01.01.2015 Views

Method Development for Chiral LC/MS/MS Analysis ... - Phenomenex

Method Development for Chiral LC/MS/MS Analysis ... - Phenomenex

Method Development for Chiral LC/MS/MS Analysis ... - Phenomenex

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Method</strong> <strong>Development</strong> <strong>for</strong> <strong>Chiral</strong><br />

<strong>LC</strong>/<strong>MS</strong>/<strong>MS</strong> <strong>Analysis</strong> of<br />

Acidic Stereoisomeric<br />

Pharmaceutical Compounds<br />

with Polysaccharide-based<br />

Stationary Phases<br />

Liming Peng, Swapna Jayapalan, and Tivadar Farkas<br />

<strong>Phenomenex</strong>, Inc., 411 Madrid Ave., Torrance, CA 90501 USA<br />

PO87820611_L_1


Introduction<br />

Developing simple and straight<strong>for</strong>ward reversed phase<br />

(RP) chiral <strong>LC</strong> separations coupled with highly sensitive<br />

<strong>MS</strong> detection is required <strong>for</strong> conducting drug metabolism<br />

and pharmacokinetic studies of stereoisomers and<br />

a challenging part of the drug discovery process.<br />

We have presented our successful results on using<br />

polysaccharide-based stationary phases coupled with<br />

API-<strong>MS</strong>/<strong>MS</strong> detection <strong>for</strong> the analysis of various basic<br />

and neutral pharmaceutical compounds in reversed<br />

phase elution using NH4HCO3 or NH4Ac as buffer salts<br />

and acetonitrile or methanol as organic modifiers. 1 This<br />

investigation is extended to the effectiveness of using an<br />

acidic mobile phase <strong>for</strong> the separation and detection of<br />

acidic stereoisomers by ESI or APCI <strong>LC</strong>/<strong>MS</strong>/<strong>MS</strong> and to<br />

method development of <strong>Chiral</strong> <strong>LC</strong>/<strong>MS</strong>/<strong>MS</strong> analysis using<br />

polysaccharide-based chiral stationary phase (CSPs).


Figure 1. Structures of <strong>Chiral</strong> Phases<br />

Lux ® Cellulose-2 or-4<br />

Cellulose tris (3-chloro-4-methylphenylcarbamate) or<br />

(4-chloro-3-methylphenylcarbamate)<br />

Cl<br />

Lux ® Amylose-2<br />

Amylose tris (5-chloro-2-methylphenylcarbamate)<br />

Cl<br />

OCONH<br />

CH 3<br />

O CONH<br />

CH 3<br />

Cl<br />

O<br />

O<br />

Cl<br />

HNOCO OCONH<br />

CH 3<br />

CH 3<br />

Cl<br />

HNOCO<br />

O<br />

CH 3<br />

O<br />

O CONH<br />

Cl<br />

Lux ® Cellulose-1<br />

Cellulose tris (3,5-dimethylphenylcarbamate)<br />

CH 3<br />

CH 3<br />

HNOCO<br />

OCONH<br />

O<br />

O<br />

OCONH<br />

CH 3<br />

CH 3<br />

CH 3<br />

CH 3<br />

Me<br />

Cl<br />

Me<br />

OCONH<br />

Lux ® Cellulose-3<br />

O<br />

Cellulose tris (4-methylbenzoate)<br />

O<br />

CH 3<br />

Cl<br />

MeCH3<br />

O<br />

HNOCO<br />

OCONH<br />

C<br />

Me<br />

O<br />

O<br />

O<br />

C<br />

O<br />

O<br />

O<br />

C<br />

Me<br />

O<br />

Cl<br />

MeCH3


Figure 2. Molecular Structures of Acidic Racemates<br />

OH<br />

O<br />

S<br />

OH<br />

Cl<br />

OH<br />

O<br />

F<br />

N<br />

H<br />

O<br />

O<br />

N<br />

O<br />

O<br />

O<br />

OH<br />

OH<br />

HO<br />

Ibuprofen Flurbiprofen Suprofen Fenoprofen Carprofen Indoprofen<br />

O<br />

O<br />

OH<br />

NH<br />

N<br />

O<br />

HO<br />

O<br />

HO<br />

O<br />

O<br />

OH<br />

O<br />

N<br />

O<br />

O<br />

S<br />

O<br />

N<br />

OH<br />

B<br />

OH<br />

H 3<br />

C<br />

Proglumide<br />

H<br />

N<br />

Etodolac<br />

CH 3<br />

O<br />

O<br />

OH<br />

O<br />

Abscisic Acid<br />

OHOOO<br />

H<br />

N<br />

N<br />

H S<br />

O O<br />

Cl<br />

OH<br />

Mecoprop Ketorolac 1-(Phenylsulfonyl)-3-<br />

indoleboronic acid<br />

Cl H<br />

N Cl<br />

Cl<br />

CF 3<br />

O<br />

N<br />

H S<br />

S<br />

O NH 2<br />

O O<br />

O<br />

S<br />

O NH 2<br />

Warfarin Bendroflumethiaze Trichlormethiazide


Table 1. MRM Transitions and Concentrations<br />

of Acidic Racemates<br />

Compound IS and MRM Conc.* Compounds IS and MRM Conc.*<br />

Ibuprofen ESI - 205.1/160.1 100 Abscisic acid APCI - 263.0/152.7 50<br />

Flurbiprofen ESI - 243.0/198.7 50 Mecoprop ESI - 214.1/141.7 50<br />

Suprofen ESI + 261.1/111.0 50 Ketorolac ESI - 254.0/209.8 50<br />

ESI + 256.2/105.0<br />

Fenoprofen APCI - 241.0/196.8 100 Etodolac ESI - 286.1/242.0 50<br />

Carprofen APCI - 272.8/228.8 100 Warfarin ESI - 307.1/160.9 50<br />

ESI + 309.2/163.1<br />

Indoprofen ESI + 282.1/236.1 50 Bendroflumethiaze ESI - 420.1/77.9 50<br />

Proglumide ESI - 333.1/120.9 50 Trichlormethiazide ESI - 377.8/241.6 50<br />

1-(Phenylsulfonyl)-<br />

3-indoleboronic<br />

acid<br />

ESI - 300.0/209.8 100 * Conc. (ng/mL)


Experimental Conditions<br />

Instrumentation<br />

HP<strong>LC</strong> System: Agilent ® 1200 series<br />

Pump: G1312B (Binary Pump)<br />

Autosampler: G1337C HP-ALS-SL<br />

<strong>MS</strong> Detector: AB SCIEX API 4000 <strong>LC</strong>/<strong>MS</strong>/<strong>MS</strong> -Turbo V Source with ESI or APCI probe<br />

<strong>MS</strong> Detection<br />

TurbolonSpray ® —ESI or APCI in Positive or Negative Ion Mode; MRM transition<br />

HP<strong>LC</strong> Conditions<br />

Flow Rate: 0.2 mL/min (3 µm, 150 x 2.0 mm) or 1.0 mL/min (5 µm, 250 x 4.6 mm), flow split to<br />

0.25 mL/min into <strong>MS</strong>/<strong>MS</strong><br />

Injection Volume: 5 µL (150 x 2.0 mm) or 20 µL (250 x 4.6 mm)<br />

Columns: Lux ® Cellulose-1 3 µm 150 x 2.0 mm<br />

Lux ® Cellulose-2 3 µm 150 x 2.0 mm<br />

Lux ® Amylose-2 3 µm 150 x 2.0 mm<br />

Lux ® Cellulose-4 5 µm 250 x 4.6 mm<br />

Lux ® Cellulose-3 5 µm 250 x 4.6 mm<br />

Kinetex ® 2.6 µm C18 50 x 2.1 mm (used <strong>for</strong> achiral analysis)<br />

Mobile Phases: 1. Acetonitrile/Methanol: 0.1 % Formic acid (FA)<br />

2. Acetonitrile/Methanol: 5 mM NH 4HCO 3 – achiral analysis<br />

3. Acetonitrile/Methanol: 5 mM HCOONH 4 (NH 4FA) – achiral analysis<br />

4. Acetonitrile/Methanol: 5 mM CH 3COONH 4(NH 4AC)- achiral analysis


Figure 3. <strong>LC</strong>/<strong>MS</strong>/<strong>MS</strong> Responses of Acidic<br />

Racemates in ESI - with Different Additives<br />

and Methanol<br />

1500000<br />

0.1 % FA:MeOH<br />

5 mM NH4FA:MeOH<br />

5 mM NH4HCO3:MeOH<br />

5 mM NH4HCO3:MeOH<br />

1250000<br />

1000000<br />

0.1 % FA:MeOH<br />

5 mM NH4FA:MeOH<br />

5 mM NH4HCO3:MeOH<br />

5 mM NH4HCO3:MeOH<br />

750000<br />

500000<br />

250000<br />

0<br />

Warfarin<br />

Etodolac<br />

Ibuprofen<br />

Fenoprofen<br />

Flurbiprofen<br />

Proglumide<br />

Bendroflumethiaze<br />

1-(PS)-3-indoleboronic<br />

Ketorolac<br />

Mecoprop<br />

Carprofen


Figure 4. <strong>LC</strong>/<strong>MS</strong>/<strong>MS</strong> Responses of Acidic<br />

Racemates in ESI- with Different Additives<br />

and Acetonitrile<br />

5 mM NH 4 HCO 3 :CH 3 CN<br />

5 mM NH 4 FA:CH 3 CN<br />

0.1 % FA:CH 3 CN<br />

5 mM NH 4 AC:CH 3 CN<br />

5 mM NH 4 HCO 3 :CH 3 CN<br />

5 mM NH 4 FA:CH 3 CN<br />

0.1 % FA:CH 3 CN<br />

5 mM NH 4 AC:CH 3 CN


Figure 5. The Effect of Acidic Additives on the<br />

Enantioseparation of Acidic Racemates<br />

in RP<br />

Bendroflumethiaze<br />

Lux ® 5 µm Cellulose-1 250 x 4.6 mm<br />

Flurbiprofen (pK a<br />

4.33 )<br />

Lux ® 5 µm Amylose-2 250 x 4.6 mm<br />

mAU<br />

40<br />

DAD1D, Sig=220,8 Ref=off (F:\PHEN4157\HPCHEM\1\DATA\LP0509\LP050507.D)<br />

14.642<br />

VWD1A, Wavelength=220nm(F:\PHEN4228\HPCHEM\1\DATA\LP0310\LP03-22-102010-2\LP03-22-102010-03-2220-12-32\LP-03-<br />

mAU<br />

350<br />

9.047<br />

300<br />

10.061<br />

15.595<br />

min<br />

30<br />

20<br />

10<br />

A. CH 3CN / 0.1 % HAc (40:60)<br />

Rs: 1.64<br />

250<br />

200<br />

150<br />

100<br />

50<br />

D. CH 3CN / 0.1 % HAc (60:40)<br />

Rs: 2.72<br />

0<br />

0<br />

0 2 4 6 8 10 12 14 16 18 min 0 2 4 6 8 10 12 14 min<br />

DAD1D, Sig=220,8 Ref=off (F:\PHEN4157\HPCHEM\1\DATA\LP0509\LP050504.D)<br />

VWD1A, Wavelength=220nm(LP0310\LP03-22-10-22010-03-2310-52-16\LP-03-22-10-015.D)<br />

mAU<br />

mAU<br />

600<br />

4.950<br />

60<br />

14.915<br />

500<br />

5.904<br />

50<br />

B. CH 3CN / 0.1 % FA (40:60)<br />

E. CH<br />

400<br />

3CN / 0.1 % FA (60:40)<br />

40<br />

Rs: 1.65<br />

30<br />

300<br />

Rs: 4.69<br />

20<br />

200<br />

10<br />

100<br />

3.256<br />

0<br />

0<br />

0 2 4 6 8 10 12 14 16 18<br />

0 2 4 6 8 10 12 14 min<br />

DAD1D, Sig=220,8 Ref=off (F:\PHEN4157\HPCHEM\1\DATA\LP0509\LP050511.D)<br />

VWD1A, Wavelength=220nm(LP0310\LP03-22-10-32010-03-2311-47-19\LP-03-22-10-016.D)<br />

mAU<br />

mAU<br />

700<br />

30<br />

4.628<br />

14.954<br />

600<br />

25<br />

15.932 F. CH<br />

500<br />

5.581 3CN / 0.1 % TFA (60:40)<br />

20<br />

15<br />

C. CH 3CN / 0.1 % TFA (40:60)<br />

Rs: 1.64<br />

400<br />

300<br />

Rs: 4.94<br />

15.889<br />

min<br />

10<br />

5<br />

0<br />

0 2 4 6 8 10 12 14 16 18<br />

200<br />

100<br />

0<br />

0 2 4 6 8 10 12 14<br />

min<br />

Conc.: 250 µg/mL; Flow Rate: 1.0 mL/min; Injection: 10 µL; Detection: UV @ 220 nm<br />

HAc ‐ Acetic Acid TFA ‐ Trifluoroacetic Acid


Figure 6. The Effect of Organic Modifier on the<br />

Enantioseparation of Acidic Racemates<br />

in RP<br />

Proglumide<br />

Lux ® 3 µm Cellulose-1 150 x 2.0 mm<br />

Ibuprofen<br />

Lux ® 5 µm Cellulose-3 250 x 4.6 mm<br />

X I C o f -M R M ( 1 2 p a i rs ): 3 3 3 .0 5 2 /1 2 0 .9 0 0 D a fr o m S a m ... M a x . 1 .1 e 5 c p s .<br />

X IC o f - M R M (1 2 p a ir s ) : 2 0 5 .1 4 1 /1 6 0 .9 0 0 D a fr o m S a m ... M a x . 2 .4 e 4 c p s .<br />

1 .1 5 e 5<br />

1 .0 0 e 5<br />

2 . 4 2<br />

CH 3CN / 0.1 % FA (60:40)<br />

2 .0 e 4<br />

CH 3CN / 0.1 % FA (60:40)<br />

8 .0 0 e 4<br />

1 .5 e 4<br />

6 .0 0 e 4<br />

4 .0 0 e 4<br />

1 .0 e 4<br />

2 .0 0 e 4<br />

5 0 0 0 .0<br />

0 .0 0<br />

2 4 6 8 1 0<br />

T im e , m i n<br />

i<br />

X I C o f -M R M ( 1 2 p a i rs ): 3 3 3 .0 5 2 /1 2 0 .9 0 0 D a fr o m S a m ... M a x . 3 .6 e 4 c p s .<br />

2 4 6 8 1 0 1 2 1 4<br />

T im e , m i n<br />

X IC o f - M R M (1 2 p a ir s ) : 2 0 5 .1 4 1 /1 6 0 .9 0 0 D a fr o m S a ... M a x . 6 3 5 9 .0 c p s .<br />

3 .6 e 4<br />

3 .0 e 4<br />

CH 3CN / 0.1 % FA (40:60)<br />

6 0 0 0<br />

5 0 0 0<br />

CH 3CN / 0.1 % FA (50:50)<br />

.9<br />

2 .0 e 4<br />

4 0 0 0<br />

3 0 0 0<br />

1 .0 e 4<br />

2 0 0 0<br />

0 .0<br />

2 4 6 8 1 0<br />

T im e , m i n<br />

i<br />

X I C o f -M R M ( 1 2 p a i rs ): 3 3 3 .0 5 2 /1 2 0 .9 0 0 D a fr o m S a m ... M a x . 1 .6 e 4 c p s .<br />

1 0 0 0<br />

2 4 6 8 1 0 1 2 1 4<br />

T im e , m i n<br />

.1 0 0 a fr o m S a 1 7 1 X IC o f - M R M (1 2 p a ir s ) : 2 0 5 4 1 /1 6 0 .9 D ... M a x . 4 .2 c p s .<br />

1 .5 e 4<br />

7 .2 1<br />

4 0 0 0<br />

CH 3CN / 0.1 % FA (30:70) CH 3CN / 0.1 % FA (40:60)<br />

2 0 .8 4<br />

1 .0 e 4<br />

3 0 0 0<br />

5 0 0 0 .0<br />

2 0 0 0<br />

1 0 0 0<br />

0 .0<br />

2 4 6 8 1 0<br />

T im e , m i n<br />

FA ‐ Formic Acid<br />

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4<br />

T im e , m i n<br />

s


Figure 7. Enantioseparations on Lux Cellulose-2<br />

with Acetonitrile or Methanol as Modifier<br />

X I C o f -M R M ( 6 p a i rs ): 3 3 3 .0 5 2 /1 2 0 .9 0 0 D a fro m S ... M a x . 2 .3 e 4 c p s .<br />

X IC o f -M R M ( 1 2 p a ir s ): 3 3 3 .0 5 2 /1 2 0 .9 0 0 D a f ro m ... M a x . 1 .4 e 4 c p s .<br />

2 .0 e 4<br />

Proglumide<br />

CH 3CN / 0.1 % FA (40:60)<br />

1 .4 e 4<br />

1 .0 e 4<br />

.2<br />

Proglumide<br />

Methanol / 0.1 % FA (70:30)<br />

0 .0<br />

n<br />

2 4 6 8 t 1 0 1 2<br />

T im e , m i n<br />

e<br />

X I C o f -M R M ( 6 p a i rs ): 2 5 3 .9 4 7 /2 0 9 .8 0 0 D a fro m . .. n M a x . 5 7 8 5 .9 c p s .<br />

2 4 6 8 1 0 1 2 1 4<br />

T im e , m i n<br />

X IC o f -M R M ( 1 2 p a ir s ): 2 5 3 .9 4 7 /2 0 9 .8 0 0 D a f ro m ... M a x . 1 .2 e 4 c p s .<br />

5 7 8 6<br />

4 0 0 0<br />

2 0 0 0<br />

Ketorolac<br />

CH 3CN / 0.1 % FA (40:60)<br />

I<br />

1 .2 4 e 4<br />

1 .0 0 e 4<br />

Ketorolac<br />

Methanol / 0.1 % Formic Acid (70:30)<br />

.<br />

2 4 6 8 1 0 1 2<br />

T im e , m i n<br />

X I C o f -M R M ( 6 p a i rs ): 4 2 0 .0 4 8 /7 7 .9 0 0 D a f ro m S a ...<br />

p<br />

M a x . 1 .3 e 4 c p s .<br />

2 4 6 8 1 0 1 2 1 4<br />

T im e , m i n<br />

X IC o f -M R M ( 1 2 p a ir s ): 4 2 0 .0 4 8 /7 7 .9 0 0 D a f ro m ... M a x. 3 4 0 5 .0 c p s.<br />

1 .0 0 e 4<br />

5 0 0 0 .0 0<br />

Bendroflumethiaze<br />

CH3CN / 0.1 % FA (40:60)<br />

6 .8 4<br />

3 4 0 5<br />

3 .1 4<br />

Bendroflumethiaze<br />

Methanol / 0.1 % FA (70:30)<br />

2 4 6 8 1 0 1 2<br />

T im e , m i n<br />

p<br />

X I C o f -M R M ( 6 p a i rs ): 2 9 9 .9 9 4 /2 0 9 .8 0 0 D a fro m . .. M a x . 1 3 9 6 .8 c p s .<br />

0<br />

2 4 6 8 1 0 1 2 1 4<br />

T im e , m i n<br />

2 9 .8 0 D a f ro m 0 0 X IC o f -M R M ( 1 p a ir s ): 2 9 .9 9 4 /2 0 9 0 ... M a x. 2 2 .1 c p s.<br />

1 3 9 7<br />

1 0 0 0<br />

5 0 0<br />

1-(Phenylsulfonyl)-3-indoleboronic acid<br />

CH 3CN / 0.1 % FA (40:60)<br />

t<br />

.<br />

2 0 0 0<br />

1 5 0 0<br />

.<br />

1-(Phenylsulfonyl)-3-indoleboronic acid<br />

Methanol / 0.1 % FA (70:30)<br />

2 4 6 8 1 0 1 2<br />

T im e , m i n<br />

X I C o f -M R M ( 6 p a i rs ): 2 8 6 .1 0 1 /2 4 2 .0 0 0 D a fro m S ...<br />

p<br />

M a x . 9 .2 e 4 c p s .<br />

2 4 6 8 1 0 1 2 1 4<br />

T im e , m i n<br />

X IC o f -M R M ( 1 2 p a ir s ): 2 8 6 .1 0 1 /2 4 2 .0 0 0 D a f ro m ... M a x . 1 .7 e 5 c p s .<br />

9 .2 e 4<br />

5 .0 e 4<br />

Etodolac<br />

CH 3CN / 0.1 % FA (40:60)<br />

.<br />

.<br />

1 .5 0 e 5<br />

1 .0 0 e 5<br />

Etodolac<br />

Methanol / 0.1 % FA (70:30)<br />

FA ‐ Formic Acid<br />

2 4 6 8 1 0 1 2<br />

T im e , m i n<br />

2 4 6 8 1 0 1 2 1 4<br />

T im e , m i n<br />

,<br />

c<br />

p


Figure 8. Enantioseparations in RP on Lux<br />

Cellulose-1 with Acetonitrile<br />

X I C o f -M R M ( 5 p a i rs ): 2 8 6 .1 0 1 /2 4 2 .0 0 0 D a fro m S a m ... M a x. 3 .0 e 5 c p s .<br />

X IC o f - M R M ( 5 p a i rs ) : 3 3 3 .0 5 2 /1 2 0 .9 0 0 D a fr o m S a m ... M a x . 2 .8 e 4 c p s .<br />

3 .0 e 5<br />

2 .0 e 5<br />

Etodolac<br />

CH 3CN / 0.1 % FA (60:40)<br />

2 .8 e 4<br />

2 .0 e 4<br />

Proglumide<br />

CH 3CN / 0.1 % FA (40:60)<br />

1 .0 e 5<br />

1 .0 e 4<br />

0 .0<br />

2 4 6 8 1 0<br />

T i m e , m in<br />

X I C o f -M R M ( 5 p a i rs ): 3 0 7 .1 3 4 /1 6 0 .9 0 0 D a fro m S a m ... s M a x. 1 .4 e 5 c p s .<br />

0 .0<br />

2 4 6 8 1 0<br />

T im e , m in<br />

X IC o f - M R M ( 2 p a i rs ) : 2 7 2 .7 6 1 /2 2 8 .8 0 0 D a fr o m S a ... M a x . 8 3 6 3 .8 c p s .<br />

1 .4 e 5<br />

1 .0 e 5<br />

Warfarin<br />

CH 3CN / 0.1 % FA (60:40)<br />

8 3 6 4<br />

5 0 0 0<br />

Carprofen APCI -<br />

CH 3CN / 0.1 % FA (60:40)<br />

5 .0 e 4<br />

0 .0<br />

s<br />

2 4 6 1 0<br />

T i m e , m in<br />

X I C o f -M R M ( 2 p a i rs ): 3 7 7 .7 7 4 /2 4 1 .6 0 0 D a fro m S a m ... s M a x. 1 .5 e 5 c p s .<br />

0<br />

2 4 6 8 1 0<br />

T im e , m in<br />

X IC o f - M R M ( 5 p a i rs ) : 4 2 0 .0 4 8 /7 7 .9 0 0 D a fr o m S a m p ... M a x . 1 .1 e 4 c p s .<br />

1 .5 e 5<br />

1 .0 e 5<br />

Trichlormethiazide<br />

CH 3CN / 0.1 % FA (30:70)<br />

1 .0 0 e 4<br />

Bendroflumethiaze<br />

CH 3CN / 0.1 % FA (40:60)<br />

5 .0 e 4<br />

5 0 0 0 .0 0<br />

0 .0<br />

2 4 6 1 0<br />

T i m e , m in<br />

X I C o f -M R M ( 1 2 p a i rs ): 2 9 9 .9 9 4 /2 0 9 .8 0 0 D a fr o m S ... s M a x. 1 0 8 8 .2 cp s .<br />

0 .0 0<br />

2 4 6 8 1 0 1 2<br />

T im e , m in<br />

p a 4 D a fr o m S 4 3 X IC o f - M R M ( 1 2 i rs ) : 2 5 3 .9 7 /2 0 9 . 8 0 0 ... M a x . 9 9 .5 c p s .<br />

1 0 0 0<br />

5 0 0<br />

1-(Phenylsulfonyl)-3-indoleboronic acid<br />

CH 3CN / 0.1 % FA (30:70)<br />

4 0 0 0<br />

3 0 0 0<br />

2 0 0 0<br />

Ketorolac<br />

CH 3CN / 0.1 % FA (30:70)<br />

1 0 0 0<br />

5 1 0 1 5 2 0<br />

5 1 0 1 5 2 0<br />

T i m e , m in<br />

T im e , m in<br />

FA ‐ Formic Acid<br />

c<br />

p<br />

s


Figure 9. Enantioseparations in RP on Lux<br />

Cellulose-4 with Acetonitrile<br />

X I C o f -M R M ( 6 p a i rs ): 2 8 6 .1 0 1 /2 4 2 .0 0 0 D a fro m S a m p l... M a x . 1 .3 e 6 cp s .<br />

X IC o f - M R M (6 p a ir s ) : 3 0 7 .1 3 4 /1 6 0 .9 0 0 D a fr o m S a m p l ... M a x. 1 .8 e 5 c p s.<br />

1 .3 0 e 6<br />

1 .0 0 e 6<br />

Etodolac<br />

CH 3CN / 0.1% FA (50:50)<br />

1<br />

1 .5 e 5<br />

1 .0 e 5<br />

Warfarin<br />

CH 3CN / 0.1 % FA (60:40)<br />

5 .0 0 e 5<br />

5 .0 e 4<br />

t<br />

2 4 6 8 1 0<br />

T im e , m i n<br />

fro m S a m X I C o f -M R M ( 6 p a i rs ): 2 9 9 .9 9 4 /2 0 9 .8 0 0 D a ... M a x . 1 5 7 7 .1 cp s .<br />

0 .0<br />

2 4 6 8 1 0<br />

T im e , m i n<br />

X IC o f - M R M (6 p a ir s ) : 2 5 3 .9 4 7 /2 0 9 .8 0 0 D a fr o m S a m ... M a x. 4 5 5 6 .1 c p s.<br />

1 5 0 0<br />

1 0 0 0<br />

1-(Phenylsulfonyl)-3-indoleboronic acid<br />

CH 3CN / 0.1 % FA (40:60)<br />

.<br />

4 0 0 0<br />

Ketorolac<br />

CH 3CN / 0.1 % FA (40:60)<br />

.<br />

5 0 0<br />

2 0 0 0<br />

t<br />

0<br />

2 4 6 8 1 0 1 2 1 4<br />

T im e , m i n<br />

p a .0 0 fro m S a m s<br />

.7 e X I C o f -M R M ( 6 i rs ): 3 3 3 5 2 /1 2 0 .9 0 D a p l... M a x . 2 4 cp s .<br />

0<br />

2 4 6 8 1 0 1 2 1 4<br />

T im e , m i n<br />

p .7 7 0 fr o m S a m 9 .3 X IC o f - M R M (2 a ir s ) : 3 7 7 4 /2 4 1 .6 0 D a p l ... M a x. e 4 c p s.<br />

2 .7 e 4<br />

2 .0 e 4<br />

Proglumide<br />

CH 3CN / 0.1 % FA (40:60)<br />

8<br />

9 .3 e 4<br />

5 .0 e 4<br />

Trichlormethiazide<br />

CH 3CN / 0.1 % FA (30:70)<br />

.<br />

1 .0 e 4<br />

0 .0<br />

2 4 6 8 1 0<br />

T im e , m i n<br />

X I C o f -M R M ( 6 p a i rs ): 4 2 0 .0 4 8 /7 7 .9 0 0 D a fro m S a m p le ... M a x . 1 .2 e 4 cp s .<br />

0 .0<br />

2 4 6 8 1 0 1 2 1 4<br />

T im e , m i n<br />

p .0 4 D fr o m S a m 1 .5 X IC o f - M R M (6 a ir s ) : 4 2 0 8 /7 7 .9 0 0 a p l e ... M a x. e 4 c p s.<br />

1 .0 0 e 4<br />

Bendroflumethiaze<br />

CH 3CN / 0.1 % FA (50:50)<br />

.<br />

1 .5 e 4<br />

1 .0 e 4<br />

.7<br />

Bendroflumethiaze<br />

CH3CN / 0.1 % FA (80:20)<br />

5 0 0 0 .0 0<br />

5 0 0 0 .0<br />

0 .0 0<br />

2 4 6 8 1 0<br />

0 .0<br />

2 4 6 8 1 0<br />

T im e , m i n<br />

T im e , m i n


Figure 10. Enantioseparations in RP on Lux<br />

Amylose-2 with Acetonitrile<br />

X I C o f -M R M ( 4 p a i rs ): 2 5 3 .9 4 7 /2 0 9 .8 0 0 D a fro m S a m p l... M a x. 2 .4 e 4 cp s .<br />

X IC o f + M R M ( 5 p a i rs ) : 2 5 6 .1 8 9 /1 0 5 .0 0 0 D a fr o m S a m p l ... M a x. 2 .2 e 5 c p s .<br />

2 .0 e 4<br />

1 .5 e 4<br />

Ketorolac<br />

253.95/209.8 (ESI - )<br />

CH 3CN / 0.1 % FA (60:40)<br />

4 .1 9<br />

2 .0 e 5<br />

1 .5 e 5<br />

Ketorolac<br />

256.19/105.00 (ESI + )<br />

CH 3CN / 0.1 % FA (60:40)<br />

4 .1 9<br />

1 .0 e 4<br />

1 .0 e 5<br />

5 0 0 0 .0<br />

5 .0 e 4<br />

1 .0 2 .0 3 .0 4 .0 5 .0 6 .0 7 .0 8 .0<br />

T im e , m i n<br />

X I C o f -M R M ( 4 p a i rs ): 3 0 7 .1 3 4 /1 6 0 .9 0 0 D a fro m S a m p l... M a x. 3 .7 e 4 cp s .<br />

0 .0<br />

1 .0 2 .0 3 .0 4 .0 5 .0 6 .0 7 . 0 8 .0<br />

T im e , m i n<br />

5 p 0 9 .1 .1 0 a fr o m S a m ... M a x. c p s X IC o f + M R M ( a i rs ) : 3 7 8 /1 6 3 0 D p l 7 .0 e 4 .<br />

3 .7 e 4<br />

3 .0 e 4<br />

2 .0 e 4<br />

Warfarin<br />

307.13/160.90 (ESI - )<br />

CH 3CN / 0.1 % FA (60:40)<br />

7 .0 e 4<br />

6 .0 e 4<br />

4 .0 e 4<br />

Warfarin<br />

309.18/163.10 (ESI + )<br />

CH 3CN / 0.1 % FA (60:40)<br />

.<br />

1 .0 e 4<br />

2 .0 e 4<br />

0 .0<br />

n<br />

1 .0 2 .0 3 .0 4 .0 5 .0 6 .0 7 .0 8 .0<br />

T im e , m i n<br />

X I C o f + M R M ( 5 p a ir s ) : 2 6 1 .1 2 0 /1 1 1 .0 0 0 D a f ro m S a m p ... a x. 1 .3 e 5 cp s .<br />

1 .0 2 .0 3 .0 4 .0 5 .0 6 .0 7 . 0 8 .0<br />

T im e , m i n<br />

X IC o f - M R M (4 p a ir s) : 2 4 2 .9 5 4 /1 9 8 .7 0 0 D a fr o m S a m p l ... M a x. 3 .5 e 4 c p s .<br />

1 .2 7 e 5<br />

1 .0 0 e 5<br />

Suprofen<br />

261.12/111.00 (ESI + )<br />

CH 3CN / 0.1 % FA<br />

(60:40)<br />

3 .5 e 4<br />

3 .0 e 4<br />

2 .5 e 4<br />

2 .0 e 4<br />

Flurbiprofen<br />

242.95/198.70 (ESI - )<br />

CH 3CN / 0.1 % FA (60:40)<br />

.<br />

5 .0 0 e 4<br />

1 .5 e 4<br />

1 .0 e 4<br />

0 .0 0<br />

1 .0 2 .0 3 .0 4 .0 5 .0 6 .0 7 .0 8 .0<br />

5 0 0 0 .0<br />

1 .0 2 .0 3 .0 4 .0 5 .0 6 .0 7 .0 8 .0<br />

T im e , m i n<br />

T im e , m i n


Figure 11. Enantioseparations in RP on Lux<br />

Cellulose-3 with Acetonitrile Modifier<br />

X I C o f -M R M ( 9 p a i rs ): 2 1 4 .1 0 2 /1 4 1 .7 0 0 D a fro m S a m ... M a x . 6 .8 e 4 c p s .<br />

X IC o f - M R M ( 9 p a i rs ) : 2 4 0 .9 7 3 /1 9 6 .8 0 0 D a fr o m S a m ... M a x . 1 .6 e 5 c p s .<br />

6 .8 e 4<br />

5 .0 e 4<br />

0 .0<br />

Mecoprop<br />

CH 3CN / 0.1 % FA (40:60)<br />

2 4 6 8 1 0 1 2 1 4 1 6<br />

T i m e , m in<br />

X I C o f + M R M ( 5 p a ir s ) : 2 6 1 .1 2 0 /1 1 1 .0 0 0 D a f ro m S a ... M a x . 1 .1 e 5 c p s .<br />

.<br />

1 .6 e 5<br />

1 .0 e 5<br />

Flurbiprofen<br />

CH 3CN / 0.1 % FA (40:60)<br />

5 1 0 1 5 2 0 2 5<br />

T i m e , m in<br />

X IC o f - M R M ( 9 p a i rs ) : 2 5 3 .9 4 7 /2 0 9 .8 0 0 D a fr o m S a ... M a x . 3 8 0 2 .9 c p s .<br />

.<br />

1 .0 0 e 5<br />

Suprofen (ESI + )<br />

CH 3CN / 0.1 % FA (40:60)<br />

3 8 0 3<br />

Ketorolac<br />

CH 3CN / 0.1 % FA (40:60)<br />

0 .0 0<br />

2 4 6 8 1 0 1 2<br />

T i m e , m in<br />

i rs /2 4 a fro m S a c p X I C o f -M R M ( 9 p a ): 2 8 6 .1 0 1 2 .0 0 0 D m ... M a x . 9 .3 e 5 s .<br />

0<br />

2 4 6 8 1 0 1 2<br />

T im e , m in<br />

a i /2 D a f ro m S c p X IC o f + M R M ( 2 p rs ): 2 8 2 .0 9 4 3 6 .1 0 0 a ... M a x . 5 .9 e 4 s .<br />

9 .3 e 5<br />

5 .0 e 5<br />

Etodolac<br />

CH 3CN / 0.1 % FA (40:60)<br />

5 .0 e 4<br />

Indoprofen<br />

CH 3CN / 0.1 % FA (80:20)<br />

0 .0<br />

2 4 6 8 1 0 1 2<br />

T i m e , m in<br />

a /1 D a fr o m S c p X I C o f -M R M ( 1 2 p i rs ): 2 0 5 .1 4 1 6 0 .9 0 0 a ... M a x . 3 .9 e 4 s .<br />

0 .0<br />

5 1 0 1 5<br />

T im e , m in<br />

.0 D a fr o m S M X IC o f - M R M ( 1 2 p a i rs ) : 3 3 3 5 2 /1 2 0 . 9 0 0 a ... a x . 3 .1 e 4 c p s .<br />

3 .9 e 4<br />

Ibuprofen<br />

CH 3CN / 0.1 % FA (95:5)<br />

3 .1 e 4<br />

Proglumide<br />

CH 3CN / 0.1 % FA (80:20)<br />

0 .0<br />

2 4 6 8 1 0 1 2<br />

T i m e , m in<br />

i rs /9 2 fro m S a m M c p X I C o f -M R M ( 2 p a ): 2 4 0 .9 7 3 .9 0 0 D a ... a x . 6 9 0 5 .7 s .<br />

0 .0<br />

2 4 6 8 1 0<br />

T im e , m in<br />

X IC o f - M R M ( 3 p a i rs ) : 2 6 2 .9 6 8 /1 5 2 .7 0 0 D a fr o m S a m ... M a x . 2 .4 e 4 c p s .<br />

6 9 0 6 .<br />

5 0 0 0<br />

Fenoprofen (APCI - )<br />

CH 3CN / 0.1 % FA (40:60)<br />

2 .0 e 4<br />

Abscisic acid (APCI - )<br />

CH 3CN / 0.1 % FA (60:40)<br />

0<br />

5 1 0 1 5 2 0 2 5<br />

0 .0<br />

2 4 6 8 1 0 1 2 1 4<br />

T im e , m in<br />

T im e , m in<br />

,<br />

c<br />

p<br />

s


Results and Discussion<br />

<strong>Chiral</strong> <strong>LC</strong>/<strong>MS</strong>/<strong>MS</strong> experiments<br />

Five different polysaccharide-based chiral stationary<br />

phases – Lux ® Cellulose-1, Lux Cellulose-2, Lux<br />

Cellulose-3, Lux Cellulose-4, and Lux Amylose-2<br />

(Figure 1) were explored in the reversed phase elution<br />

mode <strong>for</strong> the separation of a variety of acidic compounds<br />

of pharmaceutical interest in mobile phases made of<br />

0.1 % <strong>for</strong>mic acid (FA) with acetonitrile or methanol as<br />

organic modifier and <strong>MS</strong>/<strong>MS</strong> detection.<br />

Selection of mobile phase additives<br />

As acidic analyte presents as anion ion at the neutral pH,<br />

which is not suitable <strong>for</strong> retaining on polysaccharidebased<br />

CSPs and resulting in early elution without<br />

enantiseparation, the acidic additive is often used<br />

as a counter ion in mobile phase <strong>for</strong> suppression of<br />

dissociation of acidic analyte to increase the elution time<br />

and enantioselectivity of acidic racemates on CSPs.<br />

Three acids - trifluoroacetic acid (TFA)- pK a<br />

0.59; <strong>for</strong>mic<br />

acid (FA) - pK a<br />

3.75; acetic acid HAc) - pK a<br />

4.76 were<br />

evaluated on Lux Cellulose-1 and Lux Amylose-2 CSPs as<br />

acidic additives. In general, these additives provide similar<br />

enantioresolution <strong>for</strong> weakly acidic racemates (Figure 5,<br />

a, b, c) while the stronger acidic additive (TFA) per<strong>for</strong>ms<br />

better <strong>for</strong> the stronger acidic racemates (Figure 5, d, e,<br />

f). Formic acid provides comparable enantioseparations<br />

and peak shapes to TFA. Considering the “memory<br />

effect” of TFA on polysaccharide-based CSPs and its<br />

ion suppressing tendency in <strong>MS</strong> detection, <strong>for</strong>mic acid<br />

is preferred over TFA in RP MPs <strong>for</strong> the chiral separation<br />

and <strong>MS</strong>/<strong>MS</strong> detection of acidic racemates.<br />

Effect of mobile phase additives<br />

The <strong>LC</strong>/<strong>MS</strong>/<strong>MS</strong> responses of acidic racemates with ESI in<br />

negative mode in 5 mM HCOONH4, 5 mM CH3COONH4<br />

and 5 mM NH4HCO3 containing mobile phases with<br />

either acetonitrile or methanol as organic modifier using<br />

an achiral column – Kinetex ® C18 – were compared<br />

to responses in 0.1 % FA (Figure 3 and 4). The results<br />

show that <strong>MS</strong>/<strong>MS</strong> responses are comparable in 0.1<br />

% FA CH 3<br />

CN or MeOH to the responses of analytes<br />

in other additives considerd here in the ESI- mode.<br />

This proves that 0.1 % FA as acidic additive in mobile<br />

phases is compatible <strong>for</strong> <strong>MS</strong>/<strong>MS</strong> detection and favored<br />

<strong>for</strong> enantioseparation of acidic racemates, except<br />

<strong>for</strong> carprofen which showed very poor responses<br />

in all of the additives at ESI - mode. This proves that<br />

0.1 % FA as acidic mobile phase additive is fully<br />

compatible with <strong>MS</strong>/<strong>MS</strong> detection of acidic racemates<br />

and can be implemented as the first choice.<br />

Effect of organic modifier on chiral resolution<br />

Acetonitrile or methanol was used in chiral RP HP<strong>LC</strong><br />

separations as organic modifiers. Decreasing the<br />

eluting strength of the mobile phase by decreasing<br />

the portion of acetonitrile or methanol in the mobile<br />

phase will increase retention and resolution (Figure 6).<br />

However, once enantiomers elute later than 10 minutes<br />

with only partial resolution, baseline separation can<br />

rarely be achieved by further decreasing the % organic<br />

modifier in the mobile phase. In our study, acetonitrile<br />

was more successful in providing chiral resolution<br />

on Lux CSP in RP mode compared to methanol<br />

(Figure 7).<br />

<strong>Chiral</strong> <strong>LC</strong>/<strong>MS</strong>/<strong>MS</strong> applications<br />

Figures 8-11 demonstrate 15 chiral separations on<br />

Lux ® CSPs. APCI - source was employed <strong>for</strong> the <strong>MS</strong>/<strong>MS</strong><br />

detection of carprofen, abscisic acid, and fenoprofen as<br />

APCI - provides much better <strong>MS</strong>/<strong>MS</strong> signals than ESI - <strong>for</strong><br />

these three acidic racemates. ESI + mode was used <strong>for</strong><br />

the <strong>MS</strong>/<strong>MS</strong> detection of suprofen. Most compounds<br />

evaluated here eluted in less than 10 min with baseline<br />

resolution in mobile phases of various eluting strength.<br />

The results show that Lux ® Cellulose-3 was most<br />

successful in separating acidic racemates (10 racemates),<br />

especially non-steroidal anti-inflammatory racemates.


Conclusions<br />

Fifteen successful chiral <strong>LC</strong>/<strong>MS</strong>/<strong>MS</strong> analyses are<br />

demonstrated <strong>for</strong> acidic racemic compounds on the<br />

polysaccharide-based CSPs Lux Cellulose-1, Lux<br />

Cellulose-2, Lux Cellulose-3, Lux Cellulose-4, and Lux<br />

Amylose-2 in reversed phase elution mode.<br />

Formic acid as acidic additive in mobile phases is<br />

compatible <strong>for</strong> <strong>MS</strong>/<strong>MS</strong> detection and favored <strong>for</strong><br />

enantioseparation of acidic racemates in RP.<br />

Increasing the volume fraction of organic modifier<br />

(acetonitrile or methanol) in the RP mobile phase<br />

has the expected effect: it decreases retention and<br />

enantioselectivity; adjusting the organic modifier content<br />

of the mobile phase is essential to optimizing chiral<br />

resolution.


References<br />

1. Liming P, Tivadar F, Swapna J, <strong>Chiral</strong>ity 2011 poster<br />

2. H.R. Buser, M.D. Müller, Anal. Chem. 64 (1992) 3168<br />

3. M.L. de la Puente, J. Chromatogr. A 1055 (2004) 55<br />

4. S.M.R. Stanley, W.K. Wee, B.H. Lim, H.C. Foo, J. Chromatogr. B 848<br />

(2007) 292<br />

Trademarks<br />

Lux and Kinetex are registered trademarks of <strong>Phenomenex</strong>, Inc. Agilent is a registered trademark of Agilent Technologies.<br />

API 4000 and Turbo V are trademarks of AB Sciex Pte. Ltd. TurboIonSpray is a registered trademark of AB Sciex Pte. Ltd.<br />

AB SCIEX is being used under license.<br />

Disclaimer<br />

<strong>Phenomenex</strong>, Inc. is not affiliated with Agilent Technologies or AB SCIEX.<br />

Comparative separations may not be representative of all applications.<br />

© 2011 <strong>Phenomenex</strong>, Inc. All rights reserved.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!