31.12.2014 Views

CEA-LETI - NIKON Joint Development Program ... - Nikon Precision

CEA-LETI - NIKON Joint Development Program ... - Nikon Precision

CEA-LETI - NIKON Joint Development Program ... - Nikon Precision

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>CEA</strong>-<strong>LETI</strong> - <strong>NIKON</strong> <strong>Joint</strong><br />

<strong>Development</strong> <strong>Program</strong> Update<br />

C. Lapeyre, S. Barnola, I. Servin,<br />

S. Gaugiran, S. Tedesco,<br />

L. Pain, A.J. Hazelton,<br />

V. Salvetat, M. McCallum


Outline<br />

• <strong>CEA</strong>-<strong>LETI</strong>-Minatec background<br />

• <strong>CEA</strong>-<strong>LETI</strong>-Minatec & <strong>NIKON</strong> <strong>Joint</strong> <strong>Development</strong> <strong>Program</strong><br />

• Double Patterning Process development and control<br />

• Topography impact on DP technology<br />

• Reticle & Pellicle impact on CDU & overlay<br />

• Experimental <strong>Nikon</strong> error model validation<br />

• DP processing to achieve k 1 = 0.14


<strong>LETI</strong> Background<br />

• 1,600 people on research programs (1000 <strong>CEA</strong> headcount)<br />

• 8000m 2 clean room<br />

• 160 industrial partners<br />

• 30 startups<br />

• 1600 patents portfolio<br />

• 250 patents in 2008<br />

3


<strong>LETI</strong> Background<br />

• 1,600 people on research programs (1000 <strong>CEA</strong> headcount)<br />

• 8000m 2 clean room<br />

• 160 industrial partners<br />

• 30 startups<br />

• 1600 patents portfolio<br />

• 250 patents in 2008<br />

Nanoelectronic 200mm and 300mm<br />

•200mm clean room (2500 m 2 )<br />

•300mm ball room (1500 m 2 )<br />

• State of the art tools<br />

• Full research line<br />

• Continuous operation<br />

7 days per week/ 24 hours per day<br />

4


<strong>Nikon</strong> and <strong>LETI</strong> <strong>Program</strong><br />

• <strong>Nikon</strong> and <strong>CEA</strong>-<strong>LETI</strong>-Minatec are partnering through a<br />

<strong>Joint</strong> <strong>Development</strong> <strong>Program</strong> to understand the sensitivities<br />

of various DE/DP techniques since early 2007.<br />

• Placing special emphasis on ensuring next generation<br />

exposure tools satisfy DP requirements.<br />

• Using a 0.85 NA dry ArF <strong>Nikon</strong> scanner in <strong>LETI</strong>’s Nanotec<br />

300 research facility in Grenoble, France.<br />

NSR-S307E – 0.85 NA Dry ArF


Outline<br />

• <strong>CEA</strong>-<strong>LETI</strong>-Minatec background<br />

• <strong>CEA</strong>-<strong>LETI</strong>-Minatec & <strong>NIKON</strong> <strong>Joint</strong> <strong>Development</strong> <strong>Program</strong><br />

• Double Patterning Process development and control<br />

• Topography impact on DP technology<br />

• Reticle & Pellicle impact on CDU & overlay<br />

• Experimental <strong>Nikon</strong> error model validation<br />

• DP processing to achieve k 1 = 0.14


45nm Double Patterning Process<br />

• NSR-S307E 0.85 NA ArF<br />

• Sokudo RF3<br />

• Lam Versys<br />

• 45 nm L/S pattern<br />

(k 1<br />

=0.20)<br />

Stack<br />

Resist ArF<br />

177nm<br />

Organic Barc<br />

32 nm<br />

HM1: Nitride<br />

30 nm<br />

HM2:Oxide<br />

20 nm


DP Process Control (1/3)<br />

• Integration stack requirements :<br />

– Good selectivity HM1/HM2<br />

– Reduce thickness to minimize<br />

topography<br />

– Low temperature deposition to avoid<br />

carbon mask damage<br />

• Etch Process optimization :<br />

– Ensure good resist budget margin to<br />

avoid faceting<br />

– Control of resist trimming<br />

– Etching chemistry selectivity<br />

BARC/HM1/HM2<br />

– Conservation of CD and profile of<br />

pattern 1 through etch2<br />

Line 2 :<br />

Oxide<br />

Line 1 : Nitride<br />

on Oxide<br />

Good oxide/nitride selectivity<br />

Good CD control with trimming


DP Process Control (2/3)<br />

70<br />

Impact of each step on CD mean<br />

60<br />

50<br />

66.0<br />

64.0<br />

CD (nm)<br />

40<br />

30<br />

48.0<br />

-3nm<br />

44.5 46.5<br />

20<br />

10<br />

0<br />

litho1 etch1 (line1) litho2 etch2 (line1) etch2 (line2)<br />

CD1 is well maintained through etch2 : CD bias ~-3nm<br />

Etch process very robust : CD1 and CD2 controlled independently


DP Process Control (3/3)<br />

4.5<br />

ITRS 45nm requirement<br />

CD uniformity 3σ (nm)<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

ITRS 32nm requirement<br />

2.6<br />

3.0<br />

3.3 3.2<br />

3.4<br />

0.5<br />

0.0<br />

litho 1 etch1 litho2 etch2 (line1) etch2 (line2)<br />

CD uniformity remains around 3nm throughout the DP<br />

process in agreement with ITRS 32nm requirements


Outline<br />

• <strong>CEA</strong>-<strong>LETI</strong>-Minatec background<br />

• <strong>CEA</strong>-<strong>LETI</strong>-Minatec & <strong>NIKON</strong> <strong>Joint</strong> <strong>Development</strong> <strong>Program</strong><br />

• Double Patterning Process development and control<br />

• Topography impact on DP technology<br />

• Reticle & Pellicle impact on CDU & overlay<br />

• Experimental <strong>Nikon</strong> error model validation<br />

• DP processing to achieve k 1 = 0.14


Topography Impact on Litho (1/3)<br />

180nm<br />

180nm<br />

65nm<br />

Si<br />

45nm<br />

Si<br />

Si<br />

Resist, 177nm<br />

Barc, 32nm<br />

15nm<br />

30nm<br />

45nm<br />

180nm 65nm Resist, 177nm<br />

Barc, 32nm<br />

Litho1<br />

Etch1<br />

Litho2<br />

•Substrate topography BARC thickness<br />

variation on features<br />

Impact on reflectivity control<br />

Impact on line1 etch2 dependent upon<br />

BARC/nitride selectivity<br />

12.3nm<br />

7.7nm<br />

2.6nm<br />

15nm height 30nm height 45nm height


Topography Impact on Litho (2/3)<br />

15nm height<br />

30nm height<br />

45nm height<br />

High topography alters resist profiles


Topography Impact on Litho (3/3)<br />

69<br />

10<br />

CD mean (nm)<br />

68.5<br />

68<br />

67.5<br />

67<br />

66.5<br />

66<br />

65.5<br />

+1.1nm<br />

+1.3nm<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

CD uniformity 3σ (nm)<br />

65<br />

0<br />

0 15nm 30nm 45nm<br />

substrate topography<br />

Higher topography induces: Larger CD and larger dispersion<br />

Difference between 3σ(L2) and 3σ(L1)<br />

Due to topography, DP requires :<br />

<strong>Development</strong> of planarizing BARC to improve DP process<br />

Thinnest stack as possible : 30nm Si 3 N 4 / 20nm SiO 2


Outline<br />

• <strong>CEA</strong>-<strong>LETI</strong>-Minatec background<br />

• <strong>CEA</strong>-<strong>LETI</strong>-Minatec & <strong>NIKON</strong> <strong>Joint</strong> <strong>Development</strong> <strong>Program</strong><br />

• Double Patterning Process development and control<br />

• Topography impact on DP technology<br />

• Reticle & Pellicle impact on CDU & overlay<br />

• Experimental <strong>Nikon</strong> error model validation<br />

• DP processing to achieve k 1 = 0.14


Reticle Impact on CD and Overlay<br />

• 6% att-PSM in bright field tonality, no pellicle<br />

• Quartz flatness 0.5µm (T)<br />

• Designed with e-beam writer E5000<br />

• Mask : CD tool : NANOSEM3, Registration : IPRO4 (VISTEC)<br />

• Wafer : CD Hitachi CG4000, Overlay : CD-SEM & KLA<br />

32 nm reticle specifications<br />

• CD 0.5nm<br />

• OVL 0.9nm<br />

Reticle data fits ITRS<br />

Mask CDU < ¼ of wafer CDU<br />

Mask OVL < 10% of wafer OVL<br />

budget


Pellicle Induced Reticle Deformation<br />

In collaboration with Toppan Photomasks<br />

- Mechanical performance of pellicle may introduce pattern distortions<br />

- Image placement has been registered before and after pellicle mounting<br />

on same relevant structures spread out over the layout (10µm)<br />

Mapping measurements<br />

-Mask registration measured in X and Y axis<br />

-Distortions after isotropic and orthotropic corrections<br />

-Orthotropic corrected by exposure tool<br />

Pellicle distortions 3σ (nm) after corrections<br />

• X axis 3.2 nm<br />

• Y axis 2.4 nm<br />

Pellicle induced distortion represents 15% additional error in the<br />

image placement budget for the 45nm node


Outline<br />

• <strong>CEA</strong>-<strong>LETI</strong>-Minatec background<br />

• <strong>CEA</strong>-<strong>LETI</strong>-Minatec & <strong>NIKON</strong> <strong>Joint</strong> <strong>Development</strong> <strong>Program</strong><br />

• Double Patterning Process development and control<br />

• Topography impact on DP technology<br />

• Reticle & Pellicle impact on CDU & overlay<br />

• Experimental <strong>Nikon</strong> error model validation<br />

• DP processing to achieve k 1 = 0.14


<strong>NIKON</strong> Error Model Validation<br />

<strong>Nikon</strong> developed a theoretical model to establish the required CD and<br />

overlay requirements for DP that could be used in tool design. This was<br />

targeted for experimental verification at Leti.<br />

[A.J. Hazelton et. al, LithoVision 2008]


L & S Error Model Validation (1/3)<br />

•Standard LELE process : 19 wafers with programmed x-trans offsets<br />

•CD measurements : line1, line2, space1 and space2, and 3σ<br />

•Overlay measurements<br />

CD & SPACE<br />

70<br />

65<br />

CD1<br />

CD2<br />

X mean raw data (nm)<br />

14<br />

10<br />

6<br />

2<br />

-2<br />

OVERLAY DATA<br />

CD-SEM data (nm)<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

SP1<br />

SP2<br />

-8 -6 -4 -2 0 2 4 6 8 10<br />

programmed X-translation offsets (nm)<br />

-6<br />

-8 -6 -4 -2 0 2 4 6 8 10<br />

programmed X-translation offsets (nm)


L & S Error Model Validation (2/3)<br />

∆<br />

Global dispersion<br />

on the two line<br />

populations<br />

⎡3<br />

⎢<br />

⎣2<br />

( )<br />

⎤<br />

2<br />

L − L<br />

2<br />

2<br />

CD Line<br />

= ∆CD<br />

+<br />

1 2<br />

Dispersion mean<br />

of L1 and L2<br />

25<br />

⎥<br />

⎦<br />

∆CD<br />

= ∆CD 1<br />

= ∆CD<br />

Difference of<br />

line CDs<br />

20<br />

• Line error model is validated<br />

experimentally by varying both<br />

CD line and CD space<br />

∆CDline<br />

15<br />

10<br />

5<br />

y = 0.9974x + 0.0135<br />

R 2 = 1<br />

0<br />

0 5 10 15 20 25<br />

root sqr[ ∆CD² + [3/2(L1-L2)]² ]


∆CD<br />

space<br />

=<br />

Global dispersion on<br />

the two space<br />

populations<br />

∆CDspace<br />

L & S Error Model Validation (3/3)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

∆CD<br />

2<br />

overlay<br />

y = 1.1671x - 3.3029<br />

R 2 = 0.9774<br />

2<br />

+ ∆OL<br />

2<br />

Line<br />

Dispersion mean<br />

of L1 and L2<br />

CD-SEM<br />

y = 0.9692x + 1.5178<br />

R 2 = 0.998<br />

0 10 20 30 40 50 60<br />

root sqr [∆CD²/2 + ∆OL² + [3(m1-m2)]² ]<br />

+<br />

overlay KLA<br />

CD-SEM<br />

[ 3( m − m )] 2<br />

∆<br />

1<br />

2<br />

∆ = ∆OL<br />

+ ∆OL<br />

= 2∆OL<br />

OL SO<br />

2<br />

2<br />

2<br />

1<br />

∆CD<br />

= ∆CD 1<br />

= ∆CD 2<br />

Overlay term : (3σ)² + [3mean]²<br />

with m 1 -m 2 = ½ x (CDspace 1 -CDspace 2 )<br />

CD space<br />

=<br />

∆CD<br />

( ) 2<br />

SP − SP<br />

2<br />

2 ⎡<br />

⎤<br />

+ ∆OL<br />

+<br />

1 2<br />

2 ⎢2<br />

⎥ ⎦<br />

Space error model<br />

validated experimentally<br />

⎣<br />

3


Outline<br />

• <strong>CEA</strong>-<strong>LETI</strong>-Minatec background<br />

• <strong>CEA</strong>-<strong>LETI</strong>-Minatec & <strong>NIKON</strong> <strong>Joint</strong> <strong>Development</strong> <strong>Program</strong><br />

• Double Patterning Process development and control<br />

• Topography impact on DP technology<br />

• Reticle & Pellicle impact on CDU & overlay<br />

• Experimental <strong>Nikon</strong> error model validation<br />

• DP processing to achieve k 1 = 0.14


Practical Illumination Solutions<br />

• The existing Dipole Optical Element was combined with a new aperture<br />

to produce the desired illumination profile.<br />

+ =<br />

ID4 ( dipole )<br />

Simulation result using NSR<br />

illumination data and SolidE<br />

simulator<br />

4x improvement using new<br />

aperture<br />

Focus offset (µm)<br />

**See V. Salvetat et al poster later tonight


32 nm Using Double Patterning<br />

• Successful DP process developed at <strong>CEA</strong>-<strong>LETI</strong>-Minatec<br />

coupled with custom illumination solution enabled 32 nm<br />

patterning with k 1 = 0.14 using a 0.85 NA dry ArF scanner.<br />

k 1 = 0.14<br />

32 nm with pitch 64nm<br />

obtained with DP<br />

Demonstrated k 1 = 0.14 while showing potential<br />

extendibility of dry ArF tools


Summary and Outlook<br />

•Double patterning process developed at <strong>CEA</strong>-<strong>LETI</strong>-Minatec is<br />

step by step controlled<br />

•Topography impact on DP process has been demonstrated<br />

•Reticle and pellicle contributions on CD & overlay budgets<br />

have been determined experimentally on DP structures<br />

•<strong>Nikon</strong> line & space error model validated experimentally<br />

•Successful partnership between <strong>CEA</strong>-<strong>LETI</strong>-Minatec and <strong>Nikon</strong><br />

demonstrating a Double Patterning process down to k 1 of 0.14<br />

is possible.<br />

•<strong>Nikon</strong> / <strong>CEA</strong>-<strong>LETI</strong> partnership will continue


Acknowledgements<br />

• Brid Connolly, Ralf Ploss, Toppan Photomasks<br />

• Amandine Pikon, Christophe Brault, Rohm&Haas<br />

Electronic Materials

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!