01.01.2015 Views

X - Vision at IME-USP

X - Vision at IME-USP

X - Vision at IME-USP

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Design of Morphological<br />

Oper<strong>at</strong>ors by Learning<br />

Junior Barrera<br />

jb@ime.usp.br<br />

<strong>IME</strong>-<strong>USP</strong>


Layout<br />

Introduction<br />

Binary oper<strong>at</strong>or design: W-oper<strong>at</strong>ors W<br />

Binary oper<strong>at</strong>or design: constraint W-W<br />

oper<strong>at</strong>ors<br />

Gray-scale oper<strong>at</strong>or design: apertures<br />

Gray-scale oper<strong>at</strong>or design: stack filters<br />

Conclusion<br />

2


Introduction


Morphological Machine (MMach)<br />

d e A A n<br />

i Ÿ ne<br />

Ÿ ⁄ ∏<br />

A<br />

4


Properties<br />

Any finite l<strong>at</strong>tice oper<strong>at</strong>or can be<br />

implemented as a program of a MMach<br />

Finite l<strong>at</strong>tices of practical importance are the<br />

l<strong>at</strong>tice of binary and gray-scale images<br />

5


Morphological Toolbox<br />

Library of hierarchical functions:<br />

- primitives: : elementary oper<strong>at</strong>ors and<br />

oper<strong>at</strong>ions;<br />

- high order oper<strong>at</strong>ors: : primitives and high<br />

order oper<strong>at</strong>ors<br />

6


Heuristic Design<br />

Divide the problem in subproblems<br />

Each subproblem is solved by a toolbox<br />

function<br />

Integr<strong>at</strong>e the subproblems solution<br />

7


Autom<strong>at</strong>ic Design<br />

Oper<strong>at</strong>or learning in a standard<br />

represent<strong>at</strong>ion<br />

Finding an equivalent and more efficient<br />

represent<strong>at</strong>ion<br />

8


Oper<strong>at</strong>or Design<br />

9


Applic<strong>at</strong>ion<br />

10


Change of Represent<strong>at</strong>ion<br />

e ⁄ e<br />

⁄ Ä Ä Ä ⁄ e<br />

A 1 A 2 A n<br />

y<br />

Oper<strong>at</strong>ors<br />

d A e A<br />

Phrases<br />

11


Oper<strong>at</strong>or Design


The problem<br />

observed<br />

ideal<br />

Find an image oper<strong>at</strong>or th<strong>at</strong> transforms the observed<br />

image to the respective ideal (or “close to the ideal”)<br />

image.<br />

13


Binary image oper<strong>at</strong>ors<br />

Binary image :<br />

Binary images can be understood as sets :<br />

is a complete Boolean l<strong>at</strong>tice<br />

Binary image oper<strong>at</strong>ors = set oper<strong>at</strong>ors :<br />

14


Transl<strong>at</strong>ion invariance<br />

Transl<strong>at</strong>ion of S by z :<br />

is<br />

transl<strong>at</strong>ion-invariant iff<br />

15


Local definition<br />

Window :<br />

An image oper<strong>at</strong>or is locally defined within iff<br />

16


W-oper<strong>at</strong>ors<br />

Transl<strong>at</strong>ion invariance<br />

+<br />

local definition within<br />

=<br />

-oper<strong>at</strong>ors<br />

z<br />

W-oper<strong>at</strong>ors are characterized by Boolean functions.<br />

17


Window<br />

Represent<strong>at</strong>ion<br />

1<br />

1<br />

1<br />

1<br />

X11 1X0 11X<br />

18


St<strong>at</strong>istical Hypothesis<br />

X and Y are jointly st<strong>at</strong>ionary<br />

P( S ∩Wz,<br />

Y<br />

)<br />

is the same for any z in E<br />

19


St<strong>at</strong>ionary Process<br />

20


Join St<strong>at</strong>ionary Process<br />

21


Error measure<br />

Design goal is to find a function<br />

with minimum risk.<br />

Risk (expected loss) of a function :<br />

Loss function<br />

X is a random set<br />

Y is a binary random variable<br />

22


MAE example<br />

Example : MAE loss function<br />

Optimal MAE function<br />

ψ ( X<br />

)<br />

=<br />

⎧<br />

⎨<br />

⎩<br />

1<br />

0<br />

p (1,<br />

p (1,<br />

X )<br />

X )<br />

><br />

≤<br />

p (0,<br />

p (0,<br />

X )<br />

X )<br />

23


Design procedure<br />

24


PAC learning<br />

L is Probably Approxim<strong>at</strong>ely Correct (PAC)<br />

For m > m( ε,<br />

δ ) examples<br />

Pr(|<br />

R(<br />

ψ<br />

)<br />

− R(<br />

ψ ) | < ε)<br />

> 1<br />

opt<br />

−<br />

δ<br />

ε,<br />

δ ∈ (0,1)<br />

25


Edge detection<br />

Training images<br />

Test images<br />

26


Noise filtering<br />

Training images<br />

Test images<br />

27


Texture extraction (1)<br />

Training images<br />

28


Texture extraction (2)<br />

Test images<br />

29


Fracture Detection<br />

Training images<br />

Test images<br />

30


Amount of d<strong>at</strong>a available<br />

18,10 %<br />

3,13 %<br />

2,68 %<br />

2,21 %<br />

Last Image<br />

2,01 %<br />

1,82 %<br />

1,69 % 1,60 %<br />

Noise 1 image 2 images 3 images 8 imagess 13 images 25 images 32 images<br />

31


window 5x5, 6 training images<br />

addition: 2%<br />

subtraction: 1%<br />

distict p<strong>at</strong>terns : 140.060<br />

in 1.548.384<br />

addition: 3%<br />

subtraction: 3%<br />

distinct p<strong>at</strong>terns : 266.743<br />

em 1.548.384<br />

addition: 6%<br />

subtraction: 6%<br />

distinct p<strong>at</strong>terns: 487.494<br />

in 1.548.384<br />

32


Size of the window<br />

Error r<strong>at</strong>e in function of window size<br />

0.70%<br />

0.60%<br />

0.50%<br />

0.40%<br />

0.30%<br />

0.20%<br />

0.10%<br />

0.00%<br />

3x3 4x4 5x5 6x6 7x7<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

33


Constraint Design


Constraints<br />

ψ opt<br />

Ψ<br />

35


Constraints<br />

ε des<br />

ε des-con<br />

Error<br />

ε opt-con<br />

ε opt<br />

N 1 N 0<br />

N 2<br />

Sample size<br />

36


Constraints<br />

Structural Constraints<br />

- impose maximum number of elements in the basis<br />

- use altern<strong>at</strong>ive structural represent<strong>at</strong>ions<br />

(e.g., sequential)<br />

37


Constraints<br />

Algebraic constraints<br />

- consider a class of oper<strong>at</strong>ors s<strong>at</strong>isfying a given<br />

algebraic property (e.g., increasingness ,<br />

idempotence, auto-dualism, etc)<br />

- consider a constraint by a multi-resolution criteria<br />

- consider a constraint by an envelope of oper<strong>at</strong>ors<br />

- consider a constraint by a multi-resolution envelope<br />

criteria<br />

38


Structural Constraint


Minimum number of intervals<br />

in the basis


Iter<strong>at</strong>ive design


Motiv<strong>at</strong>ion : composition of oper<strong>at</strong>ors over small<br />

windows produces an oper<strong>at</strong>or over a larger window<br />

is a<br />

-oper<strong>at</strong>or<br />

45


Applic<strong>at</strong>ion example<br />

test image<br />

iter<strong>at</strong>ion 1<br />

iter<strong>at</strong>ion 2<br />

46


Applic<strong>at</strong>ion example<br />

test image iter<strong>at</strong>ion 1<br />

iter<strong>at</strong>ion 2 iter<strong>at</strong>ion 3<br />

iter<strong>at</strong>ion 4 iter<strong>at</strong>ion 5 iter<strong>at</strong>ion 6<br />

47


Algebraic Constraint


Increasing W-oper<strong>at</strong>ors<br />

increasing<br />

non-increasing<br />

49


Design of increasing W-oper<strong>at</strong>ors<br />

increasing<br />

non-increasing<br />

increasing<br />

50


Multi-resolution constraint


x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8<br />

8 variables<br />

z 1 z 2 z 3 z 4<br />

4 variables<br />

w 1 w 2 2 variables<br />

0<br />

1<br />

0 1<br />

00<br />

01<br />

10<br />

11<br />

0<br />

0<br />

0<br />

1<br />

1<br />

0<br />

1<br />

1<br />

0000<br />

0001<br />

0010<br />

0011<br />

0100<br />

0101<br />

0110<br />

0111<br />

1000<br />

1001<br />

1010<br />

1011<br />

1100<br />

1101<br />

1110<br />

1111<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

1<br />

0<br />

0<br />

1<br />

0<br />

0<br />

0<br />

1<br />

1<br />

0<br />

1<br />

0<br />

0<br />

0<br />

1<br />

0<br />

1<br />

0<br />

1<br />

1<br />

0<br />

0<br />

1<br />

1<br />

1<br />

1<br />

0<br />

0<br />

0<br />

1<br />

0<br />

0<br />

1<br />

1<br />

0<br />

1<br />

0<br />

1<br />

0<br />

1<br />

1<br />

1<br />

1<br />

0<br />

0<br />

1<br />

1<br />

0<br />

1<br />

1<br />

1<br />

1<br />

0<br />

1<br />

1<br />

1<br />

1<br />

2 variables: 2 2 =4 4 variables: 2 4 =16<br />

8 variables: 2 8 =256 53


W 0<br />

W 1<br />

D 1 = P(W 1 )<br />

D 0 = P(W 0 )<br />

z i = p i (x i1 , ... , x i9 ) , z = p(x) , p=(p 1 , .. p 9 )<br />

Let φ:D 1 →{0,1} , it defines the oper<strong>at</strong>or Ψ φ on D o by<br />

Ψ φ (x) = φ(p(x))<br />

The operador Ψ φ is constrained by resolution to D 1<br />

Equivalence classes defined<br />

by<br />

p(x) = p(y)<br />

D 0<br />

54


Properties<br />

Q<br />

Ψ φ<br />

φ<br />

Oper<strong>at</strong>ors over D 1<br />

Oper<strong>at</strong>ors over D 0 constrained by resolution on D 1<br />

Oper<strong>at</strong>ors over D 0<br />

55


D 2<br />

= P(W 2<br />

), D 1<br />

= P(W 1<br />

), D 0<br />

= P(W 0<br />

)<br />

W x ∈D 0<br />

, z ∈D 1<br />

, v ∈D 2<br />

,<br />

0<br />

z i<br />

= p i<br />

(x i,1<br />

, ... , x i,9<br />

) , z = p(x) ,<br />

p=(p 1<br />

, .. p 81<br />

)<br />

v i<br />

= w i<br />

(x i,1<br />

, ... , x i,81<br />

) , v = w(x) ,<br />

p<br />

W 1 w=(w 1<br />

, .. w 9<br />

)<br />

W 2<br />

w The equivalence classes defined by<br />

p may be different by the ones<br />

defined by w.<br />

56


ψ ( x)<br />

=<br />

⎧ ψ0,<br />

N<br />

( x) if<br />

N( x)<br />

> 0<br />

⎪<br />

ψ<br />

,<br />

( x) ( x) = , ( ρ ( x))<br />

><br />

1 N<br />

if N 0 N<br />

1<br />

0<br />

⎪<br />

⎨ M<br />

⎪ψ m−1,<br />

N<br />

( x) if N( x) = 0,..., N( ρm−2( x)) = 0, N( ρm−<br />

1( x))<br />

> 0<br />

⎪<br />

⎩⎪<br />

ψ<br />

m,<br />

N<br />

( x) if N( x) = 0,..., N( ρm−<br />

1( x)) = 0, N( ρm( x))<br />

> 0<br />

57


Multiresolution Noise<br />

image noise image + noise<br />

61


3x3 window<br />

Pyramid<br />

Restaur<strong>at</strong>ion<br />

Persisting noise<br />

62


Example<br />

Hybrid Multiresolution Filter: Experiment I<br />

0.14<br />

0.12<br />

W 11<br />

W 10<br />

W 9<br />

W 8<br />

0.1<br />

W 7<br />

W 6<br />

W 5<br />

W 4<br />

0.08<br />

W 3<br />

W 2<br />

W 1<br />

W 0<br />

MAE<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

Ψ11 Ψ10 Ψ9 Ψ8 Ψ7 Ψ6 Ψ5 Ψ4 Ψ3 Ψ2 Ψ1 Ψ0<br />

Window sequence<br />

Single oper<strong>at</strong>or<br />

Pyramid oper<strong>at</strong>or<br />

64


Envelope constraint


Independent Constraints<br />

Constraints<br />

Independent Constraint<br />

Restriction of<br />

the oper<strong>at</strong>ors space<br />

K(ψ opt ) ∈ Q ⊆ P(P(W)) (W))<br />

Let be A,BA<br />

⊆ P(W) with A⊆B:<br />

h ψ (x)=1 ∀ x∈A<br />

∀ψ<br />

& h ψ (x)=0∀x∉B,<br />

∀ψ :K(ψ) ∈Q<br />

P(P(W))<br />

K(ψ opt<br />

)<br />

{1}<br />

B<br />

Q<br />

A<br />

{0,1}<br />

Q<br />

B<br />

P(W)<br />

{0}<br />

P(P(W))<br />

A<br />

66


Independent Constraints<br />

Proposition: : if Q is an independent restriction then exist a par of<br />

oper<strong>at</strong>ors<br />

(α,β)) such th<strong>at</strong>, for any ψ∈Ψ W<br />

K(ψ) ∈Q ⇔ α≤ ψ ≤β<br />

where K(α) ) = A and K(β) ) = B<br />

• All independent constraint is characterized by two oper<strong>at</strong>ors α and<br />

β<br />

• The pair (α,β)(<br />

) is called “Envelope”<br />

h α<br />

{1}<br />

h β<br />

{1}<br />

A<br />

{0}<br />

A<br />

{1}<br />

B<br />

{0}<br />

B<br />

{0}<br />

P(W)<br />

P(W)<br />

67


Definition<br />

Desing of two heristic filters α and β such th<strong>at</strong> when we<br />

know th<strong>at</strong> α ≤ ψ opt ≤ β, the restriction is defined by:<br />

Q = {ψ : α ≤ ψ ≤ β}<br />

and any filter ψ can be projected into the restriction by<br />

ψenv = ( ψ ∨ α ) ∧ β<br />

68


Definition<br />

β<br />

Oper<strong>at</strong>ors over<br />

P(W)<br />

ψ<br />

ψ env<br />

Q<br />

α<br />

Oper<strong>at</strong>ors over P(W)<br />

constrained by envelope<br />

69


Properties<br />

♦ (ψ opt ∨ α ) ∧ β is optimal in Q.<br />

♦If α ≤ ψ opt ≤ β then Error[ψ env ] ≤ Error[ψ]<br />

♦If α ≤ ψ opt ≤ β is not true, then<br />

Lim N→∞ Error[ψ env,N ] > Lim N→∞ Error[ψ N ]<br />

70


Example<br />

71


Noise Edge Detection<br />

Ground<br />

Image<br />

Noise<br />

Addition<br />

Noisy Image<br />

Restor<strong>at</strong>ion<br />

Filtered<br />

Image<br />

Edge<br />

Detection<br />

Edge<br />

Detected<br />

Direct Edge Detection<br />

Edge Detected<br />

72


Restor<strong>at</strong>ion<br />

a) Machine design of the restor<strong>at</strong>ion<br />

ψ pac<br />

designed by examples<br />

b) Human-machine design of the restor<strong>at</strong>ion<br />

ψ con<br />

= (ψ pac ∩β) ∪ α<br />

α = δ B⊕B<br />

ε B⊕B<br />

δ B<br />

ε B and β = ε B⊕B<br />

δ B⊕B<br />

ε B<br />

δ B<br />

α and β are altern<strong>at</strong>ing sequential filters with<br />

P[ α(S) ≤ I ≤ β(S) ] ≈ 1<br />

B is the 3x3 square<br />

Machine design of<br />

the restor<strong>at</strong>ion<br />

Human-Machine<br />

design of the<br />

restor<strong>at</strong>ion<br />

0.28 % 0.13 %<br />

0,3<br />

0,25<br />

0,2<br />

0,15<br />

0,1<br />

0,05<br />

Machine design<br />

of the restor<strong>at</strong>ion<br />

Human design of<br />

the restor<strong>at</strong>ion<br />

0<br />

Error (%)<br />

73


Noise Edge Detection<br />

Edge<br />

Detection<br />

a) Machine design over noisy images<br />

ζ pac<br />

designed by examples from noisy images<br />

b) Human design after restor<strong>at</strong>ion<br />

ζ = I d<br />

- ε B<br />

B is the 3x3 square<br />

c) Machine design after restor<strong>at</strong>ion<br />

ζ pac<br />

designed by examples from restored images<br />

Machine<br />

design over<br />

noisy images<br />

Human<br />

design after<br />

restor<strong>at</strong>ion<br />

Machine<br />

design after<br />

restor<strong>at</strong>ion<br />

0.65 % 0.27 % 0.24 %<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

Error (%)<br />

Machine design over<br />

noisy images<br />

Human design after<br />

restor<strong>at</strong>ion<br />

Machine design after<br />

restor<strong>at</strong>ion<br />

74


Noise Edge Detection<br />

Machine design over<br />

noisy images<br />

Error = 0.65%<br />

Human design after<br />

restor<strong>at</strong>ion<br />

Error = 0.27%<br />

Machine design after<br />

restor<strong>at</strong>ion<br />

Error = 0.24%<br />

75


Envelope multi-resolution<br />

constraint


Definition<br />

♦ W 1 ⊂ W 0 , ρ:D 0 → D 1 is a resolution mapping<br />

♦ α, β: D 1 → {0,1} with α ≤ β<br />

♦ ψ : D 0 → {0.1}<br />

ψ ρ<br />

( x)<br />

=<br />

⎧ 1<br />

⎪<br />

⎨ 0<br />

⎪<br />

⎩ψ<br />

( x)<br />

ifα(<br />

ρ(<br />

x))<br />

if β ( ρ(<br />

x))<br />

= 1<br />

= 0<br />

otherwhise<br />

♦ ψ ρ = (ψ ∧ β’) ∨ α’ , α’(x) = α(r(x)) and β’(x) = β(r(x))<br />

77


Definition<br />

Ψ φ<br />

β’<br />

φ<br />

β<br />

φ env<br />

ψ ρ<br />

Q<br />

α<br />

D 0<br />

α’<br />

D 1<br />

78


Teorema<br />

β’<br />

β<br />

φ<br />

ψ<br />

φ env<br />

ψ ρ<br />

α<br />

Q<br />

D<br />

α’<br />

1<br />

D 0<br />

79


Piramidal Design:<br />

Let ψ i,env,N = ( ψ i,N ∧ β’) ∨ α’, be the projection of the resolution<br />

constrained filter inside the envelope (α’, β’)<br />

ψ<br />

env−mres<br />

( x)<br />

=<br />

⎧ ψ0,<br />

N<br />

( x) if<br />

N( x)<br />

> 0<br />

⎪<br />

ψ<br />

env N<br />

if N = N ρ ><br />

1, ,<br />

( x) ( x) 0, (<br />

1( x))<br />

0<br />

⎪<br />

⎨ M<br />

⎪ψ m−1, env,<br />

N<br />

( x) if N( x) = 0,..., N( ρm−2( x)) = 0, N( ρm−<br />

1( x))<br />

> 0<br />

⎪<br />

⎩⎪<br />

ψ<br />

m, env,<br />

N<br />

( x) if N( x) = 0,..., N( ρm−<br />

1( x)) = 0, N( ρm( x))<br />

> 0<br />

80


Properties:<br />

♦ ψ env-mres is a consistent estim<strong>at</strong>or of ψ opt<br />

♦ If the envelope is well defined on D 1 , then the ρ-envelope of a<br />

resolution constrained filter is advantageous<br />

81


B<br />

E<br />

α = ε B (γ E φ E γ E )<br />

β = δ B (φ E γ E φ E )<br />

82


Gray-scale oper<strong>at</strong>or design:<br />

aperture


Sp<strong>at</strong>ial Transl<strong>at</strong>ion Invariance<br />

85


Gray-scale Transl<strong>at</strong>ion Invariance<br />

86


Locally defined in W<br />

Ψ<br />

( f )( x)<br />

= Ψ( f / W )(<br />

x)<br />

x<br />

87


Locally defined in W and K<br />

( u / K )( z)<br />

= ∧{<br />

∨{<br />

−k,<br />

u(<br />

z)<br />

− y},<br />

k}<br />

y<br />

88


Aperture Oper<strong>at</strong>or<br />

W K = { − 2,<br />

−1,0,1,2<br />

}<br />

30<br />

25<br />

2<br />

1<br />

-2 1 2 2 2<br />

-2 1 2 2 2<br />

20<br />

β ψ<br />

0<br />

-2 1 2 2 2<br />

15<br />

-1<br />

-2<br />

-2 1 1 1 1<br />

-2 -2 -2 -2 -2<br />

-2 -1 0 1 2<br />

10<br />

5<br />

0<br />

input<br />

output<br />

89


2<br />

-2 1 2 2 2<br />

Aperture<br />

β ψ<br />

1<br />

0<br />

-2 1 2 2 2<br />

-2 1 2 2 2<br />

Oper<strong>at</strong>or<br />

-1<br />

-2 1 1 1 1<br />

-2<br />

-2 -2 -2 -2 -2<br />

-2 -1 0 1 2<br />

ψ<br />

u(o)<br />

βψ<br />

14<br />

12 13 14 15 16<br />

14<br />

10 11 12 13 14<br />

14<br />

2 2 2 2 2<br />

13<br />

12 13 14 15 15<br />

13<br />

10 11 12 13 14<br />

13<br />

2 2 2 2 1<br />

12<br />

11<br />

12 13 14 14 12<br />

12 13 13 11 12<br />

=<br />

12<br />

11<br />

10 11 12 13 14<br />

10 11 12 13 14<br />

+<br />

12<br />

11<br />

2 2 2 1 -2<br />

2 2 1 -2 -2<br />

10<br />

12 12 10 11 12<br />

10<br />

10 11 12 13 14<br />

10<br />

2 1 -2 -2 -2<br />

10 11 12 13 14<br />

10 11 12 13 14<br />

10 11 12 13 14<br />

90


Let a, b ∈ Fun[W,L<br />

W,L], a ≤ b iff a(x) ≤ b(x),<br />

x ∈ W<br />

|W| = 2<br />

a<br />

b<br />

Interval [a,b]] = {u{<br />

∈ Fun[W,L<br />

W,L]:<br />

a ≤ u ≤ b}<br />

91


Sup-gener<strong>at</strong>ing oper<strong>at</strong>or:<br />

λ<br />

( u) = 1 ⇔ u ∈[<br />

a,<br />

]<br />

a, b<br />

b<br />

[a,b]<br />

0 0 0 0 0<br />

0 0 1 1 1<br />

0 0 1 1 1<br />

0 0 1 1 1<br />

0 0 0 0 0<br />

λ a,b<br />

92


Kernel of ψ <strong>at</strong> y: K(ψ)(y) = {u ∈ Fun[W,L]: y ≤ ψ(u)}<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

0 1 2 2 2<br />

0 1 2 2 2<br />

-1 1 2 2 2<br />

-1 1 1 1 1<br />

-2 -1 -1 -1 -1<br />

-2 -1 0 1 2<br />

K(ψ)(-2)<br />

K(ψ)(-1) K(ψ)(0) K(ψ)(1)<br />

K(ψ)(2)<br />

93


Basis of ψ <strong>at</strong> y: B(ψ) is the set of maximal intervals contained in K(ψ)<br />

K(ψ)(-2)<br />

K(ψ)(-1) K(ψ)(0) K(ψ)(1)<br />

K(ψ)(2)<br />

B(ψ)(-2)<br />

B(ψ)(-1) B(ψ)(0) B(ψ)(1)<br />

B(ψ)(2)<br />

94


Sup-represent<strong>at</strong>ion<br />

( u) = U{ y ∈ M : { ( ) :[ , ] ( )( )}<br />

1}<br />

,<br />

u a b ∈ B y =<br />

ψ U λ a<br />

ψ<br />

b<br />

K(ψ)(-2)<br />

K(ψ)(-1) K(ψ)(0) K(ψ)(1)<br />

K(ψ)(2)<br />

ψ(-1,-1) = 1<br />

95


Observed<br />

Ideal<br />

These are part of the observed and ideal images (512x512)<br />

96


MAE x Number of Examples<br />

97


Debluring - Aperture x Optimal<br />

linear<br />

Aperture 17p x 5 x 5<br />

Optimal linear 7x7<br />

98


Resolution Enhancement<br />

99


Resolution Enhancement<br />

(0,0) (0,1)<br />

Ψ 2<br />

Ψ 0<br />

Ψ 1<br />

Ψ 3<br />

Ψ 3<br />

100


Resolution Enhancement - Results<br />

Original<br />

Aperture: 3x3x21x51<br />

Linear<br />

Bilinear<br />

101


Resolution Enhancement - Results<br />

Zoom<br />

Original<br />

Aperture: 3x3x21x51<br />

Linear<br />

Bilinear<br />

102


Gray-scale oper<strong>at</strong>or design:<br />

stack filters


A stack filter is a gray-scale oper<strong>at</strong>or characterized<br />

by a positive (i.e., increasing) Boolean function<br />

ψ ( f ) = max{ t ∈ K : ψ ( T [ f ]) = 1}<br />

t<br />

where<br />

T t<br />

[ f ] = { x ∈W<br />

: f ( x)<br />

≥ t}<br />

104


Impulse noise removal (1)<br />

training images<br />

105


Impulse noise removal (2)<br />

test image iter<strong>at</strong>ion 1<br />

106


Impulse noise removal (3)<br />

test image iter<strong>at</strong>ion 5<br />

107


Robustness (1)<br />

test image iter<strong>at</strong>ion 1<br />

108


Robustness (2)<br />

test image iter<strong>at</strong>ion 5<br />

109


Conclusion<br />

Design of Morphological Oper<strong>at</strong>ors: a<br />

discrete n<strong>at</strong>ure problem<br />

Fundamentals: Algebra, St<strong>at</strong>istics,<br />

Combin<strong>at</strong>ory<br />

Real problems solution<br />

Design techniques adequ<strong>at</strong>e to introduce<br />

prior knowledge<br />

Identific<strong>at</strong>ion of L<strong>at</strong>tice Dynamical Systems<br />

110

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!