br />

2⇥<br />

P + , apple P ⇤<br />

d e i 2 ⇤<br />

x i P + , x iP⇤ ↵ + ↵ k ⇤i<br />

ẑ<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

↵L = R ↵ ⇥ P ↵ x i = k+<br />

x<br />

P + i P + , x i<br />

= P 0 P⇤ apple +<br />

+ P z apple k ⇤i<br />

= Q2<br />

2p·q<br />

P + = k0 +k 3<br />

P 0 +P z


p<br />

Hadronization 1 x, ↵ k⇥ at the Amplitude Level<br />

e +<br />

e<br />

g<br />

¯q<br />

q<br />

⇥ = x +<br />

e +<br />

e<br />

⇥<br />

⇤(x, e ↵ k ⇤ , ⇥ i )<br />

e +<br />

pp ⇤ p + J/⇥ + pp p ⇤ p + J/⇥ + p<br />

⇥<br />

e +<br />

e<br />

⇤ H (x, ↵ k ⇤ , ⇥ i )<br />

p H<br />

x, ↵ k ⇤<br />

1 x, ↵ k⇤<br />

e +<br />

⇥<br />

e<br />

⇤ H (x, ↵ k ⇤ , ⇥ i )<br />

⇥<br />

p H<br />

g<br />

x, ↵ k ⇤<br />

¯q<br />

1 x, ↵ k⇤<br />

e +<br />

e<br />

q<br />

e +<br />

e<br />

g<br />

¯q<br />

q<br />

⇥<br />

yp + ⇡ ,yp ⇡ + `<br />

pp ⇤ p + J/⇥ + p<br />

Construct helicity amplitude using <strong>Light</strong>-<strong>Front</strong> Perturbation theory;<br />

coalesce quarks via LFWFs<br />

e +<br />

e<br />

g<br />

¯q<br />

q<br />

⇥<br />

pp ⇤ p + J/⇥ +<br />

p ⇡<br />

⇡(y, `, i)<br />

112


p<br />

Hadronization 1 x, ↵ k⇥ at the Amplitude Level<br />

e +<br />

e<br />

g<br />

¯q<br />

q<br />

⇥ = x +<br />

e +<br />

e<br />

⇥<br />

⇤(x, e ↵ k ⇤ , ⇥ i )<br />

e +<br />

pp ⇤ p + J/⇥ + pp p ⇤ p + J/⇥ + p<br />

⇥<br />

e +<br />

e<br />

⇤ H (x, ↵ k ⇤ , ⇥ i )<br />

p H<br />

x, ↵ k ⇤<br />

1 x, ↵ k⇤<br />

e +<br />

⇥<br />

e<br />

⇤ H (x, ↵ k ⇤ , ⇥ i )<br />

⇥<br />

p H<br />

g<br />

x, ↵ k ⇤<br />

¯q<br />

1 x, ↵ k⇤<br />

e +<br />

e<br />

q<br />

e +<br />

e<br />

g<br />

¯q<br />

q<br />

⇥<br />

yp + ⇡ ,yp ⇡ + `<br />

pp ⇤ p + J/⇥ + p<br />

Construct helicity amplitude using <strong>Light</strong>-<strong>Front</strong> Perturbation theory;<br />

coalesce quarks via LFWFs<br />

Only Hadrons can Appear!<br />

e +<br />

e<br />

⇥<br />

No gluons<br />

g<br />

<strong>AdS</strong>/<strong>QCD</strong><br />

potential<br />

¯q<br />

q<br />

pp ⇤ p + J/⇥ +<br />

p ⇡<br />

⇡(y, `, i)<br />

113


Principle of Maximum Conformality<br />

<strong>QCD</strong> Observables<br />

O = C(↵ s (µ 2 0)) + B(<br />

log Q2<br />

µ 2 0<br />

)+D( m2 q<br />

Q 2 )+E(⇤2 <strong>QCD</strong><br />

Q 2<br />

)+F ( ⇤2 <strong>QCD</strong><br />

m 2 Q<br />

)+G( m2 q<br />

m 2 Q<br />

)<br />

Scale-Free<br />

Conformal Series<br />

Running Coupling<br />

Effects<br />

Higher Twist from<br />

Hadron Dynamics<br />

Intrinsic Heavy<br />

Quarks<br />

BLM/PMC: Absorb β-terms into running coupling<br />

<strong>Light</strong> by <strong>Light</strong><br />

Loops<br />

O = C(↵ s (Q ⇤2 )) + D( m2 q<br />

Q 2 )+E(⇤2 <strong>QCD</strong><br />

Q 2<br />

)+F ( ⇤2 <strong>QCD</strong><br />

m 2 Q<br />

)+G( m2 q<br />

m 2 Q<br />

)<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

114


Set multiple renormalization scales --<br />

Lensing, DGLAP, ERBL Evolution ...<br />

Choose renormalization scheme; e.g. α R s (µinit R )<br />

Result is independent of µ init<br />

R <strong>and</strong> scheme at fixed order No renormalization scale ambiguity!<br />

Choose µ init<br />

R ; arbitrary initial renormalization scale<br />

Result is independent of<br />

Renormalization scheme<br />

Identify {βi R} − terms using n f − terms<br />

<strong>and</strong> initial scale!<br />

through the P MC − BLM correspondence principle Same as QED Scale Setting<br />

Apply to Evolution kernels,<br />

Shift scale of α s to µ PMC<br />

R to eliminate {βi R } − terms<br />

hard subprocesses<br />

Eliminates unnecessary systematic uncertainty<br />

Conformal Series<br />

-scheme<br />

PMC/BLM<br />

automatically identifies<br />

<strong>QCD</strong> function terms<br />

Principle of Maximum Conformality<br />

Xing-Gang Wu, Matin Mojaza<br />

Leonardo di Giustino, SJB<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

115


Contributes to the ¯pp ! ¯ttX asymmetry at the Tevatron<br />

t<br />

g<br />

¯t<br />

Interferes with Born term.<br />

Small value of renormalization scale increases asymmetry<br />

Xing-Gang Wu, sjb<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

116


Eliminating the Renormalization Scale Ambiguity for Top-Pair Production<br />

Using the ‘Principle of Maximum Conformality’ (PMC)<br />

Xing-Gang Wu<br />

SJB<br />

Experimental asymmetry<br />

PMC Prediction<br />

Conventional: guess for<br />

renormalization scale <strong>and</strong> range<br />

t¯t asymmetry predicted by p<strong>QCD</strong> NNLO within<br />

1 of CDF/D0 measurements using PMC/BLM scale setting<br />

117


An analytic first approximation to <strong>QCD</strong><br />

<strong>AdS</strong>/<strong>QCD</strong> + <strong>Light</strong>-<strong>Front</strong> <strong>Holography</strong><br />

• As Simple as Schrödinger Theory in Atomic Physics<br />

• LF radial variable ζ conjugate to invariant mass squared<br />

• Relativistic, Frame-Independent, Color-Confining<br />

• Unique confining potential!<br />

• <strong>QCD</strong> Coupling at all scales: Essential for Gauge Link<br />

phenomena<br />

• Hadron Spectroscopy <strong>and</strong> Dynamics from one parameter<br />

• Wave Functions, Form Factors, Hadronic Observables,<br />

Constituent Counting Rules<br />

• Insight into <strong>QCD</strong> Condensates: Zero cosmological constant!<br />

• Systematically improvable with DLCQ-BLFQ Methods<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong>


<strong>AdS</strong>/<strong>QCD</strong><br />

Soft-Wall Model<br />

Exploring <strong>QCD</strong>, Cambridge, August 20-24, 2007 Page 9<br />

<strong>Light</strong>-<strong>Front</strong> <strong>Holography</strong><br />

⇥ d 2<br />

d⇣ 2 + 1<br />

4L2<br />

4⇣ 2 + U(⇣) ⇤ (⇣) =M 2 (⇣)<br />

<strong>Light</strong>-<strong>Front</strong> Schrödinger Equation<br />

U(⇣) =apple 4 ⇣ 2 +2apple 2 (L + S 1)<br />

Confinement scale:<br />

apple ' 0.5 GeV<br />

1/apple ' 0.4 fm<br />

Conformal Symmetry<br />

of the action<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

119


⌅(x, b ⇤ ) = ⌅(⇥)<br />

⇤(z)<br />

⇥ = x(1 x)b 2 ⇤<br />

z<br />

LF(3+1) <strong>AdS</strong> 5<br />

x (1 <strong>Light</strong>-<strong>Front</strong> x) b ⇥ <strong>Holography</strong><br />

⇤(x, b ⇥ ) = ⇤( )<br />

⇥(z)<br />

= x(1 x)b 2 ⇥<br />

⌅(x, b ⇤ ) = ⌅(⇥)<br />

⇤(z)<br />

⇥ = (x(1 x)<br />

x (1 x) b<br />

z<br />

z<br />

⇥<br />

⇤(x, b ⇥ ) = ⇤( )<br />

x (1 x) b<br />

z<br />

⇥<br />

⇤(x, b ⇥ ) = ⇤( )<br />

⇥(z)<br />

z<br />

z<br />

z 0 =<br />

⇥ 1 ⇤(x, ) = x(1 x)<br />

1/2 ⇥(<br />

⇤(x,<br />

)<br />

b ⇥ ) = ⇤(<br />

z <strong>QCD</strong><br />

0 =<br />

= x(1 1<br />

)<br />

⇥(z)<br />

x)b 2 ⇥<br />

⇥(z)<br />

⇥ <strong>Light</strong> <strong>Front</strong> <strong>Holography</strong>:<br />

= x(1 x)b <strong>QCD</strong><br />

z 2 0 = 1 Unique mapping derived from equality<br />

of LF <strong>and</strong> <strong>AdS</strong> formulae for bound-states <strong>and</strong> form ⇥ factors z<br />

d ⇥ np ⇥ <strong>QCD</strong><br />

z 0 = = x(1 1 x)b 2<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong> ⇥<br />

⇥<br />

z<br />

120<br />

z <strong>QCD</strong><br />

z<br />

⇤(z)<br />

⇥ = x(1<br />

z<br />

de Teramond, sjb<br />

x (1 x) b ⇥


String Theory<br />

Goal: First Approximant to <strong>QCD</strong><br />

Counting rules for Hard Exclusive<br />

Scattering<br />

Regge Trajectories<br />

<strong>QCD</strong> at the Amplitude Level<br />

<strong>AdS</strong>/CFT<br />

<strong>AdS</strong>/<strong>QCD</strong><br />

Mapping of Poincare’ <strong>and</strong> Conformal<br />

SO(4,2) symmetries of 3+1 space<br />

to <strong>AdS</strong>5 space<br />

Conformal behavior at short distances<br />

+ Confinement at large distance<br />

Semi-Classical <strong>QCD</strong> / Wave Equations<br />

<strong>Holography</strong><br />

Boost Invariant 3+1 <strong>Light</strong>-<strong>Front</strong> Wave Equations<br />

J =0,1,1/2,3/2 plus L<br />

Integrable!<br />

Hadron Spectra, Wavefunctions, Dynamics<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

121


⇥<br />

<strong>Light</strong>-<strong>Front</strong> Schrödinger d 2<br />

+ V ( ) Equation<br />

= M 2 ⇥( )<br />

d 2<br />

Relativistic LF single-variable radial<br />

equation for <strong>QCD</strong> & QED<br />

⇥<br />

d 2<br />

d 2 + V ( )<br />

G. de Teramond, sjb<br />

Frame Independent!<br />

= M 2 ⇥( )<br />

2 = x(1 x)b 2 ⇥ .<br />

J z = x S(1<br />

p z = x) ⇤ b n<br />

i=1<br />

Si z + ⇤<br />

⇥<br />

n 1<br />

⇤(x, b ⇥ ) = ⇤( )<br />

U is the exact <strong>QCD</strong> potential<br />

each Fock State<br />

Conjecture: ‘H’-diagrams ⇥(z) generate<br />

U( , S, L) = ⇥ 2 2 + ⇥ 2 (L + S 1/2)<br />

= x(1 x)b 2 ⇥<br />

x (1<br />

x) b ⇥<br />

J z p = S z q + S z g + L z q + L z g = 1 2<br />

= x(1 x)b 2 ⇥<br />

z<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong> z<br />

122<br />

z<br />

i=1 ⌥z i = 1 2<br />

⇤(x, b ⇥ ) = ⇤( )<br />

x (1 x) b ⇥<br />

⇥(z)<br />

⇤(x, b ⇥ ) = ⇤( )<br />

⇥(z)<br />

z<br />

= x(1 x)b 2 ⇥


<strong>AdS</strong>/<strong>QCD</strong><br />

Soft-Wall Model<br />

Exploring <strong>QCD</strong>, Cambridge, August 20-24, 2007 Page 9<br />

<strong>Light</strong>-<strong>Front</strong> <strong>Holography</strong><br />

⇥ d 2<br />

d⇣ 2 + 1<br />

4L2<br />

4⇣ 2 + U(⇣) ⇤ (⇣) =M 2 (⇣)<br />

<strong>Light</strong>-<strong>Front</strong> Schrödinger Equation<br />

U(⇣) =apple 4 ⇣ 2 +2apple 2 (L + S 1)<br />

Confinement scale:<br />

apple ' 0.5 GeV<br />

1/apple ' 0.4 fm<br />

Conformal Symmetry<br />

of the action<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong><br />

123


Predict Hadron Properties from First Principles!<br />

Conformal<br />

Invariance<br />

<strong>QCD</strong> Lagrangian<br />

<strong>AdS</strong>/<strong>QCD</strong>!<br />

<strong>Light</strong>-<strong>Front</strong><br />

<strong>Holography</strong><br />

Lattice Gauge Theory<br />

<strong>Light</strong>-<strong>Front</strong> Hamiltonian<br />

DLCQ/ BLFQ<br />

Effective Field Theory<br />

Methods<br />

SCET, ChPT, ...<br />

P<strong>QCD</strong><br />

Evolution Equations<br />

Counting Rules<br />

Hadron Masses <strong>and</strong> Observables<br />

Bound-State<br />

Dynamics!<br />

Confinement!


Basis <strong>Light</strong>-<strong>Front</strong> Quantization Approach<br />

to Quantum Field Theory<br />

Use <strong>AdS</strong>/<strong>QCD</strong> orthonormal <strong>Light</strong> <strong>Front</strong> Wavefunctions<br />

as a basis for diagonalizing the <strong>QCD</strong> LF Hamiltonian<br />

• Good initial approximation<br />

BLFQ<br />

• Better than plane wave basis<br />

• DLCQ discretization -- highly successful 1+1<br />

• Use independent HO LFWFs, remove CM motion<br />

• Similar to Shell Model calculations<br />

• Xingbo Zhao<br />

• Anton Ilderton,<br />

• Heli Honkanen<br />

• Pieter Maris,<br />

• James Vary<br />

• <strong>Stan</strong> <strong>Brodsky</strong><br />

• Hamiltonian light-front field theory within an <strong>AdS</strong>/<strong>QCD</strong> basis.<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong>


Solving nonperturbative <strong>QCD</strong> using the <strong>Front</strong> Form<br />

• Heisenberg: Diagonalize the <strong>QCD</strong> LF Hamiltonian<br />

Hornbostel, Pauli, sjb<br />

• DLCQ: Complete solutions <strong>QCD</strong>(1+1): any number of colors, flavors, quark masses<br />

• <strong>AdS</strong>/<strong>QCD</strong> <strong>and</strong> <strong>Light</strong>-<strong>Front</strong> <strong>Holography</strong>: Soft-Wall Model predicts light-quark<br />

spectrum <strong>and</strong> dynamics de Teramond, sjb<br />

• BFLQ: Use <strong>AdS</strong>/<strong>QCD</strong> orthonormal basis functions<br />

Vary, Maris. et al<br />

• RGPEP: Systematically reduce off-diagonal elements; RG equations which evolve<br />

LF<strong>QCD</strong> in scale Glazek<br />

• Reduce <strong>QCD</strong> to equation for LF valence state with effective potential<br />

Pauli<br />

• Reduce <strong>QCD</strong> to one dimensional LF Schrödinger Equation in radial coordinate<br />

conjugate to the invariant mass. de Teramond, sjb<br />

• Lippmann-Schwinger expansion in ΔU = U <strong>QCD</strong> -U <strong>AdS</strong> Hiller-sjb<br />

• Cluster expansion methods<br />

Hiller-Chabysheva<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong>


Features of <strong>AdS</strong>/<strong>QCD</strong> LF <strong>Holography</strong><br />

• Based on Conformal Scaling of Infrared <strong>QCD</strong> Fixed Point<br />

• Conformal template: Use isometries of <strong>AdS</strong>5<br />

• Interpolating operator of hadrons based on twist, superfield<br />

dimensions<br />

• Finite Nc = 3: Baryons built on q +(qq) -- Large Nc limit not<br />

required<br />

• Break Conformal symmetry with dilaton<br />

• Dilaton introduces confinement -- positive exponent<br />

• Effective Charge from <strong>AdS</strong>/<strong>QCD</strong> at all scales<br />

• Conformal Dimensional Counting Rules for Hard Exclusive<br />

Processes<br />

May 21, 2013 LC2013 <strong>AdS</strong>/<strong>QCD</strong> & LF-<strong>Holography</strong> <strong>Stan</strong> <strong>Brodsky</strong>


New Directions<br />

• Hadronization at the Amplitude Level<br />

• LF Confinement potential <strong>and</strong> LFWFs predicted<br />

• Eliminate Factorization Scale: Fracture function determines off-shellness<br />

• Eliminate Renormalization Scale Ambiguity: Principle of Maximal<br />

Conformality (PMC)<br />

• Exclusive Channels: P<strong>QCD</strong> Gluon exchange versus Soft Interactions<br />

• Different mechanisms at x \to 1 <strong>and</strong> high k_\perp<br />

• Massive quark spectroscopy<br />

• Sublimated Gluons: Gluons appear at high virtuality<br />

• Hidden Color of Nuclear Wavefunctions<br />

• Duality: connection to DIS at high x<br />

128


<strong>AdS</strong>/<strong>QCD</strong> <strong>and</strong><br />

P + = P 0 + P z<br />

<strong>Light</strong>-<strong>Front</strong> <strong>Holography</strong><br />

Fixed ⌅ = t + z/c<br />

c<br />

c<br />

x i = k+<br />

P + = k0 +k 3<br />

P 0 +P z<br />

¯c<br />

⇧(⇤, b )<br />

⇥ = d s(Q 2 )<br />

d ln Q 2 < 0<br />

Exploring <strong>QCD</strong>, Cambridge, August 20-24, 2007<br />

Page<br />

u<br />

<strong>Stan</strong> <strong>Brodsky</strong><br />

International Conference on Nuclear Theory in the Supercomputing Era - 2013<br />

LC 2013<br />

May 21, 2013<br />

Valparaiso, Chile May 19-20, 2011<br />

Skiathos, Greece<br />

129

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!