02.01.2015 Views

3d N=2 flavoured quiver gauge theories and M2-branes at toric CY4 ...

3d N=2 flavoured quiver gauge theories and M2-branes at toric CY4 ...

3d N=2 flavoured quiver gauge theories and M2-branes at toric CY4 ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>3d</strong> N = 2 <strong>flavoured</strong> <strong>quiver</strong> <strong>gauge</strong> <strong>theories</strong><br />

<strong>and</strong> <strong>M2</strong>-<strong>branes</strong> <strong>at</strong> <strong>toric</strong> CY 4 cones<br />

Stefano Cremonesi<br />

(Tel Aviv University)<br />

Crete Conference On Gauge Theories And The Structure Of Spacetime<br />

Sep 14, 2010<br />

F. Benini, C. Closset, SC, JHEP 1002, 036 (2010) [arXiv:0911.4127]<br />

SC, arXiv:1007.4562<br />

Stefano Cremonesi<br />

<strong>3d</strong> N = 2 <strong>flavoured</strong> <strong>quiver</strong> <strong>gauge</strong> <strong>theories</strong> <strong>and</strong> <strong>M2</strong>-<strong>branes</strong> <strong>at</strong> <strong>toric</strong> CY 4 cones


<strong>3d</strong> <strong>gauge</strong> <strong>theories</strong> <strong>and</strong> <strong>M2</strong>: why bother<br />

Use <strong>gauge</strong> <strong>theories</strong> to underst<strong>and</strong> multiple mem<strong>branes</strong> in<br />

M-theory [Bagger, Lambert 07; Gustavsson 07; van Raamsdonk 08;<br />

Aharony, Bergman, Jafferis, Maldacena 08; . . . ]<br />

Freund-Rubin AdS 4 vacua of 11d supergravity<br />

(Warped) AdS 4 vacua of type IIA supergravity<br />

<strong>3d</strong> <strong>quiver</strong> <strong>gauge</strong> <strong>theories</strong> (w/ Chern-Simons terms):<br />

toy models for condensed m<strong>at</strong>ter systems [Sachdev-Yin 08]<br />

Stefano Cremonesi<br />

<strong>3d</strong> N = 2 <strong>flavoured</strong> <strong>quiver</strong> <strong>gauge</strong> <strong>theories</strong> <strong>and</strong> <strong>M2</strong>-<strong>branes</strong> <strong>at</strong> <strong>toric</strong> CY 4 cones


D3 <strong>branes</strong> <strong>at</strong> <strong>toric</strong> CY 3 cones <strong>and</strong> N = 1 SCFTs in 4d<br />

Toric: holomorphic U(1) 3 action on the CY 3 cone Y 6 = C(X 5).<br />

Low energy dynamics on a stack of N D3 <strong>at</strong> the apex of the cone<br />

N = 1 superconformal SU(N) G <strong>quiver</strong> <strong>gauge</strong> theory in 4d:<br />

chiral superfields X a<br />

ij in bifundamental represent<strong>at</strong>ions ( i , j )<br />

Superpotential W (X) s<strong>at</strong>isfying the <strong>toric</strong> condition<br />

(superconformal U(1) R , mesonic U(1) 2 )<br />

F-fl<strong>at</strong>ness ∂W (X) = 0: monomial=monomial.<br />

Mesonic branch of the moduli space: Sym N<br />

Y 6 .<br />

Dual to type IIB on AdS 5 × X 5 with ∫ X 5<br />

F 5 = N.<br />

Stefano Cremonesi<br />

<strong>3d</strong> N = 2 <strong>flavoured</strong> <strong>quiver</strong> <strong>gauge</strong> <strong>theories</strong> <strong>and</strong> <strong>M2</strong>-<strong>branes</strong> <strong>at</strong> <strong>toric</strong> CY 4 cones


IIB brane tilings & 4d N = 1 <strong>toric</strong> <strong>quiver</strong> <strong>gauge</strong> th’s<br />

Info packaged in a type IIB brane tiling.<br />

[Hanany, Kennaway 05; Franco, Hanany, Kennaway, Vegh, Wecht 05]<br />

W = Tr (A 1 B 1 A 2 B 2 − A 1 B 2 A 2 B 1 )<br />

We know the <strong>quiver</strong> <strong>gauge</strong> theory(/ies) on D3 <strong>branes</strong> <strong>at</strong> any <strong>toric</strong> CY 3 Y 6<br />

(inverse algorithm)<br />

Stefano Cremonesi<br />

<strong>3d</strong> N = 2 <strong>flavoured</strong> <strong>quiver</strong> <strong>gauge</strong> <strong>theories</strong> <strong>and</strong> <strong>M2</strong>-<strong>branes</strong> <strong>at</strong> <strong>toric</strong> CY 4 cones


<strong>M2</strong> <strong>branes</strong> <strong>at</strong> <strong>toric</strong> CY 4 <strong>and</strong> <strong>3d</strong> N = 2 SCFTs<br />

Still far from knowing the <strong>3d</strong> N = 2 <strong>gauge</strong> theory on N <strong>M2</strong> <strong>at</strong> any <strong>toric</strong> CY 4<br />

Y 8 = C(X 7), dual to M-theory on AdS 4 × X 7 with ∫ X 7<br />

∗G 4 = N <strong>at</strong> large N.<br />

Pre-ABJM: M-theory brane crystals [Lee 06; Lee 2 , Park 07; Kim, Lee 2 , Park 07]<br />

Proposal for Abelian <strong>theories</strong>, non-Abelian generalis<strong>at</strong>ion unclear.<br />

Missed some partial resolutions.<br />

Post-ABJM: <strong>3d</strong> N = 2 U(N) G <strong>toric</strong> Chern-Simons <strong>quiver</strong> <strong>gauge</strong> <strong>theories</strong><br />

with 4d parents: deriv<strong>at</strong>ion by reduction to IIA.<br />

without 4d parents: crystal-inspired, no stringy deriv<strong>at</strong>ion.<br />

with 4d parents, plus fundamental flavours: stringy deriv<strong>at</strong>ion, replace<br />

models without 4d parents.<br />

N = 2 SUSY in <strong>3d</strong>: dimensional reduction of N = 1 SUSY in 4d.<br />

Abelian vector multiplet contains real scalar σ, complexified by dual photon τ.<br />

Stefano Cremonesi<br />

<strong>3d</strong> N = 2 <strong>flavoured</strong> <strong>quiver</strong> <strong>gauge</strong> <strong>theories</strong> <strong>and</strong> <strong>M2</strong>-<strong>branes</strong> <strong>at</strong> <strong>toric</strong> CY 4 cones


IIA brane tilings <strong>and</strong> <strong>3d</strong> <strong>theories</strong> with 4d parents<br />

[Hanany, Zaffaroni 08; Ueda, Yamazaki 08; Imamura, Kimura 08]<br />

W = Tr (A 1 B 1 A 2 B 2 − A 1 B 2 A 2 B 1 )<br />

k = n 1 − n 2 + n 3 − n 4<br />

Geometric moduli space of the Abelian theory is a <strong>toric</strong> CY 4 cone.<br />

Stefano Cremonesi<br />

<strong>3d</strong> N = 2 <strong>flavoured</strong> <strong>quiver</strong> <strong>gauge</strong> <strong>theories</strong> <strong>and</strong> <strong>M2</strong>-<strong>branes</strong> <strong>at</strong> <strong>toric</strong> CY 4 cones


Geometric moduli space of N = 2 <strong>quiver</strong> CS <strong>theories</strong><br />

G∑<br />

U(1) G case for simplicity. k i = 0. [Martelli, Sparks 08; Hanany, Zaffaroni 08]<br />

i=1<br />

F-fl<strong>at</strong>ness:<br />

D-fl<strong>at</strong>ness:<br />

Z = {X α, α = 1, . . . , E | ∂W (X) = 0} ⊂ C E<br />

( G<br />

D i = k i σ i<br />

∀ G 2π i=1 , |X α| 2 ∑ ) 2<br />

g i [X α] σ i = 0 ∀<br />

E<br />

α=1 ,<br />

D i ≡<br />

E ∑<br />

α=1<br />

g i [X α] |X α| 2<br />

i=1<br />

Diagonal photon A diag ≡ ∑ i A i dualised into a periodic scalar τ.<br />

Gauge:<br />

A i → A i + dθ i , τ → τ + 1 G<br />

∑<br />

i k i θ i , X α → e i g i [X α]θ i<br />

X α<br />

Branch σ i = σ ∀ G i=1:<br />

G∑<br />

c i D i = 0 ∀ {c i } |<br />

i=1<br />

σ<br />

= ∑<br />

1<br />

2π ‖k‖ 2<br />

G∑<br />

c i k i = 0<br />

i=1<br />

i k i D i , ‖k‖ 2 = ∑ i k i<br />

2<br />

Stefano Cremonesi<br />

<strong>3d</strong> N = 2 <strong>flavoured</strong> <strong>quiver</strong> <strong>gauge</strong> <strong>theories</strong> <strong>and</strong> <strong>M2</strong>-<strong>branes</strong> <strong>at</strong> <strong>toric</strong> CY 4 cones


Geometric moduli space of N = 2 <strong>quiver</strong> CS <strong>theories</strong><br />

Geometric moduli space<br />

M = (Z ⫽ U(1) G−2 )/Z q , q = gcd{k i }<br />

Moduli spaces of <strong>3d</strong>/4d TQGTs w/ same m<strong>at</strong>ter content <strong>and</strong> W (X)<br />

M mes<br />

4d<br />

= Z ⫽ U(1) G−1 = M <strong>3d</strong> ⫽ U(1) ⃗k<br />

[Jafferis, Tomasiello 08; Martelli, Sparks 08; Hanany, Zaffaroni 08]<br />

Altern<strong>at</strong>ively, use unit flux diagonal monopole oper<strong>at</strong>ors T , ˜T (instead of σ, τ)<br />

<strong>and</strong> X’s to form <strong>gauge</strong> invariants under U(1) G :<br />

˜Z = {X α, T , ˜T | ∂W (X) = 0, T ˜T = 1} ⊂ C E+2 ,<br />

M = ˜Z ⫽ U(1) G−1 .<br />

Gauge charges induced by CS terms: g i [T ] = −g i [˜T ] = k i .<br />

[Benini, Closset, SC 09]<br />

Stefano Cremonesi<br />

<strong>3d</strong> N = 2 <strong>flavoured</strong> <strong>quiver</strong> <strong>gauge</strong> <strong>theories</strong> <strong>and</strong> <strong>M2</strong>-<strong>branes</strong> <strong>at</strong> <strong>toric</strong> CY 4 cones


“Stringy deriv<strong>at</strong>ion” of <strong>quiver</strong> CS <strong>theories</strong> [Aganagic 09]<br />

Toric CY 4 cone<br />

S 1 bundle over a 7-manifold, which is a <strong>toric</strong> CY 3 cone fibred over R.<br />

A Kähler parameter of CY 3 varies linearly along R.<br />

CY 3 = CY 4 ⫽ U(1) M −→ <strong>quiver</strong> <strong>gauge</strong> theory on D2.<br />

(Not quite...)<br />

For an <strong>M2</strong> probe:<br />

– S 1 parametrised by τ<br />

– CY 3 by mesonic U(1) G invariants of the <strong>quiver</strong><br />

(Kähler parameters are FI terms)<br />

– R parametrised by σ<br />

S 1 : M-theory circle in the KK reduction to IIA (after Z q quotient).<br />

Curv<strong>at</strong>ure of the U(1) M bundle:<br />

RR F 2 , which induces CS terms<br />

on wv of fractional D2 probes.<br />

Fibr<strong>at</strong>ion of CY 3 over R: scalar N = 2 partners of CS terms.<br />

Stefano Cremonesi<br />

<strong>3d</strong> N = 2 <strong>flavoured</strong> <strong>quiver</strong> <strong>gauge</strong> <strong>theories</strong> <strong>and</strong> <strong>M2</strong>-<strong>branes</strong> <strong>at</strong> <strong>toric</strong> CY 4 cones


Brane tilings with multiple bonds: no 4d parents<br />

[Hanany, Zaffaroni 08; Hanany, Vegh, Zaffaroni 08; Franco, Hanany, Park, Rodriguez-Gomez 08]<br />

W = Tr (C 13 C 32 B 1 A 2 B 2 −C 13 C 32 B 2 A 2 B 1 )<br />

k 1 = n 1 − n 2 + n 3 − n 4<br />

k 2 = n 2 − n 3 + n 4 − n 5<br />

k 3 = −n 1 + n 5<br />

Stefano Cremonesi<br />

<strong>3d</strong> N = 2 <strong>flavoured</strong> <strong>quiver</strong> <strong>gauge</strong> <strong>theories</strong> <strong>and</strong> <strong>M2</strong>-<strong>branes</strong> <strong>at</strong> <strong>toric</strong> CY 4 cones


No stringy deriv<strong>at</strong>ion of the <strong>quiver</strong> theory. Actually, let’s see...<br />

Rescale proposed CS levels by h:<br />

<strong>3d</strong> <strong>toric</strong> diagram rescaled vertically: Y 8 −→ Y 8 /Z h<br />

Non-isol<strong>at</strong>ed singularities, locally C 2 × C 2 /Z h<br />

Dual SU(h) global symmetry not visible in the proposed <strong>quiver</strong> theory<br />

h D6 <strong>branes</strong> in type IIA after KK reduction<br />

(fixed point sets of U(1) M ⊃ Z h )<br />

Lesson: no new <strong>gauge</strong> groups, but flavours.<br />

D2-D6, D6-D2’ strings: fund. <strong>and</strong> antifund. flavours p <strong>and</strong> q.<br />

Holom. embedding of D6 in CY 3 −→ Superpotential term δW = pXq.<br />

D6 <strong>at</strong> the origin of the real line: vanishing real masses for flavours.<br />

Stefano Cremonesi<br />

<strong>3d</strong> N = 2 <strong>flavoured</strong> <strong>quiver</strong> <strong>gauge</strong> <strong>theories</strong> <strong>and</strong> <strong>M2</strong>-<strong>branes</strong> <strong>at</strong> <strong>toric</strong> CY 4 cones


Our proposal: <strong>quiver</strong>s with fundamental flavours<br />

[Benini, Closset, SC 09; Jafferis 09]<br />

h∑<br />

W = Tr (A 1 B 1 A 2 B 2 − A 1 B 2 A 2 B 1 ) + p i A 1 q i<br />

i=1<br />

Quantum corrected geometric branch of moduli space: CY 4 of M-theory.<br />

Derived by KK reduction to IIA. Manifest flavour symmetries.<br />

Real masses for flavours: displace D6 along R (blowup in M-theory).<br />

Cross D6: ∫ F 2 jump =⇒ CS levels are shifted.<br />

Stefano Cremonesi<br />

<strong>3d</strong> N = 2 <strong>flavoured</strong> <strong>quiver</strong> <strong>gauge</strong> <strong>theories</strong> <strong>and</strong> <strong>M2</strong>-<strong>branes</strong> <strong>at</strong> <strong>toric</strong> CY 4 cones


<strong>3d</strong> <strong>toric</strong> <strong>flavoured</strong> <strong>quiver</strong> <strong>gauge</strong> <strong>theories</strong><br />

Flavouring: couple h α flavours (p α, q α) to bifundamentals X α<br />

W = W 0 (X) +<br />

Quantis<strong>at</strong>ion of CS levels: k i + 1 2<br />

E∑<br />

h α ∑<br />

α=1 i α=1<br />

(p α) iα X α(q α) iα<br />

∑ (<br />

ψ gi [ψ] )2 ∈ Z<br />

We focus on Abelian <strong>theories</strong> U(1) G to compute the geometric moduli space.<br />

BPS ’t Hooft monopole oper<strong>at</strong>ors T (n) [Borokhov, Kapustin, Wu 02]<br />

Local oper<strong>at</strong>ors (chiral superfields)<br />

Insert n units of magnetic flux (<strong>and</strong> background of σ) in each U(1)<br />

around puncture in Euclidean theory<br />

Classically induced electric charges: n(k 1 , k 2 , . . . , k G ).<br />

Quantum induced charges:<br />

δQ[T (n) ] = |n|<br />

2<br />

∑<br />

α hαQ[Xα]<br />

T (n) = (T (1) ) n ≡ T n if n > 0; T (n) = (T (−1) ) −n ≡ ˜T −n if n < 0.<br />

Stefano Cremonesi<br />

<strong>3d</strong> N = 2 <strong>flavoured</strong> <strong>quiver</strong> <strong>gauge</strong> <strong>theories</strong> <strong>and</strong> <strong>M2</strong>-<strong>branes</strong> <strong>at</strong> <strong>toric</strong> CY 4 cones


Classically, or in the absence of flavours: T ˜T = 1.<br />

In the presence of flavours, according to the quantum induced charges, the<br />

chiral ring is modified: T ˜T = ∏ α X hα<br />

α .<br />

Quantum corrected geometric moduli space<br />

Branch: p α = q α = 0 ∀ α. Same classical F-terms, different quantum rel<strong>at</strong>ion.<br />

˜Z flav = {X α, T , ˜T | ∂W 0 (X) = 0, T ˜T = ∏ α X hα<br />

α } ⊂ C E+2 ,<br />

M flav = ˜Z flav ⫽ U(1) G−1 .<br />

Gauge charges of monopoles: g i [T (±1) ] = ±k i + 1 2<br />

∑<br />

α hαg i[X α]<br />

The geometric branch is a <strong>toric</strong> CY 4 cone , precisely the one th<strong>at</strong> we started<br />

from in M-theory when we reduced to type IIA to derive the <strong>3d</strong> <strong>quiver</strong> <strong>gauge</strong><br />

theory.<br />

Stefano Cremonesi<br />

<strong>3d</strong> N = 2 <strong>flavoured</strong> <strong>quiver</strong> <strong>gauge</strong> <strong>theories</strong> <strong>and</strong> <strong>M2</strong>-<strong>branes</strong> <strong>at</strong> <strong>toric</strong> CY 4 cones


Examples: <strong>toric</strong>ally <strong>flavoured</strong> ABJ(M)<br />

W = Tr (A 1 B 1 A 2 B 2 − A 1 B 2 A 2 B 1 ) +<br />

∑h a<br />

+ (p 1 ) α A 1 (q 1 ) α −<br />

h b ∑<br />

∑h c<br />

(˜p 1 ) β B 1 (˜q 1 ) β − (p 2 ) γ A 2 (q 2 ) γ +<br />

α=1<br />

β=1<br />

γ=1<br />

δ=1<br />

h d ∑<br />

(˜p 2 ) δ B 2 (˜q 2 ) δ<br />

Stefano Cremonesi<br />

<strong>3d</strong> N = 2 <strong>flavoured</strong> <strong>quiver</strong> <strong>gauge</strong> <strong>theories</strong> <strong>and</strong> <strong>M2</strong>-<strong>branes</strong> <strong>at</strong> <strong>toric</strong> CY 4 cones


Dual Type IIB brane configur<strong>at</strong>ion [SC 10]<br />

k = 0 <strong>and</strong> h a = h b = h c = h d = 0<br />

(<strong>3d</strong> version of KW or KT/KS)<br />

Stefano Cremonesi<br />

<strong>3d</strong> N = 2 <strong>flavoured</strong> <strong>quiver</strong> <strong>gauge</strong> <strong>theories</strong> <strong>and</strong> <strong>M2</strong>-<strong>branes</strong> <strong>at</strong> <strong>toric</strong> CY 4 cones


k = 0 <strong>and</strong> h a = h b = F 1 , h c = h d = F 2<br />

(vectorlike flavours)<br />

Stefano Cremonesi<br />

<strong>3d</strong> N = 2 <strong>flavoured</strong> <strong>quiver</strong> <strong>gauge</strong> <strong>theories</strong> <strong>and</strong> <strong>M2</strong>-<strong>branes</strong> <strong>at</strong> <strong>toric</strong> CY 4 cones


(Torically) <strong>flavoured</strong> ABJ(M):<br />

k = h + 1 2 (ha − h b + h c − h d )<br />

Thanks to IIB brane construction, results on<br />

- fractional <strong>M2</strong> <strong>branes</strong> <strong>and</strong> torsion G 4 fluxes<br />

- cascades of <strong>3d</strong> Seiberg-like dualities<br />

- interplay between partial resolutions <strong>and</strong> fractional <strong>M2</strong> <strong>branes</strong><br />

for (gravity duals of) <strong>M2</strong> brane <strong>theories</strong> <strong>at</strong> cones over <strong>toric</strong> SE 7<br />

(including Q 1,1,1 <strong>and</strong> Y 1,2 (CP 2 ) <strong>and</strong> two infinite classes of smooth SE 7).<br />

Stefano Cremonesi<br />

<strong>3d</strong> N = 2 <strong>flavoured</strong> <strong>quiver</strong> <strong>gauge</strong> <strong>theories</strong> <strong>and</strong> <strong>M2</strong>-<strong>branes</strong> <strong>at</strong> <strong>toric</strong> CY 4 cones


Outlook<br />

Added flavours to <strong>3d</strong> N = 2 <strong>toric</strong> <strong>quiver</strong> <strong>gauge</strong> <strong>theories</strong>:<br />

- New <strong>gauge</strong> <strong>theories</strong> for <strong>M2</strong>-<strong>branes</strong> <strong>at</strong> (infinitely many) <strong>toric</strong> CY 4<br />

singularities<br />

- Consistent with D6 embedding in KK reduction of M-theory to IIA<br />

- Conceptual way of gener<strong>at</strong>ing CS terms by introducing flavours,<br />

giving them real masses, integr<strong>at</strong>ing out.<br />

Dual Type IIB brane configur<strong>at</strong>ion, when available, allows a more<br />

detailed study of the correspondence <strong>and</strong> confirms the proposal.<br />

Future directions: generalise the analysis of type IIB brane<br />

configur<strong>at</strong>ions dual to <strong>toric</strong> CY 4 <strong>and</strong> underst<strong>and</strong> field theory<br />

interpret<strong>at</strong>ion of all partial resolutions.<br />

Stefano Cremonesi<br />

<strong>3d</strong> N = 2 <strong>flavoured</strong> <strong>quiver</strong> <strong>gauge</strong> <strong>theories</strong> <strong>and</strong> <strong>M2</strong>-<strong>branes</strong> <strong>at</strong> <strong>toric</strong> CY 4 cones

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!