31.12.2014 Views

Quantile Regression: A Gentle Introduction

Quantile Regression: A Gentle Introduction

Quantile Regression: A Gentle Introduction

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Quantile</strong> <strong>Regression</strong>: A <strong>Gentle</strong> <strong>Introduction</strong><br />

Roger Koenker<br />

University of Illinois, Urbana-Champaign<br />

5th RMetrics Workshop, Meielisalp: 28 June 2011<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 1 / 58


Overview of the Course<br />

Some Basics: What, Why and How<br />

Inference and <strong>Quantile</strong> Treatment Effects<br />

Nonparametric <strong>Quantile</strong> <strong>Regression</strong><br />

<strong>Quantile</strong> Autoregression<br />

Risk Assessment and Choquet Portfolios<br />

Course outline, lecture slides, an R FAQ, and even some proposed exercises<br />

can all be found at:<br />

http://www.econ.uiuc.edu/~roger/courses/RMetrics.<br />

A somewhat more extensive set of lecture slides can be found at:<br />

http://www.econ.uiuc.edu/~roger/courses/LSE.<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 2 / 58


Boxplots of CEO Pay<br />

annual compensation in millions<br />

0.1 1 10 100<br />

*<br />

+<br />

*<br />

* *<br />

* *<br />

*<br />

+ + + + + +<br />

*<br />

+<br />

*<br />

+<br />

*<br />

+<br />

●<br />

●<br />

●<br />

●<br />

0.1 1 10 100<br />

firm market value in billions<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 3 / 58


Motivation<br />

What the regression curve does is give a grand summary for the<br />

averages of the distributions corresponding to the set of of x’s.<br />

We could go further and compute several different regression<br />

curves corresponding to the various percentage points of the<br />

distributions and thus get a more complete picture of the set.<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 4 / 58


Motivation<br />

What the regression curve does is give a grand summary for the<br />

averages of the distributions corresponding to the set of of x’s.<br />

We could go further and compute several different regression<br />

curves corresponding to the various percentage points of the<br />

distributions and thus get a more complete picture of the set.<br />

Ordinarily this is not done, and so regression often gives a rather<br />

incomplete picture.<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 4 / 58


Motivation<br />

What the regression curve does is give a grand summary for the<br />

averages of the distributions corresponding to the set of of x’s.<br />

We could go further and compute several different regression<br />

curves corresponding to the various percentage points of the<br />

distributions and thus get a more complete picture of the set.<br />

Ordinarily this is not done, and so regression often gives a rather<br />

incomplete picture. Just as the mean gives an incomplete picture<br />

of a single distribution, so the regression curve gives a<br />

correspondingly incomplete picture for a set of distributions.<br />

Mosteller and Tukey (1977)<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 4 / 58


Motivation<br />

Francis Galton in a famous passage defending the “charms of statistics”<br />

against its many detractors, chided his statistical colleagues<br />

[who] limited their inquiries to Averages, and do not seem to<br />

revel in more comprehensive views. Their souls seem as dull to<br />

the charm of variety as that of a native of one of our flat English<br />

counties, whose retrospect of Switzerland was that, if the<br />

mountains could be thrown into its lakes, two nuisances would<br />

be got rid of at once. Natural Inheritance, 1889<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 5 / 58


Univariate <strong>Quantile</strong>s<br />

Given a real-valued random variable, X, with distribution function F, we<br />

define the τth quantile of X as<br />

Q X (τ) = F −1<br />

X<br />

(τ) = inf{x | F(x) τ}.<br />

This definition follows the usual convention that F is CADLAG, and Q is<br />

CAGLAD as illustrated in the following pair of pictures.<br />

F(x)<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Q(τ)<br />

0.0 1.0 2.0 3.0<br />

0.0 1.0 2.0 3.0<br />

x<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

τ<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 6 / 58


Univariate <strong>Quantile</strong>s<br />

Given a real-valued random variable, X, with distribution function F, we<br />

will define the τth quantile of X as<br />

Q X (τ) = F −1<br />

X<br />

(τ) = inf{x | F(x) τ}.<br />

This definition follows the usual convention that F is CADLAG, and Q is<br />

CAGLAD as illustrated in the following pair of pictures.<br />

F's are CADLAG<br />

Q's are CAGLAD<br />

F(x)<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

●<br />

●<br />

●<br />

●<br />

Q(τ)<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

●<br />

●<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

x<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

τ<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 7 / 58


Univariate <strong>Quantile</strong>s<br />

Viewed from the perspective of densities, the τth quantile splits the area<br />

under the density into two parts: one with area τ below the τth quantile<br />

and the other with area 1 − τ above it:<br />

f(x)<br />

0.0 0.4 0.8<br />

τ<br />

1 − τ<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0<br />

x<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 8 / 58


Two Bits Worth of Convex Analysis<br />

A convex function ρ and its subgradient ψ:<br />

ρ τ (u)<br />

τ<br />

ψ τ (u)<br />

τ − 1<br />

τ<br />

τ − 1<br />

The subgradient of a convex function f(u) at a point u consists of all the<br />

possible “tangents.” Sums of convex functions are convex.<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 9 / 58


Population <strong>Quantile</strong>s as Optimizers<br />

<strong>Quantile</strong>s solve a simple optimization problem:<br />

ˆα(τ) = argmin E ρ τ (Y − α)<br />

Proof: Let ψ τ (u) = ρ ′ τ(u), so differentiating wrt to α:<br />

0 =<br />

∫ ∞<br />

−∞<br />

ψ τ (y − α)dF(y)<br />

= (τ − 1)<br />

∫ α<br />

dF(y) + τ<br />

−∞<br />

∫ ∞<br />

α<br />

dF(y)<br />

= (τ − 1)F(α) + τ(1 − F(α))<br />

implying τ = F(α) and thus ˆα = F −1 (τ).<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 10 / 58


●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

Sample <strong>Quantile</strong>s as Optimizers<br />

For sample quantiles replace F by ˆF, the empirical distribution function.<br />

The objective function becomes a polyhedral convex function whose<br />

derivative is monotone decreasing, in effect the gradient simply counts<br />

observations above and below and weights the sums by τ and 1 − τ.<br />

R(x)<br />

20 30 40 50 60 70 80<br />

● ●●<br />

● ●<br />

●●●● ●●<br />

● ●<br />

R'(x)<br />

−15 −10 −5 0 5 10 15<br />

−2 0 2 4<br />

x<br />

−2 0 2 4<br />

x<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 11 / 58


Conditional <strong>Quantile</strong>s: The Least Squares Meta-Model<br />

The unconditional mean solves<br />

µ = argmin m E(Y − m) 2<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 12 / 58


Conditional <strong>Quantile</strong>s: The Least Squares Meta-Model<br />

The unconditional mean solves<br />

µ = argmin m E(Y − m) 2<br />

The conditional mean µ(x) = E(Y|X = x) solves<br />

µ(x) = argmin m E Y|X=x (Y − m(X)) 2 .<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 12 / 58


Conditional <strong>Quantile</strong>s: The Least Squares Meta-Model<br />

The unconditional mean solves<br />

µ = argmin m E(Y − m) 2<br />

The conditional mean µ(x) = E(Y|X = x) solves<br />

µ(x) = argmin m E Y|X=x (Y − m(X)) 2 .<br />

Similarly, the unconditional τth quantile solves<br />

α τ = argmin a Eρ τ (Y − a)<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 12 / 58


Conditional <strong>Quantile</strong>s: The Least Squares Meta-Model<br />

The unconditional mean solves<br />

µ = argmin m E(Y − m) 2<br />

The conditional mean µ(x) = E(Y|X = x) solves<br />

µ(x) = argmin m E Y|X=x (Y − m(X)) 2 .<br />

Similarly, the unconditional τth quantile solves<br />

α τ = argmin a Eρ τ (Y − a)<br />

and the conditional τth quantile solves<br />

α τ (x) = argmin a E Y|X=x ρ τ (Y − a(X))<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 12 / 58


Computation of Linear <strong>Regression</strong> <strong>Quantile</strong>s<br />

Primal Formulation as a linear program, split the residual vector into<br />

positive and negative parts and sum with appropriate weights:<br />

min{τ1 ⊤ u + (1 − τ)1 ⊤ v|y = Xb + u − v, (b, u, v) ∈ |R p × |R 2n<br />

+ }<br />

Dual Formulation as a Linear Program<br />

max{y ′ d|X ⊤ d = (1 − τ)X ⊤ 1, d ∈ [0, 1] n }<br />

Solutions are characterized by an exact fit to p observations.<br />

Let h ∈ H index p-element subsets of {1, 2, ..., n} then primal solutions<br />

take the form:<br />

ˆβ = ˆβ(h) = X(h) −1 y(h)<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 13 / 58


Least Squares from the <strong>Quantile</strong> <strong>Regression</strong> Perspective<br />

Exact fits to p observations:<br />

ˆβ = ˆβ(h) = X(h) −1 y(h)<br />

OLS is a weighted average of these ˆβ(h)’s:<br />

ˆβ OLS = (X ⊤ X) −1 X ⊤ y = ∑ h∈H<br />

w(h)ˆβ(h),<br />

w(h) = |X(h)| 2 / ∑ h∈H<br />

|X(h)| 2<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 14 / 58


Least Squares from the <strong>Quantile</strong> <strong>Regression</strong> Perspective<br />

Exact fits to p observations:<br />

ˆβ = ˆβ(h) = X(h) −1 y(h)<br />

OLS is a weighted average of these ˆβ(h)’s:<br />

ˆβ OLS = (X ⊤ X) −1 X ⊤ y = ∑ h∈H<br />

w(h)ˆβ(h),<br />

w(h) = |X(h)| 2 / ∑ h∈H<br />

|X(h)| 2<br />

The determinants |X(h)| are the (signed) volumes of the parallelipipeds<br />

formed by the columns of the the matrices X(h). In the simplest bivariate<br />

case, we have,<br />

|X(h)| 2 =<br />

∣ 1 x ∣<br />

i ∣∣∣<br />

2<br />

= (x<br />

1 x j − x i ) 2<br />

j<br />

so pairs of observations that are far apart are given more weight.<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 14 / 58


<strong>Quantile</strong> <strong>Regression</strong>: The Movie<br />

Bivariate linear model with iid Student t errors<br />

Conditional quantile functions are parallel in blue<br />

100 observations indicated in blue<br />

Fitted quantile regression lines in red.<br />

Intervals for τ ∈ (0, 1) for which the solution is optimal.<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 15 / 58


<strong>Quantile</strong> <strong>Regression</strong> in the iid Error Model<br />

y<br />

−2 0 2 4 6 8 10 12<br />

[ 0.069 , 0.096 ]<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ● ●<br />

● ● ●<br />

●<br />

●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

● ●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

0 2 4 6 8 10<br />

x<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 16 / 58


<strong>Quantile</strong> <strong>Regression</strong> in the iid Error Model<br />

y<br />

−2 0 2 4 6 8 10 12<br />

[ 0.138 , 0.151 ]<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ● ●<br />

● ● ●<br />

●<br />

●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

● ●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

0 2 4 6 8 10<br />

x<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 17 / 58


<strong>Quantile</strong> <strong>Regression</strong> in the iid Error Model<br />

y<br />

−2 0 2 4 6 8 10 12<br />

[ 0.231 , 0.24 ]<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ● ●<br />

● ● ●<br />

●<br />

●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

● ●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

0 2 4 6 8 10<br />

x<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 18 / 58


<strong>Quantile</strong> <strong>Regression</strong> in the iid Error Model<br />

y<br />

−2 0 2 4 6 8 10 12<br />

[ 0.3 , 0.3 ]<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ● ●<br />

● ● ●<br />

●<br />

●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

● ●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

0 2 4 6 8 10<br />

x<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 19 / 58


<strong>Quantile</strong> <strong>Regression</strong> in the iid Error Model<br />

y<br />

−2 0 2 4 6 8 10 12<br />

[ 0.374 , 0.391 ]<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ● ●<br />

● ● ●<br />

●<br />

●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

● ●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

0 2 4 6 8 10<br />

x<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 20 / 58


<strong>Quantile</strong> <strong>Regression</strong> in the iid Error Model<br />

y<br />

−2 0 2 4 6 8 10 12<br />

[ 0.462 , 0.476 ]<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ● ●<br />

● ● ●<br />

●<br />

●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

● ●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

0 2 4 6 8 10<br />

x<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 21 / 58


<strong>Quantile</strong> <strong>Regression</strong> in the iid Error Model<br />

y<br />

−2 0 2 4 6 8 10 12<br />

[ 0.549 , 0.551 ]<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ● ●<br />

● ● ●<br />

●<br />

●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

● ●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

0 2 4 6 8 10<br />

x<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 22 / 58


<strong>Quantile</strong> <strong>Regression</strong> in the iid Error Model<br />

y<br />

−2 0 2 4 6 8 10 12<br />

[ 0.619 , 0.636 ]<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ● ●<br />

● ● ●<br />

●<br />

●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

● ●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

0 2 4 6 8 10<br />

x<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 23 / 58


<strong>Quantile</strong> <strong>Regression</strong> in the iid Error Model<br />

y<br />

−2 0 2 4 6 8 10 12<br />

[ 0.704 , 0.729 ]<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ● ●<br />

● ● ●<br />

●<br />

●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

● ●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

0 2 4 6 8 10<br />

x<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 24 / 58


<strong>Quantile</strong> <strong>Regression</strong> in the iid Error Model<br />

y<br />

−2 0 2 4 6 8 10 12<br />

[ 0.768 , 0.798 ]<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ● ●<br />

● ● ●<br />

●<br />

●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

● ●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

0 2 4 6 8 10<br />

x<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 25 / 58


<strong>Quantile</strong> <strong>Regression</strong> in the iid Error Model<br />

y<br />

−2 0 2 4 6 8 10 12<br />

[ 0.919 , 0.944 ]<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ● ●<br />

● ● ●<br />

●<br />

●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

● ●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

0 2 4 6 8 10<br />

x<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 26 / 58


Virtual <strong>Quantile</strong> <strong>Regression</strong> II<br />

Bivariate quadratic model with Heteroscedastic χ 2 errors<br />

Conditional quantile functions drawn in blue<br />

100 observations indicated in blue<br />

Fitted quadratic quantile regression lines in red<br />

Intervals of optimality for τ ∈ (0, 1).<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 27 / 58


<strong>Quantile</strong> <strong>Regression</strong> in the Heteroscedastic Error Model<br />

y<br />

0 20 40 60 80 100<br />

●<br />

●●<br />

● ●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ● ●<br />

●<br />

●●<br />

●<br />

●<br />

● ●<br />

● ● ●<br />

● ● ●<br />

●●<br />

●<br />

● ● ●<br />

[ 0.048 , 0.062 ]<br />

●<br />

0 2 4 6 8 10<br />

x<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 28 / 58


<strong>Quantile</strong> <strong>Regression</strong> in the Heteroscedastic Error Model<br />

y<br />

0 20 40 60 80 100<br />

●<br />

●●<br />

● ●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ● ●<br />

●<br />

●●<br />

●<br />

●<br />

● ●<br />

● ● ●<br />

● ● ●<br />

●●<br />

●<br />

● ● ●<br />

[ 0.179 , 0.204 ]<br />

●<br />

0 2 4 6 8 10<br />

x<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 29 / 58


<strong>Quantile</strong> <strong>Regression</strong> in the Heteroscedastic Error Model<br />

y<br />

0 20 40 60 80 100<br />

●<br />

●●<br />

● ●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ● ●<br />

●<br />

●●<br />

●<br />

●<br />

● ●<br />

● ● ●<br />

● ● ●<br />

●●<br />

●<br />

● ● ●<br />

[ 0.261 , 0.261 ]<br />

●<br />

0 2 4 6 8 10<br />

x<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 30 / 58


<strong>Quantile</strong> <strong>Regression</strong> in the Heteroscedastic Error Model<br />

y<br />

0 20 40 60 80 100<br />

●<br />

●●<br />

● ●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ● ●<br />

●<br />

●●<br />

●<br />

●<br />

● ●<br />

● ● ●<br />

● ● ●<br />

●●<br />

●<br />

● ● ●<br />

[ 0.304 , 0.319 ]<br />

●<br />

0 2 4 6 8 10<br />

x<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 31 / 58


<strong>Quantile</strong> <strong>Regression</strong> in the Heteroscedastic Error Model<br />

y<br />

0 20 40 60 80 100<br />

●<br />

●●<br />

● ●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ● ●<br />

●<br />

●●<br />

●<br />

●<br />

● ●<br />

● ● ●<br />

● ● ●<br />

●●<br />

●<br />

● ● ●<br />

[ 0.414 , 0.417 ]<br />

●<br />

0 2 4 6 8 10<br />

x<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 32 / 58


<strong>Quantile</strong> <strong>Regression</strong> in the Heteroscedastic Error Model<br />

y<br />

0 20 40 60 80 100<br />

●<br />

●●<br />

● ●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ● ●<br />

●<br />

●●<br />

●<br />

●<br />

● ●<br />

● ● ●<br />

● ● ●<br />

●●<br />

●<br />

● ● ●<br />

[ 0.499 , 0.507 ]<br />

●<br />

0 2 4 6 8 10<br />

x<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 33 / 58


<strong>Quantile</strong> <strong>Regression</strong> in the Heteroscedastic Error Model<br />

y<br />

0 20 40 60 80 100<br />

●<br />

●●<br />

● ●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ● ●<br />

●<br />

●●<br />

●<br />

●<br />

● ●<br />

● ● ●<br />

● ● ●<br />

●●<br />

●<br />

● ● ●<br />

[ 0.581 , 0.582 ]<br />

●<br />

0 2 4 6 8 10<br />

x<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 34 / 58


<strong>Quantile</strong> <strong>Regression</strong> in the Heteroscedastic Error Model<br />

y<br />

0 20 40 60 80 100<br />

●<br />

●●<br />

● ●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ● ●<br />

●<br />

●●<br />

●<br />

●<br />

● ●<br />

● ● ●<br />

● ● ●<br />

●●<br />

●<br />

● ● ●<br />

[ 0.633 , 0.635 ]<br />

●<br />

0 2 4 6 8 10<br />

x<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 35 / 58


<strong>Quantile</strong> <strong>Regression</strong> in the Heteroscedastic Error Model<br />

y<br />

0 20 40 60 80 100<br />

●<br />

●●<br />

● ●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ● ●<br />

●<br />

●●<br />

●<br />

●<br />

● ●<br />

● ● ●<br />

● ● ●<br />

●●<br />

●<br />

● ● ●<br />

[ 0.685 , 0.685 ]<br />

●<br />

0 2 4 6 8 10<br />

x<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 36 / 58


<strong>Quantile</strong> <strong>Regression</strong> in the Heteroscedastic Error Model<br />

y<br />

0 20 40 60 80 100<br />

●<br />

●●<br />

● ●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ● ●<br />

●<br />

●●<br />

●<br />

●<br />

● ●<br />

● ● ●<br />

● ● ●<br />

●●<br />

●<br />

● ● ●<br />

[ 0.73 , 0.733 ]<br />

●<br />

0 2 4 6 8 10<br />

x<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 37 / 58


<strong>Quantile</strong> <strong>Regression</strong> in the Heteroscedastic Error Model<br />

y<br />

0 20 40 60 80 100<br />

●<br />

●●<br />

● ●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ● ●<br />

●<br />

●●<br />

●<br />

●<br />

● ●<br />

● ● ●<br />

● ● ●<br />

●●<br />

●<br />

● ● ●<br />

[ 0.916 , 0.925 ]<br />

●<br />

0 2 4 6 8 10<br />

x<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 38 / 58


Conditional Means vs. Medians<br />

●<br />

y<br />

0 10 20 30 40<br />

●<br />

● ●<br />

●<br />

mean<br />

median<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

0 2 4 6 8 10<br />

x<br />

Minimizing absolute errors for median regression can yield something quite<br />

different from the least squares fit for mean regression.<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 39 / 58


Equivariance of <strong>Regression</strong> <strong>Quantile</strong>s<br />

Scale Equivariance: For any a > 0, ˆβ(τ; ay, X) = aˆβ(τ; y, X) and<br />

ˆβ(τ; −ay, X) = aˆβ(1 − τ; y, X)<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 40 / 58


Equivariance of <strong>Regression</strong> <strong>Quantile</strong>s<br />

Scale Equivariance: For any a > 0, ˆβ(τ; ay, X) = aˆβ(τ; y, X) and<br />

ˆβ(τ; −ay, X) = aˆβ(1 − τ; y, X)<br />

<strong>Regression</strong> Shift: For any γ ∈ |R p ˆβ(τ; y + Xγ, X) = ˆβ(τ; y, X) + γ<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 40 / 58


Equivariance of <strong>Regression</strong> <strong>Quantile</strong>s<br />

Scale Equivariance: For any a > 0, ˆβ(τ; ay, X) = aˆβ(τ; y, X) and<br />

ˆβ(τ; −ay, X) = aˆβ(1 − τ; y, X)<br />

<strong>Regression</strong> Shift: For any γ ∈ |R p ˆβ(τ; y + Xγ, X) = ˆβ(τ; y, X) + γ<br />

Reparameterization of Design: For any |A| ≠ 0,<br />

ˆβ(τ; y, AX) = A −1 ˆβ(τ; yX)<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 40 / 58


Equivariance of <strong>Regression</strong> <strong>Quantile</strong>s<br />

Scale Equivariance: For any a > 0, ˆβ(τ; ay, X) = aˆβ(τ; y, X) and<br />

ˆβ(τ; −ay, X) = aˆβ(1 − τ; y, X)<br />

<strong>Regression</strong> Shift: For any γ ∈ |R p ˆβ(τ; y + Xγ, X) = ˆβ(τ; y, X) + γ<br />

Reparameterization of Design: For any |A| ≠ 0,<br />

ˆβ(τ; y, AX) = A −1 ˆβ(τ; yX)<br />

Robustness: For any diagonal matrix D with nonnegative elements.<br />

ˆβ(τ; y, X) = ˆβ(τ, y + Dû, X)<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 40 / 58


Equivariance to Monotone Transformations<br />

For any monotone function h, conditional quantile functions Q Y (τ|x) are<br />

equivariant in the sense that<br />

Q h(Y)|X (τ|x) = h(Q Y|X (τ|x))<br />

In contrast to conditional mean functions for which, generally,<br />

E(h(Y)|X) ≠ h(EY|X)<br />

Examples:<br />

h(y) = min{0, y}, Powell’s (1985) censored regression estimator.<br />

h(y) = sgn{y} Rosenblatt’s (1957) perceptron, Manski’s (1975) maximum<br />

score estimator. estimator.<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 41 / 58


Beyond Average Treatment Effects<br />

Lehmann (1974) proposed the following general model of treatment<br />

response:<br />

“Suppose the treatment adds the amount ∆(x) when the<br />

response of the untreated subject would be x. Then the<br />

distribution G of the treatment responses is that of the random<br />

variable X + ∆(X) where X is distributed according to F.”<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 42 / 58


Lehmann QTE as a QQ-Plot<br />

Doksum (1974) defines ∆(x) as the “horizontal distance” between F and<br />

G at x, i.e.<br />

F(x) = G(x + ∆(x)).<br />

Then ∆(x) is uniquely defined as<br />

∆(x) = G −1 (F(x)) − x.<br />

This is the essence of the conventional QQ-plot. Changing variables so<br />

τ = F(x) we have the quantile treatment effect (QTE):<br />

δ(τ) = ∆(F −1 (τ)) = G −1 (τ) − F −1 (τ).<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 43 / 58


Lehmann-Doksum QTE<br />

P<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

F<br />

G<br />

−4 −2 0 2 4<br />

x<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 44 / 58


Lehmann-Doksum QTE<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

P<br />

Location Shift<br />

−6 −4 −2 0 2 4 6<br />

x<br />

density<br />

0.0 0.1 0.2 0.3 0.4<br />

−6 −4 −2 0 2 4 6<br />

x<br />

QTE<br />

0.990 1.000 1.010<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

P<br />

Scale Shift<br />

−6 −4 −2 0 2 4 6<br />

x<br />

0.0 0.1 0.2 0.3 0.4<br />

−6 −4 −2 0 2 4 6<br />

x<br />

QTE<br />

−2 −1 0 1 2<br />

density<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

P<br />

Location and Scale Shift<br />

−6 −4 −2 0 2 4 6<br />

x<br />

0.0 0.1 0.2 0.3 0.4<br />

−6 −4 −2 0 2 4 6<br />

x<br />

QTE<br />

−1 0 1 2 3<br />

density<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

u<br />

u<br />

u<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 45 / 58


An Asymmetric Example<br />

P<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

density<br />

0.0 0.1 0.2 0.3 0.4 0.5 0.6<br />

QTE<br />

−10 −5 0 5 10<br />

0 2 4 6 8 10 12<br />

x<br />

0 2 4 6 8 10 12<br />

x<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

u<br />

Treatment shifts the distribution from right skewed to left skewed making<br />

the QTE U-shaped.<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 46 / 58


QTE via <strong>Quantile</strong> <strong>Regression</strong><br />

The Lehmann QTE is naturally estimable by<br />

ˆδ(τ) = Ĝ −1<br />

n (τ) − ˆF −1<br />

m (τ)<br />

where Ĝ n and ˆF m denote the empirical distribution functions of the<br />

treatment and control observations, Consider the quantile regression model<br />

Q Yi (τ|D i ) = α(τ) + δ(τ)D i<br />

where D i denotes the treatment indicator, and Y i = h(T i ), e.g.<br />

Y i = log T i , which can be estimated by solving,<br />

min<br />

n∑<br />

ρ τ (y i − α − δD i )<br />

i=1<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 47 / 58


●<br />

●<br />

●<br />

●<br />

●<br />

● ● ●<br />

●<br />

● ● ●<br />

●<br />

●<br />

● ● ● ●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●●<br />

●<br />

●<br />

● ●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

● ●<br />

● ●<br />

● ●<br />

●<br />

● ●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●● ●<br />

●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

Engel’s Food Expenditure Data<br />

Food Expenditure<br />

500 1000 1500 2000<br />

● ●<br />

● ●<br />

● ●<br />

1000 2000 3000 4000 5000<br />

Household Income<br />

Engel Curves for Food: This figure plots data taken from Engel’s (1857) study of the dependence<br />

of households’ food expenditure on household income. Seven estimated quantile<br />

regression lines for τ ∈ {.05, .1, .25, .5, .75, .9, .95} are superimposed on the scatterplot.<br />

The median τ = .5 fit is indicated by the blue solid line; the least squares estimate of the<br />

conditional mean function is indicated by the red dashed line.<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 48 / 58


●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

Engel’s Food Expenditure Data<br />

Food Expenditure<br />

300 400 500 600 700 800<br />

● ●<br />

400 500 600 700 800 900 1000<br />

Household Income<br />

Engel Curves for Food: This figure plots data taken from Engel’s (1857) study of the dependence<br />

of households’ food expenditure on household income. Seven estimated quantile<br />

regression lines for τ ∈ {.05, .1, .25, .5, .75, .9, .95} are superimposed on the scatterplot.<br />

The median τ = .5 fit is indicated by the blue solid line; the least squares estimate of the<br />

conditional mean function is indicated by the red dashed line.<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 49 / 58


A Model of Infant Birthweight<br />

Reference: Abrevaya (2001), Koenker and Hallock (2001)<br />

Data: June, 1997, Detailed Natality Data of the US. Live, singleton<br />

births, with mothers recorded as either black or white, between 18-45,<br />

and residing in the U.S. Sample size: 198,377.<br />

Response: Infant Birthweight (in grams)<br />

Covariates:<br />

◮ Mother’s Education<br />

◮ Mother’s Prenatal Care<br />

◮ Mother’s Smoking<br />

◮ Mother’s Age<br />

◮ Mother’s Weight Gain<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 50 / 58


<strong>Quantile</strong> <strong>Regression</strong> Birthweight Model I<br />

Intercept<br />

Boy<br />

Married<br />

Black<br />

2500 3000 3500 4000<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

•<br />

•<br />

•<br />

40 60 80 100 120 140<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

• •<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

40 60 80 100<br />

•<br />

•<br />

•<br />

•<br />

•<br />

• •<br />

•<br />

•<br />

•<br />

• • •<br />

• •<br />

•<br />

•<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

•<br />

•<br />

-350 -300 -250 -200 -150<br />

•<br />

•<br />

•<br />

•<br />

•<br />

• •<br />

• • •<br />

•<br />

•<br />

• • •<br />

• •<br />

• •<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Mother’s Age<br />

Mother’s Age^2<br />

High School<br />

Some College<br />

30 40 50 60<br />

•<br />

•<br />

•<br />

•<br />

•<br />

• •<br />

• •<br />

•<br />

•<br />

• •<br />

•<br />

•<br />

• •<br />

•<br />

•<br />

-1.0 -0.8 -0.6 -0.4<br />

•<br />

•<br />

•<br />

•<br />

• •<br />

•<br />

• • • •<br />

• • •<br />

•<br />

•<br />

•<br />

• •<br />

0 10 20 30<br />

•<br />

• •<br />

•<br />

•<br />

• • •<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

10 20 30 40 50<br />

•<br />

•<br />

•<br />

•<br />

•<br />

• • •<br />

•<br />

•<br />

•<br />

• •<br />

•<br />

•<br />

•<br />

•<br />

• •<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 51 / 58


<strong>Quantile</strong> <strong>Regression</strong> Birthweight Model II<br />

College<br />

No Prenatal<br />

Prenatal Second<br />

Prenatal Third<br />

-20 0 20 40 60 80 100<br />

•<br />

•<br />

•<br />

• •<br />

•<br />

•<br />

•<br />

•<br />

• •<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

-500 -400 -300 -200 -100 0<br />

•<br />

•<br />

•<br />

•<br />

• •<br />

•<br />

• •<br />

•<br />

•<br />

• • •<br />

• • •<br />

•<br />

•<br />

0 20 40 60<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

• • •<br />

• •<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

-50 0 50 100 150<br />

•<br />

•<br />

•<br />

•<br />

• • •<br />

• •<br />

• • •<br />

• •<br />

• • •<br />

•<br />

•<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Smoker<br />

Cigarette’s/Day<br />

Mother’s Weight Gain<br />

Mother’s Weight Gain^2<br />

-200 -180 -160 -140<br />

•<br />

•<br />

• •<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

• •<br />

• •<br />

•<br />

-6 -5 -4 -3 -2<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

• • •<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

• •<br />

0 10 20 30 40<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

• •<br />

•<br />

•<br />

•<br />

• •<br />

•<br />

•<br />

-0.3 -0.2 -0.1 0.0 0.1<br />

•<br />

•<br />

•<br />

•<br />

•<br />

• •<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 52 / 58


Marginal Effect of Mother’s Age<br />

Weight Gain Effect<br />

0.01 0.03 0.05<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

Weight Gain Effect<br />

0.01 0.02 0.03 0.04<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●<br />

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●<br />

0.0 0.2 0.4 0.6 0.8<br />

0.0 0.2 0.4 0.6 0.8<br />

<strong>Quantile</strong><br />

<strong>Quantile</strong><br />

●<br />

●<br />

Weight Gain Effect<br />

0.010 0.015 0.020<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●<br />

Weight Gain Effect<br />

0.007 0.009 0.011<br />

● ●<br />

●<br />

●<br />

●<br />

● ● ● ●<br />

● ● ● ● ● ● ● ● ● ● ●<br />

● 0.0 0.2 0.4 0.6 0.8<br />

0.0 0.2 0.4 0.6 0.8<br />

<strong>Quantile</strong><br />

<strong>Quantile</strong><br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 53 / 58


Marginal Effect of Mother’s Weight Gain<br />

Weight Gain Effect<br />

0.4 0.5 0.6 0.7<br />

Weight Gain Effect<br />

0.45 0.55 0.65<br />

20 25 30 35 40 45<br />

20 25 30 35 40 45<br />

Mother's Age<br />

Mother's Age<br />

Weight Gain Effect<br />

0.44 0.48 0.52 0.56<br />

Weight Gain Effect<br />

0.45 0.50 0.55 0.60<br />

20 25 30 35 40 45<br />

20 25 30 35 40 45<br />

Mother's Age<br />

Mother's Age<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 54 / 58


Daily Temperature in Melbourne: AR(1) Scatterplot<br />

today's max temperature<br />

10 20 30 40<br />

10 15 20 25 30 35 40<br />

yesterday's max temperature<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 55 / 58


Daily Temperature in Melbourne: Nonlinear QAR(1) Fit<br />

today's max temperature<br />

10 20 30 40<br />

10 15 20 25 30 35 40<br />

yesterday's max temperature<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 56 / 58


Conditional Densities of Melbourne Daily Temperature<br />

Yesterday's Temp 11<br />

Yesterday's Temp 16<br />

Yesterday's Temp 21<br />

density<br />

0.05 0.15<br />

density<br />

0.00 0.05 0.10 0.15<br />

density<br />

0.02 0.06 0.10<br />

10 12 14 16 18<br />

12 16 20 24<br />

15 20 25 30<br />

today's max temperature<br />

today's max temperature<br />

today's max temperature<br />

Yesterday's Temp 25<br />

Yesterday's Temp 30<br />

Yesterday's Temp 35<br />

density<br />

0.01 0.03 0.05 0.07<br />

density<br />

0.01 0.03 0.05 0.07<br />

density<br />

0.01 0.03 0.05 0.07<br />

15 20 25 30 35<br />

20 25 30 35<br />

20 25 30 35 40<br />

today's max temperature<br />

today's max temperature<br />

today's max temperature<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 57 / 58


Review<br />

Least squares methods of estimating conditional mean functions<br />

were developed for, and<br />

promote the view that,<br />

Response = Signal + iid (Gaussian Measurement Error<br />

In fact the world is rarely this simple. <strong>Quantile</strong> regression is intended to<br />

expand the regression window allowing us to see a wider vista.<br />

Roger Koenker (UIUC) <strong>Introduction</strong> Meielisalp: 28.6.2011 58 / 58

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!