01.01.2015 Views

Integrability in AdS/CFT - Crete Center for Theoretical Physics

Integrability in AdS/CFT - Crete Center for Theoretical Physics

Integrability in AdS/CFT - Crete Center for Theoretical Physics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Conference “Gauge theories and the structure of spacetime”<br />

Kolymbari, <strong>Crete</strong>, September 17, 2010<br />

<strong>Integrability</strong> <strong>in</strong> N=4 SYM theory<br />

Vladimir Kazakov<br />

(ENS, Paris)<br />

<strong>Integrability</strong> <strong>in</strong> <strong>AdS</strong>/<strong>CFT</strong><br />

•!<br />

<strong>Integrability</strong> is usually a 2D phenomenon (statistical mechanics on 2D lattice,<br />

quantum sp<strong>in</strong> cha<strong>in</strong>s, (1+1)D quantum field theories, etc)<br />

•!<br />

Now possible <strong>for</strong> some super-con<strong>for</strong>mal -Yang-Mills theories at D=3,4…<br />

•! Based on <strong>AdS</strong>/<strong>CFT</strong> duality to a very special 2D QFT’s - superstr<strong>in</strong>g !-models<br />

•!<br />

In light cone gauge it looks like a massive !-model. Most of 2D <strong>in</strong>tegrability tools<br />

then applicable: S-matrix, asymptotic Bethe ansatz (ABA), Thermodynamic Bethe<br />

Ansatz (TBA) <strong>for</strong> f<strong>in</strong>ite volume spectrum, etc.<br />

•! .... Y-system (<strong>for</strong> planar <strong>AdS</strong> 5 /<strong>CFT</strong> 4 , <strong>AdS</strong> 4 /<strong>CFT</strong> 3 ,...)<br />

Conjecture: it calculates anomalous dimensions of all local<br />

operators <strong>in</strong> four-dimensional planar supercon<strong>for</strong>mal Yang-<br />

Mills (SYM) with N=4 supersymmetries, at any coupl<strong>in</strong>g<br />

Gromov,V.K.,Vieira<br />

•! Further simplification: Y-system as Hirota discrete <strong>in</strong>tegrable dynamics


Examples of <strong>Integrability</strong> <strong>in</strong> Gauge Theories<br />

•!<br />

QCD <strong>in</strong> Regge limit<br />

Lipatov<br />

Faddeev, Korchemsky<br />

•!<br />

Spectrum of anomalous dimensions <strong>in</strong> planar N=4 SYM (<strong>AdS</strong>/<strong>CFT</strong>, TBA, Y-system)<br />

•!<br />

n-po<strong>in</strong>t correlators <strong>in</strong> N=4 SYM (talks of R.Janik, M.Costa, A.Tseytl<strong>in</strong>)<br />

•!<br />

Amplitudes and Wilson loops (Yangian symmetry, Y-system <strong>for</strong> strong coupl<strong>in</strong>g,…)<br />

(G.Korchemsky’s talk)<br />

•! New <strong>in</strong>tegrable dualities<br />

-! ABJM: <strong>AdS</strong> 4 "CP 3<br />

-! <strong>AdS</strong> 3 "S 3 "T 4<br />

-! N=2 SQCD, N f =2N c<br />

M<strong>in</strong>ahan-Zarembo<br />

Gromov,Vieira,<br />

Gromov,V.K.,Vieira<br />

Zarembo<br />

Gadde,Pomoni,Rastelli<br />

•! Different from BPS-<strong>in</strong>tegrability (start<strong>in</strong>g from Seiberg-Witten …) :<br />

<strong>in</strong> N=4 SYM we sum up 4D planar Feynman graphs!<br />

N=4 SYM as a supercon<strong>for</strong>mal 4D QFT<br />

•!<br />

Operators <strong>in</strong> 4D<br />

•!<br />

4D Correlators (supercon<strong>for</strong>mal!):<br />

non-trivial functions<br />

of ‘tHooft coupl<strong>in</strong>g #!


Anomalous dimensions <strong>in</strong> various limits<br />

•!<br />

•!<br />

Perturbation theory:<br />

BFKL approx. <strong>for</strong> twist-2 operators<br />

1,2,3…-loops: <strong>in</strong>tegrable<br />

sp<strong>in</strong> cha<strong>in</strong><br />

M<strong>in</strong>ahan,Zarembo<br />

Beisert,Kristijanssen,Staudacher<br />

•!<br />

•!<br />

•!<br />

Str<strong>in</strong>g (quasi)-classics:<br />

Long operators, no wrapp<strong>in</strong>gs:<br />

Strong coupl<strong>in</strong>g, short operators:<br />

Kotikov, Lipatov<br />

F<strong>in</strong>ite gap method,<br />

Bohr-Sommerfeld<br />

Frolov,Tseytl<strong>in</strong>,<br />

V.K.,Marshakov,M<strong>in</strong>ahan,Zarembo<br />

Beisert,V.K.,Sakai,Zarembo<br />

Roiban,Tseytl<strong>in</strong>,<br />

Gromov,Vieira<br />

Asymptotic Bethe Ansatz<br />

(ABA)<br />

Beisert,Staudacher<br />

Beisert,Eden,Staudacher<br />

Worldsheet perturbation<br />

theory<br />

Gubser,Klebanov,Polyakov<br />

•!<br />

Exact dimensions (all wrapp<strong>in</strong>gs): Y-system and TBA<br />

Gromov,V.K.,Vieira<br />

Gromov,V.K.,Vieira<br />

Bombardelli,Fioravanti,Tateo<br />

Gromov,V.K.,Kozak,Vieira<br />

Arutyunov,Frolov<br />

•!<br />

SYM is Dual to Superst<strong>in</strong>g $-model on <strong>AdS</strong>5 "S 5<br />

Super-con<strong>for</strong>mal N=4 SYM symmetry PSU(2,2|4) % isometry of str<strong>in</strong>g target space<br />

2D !-model<br />

on a coset<br />

fermions<br />

target space<br />

<strong>AdS</strong> time<br />

world sheet<br />

•!<br />

Metsaev-Tseytl<strong>in</strong> action<br />

Dimension of YM operator<br />

Energy of a str<strong>in</strong>g state


Classical <strong>in</strong>tegrability of superstr<strong>in</strong>g on <strong>AdS</strong> 5 "S 5<br />

!! Str<strong>in</strong>g equations of motion and constra<strong>in</strong>ts can be recasted<br />

<strong>in</strong>to zero curvature condition<br />

Mikhailov,Zakharov<br />

Bena,Roiban,Polch<strong>in</strong>ski<br />

<strong>for</strong> Lax connection rationally depend<strong>in</strong>g on a spectral parameter<br />

!! Monodromy matrix<br />

encodes <strong>in</strong>f<strong>in</strong>itely many conservation lows<br />

!! F<strong>in</strong>ite gap method can be used to construct<br />

particular classical solutions<br />

world sheet<br />

Its,Matveev,Dubrov<strong>in</strong>,Novikov,Krichever<br />

F<strong>in</strong>ite gap method <strong>for</strong> classical superstr<strong>in</strong>g<br />

!! Algebraic curve <strong>for</strong> quasi-momenta:<br />

!! Cuts (gaps) connect<strong>in</strong>g Riemann sheets def<strong>in</strong>e the motion<br />

!! Quantization: Cuts consist of condensed Bethe roots<br />

carry<strong>in</strong>g the quanta of excitations.<br />

V.K.,Marshakov,M<strong>in</strong>ahan,Zarembo<br />

Beisert,V.K.,Sakai,Zarembo<br />

Gromov,Vieira


Weak coupl<strong>in</strong>g calculation by po<strong>in</strong>t splitt<strong>in</strong>g<br />

•! Tree level:<br />

& 0 = L (degeneracy)<br />

•! 1-loop:<br />

•! 2-loop:<br />

nontrivial action<br />

on R-<strong>in</strong>dices.<br />

Perturbative <strong>in</strong>tegrability<br />

!! Interaction:<br />

•! “Vacuum” – BPS operator<br />

•! Example: SU(2) sector<br />

•! Dilatation operator = Heisenberg Hamiltonian, <strong>in</strong>tegrable by Bethe ansatz!<br />

M<strong>in</strong>ahan,Zarembo<br />

Beisert,Kristijanssen,Staudacher


Exact spectrum at one loop<br />

Rapidity parametrization:<br />

Bethe’31<br />

Anomalous dimension:<br />

SYM perturbation theory and f<strong>in</strong>ite size (wrapp<strong>in</strong>g) effects<br />

!! Unwrapped graphs<br />

- described by asymptotic scatter<strong>in</strong>g on 1D “sp<strong>in</strong> cha<strong>in</strong>”<br />

!! Wrapped graphs : beyond S-matrix theory<br />

!! We need to take <strong>in</strong>to account the f<strong>in</strong>ite size effects - Y-system needed<br />

!! Important observation on str<strong>in</strong>g side: Lüscher corrections + <strong>in</strong>tegrability<br />

reproduce the direct perturbation theory at 4 loops.<br />

Bajnok,Janik


Exact one-particle dispersion relation<br />

•! Exact one particle dispersion relation:<br />

•! Bound states<br />

(fusion!)<br />

Santambrogio,Zanon<br />

Beisert,Dippel,Staudacher<br />

N.Dorey<br />

!! Cassical spectral parameter related to quantum one by Zhukovsky map<br />

cuts <strong>in</strong> complex<br />

-plane<br />

•! Parametrization <strong>for</strong> the dispersion relation:<br />

!! Motivation: differential def<strong>in</strong>es the canonical simplectic structure<br />

on the algebraic curve: Bohr-Sommerfeld quantization of a f<strong>in</strong>ite gap solution<br />

N.Dorey, Vicedo<br />

S-matrix and <strong>in</strong>tegrable supersp<strong>in</strong> cha<strong>in</strong><br />

p 2<br />

p 2<br />

L<br />

p 1<br />

p 1<br />

1<br />

2 ……..<br />

p 3<br />

p 3<br />

•! Light cone gauge breaks the global and world-sheet Lorentz symmetries :<br />

psu(2,2|4)<br />

su(2|2)<br />

su(2|2)<br />

•! S-matrix of <strong>AdS</strong>/<strong>CFT</strong> via bootstrap à-la A.&Al.Zamolodchikov<br />

' PSU(2,2|4) (p 1 ,p 2 ) = S 0<br />

2(p 1 ,p 2 ) " ' SU(2|2) (p 1 ,p 2 ) "' SU(2|2) (p 1 ,p 2 )<br />

Staudacher<br />

Beisert<br />

Janik<br />

Shastry’s R-matrix<br />

of Hubbard model


Beisert,Eden,Staudacher<br />

Asymptotic Bethe Ansatz (ABA)<br />

p j<br />

p 1<br />

p M<br />

•! This periodicity condition is diagonalized by nested Bethe ansatz<br />

•! Energy of state<br />

•!<br />

Results: ABA <strong>for</strong> dimensions of long YM operators (e.g., cusp<br />

dimension).<br />

f<strong>in</strong>ite size corrections,<br />

important <strong>for</strong> short operators!<br />

TBA <strong>for</strong> f<strong>in</strong>ite size (Al.Zamolodchikov trick)<br />

Ambjorn,Janik,Kristjansen<br />

Arutyunov,Frolov<br />

Gromov,V.K.,Vieira<br />

Bombardelli,Fioravanti,Tateo<br />

Gromov,V.K.,Kozak,Vieira<br />

Arutyunov,Frolov<br />

mirror <strong>CFT</strong><br />

on large circle R<br />

world sheet<br />

physical <strong>CFT</strong><br />

on small space circle L<br />

•! Large R : mirror momenta localize<br />

on poles of S-matrix ! bound states


Y-system <strong>for</strong> excited states of <strong>AdS</strong>/<strong>CFT</strong> at f<strong>in</strong>ite size<br />

Gromov,V.K.,Vieira<br />

T-hook<br />

•! Extra equation (remnant of<br />

classical monodromy):<br />

•! Complicated analyticity structure <strong>in</strong> u<br />

dictated by non-relativistic dispersion<br />

cuts <strong>in</strong> complex<br />

-plane<br />

•! Energy :<br />

(anomalous dimension)<br />

•!<br />

obey the exact Bethe eq.:<br />

•! Know<strong>in</strong>g analyticity one trans<strong>for</strong>ms functional Y-system <strong>in</strong>to <strong>in</strong>tegral (TBA):<br />

Gromov,V.K.,Vieira<br />

Bombardelli,Fioravanti,Tateo<br />

Gromov,V.K.,Kozak,Vieira<br />

Arutyunov,Frolov<br />

Cavaglia, Fioravanti, Tateo<br />

Konishi operator<br />

: numerics from Y-system<br />

Beisert, Eden,Staudacher<br />

ABA<br />

Gubser,Klebanov,Polyakov<br />

Y-system numerics<br />

Gromov,V.K.,Vieira<br />

Gubser<br />

Klebanov<br />

Polyakov<br />

millions of 4D Feynman graphs!<br />

5 loops and BFKL from str<strong>in</strong>g<br />

Fiamberti,Santambrogio,Sieg,Zanon<br />

Velizhan<strong>in</strong><br />

Bajnok,Janik<br />

Gromov,V.K.,Vieira<br />

Bajnok,Janik,Lukowski<br />

Lukowski,Rej,Velizhan<strong>in</strong>,Orlova<br />

!! Y-system passes all known tests


Konishi operator<br />

: numerics from Y-system<br />

!%+<br />

Gromov,V.K.,Vieira<br />

Frolov<br />

!%*<br />

!%)<br />

Beisert,Eden,Staudacher<br />

!%(<br />

!%"<br />

!%'<br />

!%&<br />

! "!! #!!! #"!! $!!!<br />

Y-system looks very “simple” and universal!<br />

•! Similar systems of equations <strong>in</strong> all known <strong>in</strong>tegrable $-models<br />

•! What are its orig<strong>in</strong>s Could we guess it without TBA


Y-systems <strong>for</strong> other $-models<br />

Gromov,V.K.,Vieira<br />

Bombardelli,Fiorvanti,Tateo<br />

Gromov,Levkovich-Maslyuk<br />

Y-system and Hirota eq.: discrete <strong>in</strong>tegrable dynamics<br />

•! Relation of Y-system to T-system (Hirota equation)<br />

(the Master Equation of <strong>Integrability</strong>!)<br />

For sp<strong>in</strong> cha<strong>in</strong>s :<br />

Klumper,Pearce<br />

Kuniba,Nakanishi,Suzuki<br />

For QFT’s:<br />

Al.Zamolodchikov<br />

Bazhanov,Lukyanov,A.Zamolodchikov<br />

•! Discrete classical <strong>in</strong>tegrable dynamics!<br />

•! General solution <strong>in</strong> half-plane lattice:<br />

a<br />

For sp<strong>in</strong> cha<strong>in</strong>s :<br />

Bazhanov,Reshetikh<strong>in</strong><br />

Cherednik<br />

V.K.,Vieira (<strong>for</strong> the proof)<br />

s


Quasiclassical solution of <strong>AdS</strong>/<strong>CFT</strong><br />

Y-system<br />

!! Classical limit: highly excited long str<strong>in</strong>gs/operators, strong coupl<strong>in</strong>g:<br />

!! Explicit u-shift <strong>in</strong> Hirota eq. dropped (only slow parametric dependence)<br />

!! (Quasi)classical solution - su(2,2|4) character of classical monodromy matrix!<br />

Gromov<br />

Gromov,V.K.,Tsuboi<br />

!! (Quasi-)classics restored entirely from the Y-system!<br />

Classical f<strong>in</strong>ite gap solution<br />

!! Can be restored from Y-system <strong>in</strong> the limit<br />

resolvants:<br />

!! Bohr-Sommerfeld quantization around a f<strong>in</strong>ite gap solution<br />

from quasimomenta - eigenvalues of the monodromy matrix<br />

Gromov, Vieira<br />

Gromov<br />

Gromov,V.K.,Tsuboi


(Super-)group theoretical orig<strong>in</strong>s<br />

!! A curious property of gl(N) representations with rectangular Young tableaux:<br />

a<br />

" = " + "<br />

a-1<br />

a-1<br />

s s s-1 s+1<br />

!! For characters – simplified Hirota eq.:<br />

!! Boundary conditions <strong>for</strong> Hirota eq.: gl(K|M) representations <strong>in</strong> “fat hook”:<br />

a<br />

# a<br />

(a,s)<br />

(K,M)<br />

fat hook<br />

# 2<br />

# 1<br />

s<br />

•! Solution: Jacobi-Trudi <strong>for</strong>mula <strong>for</strong> GL(K|M) characters<br />

Super-characters: Fat Hook of U(4|4) and T-hook of SU(2,2|4)<br />

!! Generat<strong>in</strong>g function <strong>for</strong> symmetric representations:<br />

SU(4|4)<br />

a<br />

SU(2,2|4)<br />

a<br />

s<br />

s<br />

( - dim. unitary highest weight representations of u(2,2|4) ! Kwon<br />

Cheng,Lam,Zhang<br />

!! Amus<strong>in</strong>g example: u(2) ) u(1,1) a<br />

Gromov, V.K., Tsuboi<br />

a<br />

s<br />

s


!"#$%&'()*##(+*,&-*.(/%0"-,(%&(12343567(89:"";(<br />

•!(D>E#,F>('>&B()*&F-%"&G(<br />

=N(,(('>&>0,-%&'()*&F-%"&,#(<br />

8KE,&0L(F,&(F"&(P0"&->0.%&,&-(


For <strong>AdS</strong>/<strong>CFT</strong>, as <strong>for</strong> any sigma model…<br />

•!<br />

The orig<strong>in</strong>s of the Y-system are entirely algebraic:<br />

Hirota eq. <strong>for</strong> characters <strong>in</strong> a given “hook”.<br />

•!<br />

•!<br />

Add the spectral parameter dependence… and solve Hirota equation!<br />

Analyticity <strong>in</strong> spectral parameter u is the most difficult part of the<br />

problem.<br />

Some progress is be<strong>in</strong>g made…<br />

Gromov,Tsuboi,V.K.,Leurent<br />

(to appear)<br />

An <strong>in</strong>spir<strong>in</strong>g example: SU(N) pr<strong>in</strong>cipal chiral field at f<strong>in</strong>ite volume<br />

•! Y-system<br />

Hirota dynamics <strong>in</strong> a <strong>in</strong> (a,s) plane.<br />

•! General Wronskian solution <strong>in</strong> a strip:<br />

Krichever,Lipan,<br />

Wiegmann,Zabrod<strong>in</strong><br />

a<br />

•! F<strong>in</strong>ite volume solution: f<strong>in</strong>ite system of NLIE:<br />

parametrization fix<strong>in</strong>g the analytic structure:<br />

Gromov,V.K.,Vieira<br />

V.K.,Leurent<br />

s<br />

polynomials<br />

fix<strong>in</strong>g a state<br />

jumps<br />

by<br />

•! N-1 TBA equations fix N-1 spectral densities


Numerics <strong>for</strong> SU(N) L x SU(N) R pr<strong>in</strong>cipal chiral field at f<strong>in</strong>ite size<br />

Numerics <strong>for</strong><br />

low-ly<strong>in</strong>g states N=3<br />

V.K.,Leurent<br />

Conclusions<br />

•! Non-trivial D=2,3,4,… dimensional solvable quantum field theories!<br />

•! Y-system <strong>for</strong> exact spectrum of a few <strong>AdS</strong>/<strong>CFT</strong> dualities has passed<br />

many important checks.<br />

•! Y-system obeys <strong>in</strong>tegrable Hirota dynamics – can be made f<strong>in</strong>ite.<br />

General method of solv<strong>in</strong>g quantum !-models<br />

Future directions<br />

•! Why is N=4 SYM <strong>in</strong>tegrable<br />

•! What lessons <strong>for</strong> QCD<br />

•! 1/N – expansion <strong>in</strong>tegrable<br />

•! Amlitudes, correlators … <strong>in</strong>tegrable


3 po<strong>in</strong>t function of classical operators<br />

•!<br />

•!<br />

•!<br />

A generalization of Shapiro-Virasoro amplitudes<br />

Difficult problem, f<strong>in</strong>ite gap method should be considerably advanced<br />

Classical solution should satisfy the follow<strong>in</strong>g multiplication rule <strong>for</strong><br />

monodromy matrices:<br />

…or even 8-po<strong>in</strong>t correlators…


END

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!