Packaging Effect on Reliability for Cu/Low k Damascene ... - Sematech

Packaging Effect on Reliability for Cu/Low k Damascene ... - Sematech Packaging Effect on Reliability for Cu/Low k Damascene ... - Sematech

internationalsematech.org
from internationalsematech.org More from this publisher
31.12.2014 Views

ong>Packagingong> ong>Effectong> on Reliability for Cu/Low k Damascene Structures* Guotao Wang and Paul S. Ho Laboratory of Interconnect & ong>Packagingong> The University of Texas at Austin, TX 78712 * Work supported by SRC through the CAIST Program TRC 2003 The University of Texas at Austin

<str<strong>on</strong>g>Packaging</str<strong>on</strong>g> <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <strong>on</strong> <strong>Reliability</strong> <strong>for</strong><br />

<strong>Cu</strong>/<strong>Low</strong> k <strong>Damascene</strong> Structures*<br />

Guotao Wang and Paul S. Ho<br />

Laboratory of Interc<strong>on</strong>nect & <str<strong>on</strong>g>Packaging</str<strong>on</strong>g><br />

The University of Texas at Austin, TX 78712<br />

* Work supported by SRC through the CAIST Program<br />

TRC 2003<br />

The University of Texas at Austin


1. Introducti<strong>on</strong><br />

<str<strong>on</strong>g>Packaging</str<strong>on</strong>g> requirements and processes<br />

<str<strong>on</strong>g>Packaging</str<strong>on</strong>g> impact <strong>on</strong> reliability <strong>for</strong> <strong>Cu</strong> interc<strong>on</strong>nect<br />

2. Multilevel sub-modeling technique<br />

3D Modeling with Modified Virtual Crack Closure<br />

(MVCC) method<br />

3. Simulati<strong>on</strong> results<br />

Results <strong>for</strong> TEOS and low k structures<br />

Line dimensi<strong>on</strong> scaling effect<br />

Parametric study <strong>for</strong> package level comp<strong>on</strong>ents<br />

- Material and size effect <strong>for</strong> underfilled packages<br />

- <str<strong>on</strong>g>Effect</str<strong>on</strong>g> of solder reflow without underfill in plastic<br />

packages<br />

4. Recent fracture studies <strong>on</strong> low k structures<br />

The University of Texas at Austin


Single-chip <str<strong>on</strong>g>Packaging</str<strong>on</strong>g> Technology Requirements<br />

Year of Producti<strong>on</strong><br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

2007<br />

Chip Size (mm 2 )<br />

Hand-held<br />

57<br />

59<br />

61<br />

63<br />

65<br />

65<br />

65<br />

High-per<strong>for</strong>mance<br />

310<br />

310<br />

310<br />

310<br />

310<br />

310<br />

310<br />

Power: Single Chip Package (Watts)<br />

Hand-held<br />

2.4<br />

2.6<br />

2.8<br />

3.2<br />

3.2<br />

3.5<br />

3.5<br />

High-per<strong>for</strong>mance<br />

130<br />

140<br />

150<br />

160<br />

170<br />

180<br />

190<br />

Package Pin Count Maximum<br />

Hand-held<br />

100-420<br />

112-464<br />

122-508<br />

134-560<br />

144-616<br />

160-680<br />

176-748<br />

High-per<strong>for</strong>mance<br />

1700<br />

1870<br />

2057<br />

2263<br />

2489<br />

2738<br />

3012<br />

Sub-threshold Leakage <strong>Cu</strong>rrent, I sd,leak<br />

(@25C)<br />

Nominal low-power NMOS<br />

(pA/μm)<br />

100<br />

100<br />

100<br />

300<br />

300<br />

300<br />

700<br />

Nominal high-per<strong>for</strong>mance<br />

NMOS (μA/μm)<br />

0.01<br />

0.03<br />

0.07<br />

0.1<br />

0.3<br />

0.7<br />

1<br />

Int. Semic<strong>on</strong>d. Tech. Roadmap Update 2002<br />

The University of Texas at Austin


Flip-Chip <str<strong>on</strong>g>Packaging</str<strong>on</strong>g><br />

Die<br />

Solder bumping<br />

Substrate<br />

Solder reflow<br />

183ºC 37Pb/63Sn<br />

High stress in the package during<br />

cooling down to room temp.<br />

Underfilling<br />

125º to 180ºC<br />

Thermal cycling<br />

-55 o C-125 o C<br />

High stress can be introduced during<br />

thermal cycling.<br />

The University of Texas at Austin


Wire-b<strong>on</strong>d <str<strong>on</strong>g>Packaging</str<strong>on</strong>g><br />

Die<br />

Substrate<br />

Die attach<br />

150º to 300ºC<br />

High stress at b<strong>on</strong>d pad<br />

during wire b<strong>on</strong>ding.<br />

Wire b<strong>on</strong>ding<br />

Encapsulati<strong>on</strong><br />

140º to 160ºC<br />

The University of Texas at Austin


Oxide → low k<br />

<strong>Low</strong> k dielectrics have<br />

Weak mechanical strength<br />

Large coefficient of thermal<br />

expansi<strong>on</strong><br />

Poor adhesi<strong>on</strong> to cap and<br />

barrier layers<br />

Interfacial delaminati<strong>on</strong> is a<br />

serious reliability c<strong>on</strong>cern <strong>for</strong><br />

<strong>Cu</strong>/low k interc<strong>on</strong>nects<br />

~10mm<br />

Active Side<br />

Silic<strong>on</strong> Chip<br />

Passivati<strong>on</strong><br />

Metal<br />

Dielectric<br />

Device Level<br />

Interfacial delaminati<strong>on</strong><br />

The University of Texas at Austin


Interfacial Delaminati<strong>on</strong><br />

Interfacial delaminati<strong>on</strong><br />

The crack driving <strong>for</strong>ce can be evaluated from the<br />

energy release rate (ERR) using finite element<br />

analysis.<br />

For a stand-al<strong>on</strong>e <strong>Cu</strong>/low k interc<strong>on</strong>nects,<br />

ERR has been calculated to be about 1 J/m 2 during<br />

cooling from 400 o C to room temperature.<br />

The fracture energy, or the critical ERR, is usually<br />

about 4-5 J/m 2 <strong>for</strong> low k interfaces (lower <strong>for</strong> porous<br />

ILD) and c<strong>on</strong>siderably higher <strong>for</strong> TEOS interfaces.<br />

(Y. Du et al., Proceedings of ECTC, 2002)<br />

Sub-critical crack growth instead of critical fracture will be<br />

more of c<strong>on</strong>cern <strong>for</strong> stand-al<strong>on</strong>e <strong>Cu</strong>/low k structures<br />

The University of Texas at Austin


Solder bump<br />

Die<br />

BT substrate<br />

Underfill<br />

Solder bump<br />

Underfill<br />

BT substrate<br />

Through hole via<br />

Die<br />

High density<br />

signal layer<br />

Material mismatch and processing can induce thermal<br />

de<strong>for</strong>mati<strong>on</strong> and stress c<strong>on</strong>centrati<strong>on</strong> in flip-chip packages:<br />

<str<strong>on</strong>g>Packaging</str<strong>on</strong>g> effect <strong>on</strong> low k interc<strong>on</strong>nect reliability <br />

The University of Texas at Austin


Verificati<strong>on</strong> with Moiré Interferometry<br />

0<br />

Package cross-secti<strong>on</strong><br />

U Field<br />

Displacement (um)<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

-6<br />

Moire result<br />

FEA result<br />

0 0.5 1 1.5 2 2.5 3 3.5 4<br />

Distance from neutral point (mm)<br />

Package warpage<br />

V Field<br />

High resoluti<strong>on</strong> moiré interferometry was used to measure the<br />

thermal de<strong>for</strong>mati<strong>on</strong> in the flip-chip package and verified the<br />

modeling results at the package level.<br />

The University of Texas at Austin


High resoluti<strong>on</strong> U phase map (208nm per fringe)<br />

U<br />

Thermal load 20°C to 102°C<br />

The University of Texas at Austin


High resoluti<strong>on</strong> V phase map (208nm per fringe)<br />

V<br />

Thermal load 20°C to 102°C<br />

The University of Texas at Austin


Displacement distributi<strong>on</strong><br />

(U field, 52nm per c<strong>on</strong>tour)<br />

U<br />

Thermal load 20°C to 102°C<br />

The University of Texas at Austin


Displacement distributi<strong>on</strong><br />

(V field, 52nm per c<strong>on</strong>tour)<br />

V<br />

Thermal load 20°C to 102°C<br />

The University of Texas at Austin


Shear strain γ xy distributi<strong>on</strong> at the solder bump<br />

A<br />

B<br />

C<br />

The University of Texas at Austin


Normal strain ε y distributi<strong>on</strong> at the solder bump<br />

A<br />

B<br />

C<br />

The University of Texas at Austin


Impact from <str<strong>on</strong>g>Packaging</str<strong>on</strong>g><br />

For a chip attached to a board,<br />

Large thermal stresses are induced due to thermal<br />

mismatch between package level comp<strong>on</strong>ents.<br />

In a plastic underfilled flip-chip package,<br />

Large peeling stress at chip/solder bump or<br />

chip/underfill interface due to thermal mismatch<br />

between solder and underfill.<br />

Large shear and tensile stress at die corner due to<br />

thermal mismatch between die and PCB.<br />

(M.R. Miller et al., Proceedings ECTC, p.979, 1999)<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> of thermal stress induced by packaging <strong>on</strong><br />

structural reliability of <strong>Cu</strong>/low k interc<strong>on</strong>nects<br />

The University of Texas at Austin


Finite Element Analysis<br />

To study packaging impact <strong>on</strong> interc<strong>on</strong>nect reliability<br />

In FEA model, details <strong>for</strong> both packaging and<br />

interc<strong>on</strong>nect levels have to be c<strong>on</strong>sidered.<br />

Modeling challenges<br />

Maximum dimensi<strong>on</strong> at package level: 10 to 30mm<br />

Minimum dimensi<strong>on</strong> at interc<strong>on</strong>nect level: 20nm or<br />

less <strong>for</strong> barrier layer<br />

The ratio can be as high as 10 6 . It is impossible to<br />

c<strong>on</strong>sider the details of interc<strong>on</strong>nect structures when<br />

modeling a whole package.<br />

Soluti<strong>on</strong>: multilevel sub-modeling technique<br />

The University of Texas at Austin


Multilevel Sub-model<br />

A 4-level 3D sub-model was developed to analyze<br />

<strong>Cu</strong> interc<strong>on</strong>nects in flip-chip packages<br />

Starting from the packaging level, sub-modeling<br />

was c<strong>on</strong>ducted <strong>on</strong>e level of detail at a time to<br />

reach the interc<strong>on</strong>nect level.<br />

ANSYS built-in cut boundary technique was used<br />

at each sub-modeling level.<br />

At the final interc<strong>on</strong>nect level, a crack with fixed<br />

length was introduced at various relevant<br />

interfaces. A Modified Virtual Crack Closure<br />

(MVCC) method was used to calculate the crack<br />

driving <strong>for</strong>ce (energy release rate).<br />

The University of Texas at Austin


Hierarchical Levels of Submodeling<br />

Level 1: Package level<br />

Level 2: Critical Solder Regi<strong>on</strong><br />

Level 3: Die-Solder Interface<br />

Level 4: Detailed Interc<strong>on</strong>nect<br />

The University of Texas at Austin


Level 1: Flip-chip Package<br />

Die<br />

Underfill<br />

PCB<br />

PCB<br />

Die<br />

At the package level, a quarter secti<strong>on</strong> of the package was modeled<br />

based <strong>on</strong> symmetry. Details of the interc<strong>on</strong>nect structure was not<br />

c<strong>on</strong>sidered because of its small dimensi<strong>on</strong>.<br />

The University of Texas at Austin


Verificati<strong>on</strong> with Moiré Interferometry<br />

0<br />

Package cross-secti<strong>on</strong><br />

U Field<br />

Displacement (um)<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

-6<br />

Moire result<br />

FEA result<br />

0 0.5 1 1.5 2 2.5 3 3.5 4<br />

Distance from neutral point (mm)<br />

Package warpage<br />

V Field<br />

High resoluti<strong>on</strong> moiré interferometry was used to measure the<br />

thermal de<strong>for</strong>mati<strong>on</strong> in the flip-chip package and verified the<br />

modeling results at the package level.<br />

The University of Texas at Austin


Level 2: Critical Solder Regi<strong>on</strong><br />

Die<br />

Critical solder bump<br />

Underfill<br />

PCB<br />

With underfill shown<br />

Without underfill shown<br />

The sub-model focused <strong>on</strong> the critical solder bump regi<strong>on</strong><br />

with a uni<strong>for</strong>m ILD layer at the die surface but no detailed<br />

interc<strong>on</strong>nect structure included.<br />

The University of Texas at Austin


Level 3: Die-Solder Interface<br />

Die (Si)<br />

BPS<br />

G<br />

ILD<br />

PASS<br />

Solder pad<br />

This sub-model focused <strong>on</strong> the die-solder interface regi<strong>on</strong><br />

c<strong>on</strong>taining a porti<strong>on</strong> of die, ILD layer and a porti<strong>on</strong> of solder<br />

bump but included <strong>on</strong>ly a uni<strong>for</strong>m ILD layer <strong>for</strong> the interc<strong>on</strong>nect.<br />

The University of Texas at Austin


Level 4: Detailed Interc<strong>on</strong>nects<br />

Si<br />

Metal Line<br />

BPSG<br />

Metal 1<br />

ILD<br />

PASS<br />

Solder pad<br />

Metal 2<br />

This sub-model focused <strong>on</strong> the die-solder interface taking into account<br />

the detailed interc<strong>on</strong>nect structure. A crack with fixed length was<br />

introduced al<strong>on</strong>g various interfaces to calculate the crack driving <strong>for</strong>ce.<br />

The University of Texas at Austin


z<br />

y<br />

x<br />

MVCC Technique<br />

(Modified Virtual Crack Closure)<br />

∆A<br />

2 1<br />

3<br />

∆A<br />

FEA elements and nodes near crack tip<br />

(2)<br />

δ z<br />

2<br />

G<br />

3<br />

(1)<br />

F z<br />

1<br />

(1)<br />

F z<br />

Mode 1 comp<strong>on</strong>ent<br />

I<br />

= F δ<br />

(1)<br />

z<br />

(2)<br />

z<br />

/(2∆A)<br />

(2)<br />

δ x<br />

2<br />

3<br />

(1)<br />

F x<br />

1<br />

(1)<br />

F x<br />

Mode 2 comp<strong>on</strong>ent<br />

G<br />

II<br />

= F δ<br />

(1)<br />

x<br />

(2)<br />

x<br />

/(2∆A)<br />

G<br />

(2)<br />

δ y<br />

Total energy release rate:<br />

2<br />

(1)<br />

F y<br />

1<br />

(1)<br />

F y<br />

3<br />

Mode 3 comp<strong>on</strong>ent<br />

III<br />

= F δ<br />

(1)<br />

z<br />

(2)<br />

z<br />

/(2∆A)<br />

G = G + G +<br />

I<br />

II<br />

F X , F y and F z are nodal <strong>for</strong>ces at<br />

node 1 al<strong>on</strong>g x,y and z directi<strong>on</strong>,<br />

respectively.<br />

δ X , δ y and δ z are relative<br />

displacements between node 2<br />

and 3 al<strong>on</strong>g x,y and z directi<strong>on</strong>,<br />

respectively.<br />

G<br />

III<br />

The University of Texas at Austin


Interc<strong>on</strong>nect Interfaces<br />

BPSG<br />

M1<br />

Via<br />

ILD<br />

Crack 6<br />

Crack 5<br />

Crack 1 Crack 4<br />

PASS<br />

M2<br />

Solder pad<br />

Crack 4, 5 and 6 are at the horiz<strong>on</strong>tal cap and barrier layer<br />

interfaces. Crack width is taken to be the line width.<br />

The University of Texas at Austin


Interc<strong>on</strong>nect Interfaces (c<strong>on</strong>t’d)<br />

BPSG<br />

ILD<br />

ILD<br />

Metal 1<br />

Crack 3<br />

Crack 2<br />

Barrier<br />

TiN<br />

Crack 2 and 3 are at the vertical barrier interfaces.<br />

The University of Texas at Austin


Material Properties<br />

Materials<br />

Al<br />

<strong>Cu</strong><br />

TEOS<br />

SiLK<br />

Underfill<br />

PCB<br />

E ( GPa )<br />

72<br />

122<br />

66<br />

2.45<br />

6.23<br />

Anisotropic<br />

ν<br />

0.36<br />

0.35<br />

0.18<br />

0.35<br />

0.40<br />

elastic property<br />

CTE (×10 -6 /C)<br />

24<br />

17<br />

0.57<br />

66<br />

40.6<br />

16 (in plane)<br />

84 (out of plane)<br />

Thermal loading: <strong>for</strong> stand-al<strong>on</strong>e wafer structure from 400 o C to<br />

25 o C and <strong>for</strong> packaging from –55 o C to 125 o C.<br />

All materials are taken to be linear elastic.<br />

The University of Texas at Austin


ERR (J/m^2)<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

ERR <strong>for</strong> Stand–al<strong>on</strong>e Wafer Structures<br />

(from 400 o C to 25 o C)<br />

Al/TEOS Structure<br />

<strong>Cu</strong>/TEOS Structure<br />

<strong>Cu</strong>/SiLK Structure<br />

0.2<br />

0<br />

crack 1 crack 2 crack 3 crack 4 crack 5 crack 6<br />

The SiLK/barrier interface in <strong>Cu</strong>/SiLK structure has the highest<br />

energy release rate (about 1.16 J/m 2 ). Fracture mode is<br />

primarily mode I driven by the high CTE of SiLK.<br />

The University of Texas at Austin


<str<strong>on</strong>g>Packaging</str<strong>on</strong>g> effect (-55 o C to 125 o C)<br />

ERR (J/m^2)<br />

18<br />

15<br />

12<br />

9<br />

6<br />

Al/TEOS Structure<br />

<strong>Cu</strong>/TEOS Structure<br />

<strong>Cu</strong>/SiLK Structure<br />

3<br />

0<br />

crack 1 crack 2 crack 3 crack 4 crack 5 crack 6<br />

<str<strong>on</strong>g>Packaging</str<strong>on</strong>g> has little effect <strong>on</strong> energy release rate <strong>for</strong> Al/TEOS or<br />

<strong>Cu</strong>/TEOS structure, but is significant <strong>for</strong> <strong>Cu</strong>/SiLK structure. Mixedmode<br />

delaminati<strong>on</strong> with both peeling and shear stresses c<strong>on</strong>tributing.<br />

The University of Texas at Austin


Why energy release rate is much higher in<br />

<strong>Cu</strong>/low k structure than in <strong>Cu</strong>/TEOS structure <br />

Assuming that the thermal stress induced from package level<br />

de<strong>for</strong>mati<strong>on</strong> is σ, the strains <strong>for</strong> low k ILD and TEOS will be<br />

σ<br />

σ<br />

ε<br />

SiLK<br />

= , εTEOS<br />

=<br />

<strong>for</strong> simple 1-D case<br />

E<br />

E<br />

SiLK<br />

TEOS<br />

The strain energy densities <strong>for</strong> SiLK and TEOS are<br />

ξ<br />

ξ<br />

SiLK<br />

TEOS<br />

1<br />

= σε<br />

2<br />

1<br />

= σε<br />

2<br />

SiLK<br />

TEOS<br />

=<br />

=<br />

1<br />

2<br />

1<br />

2<br />

σ<br />

E<br />

2<br />

SiLK<br />

σ<br />

E<br />

2<br />

TEOS<br />

E SiLK is about 30 times lower than E TEOS , hence the strain energy<br />

density in SiLK will be about 30 times higher, leading to a much higher<br />

energy release rate in the <strong>Cu</strong>/SiLK structure.<br />

C<strong>on</strong>finement effect due to the damascene structure also affects the<br />

stress driving <strong>for</strong>ce and de<strong>for</strong>mati<strong>on</strong> behavior of the interc<strong>on</strong>nect.<br />

The University of Texas at Austin


Scaling <str<strong>on</strong>g>Effect</str<strong>on</strong>g><br />

<strong>Cu</strong>/SiLK Structure, SiLK/PASS Interface<br />

1.2<br />

1<br />

Normalized ERR<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

wafer level <strong>on</strong>ly (400--25oC)<br />

<str<strong>on</strong>g>Packaging</str<strong>on</strong>g> effect (-55--125oC)<br />

0<br />

0.1 0.2 0.3 0.4 0.5<br />

Line width (um)<br />

The driving <strong>for</strong>ce <strong>for</strong> interface fracture increases slightly with<br />

decreasing line width at <strong>Cu</strong> SiLK/PASS interface.<br />

The University of Texas at Austin


<str<strong>on</strong>g>Effect</str<strong>on</strong>g> of Die Attach Process<br />

A critical process step in flip-chip packaging is the solder<br />

reflow step be<strong>for</strong>e underfilling the package. Without<br />

underfill serves as a stress buffer, thermal mismatch<br />

between the die and substrate can generate large thermal<br />

stress at the solder/die interface near the die corner.<br />

Solder reflow temperatures are different <strong>for</strong> Pb-based and<br />

Pb-free solders. Thermal loads used in our simulati<strong>on</strong>:<br />

• High lead solder: 300 o C-25 o C<br />

• Eutectic solder: 160 o C-25 o C<br />

• Lead free solder: 250 o C-25 o C<br />

The University of Texas at Austin


Parametric Study of Die Attach Process<br />

1. Substrate effect<br />

Plastic vs. ceramic substrate<br />

2. Die size:<br />

7x8mm vs. 13.4x14.4mm die<br />

3. Solder materials:<br />

High lead solder<br />

Eutectic solder<br />

Lead free solder<br />

The University of Texas at Austin


Material Properties<br />

E(GPa)<br />

v<br />

CTE(x10 -6 )<br />

Die<br />

162<br />

0.28<br />

2.6<br />

Plastic substrate<br />

Anisotropic elastic<br />

property<br />

16(in plane)<br />

84(out of plane)<br />

Ceramic substrate<br />

300<br />

0.3<br />

5.0<br />

High lead solder<br />

50.81-0.102*T<br />

0.35<br />

29.7<br />

Eutectic solder<br />

75.84-0.152*T<br />

0.35<br />

24.5<br />

Lead free solder<br />

88.53-0.142*T<br />

0.40<br />

16.5<br />

Underfill 1<br />

8.40<br />

0.40<br />

28.0<br />

Underfill 2<br />

7.10<br />

0.40<br />

34.0<br />

Underfill 3<br />

6.23<br />

0.40<br />

40.6<br />

The University of Texas at Austin


ERR(J/m^2)<br />

36<br />

30<br />

24<br />

18<br />

12<br />

Solder Materials <str<strong>on</strong>g>Effect</str<strong>on</strong>g><br />

(Plastic substrate, 7x8mm die)<br />

High lead solder package<br />

Eutectic solder package<br />

Lead-free solder package<br />

6<br />

0<br />

crack 1 crack 2 crack 3 crack 4 crack 5 crack 6<br />

Solder reflow be<strong>for</strong>e underfill increases the driving <strong>for</strong>ce<br />

<strong>for</strong> interfacial delaminati<strong>on</strong> in <strong>Cu</strong>/SiLK structures,<br />

particularly <strong>for</strong> lead-free solders.<br />

The University of Texas at Austin


Substrate <str<strong>on</strong>g>Effect</str<strong>on</strong>g><br />

(Eutectic solder, 7x8mm die)<br />

8<br />

Plastic substrate<br />

6<br />

Ceramic substrate<br />

ERR (J/m^2)<br />

4<br />

2<br />

0<br />

crack 1 crack 2 crack 3 crack 4 crack 5 crack 6<br />

Solder reflow reduces significantly the driving <strong>for</strong>ce <strong>for</strong><br />

interfacial delaminati<strong>on</strong> in <strong>Cu</strong>/SiLK structure <strong>for</strong> packages with<br />

ceramic substrate compared to plastic substrate.<br />

The University of Texas at Austin


Die Size <str<strong>on</strong>g>Effect</str<strong>on</strong>g><br />

(Plastic substrate, Eutectic solder)<br />

10<br />

8<br />

8x7mm Die<br />

14.4x13.4mm Die<br />

ERR (J/m^2)<br />

6<br />

4<br />

2<br />

0<br />

crack 1 crack 2 crack 3 crack 4 crack 5 crack 6<br />

During reflow, the driving <strong>for</strong>ce <strong>for</strong> interface fracture<br />

increases with increasing die size. The effect is larger <strong>for</strong><br />

high lead solders due to a higher reflow temperature<br />

The University of Texas at Austin


Summary<br />

Maximum energy release rate (J/m 2 ) <strong>for</strong><br />

0.5 mm line width<br />

Interfaces<br />

ILD/PASS<br />

ILD/BARR<br />

Metal/PAS<br />

S<br />

Metal/BARR<br />

Wafer level<br />

0.0076<br />

0.3854<br />

0.2044<br />

0.4375<br />

Al/TEOS<br />

<str<strong>on</strong>g>Packaging</str<strong>on</strong>g><br />

0.2086<br />

0.0845<br />

0.0630<br />

0.0716<br />

Wafer level<br />

0.0072<br />

0.3669<br />

0.2079<br />

0.4287<br />

<strong>Cu</strong>/TEOS<br />

<str<strong>on</strong>g>Packaging</str<strong>on</strong>g><br />

0.2095<br />

0.0865<br />

0.0617<br />

0.0702<br />

Wafer level<br />

0.2908<br />

1.1556<br />

0.1718<br />

1.0476<br />

<strong>Cu</strong>/SiLK<br />

<str<strong>on</strong>g>Packaging</str<strong>on</strong>g><br />

8.3392<br />

11.1109<br />

16.7080<br />

7.5216<br />

The University of Texas at Austin


C<strong>on</strong>clusi<strong>on</strong>s<br />

3D multilevel sub-modeling technique was developed to investigate<br />

the packaging effect <strong>on</strong> interfacial fracture <strong>for</strong> TEOS and low k<br />

interc<strong>on</strong>nect structures.<br />

For stand-al<strong>on</strong>e interc<strong>on</strong>nects, the crack driving <strong>for</strong>ce <strong>for</strong> interfacial<br />

delaminati<strong>on</strong> is usually lower than the critical fracture energy, so<br />

subcritical crack growth and fatigue crack growth are important in<br />

c<strong>on</strong>trolling structural reliability.<br />

<str<strong>on</strong>g>Packaging</str<strong>on</strong>g> effect can significantly increase the energy release rate<br />

to cause critical crack growth in <strong>Cu</strong>/low k structures, particularly at<br />

the interfaces parallel to the chip surface.<br />

Interfacial chemical b<strong>on</strong>ds are important in c<strong>on</strong>trolling interfacial<br />

adhesi<strong>on</strong>. Residual stress can en<strong>for</strong>ce thermal stress to drive crack<br />

growth, particularly in a humid envir<strong>on</strong>ment. The effect <strong>on</strong> low k<br />

interc<strong>on</strong>nect reliability has to be investigated.<br />

The University of Texas at Austin

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!