31.12.2014 Views

Identification and functional analysis of downy mildew effectors in ...

Identification and functional analysis of downy mildew effectors in ...

Identification and functional analysis of downy mildew effectors in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Identification</strong> <strong>and</strong> <strong>functional</strong> <strong>analysis</strong><br />

<strong>of</strong> <strong>downy</strong> <strong>mildew</strong> <strong>effectors</strong><br />

<strong>in</strong> lettuce <strong>and</strong> Arabidopsis<br />

H 2<br />

N<br />

N<br />

N<br />

H 2<br />

N<br />

N<br />

O<br />

N<br />

N<br />

N<br />

OH<br />

OH<br />

OH<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

P<br />

P<br />

P<br />

O<br />

-<br />

O<br />

O<br />

-<br />

O<br />

O<br />

-<br />

Joost H.M. Stassen


<strong>Identification</strong> <strong>and</strong> <strong>functional</strong> <strong>analysis</strong> <strong>of</strong><br />

<strong>downy</strong> <strong>mildew</strong> <strong>effectors</strong> <strong>in</strong> lettuce <strong>and</strong> Arabidopsis<br />

Joost H. M. Stassen


Cover <strong>and</strong> Layout: J.H.M. Stassen<br />

Pr<strong>in</strong>ted by:<br />

Proefschriftmaken.nl || Pr<strong>in</strong>tyourthesis.com<br />

ISBN: 978-90-393-5843-6


<strong>Identification</strong> <strong>and</strong> <strong>functional</strong> <strong>analysis</strong> <strong>of</strong><br />

<strong>downy</strong> <strong>mildew</strong> <strong>effectors</strong> <strong>in</strong> lettuce <strong>and</strong> Arabidopsis<br />

Identificatie en functionele analyse van<br />

valse meeldauw effectoren <strong>in</strong> sla en Arabidopsis<br />

(met een samenvatt<strong>in</strong>g <strong>in</strong> het Nederl<strong>and</strong>s)<br />

Proefschrift<br />

ter verkrijg<strong>in</strong>g van de graad van doctor aan de Universiteit Utrecht<br />

op gezag van de rector magnificus, pr<strong>of</strong>.dr. G.J. van der Zwaan,<br />

<strong>in</strong>gevolge het besluit van het college voor promoties<br />

<strong>in</strong> het openbaar te verdedigen<br />

op woensdag 24 oktober 2012 des ochtends te 10.30 uur<br />

door<br />

Johannes Hubertus Marie Stassen<br />

geboren op 1 november 1984 te Woerden


Promotor:<br />

Co-promotor:<br />

Pr<strong>of</strong>.dr.ir. C.M.J. Pieterse<br />

Dr. A.F.J.M. van den Ackerveken<br />

Dit proefschrift werd mede mogelijk gemaakt met f<strong>in</strong>anciële steun van het<br />

Technologisch Top<strong>in</strong>stituut Groene Genetica.


Contents<br />

Chapter 1: 7<br />

How do oomycete <strong>effectors</strong> <strong>in</strong>terfere with plant life<br />

Outl<strong>in</strong>e 23<br />

Chapter 2: 25<br />

<strong>Identification</strong> <strong>of</strong> Hyaloperonospora arabidopsidis transcript sequences<br />

expressed dur<strong>in</strong>g <strong>in</strong>fection reveals isolate-specific <strong>effectors</strong><br />

Chapter 3: 63<br />

Effector identification <strong>in</strong> the lettuce <strong>downy</strong> <strong>mildew</strong> Bremia lactucae by<br />

massively parallel transcriptome sequenc<strong>in</strong>g<br />

Chapter 4: 95<br />

Effectors <strong>of</strong> the lettuce <strong>downy</strong> <strong>mildew</strong> Bremia lactucae enhance host<br />

susceptibility<br />

Chapter 5: 131<br />

Two GKLR prote<strong>in</strong>s <strong>of</strong> the lettuce <strong>downy</strong> <strong>mildew</strong> Bremia lactucae <strong>in</strong>duce<br />

effector-triggered immunity<br />

Chapter 6: 165<br />

Discussion<br />

Summary 181<br />

Samenvatt<strong>in</strong>g 183<br />

Acknowledgements 185<br />

Curriculum vitae 187


9<br />

Chapter 1:<br />

How do oomycete <strong>effectors</strong> <strong>in</strong>terfere with<br />

plant life<br />

Joost HM Stassen 1 <strong>and</strong> Guido Van den Ackerveken 1,2<br />

1<br />

Plant-Microbe Interactions, Department <strong>of</strong> Biology, Utrecht University,<br />

Padualaan 8, 3584 CH Utrecht, The Netherl<strong>and</strong>s<br />

2<br />

Centre for BioSystems Genomics, 6700 AB, Wagen<strong>in</strong>gen, The Netherl<strong>and</strong>s<br />

Current Op<strong>in</strong>ion <strong>in</strong> Plant Biology (2011) 14: 407-14<br />

doi: 10.1016/j.pbi.2011.05.002


10 Chapter 1<br />

Introduction<br />

Oomycetes are fungal-like microorganisms that belong to the k<strong>in</strong>gdom Stramenopila<br />

<strong>and</strong> are evolutionary related to brown algae. Many well-known plant<br />

pathogens are oomycetes, rang<strong>in</strong>g from the necrotrophic broad host range Pythium<br />

species, through hemibiotrophic Phytophthora species, to obligate biotrophic<br />

species such as white rust (Albugo) <strong>and</strong> narrow host-range <strong>downy</strong> <strong>mildew</strong>s (e.g.<br />

Hyaloperonospora <strong>and</strong> Bremia species). These oomycete pathogens <strong>in</strong>terfere with<br />

plant life for successful <strong>in</strong>fection, utilis<strong>in</strong>g effector prote<strong>in</strong>s to manipulate their<br />

hosts. The sequenc<strong>in</strong>g <strong>of</strong> the genomes <strong>of</strong> Phytophthora ramorum <strong>and</strong> P. sojae [1] ,<br />

P. <strong>in</strong>festans [2] , Pythium ultimum [3] , <strong>and</strong> Hyaloperonospora arabidopsidis [4] has<br />

advanced the field enormously by enabl<strong>in</strong>g the identification <strong>of</strong> a large number<br />

<strong>of</strong> genes encod<strong>in</strong>g secreted effector prote<strong>in</strong>s <strong>in</strong> this diverse group <strong>of</strong> pathogens<br />

(Figure 1). In Phytophthora species many effector genes are found <strong>in</strong> gene-poor<br />

regions that have recently exp<strong>and</strong>ed, probably driven by repeats (transposons) [2,5] .<br />

These regions are l<strong>in</strong>ked to accelerated gene evolution after host jumps [5] <strong>and</strong> may<br />

expla<strong>in</strong> the evolutionary flexibility <strong>of</strong> these species. Also, more novel comb<strong>in</strong>ations<br />

<strong>of</strong> known prote<strong>in</strong> doma<strong>in</strong>s are present <strong>in</strong> oomycetes than <strong>in</strong> other species with<br />

a similar s<strong>in</strong>gle doma<strong>in</strong> repertoire. These comb<strong>in</strong>ations are enriched <strong>in</strong> secreted<br />

<strong>in</strong>fection-related prote<strong>in</strong>s, suggest<strong>in</strong>g that oomycetes have evolved a unique<br />

toolbox for host manipulation [6,7] .<br />

Figure 1: The lifestyle <strong>of</strong> oomycetes <strong>of</strong> which a full genome sequence is available <strong>and</strong> the number <strong>of</strong><br />

members per family <strong>of</strong> selected effector types reported [1–4] . The presumed evolutionary relationship<br />

between the species is <strong>in</strong>dicated <strong>in</strong> the phylogenetic tree.<br />

Here we discuss (summarised <strong>in</strong> Figure 2) recent advances <strong>in</strong> underst<strong>and</strong><strong>in</strong>g the<br />

roles <strong>of</strong> secreted oomycete <strong>effectors</strong> <strong>in</strong> successful <strong>in</strong>fection <strong>of</strong> host plants.<br />

Clear<strong>in</strong>g the way<br />

In early phases <strong>of</strong> the <strong>in</strong>teraction, the <strong>in</strong>vad<strong>in</strong>g oomycete needs to deal with<br />

biochemical barriers <strong>in</strong> the plant apoplast. Both pathogen <strong>and</strong> host secrete prote<strong>in</strong>s<br />

<strong>and</strong> metabolites to control the extracellular environment. Three types <strong>of</strong> apoplastic<br />

<strong>effectors</strong> from oomycetes have been shown to <strong>in</strong>terfere with plant processes; <strong>in</strong>hib-


How do oomycete <strong>effectors</strong> <strong>in</strong>terfere with plant life<br />

11<br />

Figure 2: Schematic representation <strong>of</strong> how oomycetes <strong>in</strong>terfere with plant life. Details are described<br />

<strong>in</strong> the ma<strong>in</strong> text under the head<strong>in</strong>gs; (a) Clear<strong>in</strong>g the way, (b) Break<strong>in</strong>g <strong>in</strong>, (c) Quell<strong>in</strong>g resistance, <strong>and</strong><br />

(d) Sweet rewards. Prote<strong>in</strong>s produced <strong>in</strong> the oomycete cytoplasm (OC) are secreted over the oomycete<br />

membrane (OM) <strong>and</strong> cell wall (OW). The haustorium (H) has breached the plant cell wall (PW) <strong>and</strong><br />

<strong>in</strong>vag<strong>in</strong>ated the host plasma membrane (PM). RXLR <strong>and</strong> Cr<strong>in</strong>kler <strong>effectors</strong> (RXLRs <strong>and</strong> CRNs) are<br />

secreted from the haustorium <strong>and</strong> arrive, for example <strong>in</strong> the plant cytoplasm (PC) <strong>and</strong> nucleus (N)<br />

where they exert their activity on host cell processes.<br />

itors <strong>of</strong> host enzymes, RGD (Arg<strong>in</strong><strong>in</strong>e–Glyc<strong>in</strong>e–Aspartic acid)-conta<strong>in</strong><strong>in</strong>g prote<strong>in</strong>s,<br />

<strong>and</strong> tox<strong>in</strong>s that lead to host cell death.<br />

Enzyme <strong>in</strong>hibitors counter hydrolytic enzymes (e.g. chit<strong>in</strong>ases, glucanases,<br />

<strong>and</strong> proteases) that are secreted by the host. Plant proteases contribute to pathogen<br />

defence, for example susceptibility <strong>of</strong> Nicotiana benthamiana to P. <strong>in</strong>festans is<br />

<strong>in</strong>creased when the apoplastic protease C14 genes are silenced [8] . Furthermore,<br />

tomato cyste<strong>in</strong>e protease rcr3 mutants are more susceptible to P. <strong>in</strong>festans <strong>in</strong>fection<br />

than wild-type tomato [9] . Inhibit<strong>in</strong>g apoplastic proteases is therefore an effective<br />

virulence strategy <strong>of</strong> pathogens. Rcr3 activity is reduced by the extracellular protease<br />

<strong>in</strong>hibitors EPIC1 <strong>and</strong> EPIC2B, which also <strong>in</strong>hibit other proteases, for example<br />

C14 [8,9] <strong>and</strong> PIP1 [10] . The EPICs show signs <strong>of</strong> recent evolution <strong>in</strong> P. <strong>in</strong>festans [10] ,<br />

<strong>and</strong> also its host target, potato C14, is under diversify<strong>in</strong>g selection [8] , <strong>in</strong>dicat<strong>in</strong>g<br />

these apoplastic <strong>effectors</strong> are locked <strong>in</strong> an evolutionary arms race. Whether<br />

oomycetes secrete <strong>in</strong>hibitors to arm themselves aga<strong>in</strong>st host hydrolytic enzymes


12 Chapter 1<br />

or to protect their secreted prote<strong>in</strong>acious <strong>effectors</strong> from degradation rema<strong>in</strong>s to be<br />

determ<strong>in</strong>ed.<br />

A second type <strong>of</strong> apoplastic <strong>effectors</strong> <strong>in</strong>terferes with adhesion, <strong>and</strong> possibly<br />

signall<strong>in</strong>g, between host cell wall <strong>and</strong> plasma membrane, for example IPI-O <strong>of</strong><br />

P. <strong>in</strong>festans that seems to act at two cellular locations; <strong>in</strong>side the host cell, to<br />

suppress defence, <strong>and</strong> extracellularly. The IPI-O RGD-motif disrupts the adhesion<br />

between cell wall <strong>and</strong> plasma membrane [11] , possibly by b<strong>in</strong>d<strong>in</strong>g to the Arabidopsis<br />

legume-like lect<strong>in</strong> receptor k<strong>in</strong>ase LecRK-I.9 [12] . Arabidopsis lecRK-I.9 mutants<br />

<strong>and</strong> IPI-O overexpression l<strong>in</strong>es are more susceptible to Phytophthora brassicae,<br />

are altered <strong>in</strong> cell wall-<strong>in</strong>tegrity, <strong>and</strong> impaired <strong>in</strong> callose deposition [13] . IPI-O<br />

mediated disruption <strong>of</strong> plasma membrane-cell wall contacts could <strong>in</strong>terfere with<br />

cell-wall-associated defences, thereby promot<strong>in</strong>g <strong>in</strong>fection.<br />

A third type <strong>of</strong> apoplastic <strong>effectors</strong> represents tox<strong>in</strong>s that are produced by<br />

oomycetes that are necrotrophic (e.g. certa<strong>in</strong> Pythium species) or hemibiotrophic<br />

(most Phytophthora species). These tox<strong>in</strong>s act <strong>in</strong> an <strong>of</strong>fensive way by trigger<strong>in</strong>g<br />

host cell death that could favour the necrotrophic phase <strong>of</strong> development. Two<br />

families <strong>of</strong> toxic prote<strong>in</strong>s are encoded <strong>in</strong> the genomes <strong>of</strong> most oomycetes; the<br />

PcF/SCR prote<strong>in</strong>s that are small, secreted, hydroxyprol<strong>in</strong>e-conta<strong>in</strong><strong>in</strong>g prote<strong>in</strong>s,<br />

<strong>and</strong> the NEP1-like prote<strong>in</strong>s (NLPs), that are related to the necrosis <strong>and</strong> ethylene<br />

<strong>in</strong>duc<strong>in</strong>g peptide (NEP1) from the fungus Fusarium oxysporum. NLPs can <strong>in</strong>duce<br />

cell death <strong>in</strong> dicots by act<strong>in</strong>g on the outside <strong>of</strong> the host cell membrane, as shown<br />

for NLP Pp<br />

<strong>of</strong> Phytophthora parasitica [14] . The crystal structure <strong>of</strong> NLP Pya<br />

from the<br />

necrotroph Pythium aphanidermatum revealed structural homology to cytolytic<br />

act<strong>in</strong>opor<strong>in</strong>s [15] , suggest<strong>in</strong>g that NLPs <strong>in</strong>sert <strong>in</strong>to the host membrane to form pores.<br />

The cytolytic activity could be responsible for the necrotic response, however, cell<br />

death <strong>in</strong>duction by NLPs requires host defence signall<strong>in</strong>g <strong>and</strong> active host metabolism<br />

[14,16] . It was surpris<strong>in</strong>g to f<strong>in</strong>d a family <strong>of</strong> NLP genes <strong>in</strong> the obligate biotroph<br />

H. arabidopsidis, as this pathogen is dependent on liv<strong>in</strong>g plant cells <strong>and</strong> does not<br />

<strong>in</strong>duce host cell death. One <strong>of</strong> n<strong>in</strong>e H. arabidopsidis NLPs (HaNLP3) belongs to<br />

the clade <strong>of</strong> necrosis-<strong>in</strong>duc<strong>in</strong>g NLPs, but is not capable <strong>of</strong> <strong>in</strong>duc<strong>in</strong>g cell death [4] .<br />

Also Phytophthora species have many non-cytolytic NLPs that, like HaNLP3,<br />

could have an alternative function. One proposed alternative function is attachment<br />

to the host, as NLP Pya<br />

also shows structural homology to fungal lect<strong>in</strong>s that could<br />

b<strong>in</strong>d surface-exposed compounds such as glucans [15] .<br />

Break<strong>in</strong>g <strong>in</strong><br />

The (hemi)biotrophic oomycetes engage <strong>in</strong> an <strong>in</strong>timate relation with plant cells by<br />

form<strong>in</strong>g haustoria that serve a dual role; nutrient uptake from the host <strong>and</strong> delivery<br />

<strong>of</strong> <strong>effectors</strong> to the host. Haustoria penetrate the host cell wall, <strong>in</strong>vag<strong>in</strong>ate the host


How do oomycete <strong>effectors</strong> <strong>in</strong>terfere with plant life<br />

13<br />

membrane, conta<strong>in</strong> specific membrane prote<strong>in</strong>s required for pathogenicity [17] , <strong>and</strong><br />

have been implicated as a site <strong>of</strong> effector production <strong>and</strong> secretion [18] . Effectors<br />

are secreted from the pathogen, <strong>and</strong> those that carry host-translocation signals are<br />

transported <strong>in</strong>to the plant cell.<br />

Two classes <strong>of</strong> host-translocated <strong>effectors</strong> are currently known <strong>in</strong> oomycetes.<br />

The first, the RXLR-<strong>effectors</strong>, are named after a four am<strong>in</strong>o acid (Arg<strong>in</strong><strong>in</strong>e, any<br />

am<strong>in</strong>o acid, Leuc<strong>in</strong>e, Arg<strong>in</strong><strong>in</strong>e; <strong>in</strong> short: RXLR) motif that was found <strong>in</strong> 2005 to<br />

be common among all then known oomycete avirulence (AVR) prote<strong>in</strong>s, which are<br />

recognised <strong>in</strong>side the host cell [19] . The RXLR-<strong>effectors</strong> have an N-term<strong>in</strong>al doma<strong>in</strong><br />

consist<strong>in</strong>g <strong>of</strong> a signal peptide, an RXLR-like motif, an optional am<strong>in</strong>o acid motif<br />

(consist<strong>in</strong>g <strong>of</strong> two glutamic acid residues <strong>and</strong> an arg<strong>in</strong><strong>in</strong>e residue, <strong>of</strong>ten preceded<br />

by an aspartic acid residue) known as the dEER-motif, <strong>and</strong> a C-term<strong>in</strong>al effector<br />

doma<strong>in</strong>. A stunn<strong>in</strong>g 563 RXLR-<strong>effectors</strong> are predicted for P. <strong>in</strong>festans [2] , whereas<br />

they are absent <strong>in</strong> Pythium ultimum [3] <strong>and</strong> Aphanomyces euteiches [20] , suggest<strong>in</strong>g<br />

these <strong>effectors</strong> have recently evolved with<strong>in</strong> the Peronosporales [3] .<br />

RXLR-<strong>effectors</strong> <strong>of</strong> different species show extensive sequence divergence,<br />

though <strong>in</strong> P. sojae <strong>and</strong> P. ramorum most have been suggested to belong to a s<strong>in</strong>gle<br />

superfamily [21] . There is little overlap <strong>in</strong> the RXLR gene repertoire between the<br />

different sequenced Phytophthora species, but also compared to H. arabidopsidis,<br />

suggest<strong>in</strong>g recent species-specific evolution <strong>and</strong> expansion [21] . Accelerated evolution<br />

<strong>of</strong> effector genes was confirmed by <strong>analysis</strong> <strong>of</strong> genomes <strong>of</strong> four P. <strong>in</strong>festans<br />

sister species [5] .<br />

The RXLR-motif has been shown to be <strong>in</strong>volved <strong>in</strong> translocation <strong>in</strong>to the<br />

host [18,22] . A possible mechanism by which this occurs is by b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> the motif<br />

to phosphatidyl<strong>in</strong>ositol-3-phosphate (PI3P) <strong>and</strong> subsequent lipid-raft dependent<br />

uptake [23] . However, this mechanism <strong>and</strong> its support<strong>in</strong>g experiments are strongly<br />

debated. Other mechanisms <strong>of</strong> b<strong>in</strong>d<strong>in</strong>g/entry <strong>of</strong> <strong>effectors</strong>, for example via other<br />

negatively charged molecules, are be<strong>in</strong>g proposed but are, however, not yet<br />

published. Entry after b<strong>in</strong>d<strong>in</strong>g phospholipids has been shown for <strong>effectors</strong> from<br />

different pathogens, <strong>in</strong>clud<strong>in</strong>g fungi [23] . However, for one <strong>of</strong> the tested fungal<br />

<strong>effectors</strong>, AvrL567, lipid b<strong>in</strong>d<strong>in</strong>g could not be reproduced by another laboratory,<br />

though background b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> phospholipids was observed [24] . Such lipid b<strong>in</strong>d<strong>in</strong>g<br />

assays appear technically dem<strong>and</strong><strong>in</strong>g <strong>and</strong> condition-dependent, warrant<strong>in</strong>g caution<br />

when <strong>in</strong>terpret<strong>in</strong>g their results. Furthermore, lipid b<strong>in</strong>d<strong>in</strong>g properties <strong>of</strong> AvrM<br />

can be separated from the sequence required for uptake [24] . These observations on<br />

AvrL567 <strong>and</strong> AvrM do not support the idea that lipid b<strong>in</strong>d<strong>in</strong>g by the RXLR-like<br />

am<strong>in</strong>o acid motifs is required for translocation <strong>of</strong> fungal <strong>effectors</strong>. Indications<br />

that the RXLR-motif may not be essential for uptake <strong>of</strong> oomycete <strong>effectors</strong> are<br />

found <strong>in</strong> <strong>effectors</strong> <strong>of</strong> Pseudoperonospora cubensis, <strong>in</strong> which the EER-motif has a<br />

more important role than the RXLR-motif or RXLR-like-motif QXLR, which is


14 Chapter 1<br />

prevalent <strong>in</strong> this species [25] . Furthermore ATR5 <strong>of</strong> H. arabidopsidis has no clear<br />

RXLR-motif, but does have an EER-motif <strong>and</strong> is translocated as it is recognised<br />

<strong>in</strong>tracellularly [26] . More examples <strong>of</strong> variants <strong>of</strong> the RXLR-motif or EER-motif<br />

found <strong>in</strong> prote<strong>in</strong>s that can translocate <strong>in</strong>to the host cell will undoubtedly emerge<br />

<strong>in</strong> the near future, enlarg<strong>in</strong>g the known effector arsenal <strong>of</strong> oomycete species even<br />

further.<br />

The second class <strong>of</strong> host <strong>in</strong>tracellular <strong>effectors</strong> encompasses the Cr<strong>in</strong>klers.<br />

These <strong>effectors</strong> have conserved N-term<strong>in</strong>i, which conta<strong>in</strong> a signal peptide, an<br />

LXLFLAK-motif followed by a conserved DWL-doma<strong>in</strong> <strong>and</strong> an HVLVXXP-motif<br />

[2] . The LXLFLAK-motif has been shown to be required for host <strong>in</strong>tracellular<br />

localisation <strong>of</strong> the Cr<strong>in</strong>klers, as this N-term<strong>in</strong>al motif, but not mutated forms,<br />

enable transport <strong>of</strong> the C-term<strong>in</strong>al half <strong>of</strong> AVR3a <strong>in</strong>to the plant cell, where AVR3a<br />

triggers cytoplasmic recognition <strong>in</strong> the presence <strong>of</strong> the resistance prote<strong>in</strong> R3a [27] .<br />

Like the RXLR-<strong>effectors</strong>, the modular C-term<strong>in</strong>al effector doma<strong>in</strong>s <strong>of</strong> the Cr<strong>in</strong>klers<br />

are highly diverse. Several C-term<strong>in</strong>al doma<strong>in</strong>s <strong>of</strong> P. <strong>in</strong>festans Cr<strong>in</strong>klers have been<br />

shown to target the host nucleus, <strong>and</strong>/or <strong>in</strong>duce cell death when expressed with<strong>in</strong><br />

plant cells [2,27] . The rapid evolution <strong>and</strong> expansion <strong>of</strong> genes encod<strong>in</strong>g host-translocated<br />

<strong>effectors</strong> stresses the presumed importance <strong>of</strong> these prote<strong>in</strong>s <strong>in</strong> establish<strong>in</strong>g a<br />

successful <strong>in</strong>fection. The positive selection, which is observed for many <strong>effectors</strong>,<br />

highlights the evolutionary adaptation to overcome the immune system <strong>of</strong> the plant.<br />

Box 1: Plant defence <strong>in</strong> brief<br />

A first l<strong>in</strong>e <strong>of</strong> activated plant defence aga<strong>in</strong>st <strong>in</strong>vad<strong>in</strong>g microorganisms is triggered<br />

by pathogen-associated molecular patterns (PAMPs) that are recognised by pattern<br />

recognition receptors (PRRs), <strong>in</strong>duc<strong>in</strong>g PAMP-triggered immunity (PTI) [45] .<br />

Oomycetes secrete several prote<strong>in</strong>s that can act as PAMPs, for example elicit<strong>in</strong>s,<br />

transglutam<strong>in</strong>ase, <strong>and</strong> cellulose-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s [46] . Oomycete cell wall derived<br />

fragments, for example β-glucan fragments, can also act as PAMPs [47] . The BAK1<br />

PRR co-receptor is required for immunity to P. <strong>in</strong>festans <strong>in</strong> Nicotiana benthamiana<br />

[48] , however, no plant genes encod<strong>in</strong>g PRRs that detect oomycete PAMPs<br />

have been cloned so far. Pathogens have evolved effector prote<strong>in</strong>s to suppress PTI<br />

<strong>and</strong> have thereby established effector-triggered susceptibility (ETS). Plants have<br />

evolved resistance prote<strong>in</strong>s to recognise these <strong>effectors</strong> or their activity. This second<br />

l<strong>in</strong>e <strong>of</strong> defence, named effector-triggered immunity (ETI), confers race-specific<br />

resistance with<strong>in</strong> plant species <strong>and</strong> can be very effectively phenotyped. This has<br />

been <strong>in</strong>strumental <strong>in</strong> the clon<strong>in</strong>g <strong>of</strong> many oomycete effector genes (see Table 1),<br />

which are also named avirulence (AVR) genes as they confer <strong>in</strong>compatibility on<br />

host plants that carry the correspond<strong>in</strong>g resistance (R) gene.


How do oomycete <strong>effectors</strong> <strong>in</strong>terfere with plant life<br />

15<br />

Quell<strong>in</strong>g resistance<br />

The suppression <strong>of</strong> plant defence, that is PAMP-triggered immunity (PTI) that is<br />

activated upon <strong>in</strong>vasion <strong>of</strong> pathogens (see Box 1), is key to successful <strong>in</strong>fection <strong>of</strong><br />

the host. This is well documented for bacterial pathogens that use host-translocated<br />

(type III-secreted) <strong>effectors</strong> to <strong>in</strong>terfere with host defence responses. It is evident<br />

that oomycete pathogens actively suppress <strong>in</strong>nate immunity too. A strik<strong>in</strong>g example<br />

is the suppression <strong>of</strong> host cell death <strong>in</strong> the Arabidopsis lesion mimic mutant lsd1 by<br />

the white rust pathogen Albugo c<strong>and</strong>ida [28] . Moreover, for many <strong>effectors</strong> that have<br />

been predicted from oomycete genomes a putative defence-suppressive or susceptibility-<strong>in</strong>duc<strong>in</strong>g<br />

activity has been found. However, the molecular mechanisms by<br />

which host-translocated <strong>effectors</strong> <strong>in</strong>terfere with plant life are still largely unknown.<br />

Table 1 gives an overview <strong>of</strong> oomycete host-translocated <strong>effectors</strong> that are active <strong>in</strong><br />

plant cells, either as suppressors or as <strong>in</strong>ducers <strong>of</strong> defence.<br />

A challeng<strong>in</strong>g goal is to determ<strong>in</strong>e the function <strong>of</strong> oomycete <strong>effectors</strong>, as the<br />

availability <strong>of</strong> powerful bioassays is limited. Most currently used assays monitor<br />

the suppression <strong>of</strong> PTI. An elegant method is the use <strong>of</strong> Pseudomonas bacteria for<br />

type III delivery <strong>of</strong> oomycete <strong>effectors</strong> <strong>in</strong> the host. Bacteria that translocate the H.<br />

arabidopsidis ATR1 <strong>and</strong> ATR13 prote<strong>in</strong>s were able to grow to higher densities <strong>in</strong>dicat<strong>in</strong>g<br />

that susceptibility <strong>of</strong> the plant was enhanced [29] . ATR13 suppresses PTI as<br />

transgenic plants showed reduced PAMP-triggered callose deposition [29] . A similar<br />

activity was observed for the RXLR29 prote<strong>in</strong>, that is an isolate-specific effector<br />

<strong>of</strong> H. arabidopsidis [30] . Another method to suppress PTI responses is by Agrobacterium-mediated<br />

transient expression <strong>of</strong> effector genes. Co-expression <strong>of</strong> the P.<br />

<strong>in</strong>festans AVR3a prote<strong>in</strong> was shown to suppress PTI-associated cell death <strong>in</strong>duced<br />

by the elicit<strong>in</strong> INF1 [31] . Expression <strong>of</strong> the C-term<strong>in</strong>al doma<strong>in</strong> only, without signal<br />

peptide <strong>and</strong> RXLR-DEER doma<strong>in</strong>, was sufficient for AVR3a effector function. An<br />

alternative way to test <strong>effectors</strong> <strong>in</strong> planta is by particle bombardment, for example<br />

by monitor<strong>in</strong>g the suppression <strong>of</strong> cell death <strong>in</strong>duced by the mouse pro-apoptotic<br />

prote<strong>in</strong> BAX. Reduction <strong>of</strong> cell death was observed by co-bombardment with the<br />

P. sojae AVR1b gene which encodes a prote<strong>in</strong> with conserved C-term<strong>in</strong>al W <strong>and</strong><br />

Y motifs that are present <strong>in</strong> many Phytophthora <strong>effectors</strong> [32] . These motifs are<br />

required for suppression <strong>of</strong> cell death, suggest<strong>in</strong>g that this activity is a major function<br />

<strong>of</strong> oomycete <strong>effectors</strong>. Cell death-suppression assays have been used by many<br />

groups to test c<strong>and</strong>idate <strong>effectors</strong>. A screen <strong>of</strong> 32 P. <strong>in</strong>festans RXLR <strong>effectors</strong> for<br />

suppression <strong>of</strong> elicit<strong>in</strong> INF1-<strong>in</strong>duced cell death was used to reveal effector activity<br />

<strong>of</strong> the PexRD8 <strong>and</strong> PexRD36 45‐1<br />

RXLR prote<strong>in</strong>s [33] . One would expect that the<br />

suppression <strong>of</strong> defence is vital to the virulence <strong>of</strong> oomycetes, however, <strong>in</strong> vivo data<br />

that support this idea are miss<strong>in</strong>g for most <strong>effectors</strong> as knock<strong>in</strong>g out genes is not an<br />

established method <strong>in</strong> oomycete research. Nevertheless, gene silenc<strong>in</strong>g <strong>of</strong> Avr3a <strong>in</strong>


16 Chapter 1<br />

Table 1: Host-translocated <strong>effectors</strong> <strong>of</strong> oomycete pathogens with described <strong>in</strong> planta effects. Class:<br />

CRN; Cr<strong>in</strong>kler effector, RXLR; RXLR-motif effector, RXLR; RXLR-like motif effector. ETI:<br />

correspond<strong>in</strong>g <strong>in</strong> planta R–gene. Species (Sp.): Ae; Aphanomyces euteiches, Ha; H. arabidopsidis, Pi;<br />

P. <strong>in</strong>festans, Ps; P. sojae<br />

Effector Sp. Class ETI Effects Target Ref.<br />

AeCRN5 Ae CRN Cell death (via nucleus)<br />

[27]<br />

ATR1 Ha RXLR AtRPP1 Contributes to virulence<br />

[19]<br />

ATR13 Ha RXLR AtRPP13<br />

Suppresses callose<br />

deposition <strong>and</strong> ROS<br />

secretion<br />

[49]<br />

AVR1 Pi RXLR R1<br />

[50]<br />

AVR2 Pi RXLR R2<br />

[50]<br />

AVR3a Pi RXLR R3a Stabilises host E3-ligase CMPG1<br />

[34,51]<br />

AVR3b/10/11 Pi RXLR R3b/R10/R11<br />

[52]<br />

AVR4 Pi RXLR R4<br />

[53]<br />

AVRBlb2 Pi RXLR Rpi-Blb2<br />

Interferes with protease<br />

secretion<br />

[50]<br />

IPI-O1 Pi RXLR<br />

Rpi-Blb1/Rpi- Disruption PM-CW<br />

Sto1/Rpi-Pta1 <strong>in</strong>tegrity<br />

IPI-O2 Pi RXLR<br />

Rpi-Blb1/Rpi-<br />

Sto1/Rpi-Pta1<br />

[36]<br />

IPI-O4 Pi RXLR<br />

Suppresses IPI-O1/IPI-O2<br />

ETI<br />

[37]<br />

PexRD36 45‐1<br />

Pi RXLR Suppresses INF1 PTI<br />

[33]<br />

PexRD8 Pi RXLR Suppresses INF1 PTI<br />

[33]<br />

SNE1 Pi RXLR<br />

Suppresses Avr3a ETI <strong>and</strong><br />

NLP-<strong>in</strong>duced cell death<br />

[38]<br />

Various CRNs<br />

(e.g. CRN Pi CRN Cell death (via nucleus)<br />

[2,27]<br />

1,2,8,16)<br />

AVR1a Ps RXLR Rps1a<br />

[54]<br />

AVR1b-1 Ps RXLR Rps1b<br />

Suppresses BAX-<strong>in</strong>duced<br />

cell death<br />

[32][55]<br />

AVR1k Ps RXLR Rps1k<br />

[50]<br />

AVR3a Ps RXLR Rps3a<br />

[54]<br />

AVR3c Ps RXLR Rps3c<br />

[56]<br />

AVR4/6 Ps RXLR Rps4/Rps6<br />

[57]<br />

PsCRN115 Ps CRN<br />

Suppresses PsCRN63/<br />

NLP-<strong>in</strong>duced cell death<br />

[35]<br />

PsCRN63 Ps CRN Cell death (via nucleus)<br />

[35]<br />

LecRK-I.9 [12,13,36]


How do oomycete <strong>effectors</strong> <strong>in</strong>terfere with plant life<br />

17<br />

P. <strong>in</strong>festans [34] , <strong>and</strong> <strong>of</strong> the Cr<strong>in</strong>klers PsCRN115 <strong>and</strong> PsCRN63 <strong>in</strong> P. sojae resulted <strong>in</strong><br />

reduced virulence [35] .<br />

Other RXLR <strong>effectors</strong> are able to suppress cell death that is associated with<br />

effector triggered immunity (ETI, see Box 1). IPI-O4, a sequence divergent<br />

member <strong>of</strong> the P. <strong>in</strong>festans IPI-O family, can suppress cell death <strong>in</strong>duced by variants<br />

<strong>of</strong> IPI-O1 <strong>and</strong> IPI-O2 (now renamed to AVR-blb1) <strong>in</strong> potato plants carry<strong>in</strong>g<br />

the resistance gene Rpi-blb1 [36,37] . A broad ETI suppressive activity was detected<br />

for suppressor <strong>of</strong> necrosis 1 (SNE1), a P. <strong>in</strong>festans prote<strong>in</strong> with a RXLR-like<br />

motif (RQLG) [38] . SNE1 was able to suppress ETI triggered by the recognition<br />

<strong>of</strong> avirulence prote<strong>in</strong>s from oomycetes (AVR3a), bacteria (AvrPto), fungi (Avr9)<br />

<strong>and</strong> viruses (PVX coat prote<strong>in</strong>). Furthermore, it also suppressed NLP-<strong>in</strong>duced<br />

cell death. As SNE1 expression is high dur<strong>in</strong>g the biotrophic stage, <strong>and</strong> drops<br />

when NLP expression rises, SNE1 could be important <strong>in</strong> tim<strong>in</strong>g the onset <strong>of</strong> the<br />

necrotrophic phase.<br />

For most <strong>of</strong> the <strong>effectors</strong> discussed a virulence target <strong>in</strong> the host cell has<br />

not yet been identified. An exception is the well studied P. <strong>in</strong>festans AVR3a<br />

prote<strong>in</strong> that targets a host ubiquit<strong>in</strong> E3-ligase, CMPG1 [34] . CMPG1 is one <strong>of</strong><br />

three host ubiquit<strong>in</strong> E3-ligases known to be <strong>in</strong>volved <strong>in</strong> plant defence [39] . AVR3a<br />

manipulates the host ubiquit<strong>in</strong> proteasome system by stabilis<strong>in</strong>g CMPG1 <strong>and</strong><br />

suppresses plant immunity. More oomycete <strong>effectors</strong> are expected to act on the<br />

ubiquit<strong>in</strong>ation systems <strong>of</strong> the host, however, recognisable doma<strong>in</strong>s are absent <strong>in</strong><br />

predicted host-translocated <strong>effectors</strong>. Effectors could have structural similarities to<br />

ubiquit<strong>in</strong>ation-related prote<strong>in</strong>s, for example the bacterial AvrPtoB effector that was<br />

recognised as an E3 ligase based on its structure, rather than homology [40] .<br />

Sweet rewards<br />

Interfer<strong>in</strong>g with plant metabolism is another anticipated activity <strong>of</strong> oomycete<br />

pathogens, especially <strong>in</strong> biotrophic <strong>in</strong>teractions. In contrast to hemibiotrophs, that<br />

switch to necrotrophy <strong>in</strong> the course <strong>of</strong> <strong>in</strong>fection possibly by us<strong>in</strong>g NLPs <strong>and</strong> other<br />

<strong>effectors</strong> that trigger cell death, obligate biotrophs do not kill their host cells, but<br />

rather keep plants cells alive while they retrieve nutrients from the host. Analysis<br />

<strong>of</strong> metabolic pathways, based on predicted oomycete proteomes has confirmed that<br />

the Phytophthora <strong>and</strong> Pythium species are autotrophic (besides their requirement<br />

<strong>of</strong> sterols) <strong>and</strong> can hence make use <strong>of</strong> a broad range <strong>of</strong> nutrients that are available<br />

<strong>in</strong> the host [1‐3] . By contrast, the obligate biotroph H. arabidopsidis lacks several<br />

important enzymes <strong>in</strong> nitrate <strong>and</strong> sulfate metabolism suggest<strong>in</strong>g that it is dependent<br />

on the host to provide other sources <strong>of</strong> reduced nitrogen <strong>and</strong> sulfur [4] .<br />

One can envision that <strong>effectors</strong> not only act on plant defence pathways, but<br />

also <strong>in</strong>terfere with host metabolic pathways or transporters, redirect<strong>in</strong>g nutrients


18 Chapter 1<br />

<strong>and</strong> chang<strong>in</strong>g host metabolism. Bacterial <strong>and</strong> fungal pathogens manipulate host<br />

sugar transport by activat<strong>in</strong>g SWEET transporter genes dur<strong>in</strong>g <strong>in</strong>fection. In rice, a<br />

bacterial effector <strong>of</strong> the TALE class b<strong>in</strong>ds to the OsSWEET11 promoter to activate<br />

the sugar transporter gene [41] . Changes <strong>in</strong> host physiology <strong>and</strong> metabolism that are<br />

possibly manipulated by pathogen <strong>effectors</strong> have been observed <strong>in</strong> oomycete-<strong>in</strong>fected<br />

plants, for example the repression <strong>of</strong> photosynthesis <strong>and</strong> <strong>in</strong>duction <strong>of</strong> s<strong>in</strong>k<br />

status <strong>in</strong>creas<strong>in</strong>g the availability <strong>of</strong> assimilates for pathogens [42] . Genome-wide<br />

expression studies <strong>of</strong> host responses dur<strong>in</strong>g <strong>in</strong>fection have, unfortunately, not<br />

provided a clear picture <strong>of</strong> transcriptional changes related to host metabolism.<br />

Comparison <strong>of</strong> a compatible <strong>and</strong> <strong>in</strong>compatible (plant is resistant) <strong>in</strong>teraction <strong>of</strong><br />

Arabidopsis <strong>in</strong>oculated with H. arabidopsidis showed a large overlap <strong>in</strong> expression<br />

changes <strong>of</strong> defence-associated genes between the treatments. By contrast, only<br />

a limited number <strong>of</strong> 17 compatible-specific genes were identified <strong>of</strong> which none<br />

could be directly l<strong>in</strong>ked to metabolism [43] , suggest<strong>in</strong>g that pathogen-<strong>in</strong>duced<br />

metabolic reprogramm<strong>in</strong>g <strong>of</strong> the host is ma<strong>in</strong>ly post-transcriptional.<br />

Conclusion<br />

Recent f<strong>in</strong>d<strong>in</strong>gs highlight the unique complement <strong>of</strong> <strong>effectors</strong> that make the oomycetes<br />

such remarkable pathogens. More <strong>and</strong> more <strong>effectors</strong> that act <strong>in</strong>side the host<br />

cell are be<strong>in</strong>g identified while the debate on the mechanism <strong>of</strong> their translocation<br />

cont<strong>in</strong>ues. The next step is to unravel their effect on host processes <strong>and</strong> the molecular<br />

mechanisms by which they carry out their virulence function. The discovery <strong>of</strong><br />

CMPG1 as a host target is an important first step towards underst<strong>and</strong><strong>in</strong>g the activity<br />

<strong>of</strong> the oomycete effector complement. Major challenges rema<strong>in</strong> the development <strong>of</strong><br />

robust effector bioassays <strong>and</strong> gene knockout protocols for oomycetes, <strong>in</strong> particular<br />

for the obligate biotrophs. Emerg<strong>in</strong>g studies on host prote<strong>in</strong>-effector <strong>in</strong>teractors<br />

<strong>and</strong> structural data on <strong>effectors</strong> will be <strong>in</strong>strumental <strong>in</strong> elucidat<strong>in</strong>g the functions<br />

<strong>of</strong> <strong>effectors</strong>. Plant-oomycete <strong>in</strong>teractions are reach<strong>in</strong>g a complexity that requires<br />

a systems biology approach [44] that, as a bonus, will also provide better <strong>in</strong>sights <strong>in</strong><br />

the physiology <strong>of</strong> the plant <strong>and</strong> the host immune network.<br />

Acknowledgements<br />

JHMS is supported by a grant from TTI-Green Genetics. We thank the reviewers<br />

<strong>and</strong> editors for constructive comments on the manuscript.


How do oomycete <strong>effectors</strong> <strong>in</strong>terfere with plant life<br />

19<br />

References<br />

1 Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RHY, Aerts A, Arredondo FD, Baxter L,<br />

Bensasson D, Beynon JL, Chapman J, Damasceno CMB, Dorrance AE, Dou D, Dickerman AW,<br />

Dubchak IL, Garbelotto M, Gijzen M, Gordon SG, Govers F, Grunwald NJ, Huang W, Ivors KL,<br />

Jones RW, Kamoun S, Krampis K, Lamour KH, Lee M-K, McDonald WH, Med<strong>in</strong>a M,<br />

Meijer HJG, Nordberg EK, Maclean DJ, Osp<strong>in</strong>a-Giraldo MD, Morris PF, Phuntumart V,<br />

Putnam NH, Rash S, Rose JKC, Sakihama Y, Salamov AA, Savidor A, Scheur<strong>in</strong>g CF, Smith BM,<br />

Sobral BWS, Terry A, Torto-Alalibo TA, W<strong>in</strong> J, Xu Z, Zhang H, Grigoriev IV, Rokhsar DS &<br />

Boore JL (2006) Phytophthora genome sequences uncover evolutionary orig<strong>in</strong>s <strong>and</strong> mechanisms<br />

<strong>of</strong> pathogenesis. Science 313, 1261-6.<br />

2 Haas BJ, Kamoun S, Zody MC, Jiang RHY, H<strong>and</strong>saker RE, Cano LM, Grabherr M, Kodira CD,<br />

Raffaele S, Torto-Alalibo T, Bozkurt TO, Ah-Fong AMV, Alvarado L, Anderson VL,<br />

Armstrong MR, Avrova A, Baxter L, Beynon J, Boev<strong>in</strong>k PC, Bollmann SR, Bos JIB, Bulone V,<br />

Cai G, Cakir C, Carr<strong>in</strong>gton JC, Chawner M, Conti L, Costanzo S, Ewan R, Fahlgren N,<br />

Fischbach MA, Fugelstad J, Gilroy EM, Gnerre S, Green PJ, Grenville-Briggs LJ, Griffith J,<br />

Grünwald NJ, Horn K, Horner NR, Hu C-H, Huitema E, Jeong D-H, Jones AME, Jones JDG,<br />

Jones RW, Karlsson EK, Kunjeti SG, Lamour K, Liu Z, Ma L, Maclean D, Chibucos MC,<br />

McDonald H, McWalters J, Meijer HJG, Morgan W, Morris PF, Munro CA, O’Neill K, Osp<strong>in</strong>a-<br />

Giraldo M, P<strong>in</strong>zón A, Pritchard L, Ramsahoye B, Ren Q, Restrepo S, Roy S, Sadan<strong>and</strong>om A,<br />

Savidor A, Schornack S, Schwartz DC, Schumann UD, Schwess<strong>in</strong>ger B, Seyer L, Sharpe T,<br />

Silvar C, Song J, Studholme DJ, Sykes S, Th<strong>in</strong>es M, Van de Vondervoort PJI, Phuntumart V,<br />

Wawra S, Weide R, W<strong>in</strong> J, Young C, Zhou S, Fry W, Meyers BC, Van West P, Rista<strong>in</strong>o J,<br />

Govers F, Birch PRJ, Whisson SC, Judelson HS & Nusbaum C (2009) Genome sequence <strong>and</strong><br />

<strong>analysis</strong> <strong>of</strong> the Irish potato fam<strong>in</strong>e pathogen Phytophthora <strong>in</strong>festans. Nature 461, 393-8.<br />

3 Lévesque CA, Brouwer H, Cano L, Hamilton JP, Holt C, Huitema E, Raffaele S, Robideau GP,<br />

Th<strong>in</strong>es M, W<strong>in</strong> J, Zerillo MM, Beakes GW, Boore JL, Busam D, Dumas B, Ferriera S,<br />

Fuerstenberg SI, Gachon CMM, Gaul<strong>in</strong> E, Govers F, Grenville-Briggs LJ, Horner NR, Hostetler J,<br />

Jiang RHY, Johnson J, Krajaejun T, L<strong>in</strong> H, Meijer HJG, Moore B, Morris PF, Phuntumart V,<br />

Puiu D, Shetty J, Stajich JE, Tripathy S, Wawra S, Van West P, Whitty BR, Cout<strong>in</strong>ho PM,<br />

Henrissat B, Mart<strong>in</strong> F, Thomas PD, Tyler BM, De Vries RP, Kamoun S, Y<strong>and</strong>ell M, Tisserat N &<br />

Buell CR (2010) Genome sequence <strong>of</strong> the necrotrophic plant pathogen Pythium ultimum reveals<br />

orig<strong>in</strong>al pathogenicity mechanisms <strong>and</strong> effector repertoire. Genome Biology 11, R73.<br />

4 Baxter L, Tripathy S, Ishaque N, Boot N, Cabral A, Kemen E, Th<strong>in</strong>es M, Ah-Fong A, Anderson R,<br />

Badejoko W, Bittner-Eddy P, Boore JL, Chibucos MC, Coates M, Dehal P, Delehaunty K, Dong S,<br />

Downton P, Dumas B, Fabro G, Fronick C, Fuerstenberg SI, Fulton L, Gaul<strong>in</strong> E, Govers F,<br />

Hughes L, Humphray S, Jiang RHY, Judelson H, Kamoun S, Kyung K, Meijer H, M<strong>in</strong>x P,<br />

Morris P, Nelson J, Phuntumart V, Qutob D, Rehmany A, Rougon-Cardoso A, Ryden P, Torto-<br />

Alalibo T, Studholme D, Wang Y, W<strong>in</strong> J, Wood J, Clifton SW, Rogers J, Van den Ackerveken G,<br />

Jones JDG, McDowell JM, Beynon J & Tyler BM (2010) Signatures <strong>of</strong> adaptation to obligate<br />

biotrophy <strong>in</strong> the Hyaloperonospora arabidopsidis genome. Science 330, 1549-51.<br />

5 Raffaele S, Farrer RA, Cano LM, Studholme DJ, MacLean D, Th<strong>in</strong>es M, Jiang RHY, Zody MC,<br />

Kunjeti SG, Don<strong>of</strong>rio NM, Meyers BC, Nusbaum C & Kamoun S (2010) Genome Evolution<br />

Follow<strong>in</strong>g Host Jumps <strong>in</strong> the Irish Potato Fam<strong>in</strong>e Pathogen L<strong>in</strong>eage. Science 330, 1540-3.<br />

6 Seidl MF, Van den Ackerveken G, Govers F & Snel B (2010) A doma<strong>in</strong>-centric <strong>analysis</strong> <strong>of</strong><br />

oomycete plant pathogen genomes reveals unique prote<strong>in</strong> organization. Plant Physiology 155,<br />

628-44.


20 Chapter 1<br />

7 Raffaele S, W<strong>in</strong> J, Cano LM & Kamoun S (2010) Analyses <strong>of</strong> genome architecture <strong>and</strong> gene<br />

expression reveal novel c<strong>and</strong>idate virulence factors <strong>in</strong> the secretome <strong>of</strong> Phytophthora <strong>in</strong>festans.<br />

BMC Genomics 11, 637.<br />

8 Kaschani F, Shabab M, Bozkurt T, Sh<strong>in</strong>do T, Schornack S, Gu C, Ilyas M, W<strong>in</strong> J, Kamoun S<br />

& Van der Hoorn RAL (2010) An Effector-Targeted Protease Contributes to Defense aga<strong>in</strong>st<br />

Phytophthora <strong>in</strong>festans <strong>and</strong> Is under Diversify<strong>in</strong>g Selection <strong>in</strong> Natural Hosts. Plant Physiology<br />

154, 1794-804.<br />

9 Song J, W<strong>in</strong> J, Tian M, Schornack S, Kaschani F, Ilyas M, Van Der Hoorn RAL & Kamoun S<br />

(2009) Apoplastic <strong>effectors</strong> secreted by two unrelated eukaryotic plant pathogens target the<br />

tomato defense protease Rcr3. Proceed<strong>in</strong>gs <strong>of</strong> the National Academy <strong>of</strong> Sciences <strong>of</strong> the United<br />

States <strong>of</strong> America 106, 1654-9.<br />

10 Tian M, W<strong>in</strong> J, Song J, Van der Hoorn R, Van der Knaap E & Kamoun S (2007) A Phytophthora<br />

<strong>in</strong>festans cystat<strong>in</strong>-like prote<strong>in</strong> targets a novel tomato papa<strong>in</strong>-like apoplastic protease. Plant<br />

Physiology 143, 364-77.<br />

11 Senchou V, Weide R, Carrasco A, Bouyssou H, Pont-Lezica R, Govers F & Canut H (2004) High<br />

aff<strong>in</strong>ity recognition <strong>of</strong> a Phytophthora prote<strong>in</strong> by Arabidopsis via an RGD motif. Cellular <strong>and</strong><br />

Molecular Life Sciences 61, 502-9.<br />

12 Gouget A, Senchou V, Govers F, Sanson A, Barre A, Rougé P, Pont-Lezica R & Canut H (2006)<br />

Lect<strong>in</strong> receptor k<strong>in</strong>ases participate <strong>in</strong> prote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teractions to mediate plasma membranecell<br />

wall adhesions <strong>in</strong> Arabidopsis. Plant Physiology 140, 81-90.<br />

13 Bouwmeester K, De Sa<strong>in</strong> M, Weide R, Gouget A, Klamer S, Canut H & Govers F (2011) The<br />

lect<strong>in</strong> receptor k<strong>in</strong>ase LecRK-I.9 is a novel Phytophthora resistance component <strong>and</strong> a potential<br />

host target for a RXLR effector. PLoS Pathogens 7, e1001327.<br />

14 Qutob D, Kemmerl<strong>in</strong>g B, Brunner F, Küfner I, Engelhardt S, Gust AA, Luberacki B, Seitz HU,<br />

Stahl D, Rauhut T, Glawischnig E, Schween G, Lacombe B, Watanabe N, Lam E, Schlicht<strong>in</strong>g R,<br />

Scheel D, Nau K, Dodt G, Hubert D, Gijzen M & Nürnberger T (2006) Phytotoxicity <strong>and</strong> <strong>in</strong>nate<br />

immune responses <strong>in</strong>duced by Nep1-like prote<strong>in</strong>s. The Plant Cell 18, 3721-44.<br />

15 Ottmann C, Luberacki B, Küfner I, Koch W, Brunner F, Wey<strong>and</strong> M, Matt<strong>in</strong>en L, Pirhonen M,<br />

Anderluh G, Seitz HU, Nürnberger T & Oeck<strong>in</strong>g C (2009) A common tox<strong>in</strong> fold mediates<br />

microbial attack <strong>and</strong> plant defense. Proceed<strong>in</strong>gs <strong>of</strong> the National Academy <strong>of</strong> Sciences <strong>of</strong> the<br />

United States <strong>of</strong> America 106, 10359-64.<br />

16 Kanneganti T-D, Huitema E, Cakir C & Kamoun S (2006) Synergistic <strong>in</strong>teractions <strong>of</strong> the plant<br />

cell death pathways <strong>in</strong>duced by Phytophthora <strong>in</strong>festans Nepl-like prote<strong>in</strong> PiNPP1.1 <strong>and</strong> INF1<br />

elicit<strong>in</strong>. Molecular Plant-Microbe Interactions 19, 854-63.<br />

17 Avrova AO, Boev<strong>in</strong>k PC, Young V, Grenville-Briggs LJ, Van West P, Birch PRJ & Whisson SC<br />

(2008) A novel Phytophthora <strong>in</strong>festans haustorium-specific membrane prote<strong>in</strong> is required for<br />

<strong>in</strong>fection <strong>of</strong> potato. Cellular Microbiology 10, 2271-84.<br />

18 Whisson SC, Boev<strong>in</strong>k PC, Moleleki L, Avrova AO, Morales JG, Gilroy EM, Armstrong MR,<br />

Grouffaud S, Van West P, Chapman S, He<strong>in</strong> I, Toth IK, Pritchard L & Birch PRJ (2007) A<br />

translocation signal for delivery <strong>of</strong> oomycete effector prote<strong>in</strong>s <strong>in</strong>to host plant cells. Nature 450,<br />

115-8.


How do oomycete <strong>effectors</strong> <strong>in</strong>terfere with plant life<br />

21<br />

19 Rehmany AP, Gordon A, Rose LE, Allen RL, Armstrong MR, Whisson SC, Kamoun S, Tyler BM,<br />

Birch PRJ & Beynon JL (2005) Differential recognition <strong>of</strong> highly divergent <strong>downy</strong> <strong>mildew</strong><br />

avirulence gene alleles by RPP1 resistance genes from two Arabidopsis l<strong>in</strong>es. The Plant Cell 17,<br />

1839-50.<br />

20 Gaul<strong>in</strong> E, Madoui M-A, Bott<strong>in</strong> A, Jacquet C, Mathé C, Couloux A, W<strong>in</strong>cker P & Dumas B (2008)<br />

Transcriptome <strong>of</strong> Aphanomyces euteiches: new oomycete putative pathogenicity factors <strong>and</strong><br />

metabolic pathways. PLoS ONE 3, e1723.<br />

21 Jiang RHY, Tripathy S, Govers F & Tyler BM (2008) RXLR effector reservoir <strong>in</strong> two<br />

Phytophthora species is dom<strong>in</strong>ated by a s<strong>in</strong>gle rapidly evolv<strong>in</strong>g superfamily with more than 700<br />

members. Proceed<strong>in</strong>gs <strong>of</strong> the National Academy <strong>of</strong> Sciences <strong>of</strong> the United States <strong>of</strong> America 105,<br />

4874-9.<br />

22 Dou D, Kale SD, Wang X, Jiang RHY, Bruce NA, Arredondo FD, Zhang X & Tyler BM (2008)<br />

RXLR-mediated entry <strong>of</strong> Phytophthora sojae effector Avr1b <strong>in</strong>to soybean cells does not require<br />

pathogen-encoded mach<strong>in</strong>ery. The Plant Cell 20, 1930-47.<br />

23 Kale SD, Gu B, Capelluto DGS, Dou D, Feldman E, Rumore A, Arredondo FD, Hanlon R,<br />

Fudal I, Rouxel T, Lawrence CB, Shan W & Tyler BM (2010) External lipid PI3P mediates entry<br />

<strong>of</strong> eukaryotic pathogen <strong>effectors</strong> <strong>in</strong>to plant <strong>and</strong> animal host cells. Cell 142, 284-95.<br />

24 Gan PHP, Rafiqi M, Ellis JG, Jones DA, Hardham AR & Dodds PN (2010) Lipid b<strong>in</strong>d<strong>in</strong>g<br />

activities <strong>of</strong> flax rust AvrM <strong>and</strong> AvrL567 <strong>effectors</strong>. Plant Signal<strong>in</strong>g & Behavior 5, 1272-5.<br />

25 Tian M, W<strong>in</strong> J, Savory E, Burkhardt A, Held M, Br<strong>and</strong>izzi F & Day B (2011) 454 Genome<br />

sequenc<strong>in</strong>g <strong>of</strong> Pseudoperonospora cubensis reveals effector prote<strong>in</strong>s with a QXLR translocation<br />

motif. Molecular Plant-Microbe Interactions 24, 543-53.<br />

26 Bailey K, Cevik V, Holton NJ, Byrne-Richardson J, Sohn KH, Coates M, Woods-Tör A,<br />

Aksoy HM, Hughes L, Baxter L, Jones JDG, Beynon J, Holub EB & Tör M (2011) Molecular<br />

clon<strong>in</strong>g <strong>of</strong> ATR5Emoy2 from Hyaloperonospora arabidopsidis, an avirulence determ<strong>in</strong>ant that<br />

triggers RPP5-mediated defense <strong>in</strong> Arabidopsis. Molecular Plant-Microbe Interactions 24,<br />

827-38.<br />

27 Schornack S, Van Damme M, Bozkurt TO, Cano LM, Smoker M, Th<strong>in</strong>es M, Gaul<strong>in</strong> E, Kamoun S<br />

& Huitema E (2010) Ancient class <strong>of</strong> translocated oomycete <strong>effectors</strong> targets the host nucleus.<br />

Proceed<strong>in</strong>gs <strong>of</strong> the National Academy <strong>of</strong> Sciences <strong>of</strong> the United States <strong>of</strong> America 107, 17421-6.<br />

28 Cooper AJ, Latunde-Dada AO, Woods-Tör A, Lynn J, Lucas JA, Crute IR & Holub EB (2008)<br />

Basic compatibility <strong>of</strong> Albugo c<strong>and</strong>ida <strong>in</strong> Arabidopsis thaliana <strong>and</strong> Brassica juncea causes broadspectrum<br />

suppression <strong>of</strong> <strong>in</strong>nate immunity. Molecular Plant-Microbe Interactions 21, 745-56.<br />

29 Sohn KH, Lei R, Nemri A & Jones JDG (2007) The <strong>downy</strong> <strong>mildew</strong> effector prote<strong>in</strong>s ATR1 <strong>and</strong><br />

ATR13 promote disease susceptibility <strong>in</strong> Arabidopsis thaliana. The Plant Cell 19, 4077-90.<br />

30 Cabral A, Stassen JHM, Seidl MF, Bautor J, Parker JE & Van den Ackerveken G (2011)<br />

<strong>Identification</strong> <strong>of</strong> Hyaloperonospora arabidopsidis transcript sequences expressed dur<strong>in</strong>g <strong>in</strong>fection<br />

reveals isolate-specific <strong>effectors</strong>. PLoS ONE 6, e19328.<br />

31 Bos JIB, Kanneganti T-D, Young C, Cakir C, Huitema E, W<strong>in</strong> J, Armstrong MR, Birch PRJ<br />

& Kamoun S (2006) The C-term<strong>in</strong>al half <strong>of</strong> Phytophthora <strong>in</strong>festans RXLR effector AVR3a is<br />

sufficient to trigger R3a-mediated hypersensitivity <strong>and</strong> suppress INF1-<strong>in</strong>duced cell death <strong>in</strong><br />

Nicotiana benthamiana. The Plant Journal 48, 165-76.


22 Chapter 1<br />

32 Dou D, Kale SD, Wang XX, Chen Y, Wang Q, Jiang RHY, Arredondo FD, Anderson RG,<br />

Thakur PB, McDowell JM, Wang Y & Tyler BM (2008) Conserved C-term<strong>in</strong>al motifs required for<br />

avirulence <strong>and</strong> suppression <strong>of</strong> cell death by Phytophthora sojae effector Avr1b. The Plant Cell 20,<br />

1118-33.<br />

33 Oh S-K, Young C, Lee M, Oliva R, Bozkurt TO, Cano LM, W<strong>in</strong> J, Bos JIB, Liu H-Y, Van<br />

Damme M, Morgan W, Choi D, Van der Vossen EAG, Vleeshouwers VGAA & Kamoun S (2009)<br />

In planta expression screens <strong>of</strong> Phytophthora <strong>in</strong>festans RXLR <strong>effectors</strong> reveal diverse phenotypes,<br />

<strong>in</strong>clud<strong>in</strong>g activation <strong>of</strong> the Solanum bulbocastanum disease resistance prote<strong>in</strong> Rpi-blb2. The Plant<br />

Cell 21, 2928-47.<br />

34 Bos JIB, Armstrong MR, Gilroy EM, Boev<strong>in</strong>k PC, He<strong>in</strong> I, Taylor RM, Zhendong T, Engelhardt S,<br />

Vetukuri RR, Harrower B, Dixelius C, Bryan G, Sadan<strong>and</strong>om A, Whisson SC, Kamoun S<br />

& Birch PRJ (2010) Phytophthora <strong>in</strong>festans effector AVR3a is essential for virulence <strong>and</strong><br />

manipulates plant immunity by stabiliz<strong>in</strong>g host E3 ligase CMPG1. Proceed<strong>in</strong>gs <strong>of</strong> the National<br />

Academy <strong>of</strong> Sciences <strong>of</strong> the United States <strong>of</strong> America 107, 9909-14.<br />

35 Liu T, Ye W, Ru Y, Yang X, Gu B, Tao K, Lu S, Dong S, Zheng X, Shan W, Wang Y & Dou D<br />

(2011) Two host cytoplasmic <strong>effectors</strong> are required for pathogenesis <strong>of</strong> Phytophthora sojae by<br />

suppression <strong>of</strong> host defenses. Plant Physiology 155, 490-501.<br />

36 Vleeshouwers VGAA, Rietman H, Krenek P, Champouret N, Young C, Oh S-K, Wang M,<br />

Bouwmeester K, Vosman B, Visser RGF, Jacobsen E, Govers F, Kamoun S & Van der<br />

Vossen EAG (2008) Effector genomics accelerates discovery <strong>and</strong> <strong>functional</strong> pr<strong>of</strong>il<strong>in</strong>g <strong>of</strong> potato<br />

disease resistance <strong>and</strong> phytophthora <strong>in</strong>festans avirulence genes. PLoS ONE 3, e2875.<br />

37 Halterman DA, Chen Y, Sopee J, Berduo-S<strong>and</strong>oval J & Sánchez-Pérez A (2010) Competition<br />

between Phytophthora <strong>in</strong>festans <strong>effectors</strong> leads to <strong>in</strong>creased aggressiveness on plants conta<strong>in</strong><strong>in</strong>g<br />

broad-spectrum late blight resistance. PLoS ONE 5, e10536.<br />

38 Kelley BS, Lee S-J, Damasceno CMB, Chakravarthy S, Kim B-D, Mart<strong>in</strong> GB & Rose JKC (2010)<br />

A secreted effector prote<strong>in</strong> (SNE1) from Phytophthora <strong>in</strong>festans is a broadly act<strong>in</strong>g suppressor <strong>of</strong><br />

programmed cell death. The Plant Journal 62, 357-66.<br />

39 Van den Burg HA, Tsitsigiannis DI, Rowl<strong>and</strong> O, Lo J, Rallapalli G, Maclean D, Takken FLW &<br />

Jones JDG (2008) The F-box prote<strong>in</strong> ACRE189/ACIF1 regulates cell death <strong>and</strong> defense responses<br />

activated dur<strong>in</strong>g pathogen recognition <strong>in</strong> tobacco <strong>and</strong> tomato. The Plant Cell 20, 697-719.<br />

40 Abramovitch RB, Janjusevic R, Stebb<strong>in</strong>s CE & Mart<strong>in</strong> GB (2006) Type III effector AvrPtoB<br />

requires <strong>in</strong>tr<strong>in</strong>sic E3 ubiquit<strong>in</strong> ligase activity to suppress plant cell death <strong>and</strong> immunity.<br />

Proceed<strong>in</strong>gs <strong>of</strong> the National Academy <strong>of</strong> Sciences <strong>of</strong> the United States <strong>of</strong> America 103, 2851-6.<br />

41 Chen L-Q, Hou B-H, Lalonde S, Takanaga H, Hartung ML, Qu X-Q, Guo W-J, Kim J-G,<br />

Underwood W, Chaudhuri B, Chermak D, Antony G, White FF, Somerville SC, Mudgett MB &<br />

Frommer WB (2010) Sugar transporters for <strong>in</strong>tercellular exchange <strong>and</strong> nutrition <strong>of</strong> pathogens.<br />

Nature 468, 527-32.<br />

42 Berger S, S<strong>in</strong>ha AK & Roitsch T (2007) Plant Physiology meets phytopathology: plant primary<br />

metabolism <strong>and</strong> plant-pathogen <strong>in</strong>teractions. Journal <strong>of</strong> Experimental Botany 58, 4019-26.<br />

43 Huibers RP, De Jong M, Dekter RW & Van den Ackerveken G (2009) Disease-specific expression<br />

<strong>of</strong> host genes dur<strong>in</strong>g <strong>downy</strong> <strong>mildew</strong> <strong>in</strong>fection <strong>of</strong> Arabidopsis. Molecular Plant-Microbe<br />

Interactions 22, 1104-15.


How do oomycete <strong>effectors</strong> <strong>in</strong>terfere with plant life<br />

23<br />

44 Pritchard L & Birch P (2011) A systems biology perspective on plant-microbe <strong>in</strong>teractions:<br />

biochemical <strong>and</strong> structural targets <strong>of</strong> pathogen <strong>effectors</strong>. Plant Science 180, 584-603.<br />

45 Jones JDG & Dangl JL (2006) The plant immune system. Nature 444, 323-9.<br />

46 Kamoun S (2006) A catalogue <strong>of</strong> the effector secretome <strong>of</strong> plant pathogenic oomycetes. Annual<br />

Review Phytopathology 44, 41-60.<br />

47 Daxberger A, Nemak A, Mithöfer A, Fliegmann J, Ligter<strong>in</strong>k W, Hirt H & Ebel J (2007) Activation<br />

<strong>of</strong> members <strong>of</strong> a MAPK module <strong>in</strong> beta-glucan elicitor-mediated non-host resistance <strong>of</strong> soybean.<br />

Planta 225, 1559-71.<br />

48 Chaparro-Garcia A, Wilk<strong>in</strong>son RC, Gimenez-Ibanez S, F<strong>in</strong>dlay K, C<strong>of</strong>fey MD, Zipfel C,<br />

Rathjen JP, Kamoun S & Schornack S (2011) The receptor-like k<strong>in</strong>ase SERK3/BAK1 is<br />

required for basal resistance aga<strong>in</strong>st the late blight pathogen phytophthora <strong>in</strong>festans <strong>in</strong> Nicotiana<br />

benthamiana. PLoS ONE 6, e16608.<br />

49 Allen RL, Bittner-Eddy PD, Grenville-Briggs LJ, Meitz JC, Rehmany AP, Rose LE & Beynon JL<br />

(2004) Host-parasite coevolutionary conflict between Arabidopsis <strong>and</strong> <strong>downy</strong> <strong>mildew</strong>. Science<br />

306, 1957-60.<br />

50 Tyler BM (2009) Effectors. In Oomycete Genetics <strong>and</strong> Genomics: Diversity, Plant <strong>and</strong> Animal<br />

Interactions, <strong>and</strong> Toolbox pp. 361–86.<br />

51 Armstrong MR, Whisson SC, Pritchard L, Bos JIB, Venter E, Avrova AO, Rehmany AP,<br />

Böhme U, Brooks K, Cherevach I, Haml<strong>in</strong> N, White B, Fraser A, Lord A, Quail MA, Churcher C,<br />

Hall N, Berriman M, Huang S, Kamoun S, Beynon JL & Birch PRJ (2005) An ancestral oomycete<br />

locus conta<strong>in</strong>s late blight avirulence gene Avr3a, encod<strong>in</strong>g a prote<strong>in</strong> that is recognized <strong>in</strong> the host<br />

cytoplasm. Proceed<strong>in</strong>gs <strong>of</strong> the National Academy <strong>of</strong> Sciences <strong>of</strong> the United States <strong>of</strong> America 102,<br />

7766-71.<br />

52 Jiang RHY, Weide R, Van de Vondervoort PJI & Govers F (2006) Amplification generates<br />

modular diversity at an avirulence locus <strong>in</strong> the pathogen Phytophthora. Genome Research 16,<br />

827-40.<br />

53 Van Poppel PMJA, Guo J, Van de Vondervoort PJI, Jung MWM, Birch PRJ, Whisson SC &<br />

Govers F (2008) The Phytophthora <strong>in</strong>festans avirulence gene Avr4 encodes an RXLR-dEER<br />

effector. Molecular Plant-Microbe Interactions 21, 1460-70.<br />

54 Qutob D, Tedman-Jones J, Dong S, Kuflu K, Pham H, Wang Y, Dou D, Kale SD, Arredondo FD,<br />

Tyler BM & Gijzen M (2009) Copy number variation <strong>and</strong> transcriptional polymorphisms <strong>of</strong><br />

Phytophthora sojae RXLR effector genes Avr1a <strong>and</strong> Avr3a. PLoS ONE 4, e5066.<br />

55 Shan W, Cao M, Leung D & Tyler BM (2004) The Avr1b locus <strong>of</strong> Phytophthora sojae encodes an<br />

elicitor <strong>and</strong> a regulator required for avirulence on soybean plants carry<strong>in</strong>g resistance gene Rps1b.<br />

Molecular Plant-Microbe Interactions 17, 394-403.<br />

56 Dong S, Qutob D, Tedman-Jones J, Kuflu K, Wang Y, Tyler BM & Gijzen M (2009) The<br />

Phytophthora sojae avirulence locus Avr3c encodes a multi-copy RXLR effector with sequence<br />

polymorphisms among pathogen stra<strong>in</strong>s. PLoS ONE 4, e5556.<br />

57 Dou D, Kale SD, Liu T, Tang Q, Wang X, Arredondo FD, Basnayake S, Whisson S, Drenth A,<br />

Maclean D & Tyler BM (2010) Different doma<strong>in</strong>s <strong>of</strong> Phytophthora sojae effector Avr4/6 are<br />

recognized by soybean resistance genes Rps4 <strong>and</strong> Rps6. Molecular Plant-Microbe Interactions<br />

23, 425-35.


25<br />

Outl<strong>in</strong>e<br />

The aim <strong>of</strong> the research described <strong>in</strong> this thesis was to identify <strong>and</strong> <strong>functional</strong>ly<br />

analyse <strong>effectors</strong> <strong>of</strong> <strong>downy</strong> <strong>mildew</strong>s, <strong>and</strong> was performed as part <strong>of</strong> a larger research<br />

project entitled “Novel approaches for resistance breed<strong>in</strong>g us<strong>in</strong>g pathogen <strong>effectors</strong><br />

<strong>and</strong> their host plant targets: towards durable resistance to Bremia <strong>in</strong> lettuce”.<br />

Effectors were first identified <strong>in</strong> transcript sequences <strong>of</strong> the <strong>downy</strong> <strong>mildew</strong><br />

pathogen <strong>of</strong> Arabidopsis, H. arabidopsidis (Chapter 2). Transcriptome sequenc<strong>in</strong>g<br />

proved to be a powerful tool for effector identification <strong>and</strong> revealed that the effector<br />

arsenal differs between different isolates <strong>of</strong> the same pathogen species.<br />

The Bremia lactucae – Lactuca sativa <strong>in</strong>teraction was then <strong>in</strong>vestigated us<strong>in</strong>g<br />

the 454 sequenc<strong>in</strong>g technology to analyse the transcriptome <strong>of</strong> Bremia-<strong>in</strong>fected<br />

lettuce <strong>and</strong> <strong>downy</strong> <strong>mildew</strong> spores, allow<strong>in</strong>g for deep sampl<strong>in</strong>g <strong>of</strong> the Bremia<br />

transcriptome (Chapter 3). Additionally, genomic DNA from Bremia spores was<br />

sequenced to enable accurate selection <strong>of</strong> Bremia transcripts from the assembled<br />

sequences. From these data >16,000 Bremia transcripts were assembled, <strong>of</strong> which<br />

1023 were predicted to encode prote<strong>in</strong>s that are secreted by Bremia <strong>and</strong> thus potentially<br />

act on the host. Predicted <strong>effectors</strong> <strong>in</strong>clude 77 potential host-translocated<br />

RXLR <strong>effectors</strong> <strong>and</strong> various types <strong>of</strong> potential apoplastic <strong>effectors</strong>.<br />

The role <strong>of</strong> 34 c<strong>and</strong>idate RXLR <strong>effectors</strong> <strong>in</strong> stimulat<strong>in</strong>g susceptibility was<br />

<strong>in</strong>vestigated <strong>and</strong> described <strong>in</strong> Chapter 4. Transient expression <strong>of</strong> effector c<strong>and</strong>idates<br />

BLR16 <strong>and</strong> BLR27 significantly enhanced susceptibility <strong>of</strong> lettuce to Bremia<br />

<strong>in</strong>fection. A negative effect on host susceptibility was observed <strong>in</strong> leaf discs<br />

transiently express<strong>in</strong>g BLR03. Analysis <strong>of</strong> the temporal expression <strong>of</strong> <strong>effectors</strong><br />

revealed the presence <strong>of</strong> BLR16 <strong>and</strong> BLR27 transcripts throughout <strong>in</strong>fection, <strong>and</strong><br />

<strong>in</strong>dicated that BLR03 expression strongly decreases from early <strong>in</strong>fection onwards.<br />

Effectors did not enhance susceptibility by repression <strong>of</strong> the biotic stress-response<br />

genes <strong>of</strong> lettuce that were selected from transcriptome data. The identification <strong>of</strong><br />

susceptibility-enhanc<strong>in</strong>g <strong>effectors</strong> <strong>of</strong> Bremia opens up the way to <strong>in</strong>vestigate their<br />

activity <strong>and</strong> host targets.<br />

The recognition <strong>of</strong> Bremia <strong>effectors</strong> <strong>in</strong> Lactuca breed<strong>in</strong>g l<strong>in</strong>es was <strong>in</strong>vestigated<br />

<strong>and</strong> described <strong>in</strong> chapter five. The <strong>effectors</strong> were transiently expressed <strong>in</strong> almost<br />

130 different l<strong>in</strong>es <strong>of</strong> Lactuca species that potentially conta<strong>in</strong> novel sources <strong>of</strong><br />

resistance to Bremia. Two <strong>effectors</strong> conta<strong>in</strong><strong>in</strong>g a GXLR variant <strong>of</strong> the RXLR motif<br />

were found to be recognised, <strong>and</strong> trigger ETI; BLG01 be<strong>in</strong>g recognised <strong>in</strong> many


26 Outl<strong>in</strong>e<br />

L. saligna l<strong>in</strong>es, whilst BLG03 was recognised <strong>in</strong> two Dm2-conta<strong>in</strong><strong>in</strong>g L. sativa<br />

l<strong>in</strong>es. BLG01 ETI was mapped to the short arm <strong>of</strong> chromosome 3 <strong>and</strong> BLG03 ETI<br />

was shown to be l<strong>in</strong>ked to the Dm2 locus. Surpris<strong>in</strong>gly, though these loci conferred<br />

effector recognition, they did not confer resistance to the B. lactucae isolate from<br />

which they were isolated.<br />

The f<strong>in</strong>al chapter concerns a discussion <strong>of</strong> the work described <strong>in</strong> the thesis<br />

<strong>and</strong> the use <strong>of</strong> <strong>effectors</strong> <strong>in</strong> the development <strong>of</strong> novel breed<strong>in</strong>g strategies for more<br />

durable resistance to <strong>downy</strong> <strong>mildew</strong>.


27<br />

Chapter 2:<br />

<strong>Identification</strong> <strong>of</strong> Hyaloperonospora arabidopsidis<br />

transcript sequences expressed dur<strong>in</strong>g <strong>in</strong>fection<br />

reveals isolate-specific <strong>effectors</strong><br />

Adriana Cabral 1 , Joost H. M. Stassen 1 , Michael F. Seidl 2,3 ,<br />

Jaquel<strong>in</strong>e Bautor 4 , Jane E. Parker 4 , Guido Van den Ackerveken 1,3<br />

1<br />

Department <strong>of</strong> Plant-Microbe Interactions, Department <strong>of</strong> Biology,<br />

Utrecht University, Utrecht, The Netherl<strong>and</strong>s<br />

2<br />

Theoretical Biology <strong>and</strong> Bio<strong>in</strong>formatics, Department <strong>of</strong> Biology,<br />

Utrecht University, Utrecht, The Netherl<strong>and</strong>s<br />

3<br />

Centre for BioSystems Genomics (CBSG), Wagen<strong>in</strong>gen, The Netherl<strong>and</strong>s<br />

4<br />

Department <strong>of</strong> Plant-Microbe Interactions,<br />

Max Planck Institute for Plant Breed<strong>in</strong>g Research, Cologne, Germany<br />

PLoS ONE (2011) 6: e19328.<br />

doi: 10.1371/journal.pone.0019328


28 Chapter 2<br />

Abstract<br />

Biotrophic plant pathogens secrete effector prote<strong>in</strong>s that are important for <strong>in</strong>fection<br />

<strong>of</strong> the host. The aim <strong>of</strong> this study was to identify <strong>effectors</strong> <strong>of</strong> the <strong>downy</strong> <strong>mildew</strong><br />

pathogen Hyaloperonospora arabidopsidis (Hpa) that are expressed dur<strong>in</strong>g<br />

<strong>in</strong>fection <strong>of</strong> its natural host Arabidopsis thaliana. Infection-related transcripts<br />

were identified from Expressed Sequence Tags (ESTs) derived from leaves <strong>of</strong> the<br />

susceptible Arabidopsis Ws eds1-1 mutant <strong>in</strong>oculated with the highly virulent<br />

Hpa isolate Waco9. Assembly <strong>of</strong> 6364 ESTs yielded 3729 unigenes, <strong>of</strong> which<br />

2164 were Hpa-derived. From the translated Hpa unigenes, 198 predicted secreted<br />

prote<strong>in</strong>s were identified. Of these, 75 were found to be Hpa-specific <strong>and</strong> six<br />

isolate Waco9-specific. Among 42 putative <strong>effectors</strong> identified there were three<br />

Elicit<strong>in</strong>-like prote<strong>in</strong>s, 16 Cyste<strong>in</strong>e-rich prote<strong>in</strong>s <strong>and</strong> 18 host-translocated RXLR<br />

<strong>effectors</strong>. Sequenc<strong>in</strong>g <strong>of</strong> alleles <strong>in</strong> different Hpa isolates revealed that five RXLR<br />

genes show signatures <strong>of</strong> diversify<strong>in</strong>g selection. Thus, EST <strong>analysis</strong> <strong>of</strong> Hpa-<strong>in</strong>fected<br />

Arabidopsis is prov<strong>in</strong>g to be a powerful method for identify<strong>in</strong>g pathogen<br />

effector c<strong>and</strong>idates expressed dur<strong>in</strong>g <strong>in</strong>fection. Delivery <strong>of</strong> the Waco9-specific<br />

prote<strong>in</strong> RXLR29 <strong>in</strong> planta revealed that this effector can suppress PAMP-triggered<br />

immunity <strong>and</strong> enhance disease susceptibility. We propose that differences <strong>in</strong> host<br />

colonization can be conditioned by isolate-specific <strong>effectors</strong>.


Isolate-specific <strong>effectors</strong> from Hyaloperonospora ESTs<br />

29<br />

Introduction<br />

Plant pathogens secrete an arsenal <strong>of</strong> effector molecules that modulate host<br />

responses to enable successful <strong>in</strong>fection. Effector prote<strong>in</strong>s constitute part <strong>of</strong> the<br />

secretome <strong>of</strong> the <strong>in</strong>vad<strong>in</strong>g organism <strong>and</strong> are regarded as be<strong>in</strong>g crucial for pathogenicity<br />

[1] . Pathogen-derived <strong>effectors</strong> target different sites <strong>in</strong> host plant tissues.<br />

While apoplastic <strong>effectors</strong> are secreted <strong>in</strong>to the plant extracellular space, host-translocated<br />

<strong>effectors</strong> are delivered <strong>in</strong>to host cells after secretion from the pathogen [2–4] .<br />

For successful colonization, several layers <strong>of</strong> defence have to be overcome by<br />

the pathogen. An <strong>in</strong>itial barrier is conferred by host membrane-resident receptors<br />

recogniz<strong>in</strong>g pathogen-associated molecular patterns (PAMPs), molecules that are<br />

structurally conserved among related pathogenic microorganisms <strong>and</strong> not present <strong>in</strong><br />

the host [5–7] . PAMP-triggered immunity (PTI) is a resistance response that generally<br />

protects plants aga<strong>in</strong>st a broad range <strong>of</strong> non-adapted microorganisms. Several<br />

bacterial effector prote<strong>in</strong>s delivered to host cells by the type III secretion system<br />

(TTSS) have been shown to suppress PTI [8,9] . A second layer <strong>of</strong> defence (effector-triggered<br />

immunity, ETI) can be activated through recognition <strong>of</strong> particular<br />

pathogen <strong>effectors</strong> or their actions on host targets by Resistance (R) prote<strong>in</strong>s. ETI<br />

is a more acute plant reaction <strong>of</strong>ten <strong>in</strong>volv<strong>in</strong>g programmed cell death at <strong>in</strong>fection<br />

sites. Effectors can modulate the ETI response or mutate to circumvent recognition<br />

result<strong>in</strong>g <strong>in</strong> a co-evolutionary battle <strong>in</strong> which the pathogen attempts to evade host<br />

resistance <strong>and</strong> new plant R genes evolve to restrict further pathogen growth [10,11] .<br />

Therefore, pathogen <strong>effectors</strong> with high rates <strong>of</strong> gene loss, duplication or diversification<br />

are likely to be elicitors <strong>and</strong>/or modulators <strong>of</strong> plant immunity depend<strong>in</strong>g on<br />

the host genetic background they encounter [12,13] .<br />

Some <strong>of</strong> the most highly co-evolved <strong>in</strong>teractions are between plants <strong>and</strong><br />

biotrophic pathogens. At one end <strong>of</strong> the biotroph spectrum are hemibiotrophic<br />

species that <strong>in</strong>itially colonize liv<strong>in</strong>g cells but then switch to necrotrophy. At the<br />

other end are obligate biotrophs that ma<strong>in</strong>ta<strong>in</strong> host cell <strong>in</strong>tegrity <strong>and</strong> depend<br />

entirely on their host for growth <strong>and</strong> completion <strong>of</strong> their life cycle. Obligate<br />

biotrophs have evolved sophisticated mechanisms for host cell manipulation <strong>and</strong><br />

defence suppression [14] . Characteriz<strong>in</strong>g the activities <strong>and</strong> targets <strong>of</strong> biotroph-secreted<br />

<strong>effectors</strong> should therefore provide <strong>in</strong>sights to how host-adapted pathogens<br />

promote disease <strong>and</strong> avoid recognition.<br />

The obligate biotroph Hyaloperonospora arabidopsidis (Hpa) naturally <strong>in</strong>fects<br />

the model plant Arabidopsis thaliana, caus<strong>in</strong>g <strong>downy</strong> <strong>mildew</strong> disease [15] . Hpa is<br />

a highly specialized oomycete pathogen with a narrow host range. Analysis <strong>of</strong><br />

the Arabidopsis-Hpa <strong>in</strong>teraction has been particularly <strong>in</strong>formative because <strong>of</strong> the<br />

extensive genetic variation <strong>in</strong> responses <strong>of</strong> different Arabidopsis accessions to a<br />

correspond<strong>in</strong>gly diverse set <strong>of</strong> natural pathogen isolates [16,17] . Strong differences


30 Chapter 2<br />

<strong>in</strong> resistance <strong>of</strong> Arabidopsis accessions to particular Hpa isolates were found<br />

to be conferred by R genes <strong>of</strong>ten resid<strong>in</strong>g at polymorphic loci [18–21] . Although<br />

plant-<strong>in</strong>fect<strong>in</strong>g oomycetes exhibit a fungal-like morphology <strong>and</strong> feed<strong>in</strong>g structures<br />

(haustoria), they form a phylogenetically dist<strong>in</strong>ct group <strong>of</strong> eukaryotic pathogens<br />

that, together with brown algae <strong>and</strong> diatoms, belong to the Stramenopile l<strong>in</strong>eage<br />

(heterokonts) [22] . The genomes <strong>of</strong> several agronomically important hemibiotrophic<br />

oomycete pathogen species have been sequenced, such as Phytophthora sojae<br />

(caus<strong>in</strong>g soybean root <strong>and</strong> stem rot), P. ramorum (sudden oak death) <strong>and</strong> P.<br />

<strong>in</strong>festans (potato late blight) [23,24] . Recently, the genome sequence <strong>of</strong> the Hpa<br />

isolate Emoy2 has also become available [25] . Extensive oomycete genome sequence<br />

<strong>in</strong>formation comb<strong>in</strong>ed with data from expression pr<strong>of</strong>il<strong>in</strong>g <strong>of</strong> pathogen <strong>and</strong> host<br />

genes at different <strong>in</strong>fection stages is now serv<strong>in</strong>g as a basis to identify potentially<br />

important pathogen effector genes [26–28] . To date, a number <strong>of</strong> oomycete effector<br />

prote<strong>in</strong>s trigger<strong>in</strong>g ETI have been identified [11,29–33] . Notably, these molecules<br />

are characterized by a secretion signal followed by a conserved “RXLR” motif<br />

(where X can be any am<strong>in</strong>o acid residue) <strong>and</strong> <strong>of</strong>ten a stretch <strong>of</strong> acidic am<strong>in</strong>o acids<br />

end<strong>in</strong>g with the motif “EER”. Whereas the RXLR motif is required for effector<br />

translocation <strong>in</strong>to the host cell, the C-term<strong>in</strong>al region comprises a more variable<br />

“effector doma<strong>in</strong>” [34–37] . ATR1 <strong>and</strong> ATR13 are two RXLR type <strong>effectors</strong> <strong>of</strong> Hpa<br />

that are recognized by Arabidopsis R genes [11,30] . High levels <strong>of</strong> ATR1 <strong>and</strong> ATR13<br />

polymorphism among Hpa isolates suggest that diversify<strong>in</strong>g selection has driven<br />

the evolution <strong>of</strong> both genes [11,13,30] .<br />

Previous studies aimed at identify<strong>in</strong>g Hpa pathogenicity genes by isolat<strong>in</strong>g<br />

pathogen transcripts expressed dur<strong>in</strong>g <strong>in</strong>fection have so far resulted <strong>in</strong> the isolation<br />

<strong>of</strong> only a few c<strong>and</strong>idate <strong>effectors</strong>. A differential cDNA-amplified fragment<br />

length polymorphism (AFLP) <strong>analysis</strong> was used by van der Biezen et al. [38] on<br />

Hpa-<strong>in</strong>fected Arabidopsis leaves lead<strong>in</strong>g to identification <strong>of</strong> 10 Hpa-derived cDNA<br />

fragments. In another study, a suppression subtractive hybridization (SSH) strategy<br />

was used to identify 25 Hpa-expressed genes from <strong>in</strong>fected Arabidopsis [39] .<br />

Here we report a transcript sequenc<strong>in</strong>g approach based on Expressed Sequence<br />

Tag (EST) <strong>analysis</strong> <strong>of</strong> Hpa-<strong>in</strong>fected Arabidopsis leaves. To <strong>in</strong>crease the proportion<br />

<strong>of</strong> Hpa transcripts <strong>in</strong> a mixed sample <strong>of</strong> plant <strong>and</strong> pathogen RNA we used a highly<br />

virulent Hpa isolate (Waco9) to <strong>in</strong>fect a hyper-susceptible Arabidopsis mutant<br />

(eds1) [40] <strong>and</strong> collected tissues at a time po<strong>in</strong>t <strong>of</strong> maximum hyphal <strong>and</strong> haustorial<br />

growth. From a set <strong>of</strong> 2164 Hpa unigenes we have identified <strong>and</strong> classified<br />

Hpa-secreted prote<strong>in</strong>s <strong>in</strong>to several effector categories based on the presence <strong>of</strong><br />

characteristic doma<strong>in</strong>s/motifs. Eighteen <strong>of</strong> the Hpa prote<strong>in</strong>s belong to the class <strong>of</strong><br />

host-targeted RXLR <strong>effectors</strong>. While several effector c<strong>and</strong>idates are shared with


Isolate-specific <strong>effectors</strong> from Hyaloperonospora ESTs<br />

31<br />

other Hpa isolates, <strong>and</strong> <strong>in</strong> some cases oomycete species, six predicted effector prote<strong>in</strong>s<br />

from Waco9 are not detected <strong>in</strong> the genome <strong>of</strong> the sequenced isolate Emoy2,<br />

highlight<strong>in</strong>g the dynamic nature <strong>of</strong> Hpa pathogenicity.<br />

Results<br />

EST sequenc<strong>in</strong>g <strong>of</strong> Hpa-<strong>in</strong>fected Arabidopsis tissue<br />

Hpa isolates Emoy2, Emwa1, Noco2 <strong>and</strong> Waco9 were assessed for growth on the<br />

Arabidopsis enhanced disease susceptibility 1 mutant Ws eds1-1 [40] . Microscopic<br />

<strong>analysis</strong> <strong>of</strong> <strong>in</strong>fected leaves after trypan blue sta<strong>in</strong><strong>in</strong>g revealed the extent <strong>of</strong><br />

pathogen growth. A higher level <strong>of</strong> colonization <strong>of</strong> Arabidopsis leaves, with<br />

abundant hyphal growth <strong>and</strong> haustoria projections formed <strong>in</strong> adjacent plant cells,<br />

was observed for Hpa isolate Waco9 compared to Emoy2 (Fig. S1) <strong>and</strong> other<br />

isolates tested (results not shown). Waco9-<strong>in</strong>fected leaves harvested at 5 dpi (before<br />

sporulation) (Fig. 1A) were therefore used for the construction <strong>of</strong> a cDNA library.<br />

Total RNA isolated from the Waco9-<strong>in</strong>fected material revealed ribosomal<br />

RNA (rRNA) peaks <strong>of</strong> Hpa <strong>and</strong> Arabidopsis (Fig. 1B). The observed peaks were<br />

validated as rRNA orig<strong>in</strong>at<strong>in</strong>g from Hpa or Arabidopsis by compar<strong>in</strong>g pr<strong>of</strong>iles<br />

<strong>of</strong> <strong>in</strong>fected leaves with those <strong>of</strong> RNA from Hpa conidiospores mixed <strong>in</strong> different<br />

proportions with Arabidopsis leaf RNA (Fig. S2). This <strong>analysis</strong> showed that<br />

~50% <strong>of</strong> RNA extracted from the Waco9-<strong>in</strong>fected leaves was derived from Hpa.<br />

Poly (A+) RNA was isolated from the <strong>in</strong>fected leaf total RNA preparations <strong>and</strong><br />

size-fractionated cDNAs rang<strong>in</strong>g from 500 to 5000 bp were used for cDNA library<br />

construction.<br />

7680 sequenc<strong>in</strong>g reactions correspond<strong>in</strong>g to the 5′ end <strong>of</strong> the cDNAs were<br />

performed. After vector trimm<strong>in</strong>g <strong>and</strong> removal <strong>of</strong> low quality sequences <strong>and</strong><br />

chimeras, 6364 ESTs rema<strong>in</strong>ed rang<strong>in</strong>g <strong>in</strong> length from 50 to 1000 nucleotides (nt).<br />

A<br />

0<br />

20 30 40 50<br />

Migration time (sec)<br />

Figure 1: Hpa isolateWaco9-<strong>in</strong>fected Arabidopsis seedl<strong>in</strong>gs used for cDNA library construction. (A)<br />

Trypan blue sta<strong>in</strong><strong>in</strong>g <strong>of</strong> <strong>in</strong>fected Arabidopsis leaves (Ws eds1-1) show<strong>in</strong>g extensive hyphal growth <strong>in</strong><br />

the absence <strong>of</strong> asexual sporulation at 5 dpi. (B) Bioanalyzer pr<strong>of</strong>ile <strong>of</strong> total RNA obta<strong>in</strong>ed from Hpa<br />

Waco9-<strong>in</strong>fected leaf material. The 28S rRNA peaks <strong>of</strong> Arabidopsis (At) <strong>and</strong> Waco9 (Hpa) are <strong>in</strong>dicated.<br />

B<br />

Fluorescence<br />

80<br />

60<br />

40<br />

20<br />

At<br />

Hpa


32 Chapter 2<br />

The majority (84%; 5321 sequences) <strong>of</strong> ESTs had a read length <strong>of</strong> more than 500 nt<br />

(Fig. 2A). Assembly <strong>of</strong> ESTs yielded a total <strong>of</strong> 3729 unique sequences (unigenes)<br />

consist<strong>in</strong>g <strong>of</strong> 2810 (~75%) s<strong>in</strong>gletons <strong>and</strong> 919 (~25%) contigs with two or more<br />

ESTs (Fig. 2B).<br />

To def<strong>in</strong>e the orig<strong>in</strong> <strong>of</strong> the unigene sequences, BLASTN searches were<br />

performed aga<strong>in</strong>st the genome sequences <strong>of</strong> Arabidopsis, Hpa, three oomycete<br />

pathogens (P. <strong>in</strong>festans, P. sojae <strong>and</strong> P. ramorum) <strong>and</strong> the NCBI nr nucleotide<br />

database. Almost all unigenes (3722; ~99.8%) showed significant similarity<br />

(E


Isolate-specific <strong>effectors</strong> from Hyaloperonospora ESTs<br />

33<br />

rema<strong>in</strong><strong>in</strong>g unigenes two had high identity scores with sequences <strong>of</strong> other non-plant<br />

<strong>and</strong> non-oomycete organisms <strong>and</strong> seven did not show significant homology to<br />

any sequence <strong>in</strong> the databases (unknown sequences <strong>in</strong> Fig. 2C), nor conta<strong>in</strong>ed a<br />

signal peptide <strong>in</strong> the predicted open read<strong>in</strong>g frame <strong>and</strong> were therefore not further<br />

analysed. Altogether, we def<strong>in</strong>ed 2164 unigenes as Hpa-derived to use them for<br />

subsequently <strong>functional</strong> classification.<br />

<strong>Identification</strong> <strong>of</strong> putative secreted Hpa prote<strong>in</strong>s<br />

Secreted prote<strong>in</strong>s <strong>of</strong> fungal <strong>and</strong> oomycete plant pathogens have been shown to<br />

function as pathogenicity factors [4,41,42] . We therefore performed a comprehensive<br />

search for Hpa transcripts encod<strong>in</strong>g secreted prote<strong>in</strong>s. From the 2164 Hpa unigenes<br />

a set <strong>of</strong> 198 unigenes (822 ESTs, 9.15% <strong>of</strong> unigenes) encoded prote<strong>in</strong>s with a predicted<br />

signal peptide as analyzed with SignalP s<strong>of</strong>tware [43,44] , <strong>and</strong> without putative<br />

transmembrane doma<strong>in</strong>s. The EST-derived unigenes are significantly enriched<br />

(p = 4e−6) for transcripts encod<strong>in</strong>g predicted secreted prote<strong>in</strong>s when compared to<br />

the genome wide percentage <strong>of</strong> 6.8% (Table S2).<br />

To def<strong>in</strong>e which <strong>of</strong> the Hpa secreted prote<strong>in</strong>s are shared with other organisms,<br />

the 198 unigenes were compared to the genome sequences <strong>of</strong> three oomycete<br />

pathogens (Phytophthora <strong>in</strong>festans, P. sojae, <strong>and</strong> P. ramorum) <strong>and</strong> sequences <strong>in</strong><br />

GenBank, exclud<strong>in</strong>g Hpa. Significant blast hits (E75%) were obta<strong>in</strong>ed for 123 unigenes (Fig. 3). The rema<strong>in</strong><strong>in</strong>g 75 sequences<br />

(38%) did not have a significant hit with other oomycetes or non-Hpa sequences<br />

<strong>in</strong> GenBank, suggest<strong>in</strong>g that these genes are Hpa-specific. As the Hpa genome<br />

sequence is derived from isolate Emoy2 [25] <strong>and</strong> the ESTs isolated here are from<br />

isolate Waco9, we searched for possible differences between these two isolates.<br />

The 75 Hpa-specific unigenes were queried aga<strong>in</strong>st the assembled Emoy2 genome<br />

sequence <strong>and</strong> manually compared to Hpa trace files (http://www.ncbi.nlm.nih.<br />

gov/BLAST) to search for sequences that might be miss<strong>in</strong>g from the Hpa genome<br />

assembly. No significant hits were obta<strong>in</strong>ed for six sequences, suggest<strong>in</strong>g that these<br />

unigenes are present <strong>in</strong> Hpa isolate Waco9 but not <strong>in</strong> Emoy2.<br />

A <strong>functional</strong> annotation <strong>of</strong> the 198 Hpa unigenes predicted to encode secreted<br />

prote<strong>in</strong>s was performed by comparison to the Pfam database <strong>of</strong> prote<strong>in</strong> doma<strong>in</strong>s [45]<br />

<strong>and</strong> by manual annotation to search for specific classes <strong>of</strong> <strong>effectors</strong>. No function<br />

could be def<strong>in</strong>ed for 108 sequences that were therefore classified as unknowns.<br />

Table S3 shows the putative functions or doma<strong>in</strong>s assigned to 90 unigene-encoded<br />

prote<strong>in</strong>s. A selection <strong>of</strong> categories potentially associated with pathogenicity<br />

(adapted from Tyler et al. [23] ), <strong>and</strong> the number <strong>of</strong> ESTs <strong>and</strong> unigenes belong<strong>in</strong>g<br />

to each group, is shown <strong>in</strong> Table 1. Unigenes encod<strong>in</strong>g putative pathogenicity<br />

prote<strong>in</strong>s (58 sequences) were classified <strong>in</strong>to three categories: hydrolase enzymes,


34 Chapter 2<br />

198 unigenes<br />

NCBI nr database<br />

(exclud<strong>in</strong>g Hpa - Emoy2)<br />

Oomycetes<br />

(proteome/assembly)<br />

(exclud<strong>in</strong>g Hpa - Emoy2)<br />

evalue cut<strong>of</strong>f 1e-5; >75% coverage<br />

123 unigenes<br />

75 unigenes<br />

Hpa - specific<br />

Hpa - Emoy2<br />

(proteome/assembly/<br />

trace files)<br />

evalue cut<strong>of</strong>f 1e-10, identity ratio >80%<br />

69 unigenes<br />

6 unigenes<br />

Hpa - Waco9 - specific<br />

Figure 3: Scheme show<strong>in</strong>g categorization <strong>of</strong> Hpa Waco9 unigenes encod<strong>in</strong>g predicted secreted<br />

prote<strong>in</strong>s. Sequences with homologues <strong>in</strong> oomycetes (exclud<strong>in</strong>g Hpa) <strong>and</strong> other organisms are grouped<br />

(123 sequences). The rema<strong>in</strong><strong>in</strong>g 75 unigenes were used to search for homologues <strong>in</strong> the assembled<br />

Emoy2 genome <strong>and</strong> trace files. A set <strong>of</strong> six unigenes with no significant similarity to any other sequence<br />

is def<strong>in</strong>ed as Waco9-specific.<br />

protection aga<strong>in</strong>st oxidative stress, <strong>and</strong> <strong>effectors</strong>. These 58 unigenes, together with<br />

the 108 sequences with unknown function, were then divided accord<strong>in</strong>g to the<br />

group <strong>of</strong> organisms <strong>in</strong> which homologues were identified. From the 108 unknown<br />

sequences, 51 are categorized as Hpa-specific (Table 1). Homologues <strong>in</strong> other<br />

oomycetes were identified for all unigenes predicted to function as hydrolases or <strong>in</strong><br />

protection aga<strong>in</strong>st oxidative stress (Table 1), <strong>in</strong>dicat<strong>in</strong>g that prote<strong>in</strong>s <strong>in</strong> these classes<br />

are conserved among oomycetes. We looked for various families <strong>of</strong> <strong>effectors</strong> that<br />

are associated with the trigger<strong>in</strong>g or manipulation <strong>of</strong> host cell defences [46–48] . Putative<br />

effector prote<strong>in</strong>s formed the largest <strong>functional</strong> group identified, compris<strong>in</strong>g 42<br />

unigenes. In this category we assigned 16 prote<strong>in</strong>s as Cyste<strong>in</strong>e-rich (CR) prote<strong>in</strong>s<br />

<strong>and</strong> 18 as belong<strong>in</strong>g to the RXLR family. The majority <strong>of</strong> both effector types (23<br />

out <strong>of</strong> 34 unigenes) appear to be Hpa-specific s<strong>in</strong>ce no related sequences were<br />

detected <strong>in</strong> other oomycetes. Moreover, two CR prote<strong>in</strong>s <strong>and</strong> four RXLRs were


Isolate-specific <strong>effectors</strong> from Hyaloperonospora ESTs<br />

35<br />

Table 1: Classification <strong>of</strong> predicted Hpa secreted prote<strong>in</strong>s. The distribution <strong>in</strong> different pathogenicity<br />

categories <strong>and</strong> organisms <strong>in</strong> which homologues were identified are shown. Functional classification is<br />

based on Pfam searches <strong>and</strong> manual annotation.<br />

Total<br />

ESTs<br />

Unigenes<br />

Oomycetes specific<br />

specific<br />

Other Hpa-<br />

Waco9-<br />

Emoy2<br />

Hydrolases 41 9 9 0 0 0<br />

Cell Wall Degrad<strong>in</strong>g Enzymes 32 4 4 0 0 0<br />

Ser<strong>in</strong>e proteases 5 1 1 0 0 0<br />

Ser<strong>in</strong>e carboxypeptidases 2 2 2 0 0 0<br />

Aspartyl prote<strong>in</strong>ase/proteases 1 1 1 0 0 0<br />

Cyste<strong>in</strong>e protease/prote<strong>in</strong>ases 1 1 1 0 0 0<br />

Protection aga<strong>in</strong>st oxidative stress 35 7 7 0 0 0<br />

Glutathione s-transferases 1 1 1 0 0 0<br />

Reductases 16 2 2 0 0 0<br />

Glutaredox<strong>in</strong>s 3 1 1 0 0 0<br />

Thioredox<strong>in</strong>s 15 3 3 0 0 0<br />

Effectors 342 42 17 24 18 6<br />

RXLRs 40 18 4 14 10 4<br />

Cyste<strong>in</strong>e-rich prote<strong>in</strong>s 279 16 * 6 9 7 2<br />

Elicit<strong>in</strong>s 9 4 3 1 ** 1 0<br />

Necrosis-<strong>in</strong>duc<strong>in</strong>g like prote<strong>in</strong>s 3 2 2 0 0 0<br />

Cr<strong>in</strong>klers 1 1 1 0 0 0<br />

Cyclophil<strong>in</strong>s 2 1 1 0 0 0<br />

unknowns 361 108 55 51 51 0<br />

*<br />

One predicted Cyste<strong>in</strong>e-rich c<strong>and</strong>idate has homology to Tetrahymena thermophila <strong>and</strong> to Hpa<br />

sequences. No homologue was found <strong>in</strong> other oomycetes.<br />

**<br />

Elicit<strong>in</strong> HaELL2 is classified as Hpa-specific due to its extended specific C-term<strong>in</strong>al doma<strong>in</strong>.<br />

not identified <strong>in</strong> the Emoy2 genome suggest<strong>in</strong>g they are isolate Waco9-specific.<br />

Other classes <strong>of</strong> predicted effector prote<strong>in</strong>s such as Necrosis-<strong>in</strong>duc<strong>in</strong>g like prote<strong>in</strong>s,<br />

elicit<strong>in</strong>s, Cr<strong>in</strong>klers <strong>and</strong> cyclophil<strong>in</strong> had homologues with<strong>in</strong> other oomycetes, suggest<strong>in</strong>g<br />

that these sequences belong to a common core <strong>of</strong> putative <strong>effectors</strong> present<br />

<strong>in</strong> oomycete organisms. The Cr<strong>in</strong>kler identified carries a variation <strong>of</strong> the LxLFLAK<br />

translocation motif (Fig. S3), which has also been described to be present <strong>in</strong> several<br />

Cr<strong>in</strong>klers <strong>of</strong> P. <strong>in</strong>festans [24] .<br />

Elicit<strong>in</strong> signatures <strong>in</strong> Hpa<br />

Elicit<strong>in</strong>s (ELIs) are extracellular <strong>effectors</strong> characterized by a 98 am<strong>in</strong>o acid<br />

conserved doma<strong>in</strong> with a core <strong>of</strong> six cyste<strong>in</strong>es <strong>in</strong> a specific spac<strong>in</strong>g pattern<br />

allow<strong>in</strong>g their classification <strong>in</strong>to different groups. Elicit<strong>in</strong>-like prote<strong>in</strong>s (ELLs)


36 Chapter 2<br />

have more variation <strong>in</strong> the size <strong>and</strong> sequence <strong>of</strong> their elicit<strong>in</strong> doma<strong>in</strong>s [49] . Although<br />

Pfam searches identified four ELL unigenes <strong>in</strong> Waco9 (Table 1), only three <strong>of</strong><br />

these sequences were further analysed (Fig. 4) s<strong>in</strong>ce the fourth conta<strong>in</strong>ed only<br />

five cyste<strong>in</strong>es <strong>and</strong> therefore did not classify as an ELI/ELL. The HaELL1-, 2- <strong>and</strong><br />

3-encoded prote<strong>in</strong>s have fewer than 5% cyste<strong>in</strong>e residues <strong>and</strong> are classified as<br />

alpha-elicit<strong>in</strong>s due to their acidic pI [50] . The different size <strong>and</strong> cyste<strong>in</strong>e spac<strong>in</strong>g<br />

<strong>in</strong> the elicit<strong>in</strong> doma<strong>in</strong> <strong>of</strong> these three HaELLs is shown <strong>in</strong> Fig. 4. While HaELL2<br />

resembles Phytophthora ELL-1 prote<strong>in</strong>s [49] , the Cys pattern <strong>in</strong> HaELL1 <strong>and</strong> 3<br />

appears to be specific for Hpa. All three prote<strong>in</strong>s have an extended C-term<strong>in</strong>al<br />

region follow<strong>in</strong>g the elicit<strong>in</strong> doma<strong>in</strong>, a feature <strong>of</strong> other oomycete ELLs [49] . This<br />

region is smaller <strong>in</strong> HaELL1 <strong>and</strong> 3 (57 <strong>and</strong> 53 am<strong>in</strong>o acids, respectively) <strong>in</strong> comparison<br />

to HaELL2 (137 am<strong>in</strong>o acids). The C-term<strong>in</strong>al doma<strong>in</strong> appears to have a<br />

biased am<strong>in</strong>o acid composition as it is rich <strong>in</strong> threon<strong>in</strong>e, alan<strong>in</strong>e <strong>and</strong> ser<strong>in</strong>e (Fig. 4).<br />

The high abundance <strong>of</strong> threon<strong>in</strong>e <strong>and</strong> ser<strong>in</strong>e residues <strong>in</strong> the C-term<strong>in</strong>al part <strong>of</strong><br />

HaELL1, 2 <strong>and</strong> 3 po<strong>in</strong>ts to numerous potential sites for O-glycosylation (predicted<br />

by NetOGlyc 3.1) that could l<strong>in</strong>k the prote<strong>in</strong>s to the cell wall. A hydrophobic<br />

region conta<strong>in</strong><strong>in</strong>g a GPI anchor was predicted <strong>in</strong> the C-term<strong>in</strong>al part <strong>of</strong> HaELL2,<br />

suggest<strong>in</strong>g that this prote<strong>in</strong> might be anchored to the plasma membrane. O-glycosylation<br />

sites <strong>and</strong> GPI anchor regions have been described for other Phytophthora<br />

ELIs/ELLs [49] .<br />

HaELL1<br />

(175 aa)<br />

C-23-C-23-C-4-C-14-C-22-C<br />

97 aa<br />

C<br />

HaELL2<br />

(175 aa)<br />

N<br />

C-16-C-22-C-4-C-14-C-18-C<br />

85 aa<br />

C<br />

HaELL3<br />

(175 aa)<br />

N C-24-C-23-C-4-C-14-C-23-C<br />

C1 C2<br />

99 aa<br />

Figure 4: Schematic representation <strong>of</strong> prote<strong>in</strong> doma<strong>in</strong>s <strong>of</strong> three identified Hpa HaELLs. The predicted<br />

signal peptide is shown <strong>in</strong> black. A region between the signal peptide <strong>and</strong> the elicit<strong>in</strong> doma<strong>in</strong> found<br />

<strong>in</strong> HaELL2 <strong>and</strong> 3, with respectively 23 <strong>and</strong> 8 am<strong>in</strong>o acids, is shown (N). The pattern <strong>of</strong> cyste<strong>in</strong>e<br />

spac<strong>in</strong>g <strong>and</strong> the size <strong>of</strong> the elicit<strong>in</strong> doma<strong>in</strong> are depicted. The percentage <strong>of</strong> highly abundant am<strong>in</strong>o acid<br />

residues <strong>in</strong> the C-term<strong>in</strong>us is: HaELL1: T: 14%, A: 12%, S: 7%; HaELL2: T: 28%, A: 13%, S: 10%.<br />

The C-term<strong>in</strong>us <strong>of</strong> HaELL3 is divided <strong>in</strong>to two regions (C1 <strong>and</strong> C2). C1: S: 51%, T: 19%; C2: D;56%,<br />

E:31%.<br />

Hpa derived Cyste<strong>in</strong>e-rich (CR) prote<strong>in</strong>s<br />

A number <strong>of</strong> CR prote<strong>in</strong>s secreted by fungal pathogens have been shown to be<br />

recognized by R prote<strong>in</strong>s <strong>in</strong> resistant host plants [51–53] . The cyste<strong>in</strong>es <strong>in</strong> these prote<strong>in</strong>s<br />

form disulphide bridges that contribute to their structural stability <strong>in</strong> the plant<br />

apoplast, an environment rich <strong>in</strong> proteases. To identify HaCR c<strong>and</strong>idates among


Isolate-specific <strong>effectors</strong> from Hyaloperonospora ESTs<br />

37<br />

the putative Hpa secreted prote<strong>in</strong>s, we determ<strong>in</strong>ed the relative number <strong>of</strong> cyste<strong>in</strong>e<br />

residues <strong>in</strong> the full-length translated sequences. A total <strong>of</strong> 16 HaCR prote<strong>in</strong>s were<br />

identified which conta<strong>in</strong> more than 5% cyste<strong>in</strong>es <strong>and</strong> range <strong>in</strong> size from 72 to 405<br />

am<strong>in</strong>o acids (Table 2). N<strong>in</strong>e <strong>of</strong> the HaCR c<strong>and</strong>idates could be placed <strong>in</strong>to two<br />

groups based on the pattern <strong>and</strong> spac<strong>in</strong>g <strong>of</strong> the cyste<strong>in</strong>es (Fig. 5). The cyste<strong>in</strong>e<br />

motif <strong>in</strong> group I <strong>and</strong> II is repeated one or more times <strong>in</strong> most group members. As<br />

shown <strong>in</strong> Tables 1 <strong>and</strong> 2, six HaCR c<strong>and</strong>idates have homologues <strong>in</strong> other oomycete<br />

pathogens. C<strong>and</strong>idates from Groups I <strong>and</strong> II do not have an obvious oomycete<br />

counterpart. However for HaCR2 significant homology (blast E value


38 Chapter 2<br />

Figure 5: Two groups <strong>of</strong> HaCR prote<strong>in</strong>s identified with dist<strong>in</strong>ct cyste<strong>in</strong>e spac<strong>in</strong>g patterns. The boxes<br />

show the pattern repeated <strong>in</strong> each prote<strong>in</strong>.<br />

HaCR1, represented by the highest number <strong>of</strong> ESTs (84) among the secreted<br />

prote<strong>in</strong>s, is a homologue <strong>of</strong> Ppat14 from Hpa isolate Maks9 [39] .<br />

Classification <strong>of</strong> host-translocated Hpa RXLR prote<strong>in</strong>s<br />

RXLR prote<strong>in</strong>s comprise a class <strong>of</strong> oomycete <strong>effectors</strong> that are translocated <strong>in</strong>to the<br />

plant cell [36] . All known oomycete effector prote<strong>in</strong>s that are recognized by specific<br />

plant R prote<strong>in</strong>s belong to this class [11,29–33] . The Hpa unigenes encod<strong>in</strong>g putative<br />

secreted prote<strong>in</strong>s were therefore m<strong>in</strong>ed for c<strong>and</strong>idate RXLR <strong>effectors</strong>. Prote<strong>in</strong>s conta<strong>in</strong><strong>in</strong>g<br />

either an RXLR or RXLQ/RXLG motif <strong>in</strong> the mature prote<strong>in</strong> were selected.<br />

Variations <strong>in</strong> the last arg<strong>in</strong><strong>in</strong>e <strong>of</strong> the RXLR still allows prote<strong>in</strong> translocation <strong>in</strong>to<br />

the host cell [37] . We identified 18 RXLR c<strong>and</strong>idates (<strong>in</strong>clud<strong>in</strong>g one RXLQ conta<strong>in</strong><strong>in</strong>g<br />

prote<strong>in</strong>) encod<strong>in</strong>g relatively small prote<strong>in</strong>s rang<strong>in</strong>g from 115 to 340 am<strong>in</strong>o<br />

acids (Table 3). The distance between the RXLR/Q motif <strong>and</strong> the signal peptide<br />

cleavage site varied from 15 to 51 am<strong>in</strong>o acids <strong>in</strong>dicat<strong>in</strong>g that the RXLR/Q motif


Isolate-specific <strong>effectors</strong> from Hyaloperonospora ESTs<br />

39<br />

Table 3: Sequence features <strong>of</strong> c<strong>and</strong>idate Waco9 RXLR effector prote<strong>in</strong>s.<br />

Name<br />

Hpa RXLR<br />

Size RXLR<br />

ESTs<br />

gene IDs 1 (am<strong>in</strong>o acids) distance 2 EER 3 Homologues 4<br />

RXLR3 - 1 129 29 - Hpa-specific<br />

RXLR4 - 3 134 29 - Waco9<br />

RXLR5 - 1 340 30 - Oomycetes<br />

RXLR6 HaRXL80 1 129 27 + (44) Hpa-specific<br />

RXLR7 HaRXL17 1 285 20 + (32) Hpa-specific<br />

RXLR9 HaRXL78 2 150 28 - Hpa-specific<br />

RXLR12 - 3 125 28 - Waco9<br />

RXLR13 HaRXL76 5 286 32 + (49) Hpa-specific<br />

RXLR15 HaRXL77 3 129 15 + (37) Oomycetes<br />

RXLR16<br />

HaRXL30;<br />

HaRXL79<br />

3 198 28 + (41) Waco9<br />

RXLR17 (RXLQ) HaRXL42 2 135 28 + (41) Hpa-specific<br />

RXLR18 - 2 209 51 - Oomycetes<br />

RXLR19 - 1 299 31 - Hpa-specific<br />

RXLR20 HaRXL10 1 241 23 - Hpa-specific<br />

RXLR21<br />

HaRXL37;<br />

HaRXL75<br />

1 115 29 + (44) Oomycetes<br />

RXLR22 - 1 137 29 - Waco9<br />

RXLR23 HaRXL4 5 304 32 + (49) Hpa-specific<br />

RXLR29 - 4 132 28 - Hpa-specific<br />

1<br />

Gene IDs refer to RXLR sequences identified <strong>in</strong> Emoy2 [25]<br />

2<br />

Distance to signal peptide cleavage site.<br />

3<br />

In brackets the distance to signal peptide cleavage site.<br />

4<br />

Homologues found based on blast searches as described for Figure 6.<br />

is near the N-term<strong>in</strong>us. The presence <strong>of</strong> an acidic region (EER) downstream <strong>of</strong> the<br />

RXLR motif was identified <strong>in</strong> eight RXLR c<strong>and</strong>idates (Table 3) <strong>and</strong> two (RXLR3<br />

<strong>and</strong> RXLR6) have a putative nuclear localization signal as predicted by Psort.<br />

From the 18 RXLR sequences identified here, only four prote<strong>in</strong>s have homology<br />

with other oomycetes, <strong>in</strong>dicat<strong>in</strong>g that the majority <strong>of</strong> the RXLR c<strong>and</strong>idates are<br />

Hpa-specific (Tables 1 <strong>and</strong> 3). Among these four RXLR prote<strong>in</strong>s, RXLR5 <strong>and</strong> 18<br />

showed a high degree <strong>of</strong> similarity with homologues <strong>in</strong> P. <strong>in</strong>festans (75% <strong>and</strong> 72%<br />

identity, respectively, with 100% sequence coverage). From the 14 Hpa-specific<br />

prote<strong>in</strong>s, blast searches revealed that 10 RXLRs have correspond<strong>in</strong>g genes <strong>in</strong><br />

Emoy2 (Tables 1 <strong>and</strong> 3). Further <strong>analysis</strong> <strong>of</strong> these sequences revealed that RXLR29<br />

is represented by a null allele <strong>in</strong> Hpa Emoy2 caused by a frame-shift mutation<br />

result<strong>in</strong>g <strong>in</strong> a premature stop codon (Fig. S4). For RXLR4, 12, 16 <strong>and</strong> 22 no significant<br />

blast hits with the Emoy2 genome sequence were obta<strong>in</strong>ed (Tables 1 <strong>and</strong> 3). It<br />

is possible that these RXLR genes are either highly polymorphic or absent from the<br />

Emoy2 genome.


40 Chapter 2<br />

Allelic diversity <strong>of</strong> RXLR effector c<strong>and</strong>idate genes<br />

Cod<strong>in</strong>g sequences <strong>of</strong> the 18 RXLR c<strong>and</strong>idate <strong>effectors</strong> were deduced from seven<br />

Hpa isolates. Table 4 shows the number <strong>of</strong> prote<strong>in</strong> variants found for each RXLR<br />

<strong>and</strong> their distribution among the different Hpa isolates. For example, RXLR3 is<br />

represented by two allelic forms: Waco9, Noks1, Emco5 <strong>and</strong> Cala2 share variant<br />

A, Emoy2 <strong>and</strong> Maks9 carry prote<strong>in</strong> variant B <strong>and</strong> H<strong>in</strong>d2 has no RXLR3 gene.<br />

Heterozygosity was also observed for some RXLRs (e.g. RXLR6 <strong>in</strong> Cala2 conta<strong>in</strong>s<br />

both prote<strong>in</strong> variants A <strong>and</strong> B). RXLR5 was the least variable gene with identical<br />

prote<strong>in</strong>s <strong>in</strong> all seven Hpa isolates.<br />

Table 4: Allelic variants identified for 18 Hpa RXLR c<strong>and</strong>idate prote<strong>in</strong>s <strong>and</strong> their distribution among 7<br />

Hpa isolates. The letters <strong>in</strong>dicate prote<strong>in</strong> variants present at each isolate (prote<strong>in</strong> level). When 2 letters<br />

are present it means that the Hpa isolate is heterozygous for that locus <strong>and</strong> has one copy <strong>of</strong> each allele.<br />

Allele at the <strong>in</strong>dicated Hpa isolate<br />

Gene No. Alleles Cala2 Emco5 Emoy2 H<strong>in</strong>d2 Maks9 Noks1 Waco9<br />

RXLR3 2 A A B - B A A<br />

RXLR4 1 - - - A - - A<br />

RXLR5 1 A A A A A A A<br />

RXLR6 4 A,B C B D C C A<br />

RXLR7 3 B C B B B B A<br />

RXLR9 5 B;C E D B E D A<br />

RXLR12 1 - - - - - - A<br />

RXLR13 6 B A D E F C A<br />

RXLR15 2 B B A;B B A B A<br />

RXLR16 6 B C B;C D E F A<br />

RXLR17 2 B B B B B B A<br />

RXLR18 2 B A A A A B A<br />

RXLR19 5 B C D E B D A<br />

RXLR20 4 - A;B A C C D A<br />

RXLR21 3 A A A;B C B B A<br />

RXLR22 1 - - - - - - A<br />

RXLR23 6 C D D E A;B F A<br />

RXLR29 3 B B B B B;C B A<br />

No allele sequences were amplified for RXLR12 <strong>and</strong> 22 <strong>in</strong> Emoy2 or <strong>in</strong> any<br />

<strong>of</strong> the five other Hpa isolates, <strong>in</strong>dicat<strong>in</strong>g that these are Waco9-specific. RXLR4<br />

was only amplified from isolates H<strong>in</strong>d2 <strong>and</strong> Waco9. Although blast searches did<br />

not reveal a significant hit for RXLR16 <strong>in</strong> the Emoy2 genome (Table 3), allele<br />

sequences were obta<strong>in</strong>ed for Emoy2 as well as the other isolates. Due to a high<br />

level <strong>of</strong> polymorphism between the RXLR16 prote<strong>in</strong> sequences <strong>in</strong> Waco9 <strong>and</strong><br />

Emoy2, the blast hit obta<strong>in</strong>ed was excluded based on cut-<strong>of</strong>f values.


Isolate-specific <strong>effectors</strong> from Hyaloperonospora ESTs<br />

41<br />

The RXLR29 gene was <strong>of</strong> particular <strong>in</strong>terest because Waco9 is the only isolate<br />

<strong>of</strong> these analysed that conta<strong>in</strong>s an <strong>in</strong>tact full-length ORF. In the rema<strong>in</strong><strong>in</strong>g six Hpa<br />

isolates, RXLR29 displayed <strong>in</strong>sertions/deletions giv<strong>in</strong>g rise to frame shifts result<strong>in</strong>g<br />

<strong>in</strong> null alleles (Fig. S4). In Maks9 we also found two different truncated versions<br />

<strong>of</strong> RXLR29. These results show that a <strong>functional</strong> RXLR29 prote<strong>in</strong> is only present<br />

<strong>in</strong> Waco9 suggest<strong>in</strong>g that it has been counter-selected <strong>in</strong> the other Hpa isolates<br />

exam<strong>in</strong>ed.<br />

Of the 13 RXLR c<strong>and</strong>idate <strong>effectors</strong> with at least two different prote<strong>in</strong> variants,<br />

we def<strong>in</strong>ed the percentage <strong>of</strong> variable sites with<strong>in</strong> the prote<strong>in</strong> sequences (Fig. 6).<br />

RXLR9, 13, 16, 19 <strong>and</strong> 23 are the most polymorphic effector prote<strong>in</strong>s with more<br />

than 10% variable sites among the isolates sequenced. The ratio <strong>of</strong> >1 non-synonymous<br />

(dN) to synonymous (dS) nucleotide substitutions [54] <strong>in</strong> RXLR 9, 13, 16,<br />

19 <strong>and</strong> 23 suggests that these genes are under positive selection to ma<strong>in</strong>ta<strong>in</strong> am<strong>in</strong>o<br />

acid diversity (Table 5).<br />

Figure 6: Polymorphic Hpa RXLR prote<strong>in</strong>s. Numbers <strong>of</strong> variable sites were determ<strong>in</strong>ed us<strong>in</strong>g Mega4<br />

for RXLR prote<strong>in</strong>s possess<strong>in</strong>g two or more prote<strong>in</strong> variants.<br />

Hpa RXLR29 suppresses pathogen-<strong>in</strong>duced callose deposition<br />

S<strong>in</strong>ce only isolate Waco9 appears to have reta<strong>in</strong>ed a <strong>functional</strong> RXLR29 prote<strong>in</strong>,<br />

we selected this gene to determ<strong>in</strong>e a potential effector activity. We used a bacterial<br />

effector delivery vector (EDV) system which was previously shown to successfully<br />

deliver the Hpa effector ATR13 to Arabidopsis leaf cells by fusion to the N-term<strong>in</strong>al<br />

portion <strong>of</strong> a TTSS bacterial effector [42] . RXLR29 was cloned <strong>in</strong> the EDV system<br />

<strong>and</strong> expressed <strong>in</strong> the Pseudomonas syr<strong>in</strong>gae pv tomato (Pst) DC3000ΔCEL mutant<br />

stra<strong>in</strong> which lacks the conserved effector locus (CEL) <strong>and</strong> is therefore unable to<br />

efficiently suppress PTI [55,56] . Pathogen-<strong>in</strong>duced deposition <strong>of</strong> callose at the cell<br />

wall is used as a marker <strong>of</strong> PTI [57] . We therefore measured whether RXLR29<br />

delivery affects the capacity <strong>of</strong> Pst DC3000ΔCEL to <strong>in</strong>duce callose deposition<br />

after <strong>in</strong>filtrat<strong>in</strong>g bacteria <strong>in</strong>to leaves. In these experiments, YFP <strong>and</strong> ATR13 were


42 Chapter 2<br />

Table 5: Ratio <strong>of</strong> non-synonymous (dN) <strong>and</strong> synonymous (dS) substitutions <strong>of</strong> RXLR genes. Nucleotide<br />

sequences obta<strong>in</strong>ed for each RXLR c<strong>and</strong>idate <strong>of</strong> Hpa isolates were used to calculate the ratio dN/dS.<br />

Genes under positive selection exhibit a dN/dS ratio higher than 1 <strong>and</strong> a P-value


Isolate-specific <strong>effectors</strong> from Hyaloperonospora ESTs<br />

43<br />

A<br />

ATR13 RXLR29 YFP<br />

B<br />

Amount callose spots<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

YFP<br />

RXLR29 ATR13<br />

Bacterial counts [Log (CFU/mg)]<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

YFP<br />

ATR13<br />

RXLR29<br />

day 0 day 3<br />

Figure 7: RXLR29 suppresses callose deposition<br />

<strong>in</strong> bacteria-<strong>in</strong>oculated Arabidopsis leaves. Fiveweek-old<br />

Col-0 leaves were h<strong>and</strong>-<strong>in</strong>filtrated with<br />

1 x 108 cfu/ml Pst DC3000ΔCEL carry<strong>in</strong>g YFP,<br />

RXLR29 or ATR13, as <strong>in</strong>dicated. Leaf samples<br />

were taken at 12 h after <strong>in</strong>fection <strong>and</strong> sta<strong>in</strong>ed with<br />

anil<strong>in</strong>e blue to visualize callose (A). The number<br />

<strong>of</strong> callose spots was quantified <strong>in</strong> each sample<br />

(B). The experiment was repeated three times<br />

with similar results.<br />

Figure 8: RXLR29 enhances bacterial growth<br />

<strong>in</strong> Arabidopsis leaves. Five-week-old Col-0<br />

leaves were h<strong>and</strong>-<strong>in</strong>filtrated with 5×105 cfu/<br />

ml Pst DC3000-LUX deliver<strong>in</strong>g YFP, ATR13<br />

or RXLR29, as <strong>in</strong>dicated. Bacterial growth <strong>in</strong><br />

leaves at 0 <strong>and</strong> 3 dpi was measured by number <strong>of</strong><br />

colony form<strong>in</strong>g units (cfu) per mg <strong>of</strong> leaf tissue.<br />

Error bars <strong>in</strong>dicate the st<strong>and</strong>ard error <strong>of</strong> bacterial<br />

counts. Enhanced growth was observed at day 3<br />

for Pst deliver<strong>in</strong>g ATR13 or RXLR29 compared<br />

to YFP (T-test p value


44 Chapter 2<br />

frequency <strong>of</strong> ESTs encod<strong>in</strong>g secreted prote<strong>in</strong>s <strong>in</strong> <strong>in</strong>teraction libraries [27] .<br />

From the 198 Hpa secreted prote<strong>in</strong>s, a putative function could be assigned to<br />

90 sequences based on the presence <strong>of</strong> known doma<strong>in</strong>s/motifs, specific features<br />

(e.g. relative number <strong>of</strong> cyste<strong>in</strong>e residues) or similarity to known prote<strong>in</strong>s (Table<br />

S3). A set <strong>of</strong> 58 sequences compris<strong>in</strong>g potential pathogenicity factors was further<br />

classified <strong>in</strong>to different categories <strong>of</strong> which the largest group (42 unigenes)<br />

corresponded to putative effector prote<strong>in</strong>s (Table 1). EST <strong>analysis</strong> has been shown<br />

to be an effective method to identify pathogen genes encod<strong>in</strong>g effector prote<strong>in</strong>s.<br />

For example, Cr<strong>in</strong>klers were first described by analys<strong>in</strong>g ESTs from Phytophthora<br />

<strong>in</strong>festans [58] . Also, 25 Cr<strong>in</strong>kler-like sequences <strong>and</strong> 17 ELIs/ELLs were identified <strong>in</strong><br />

a P. sojae EST data set [27] . Moreover, <strong>analysis</strong> <strong>of</strong> a haustorium specific EST library<br />

<strong>of</strong> Melampsora l<strong>in</strong>i, a fungal rust pathogen <strong>of</strong> flax, has enabled identification <strong>of</strong><br />

three secreted effector prote<strong>in</strong>s that are recognized by specific R prote<strong>in</strong>s [59] .<br />

It is notable that no putative function could be assigned for 108 unigenes<br />

correspond<strong>in</strong>g to ~55% <strong>of</strong> the predicted secreted prote<strong>in</strong>s identified <strong>in</strong> our study,<br />

<strong>and</strong> therefore these sequences were classified as unknowns (Table 1). Further<br />

characterization <strong>of</strong> the secreted prote<strong>in</strong>s <strong>of</strong> unknown function should reveal new<br />

aspects <strong>of</strong> the biology <strong>of</strong> oomycete pathogens as well as processes specific to Hpa<br />

biotrophy, s<strong>in</strong>ce ~47% <strong>of</strong> the unknowns (51 unigenes) appear to be Hpa-specific<br />

sequences.<br />

From the set <strong>of</strong> secreted Hpa prote<strong>in</strong>s with a predicted function we identified<br />

three Elicit<strong>in</strong>-like prote<strong>in</strong>s. Although ELIs <strong>and</strong> ELLs have been described <strong>in</strong><br />

Phytophthora <strong>and</strong> Pythium [49,60] , it is likely that the number <strong>of</strong> oomycete species<br />

<strong>in</strong> which these prote<strong>in</strong>s are expressed will exp<strong>and</strong> as more sequences become<br />

available. Indeed, our blast searches identified a homologue <strong>of</strong> HaELL3 <strong>in</strong><br />

Saprolegnia parasitica. The cyste<strong>in</strong>e spac<strong>in</strong>g pattern allowed classification <strong>of</strong><br />

Phytophthora ELIs <strong>and</strong> ELLs <strong>in</strong> different groups [49] . Interest<strong>in</strong>gly, HaELL2 has<br />

the same pattern as some Phytophthora ELLs <strong>in</strong>clud<strong>in</strong>g INL1 (P. <strong>in</strong>festans) <strong>and</strong><br />

SOL1A (P. sojae) that belong to ELL-1 group. The spac<strong>in</strong>g pattern <strong>of</strong> HaELL1 <strong>and</strong><br />

3 was not observed <strong>in</strong> Phytophthora. Further <strong>analysis</strong> <strong>of</strong> elicit<strong>in</strong>s from different<br />

oomycete species should establish if there are species-specific patterns <strong>of</strong> cyste<strong>in</strong>e<br />

spac<strong>in</strong>g. Two beta-elicit<strong>in</strong>s (cryptoge<strong>in</strong> <strong>and</strong> c<strong>in</strong>namom<strong>in</strong>) have been shown to<br />

b<strong>in</strong>d lipids [61,62] . The majority <strong>of</strong> the residues <strong>of</strong> cryptoge<strong>in</strong> that <strong>in</strong>teract with<br />

ergosterol [63] are divergent <strong>in</strong> the three alpha HaELLs identified here as well as <strong>in</strong><br />

Phytophthora ELLs [49] . Therefore, ELLs may not b<strong>in</strong>d sterols <strong>and</strong> their function <strong>in</strong><br />

the <strong>in</strong>fection process rema<strong>in</strong>s unclear.<br />

The 16 Cyste<strong>in</strong>e-rich prote<strong>in</strong>s identified <strong>in</strong> our survey belong to a specific class<br />

<strong>of</strong> <strong>effectors</strong> with a high relative number <strong>of</strong> cyste<strong>in</strong>e residues (>5%) <strong>and</strong> no homology<br />

to other <strong>effectors</strong> [49,64] . The HaCRs are a heterogeneous group s<strong>in</strong>ce some prote<strong>in</strong>s<br />

have homologues <strong>in</strong> other oomycetes, although the majority are Hpa-specific


Isolate-specific <strong>effectors</strong> from Hyaloperonospora ESTs<br />

45<br />

(Fig. 5; Table 2). So far no function could be assigned to the HaCR prote<strong>in</strong>s based<br />

on known doma<strong>in</strong>s. Blast searches aga<strong>in</strong>st the Emoy2 genome sequence revealed<br />

a high level <strong>of</strong> conservation <strong>of</strong> several HaCR prote<strong>in</strong>s between these two isolates.<br />

Analysis <strong>of</strong> more Hpa isolates will reveal whether this degree <strong>of</strong> conservation is<br />

ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> other isolates. Only HaCR7 was more divergent between the isolates<br />

Waco9 <strong>and</strong> Emoy2 (Table 2). It is worth not<strong>in</strong>g that HaCR6 <strong>and</strong> 16 are not found<br />

<strong>in</strong> the Emoy2 genome, suggest<strong>in</strong>g that a different comb<strong>in</strong>ation <strong>of</strong> HaCR prote<strong>in</strong>s<br />

might be present <strong>in</strong> each Hpa isolate.<br />

The majority <strong>of</strong> the 18 RXLR c<strong>and</strong>idate <strong>effectors</strong> identified <strong>in</strong> our study were<br />

Hpa-specific (Table 1). Five RXLR c<strong>and</strong>idates comprise divergent prote<strong>in</strong> variants<br />

<strong>in</strong> seven Hpa isolates (Fig. 6) <strong>and</strong> significant numbers <strong>of</strong> non-synonymous relative<br />

to synonymous nucleotide substitutions. These effector c<strong>and</strong>idates add to a number<br />

<strong>of</strong> <strong>in</strong>terest<strong>in</strong>g RXLR genes that appear to be under diversify<strong>in</strong>g selection [12] <strong>in</strong>clud<strong>in</strong>g<br />

the two Hpa <strong>effectors</strong> ATR1 <strong>and</strong> ATR13, known to that trigger ETI [11,30] .<br />

We identified variations <strong>in</strong> the set <strong>of</strong> <strong>effectors</strong> produced by different Hpa<br />

isolates. Six Waco9 <strong>effectors</strong> (two HaCRs <strong>and</strong> four HaRXLRs) are not present <strong>in</strong><br />

Emoy2, as determ<strong>in</strong>ed by comparison with the Emoy2 genome sequence. Also,<br />

allele sequenc<strong>in</strong>g <strong>in</strong> seven Hpa isolates revealed that three RXLRs are so far only<br />

found <strong>in</strong> Waco9. The presence <strong>of</strong> an effector <strong>in</strong> some but not all isolates suggests<br />

that the gene has become lost dur<strong>in</strong>g host-pathogen co-evolution to avoid trigger<strong>in</strong>g<br />

ETI. This has been described for <strong>effectors</strong> <strong>of</strong> different pathogens, <strong>in</strong>clud<strong>in</strong>g<br />

Avr4 from Phytophthora <strong>in</strong>festans [65] <strong>and</strong> Avr2 from Cladosporium fulvum [66] , <strong>of</strong><br />

which truncated forms that are not recognized by R prote<strong>in</strong>s have been identified<br />

<strong>in</strong> several isolates [65] . However, delivery <strong>of</strong> RXLRs 12, 22 <strong>and</strong> 29 to leaves <strong>of</strong> 12<br />

different Arabidopsis accessions us<strong>in</strong>g the EDV system did not reveal an obvious<br />

host cell death response which would typify ETI (unpublished data). This may be<br />

because the bacterial delivery system dampens recognition or doesn’t permit full<br />

expression <strong>of</strong> ETI responses to specific Hpa <strong>effectors</strong>. Alternatively, isolate-specific<br />

<strong>effectors</strong> might affect colonization by different Hpa isolates by <strong>in</strong>terfer<strong>in</strong>g mostly<br />

with host PAMP-triggered defences. Our f<strong>in</strong>d<strong>in</strong>g that RXLR29, an effector that is<br />

present only <strong>in</strong> the highly virulent Hpa isolate Waco9, is able to suppress PTI <strong>and</strong><br />

enhance susceptibility to bacterial <strong>in</strong>fection, supports this idea. The categorization<br />

<strong>of</strong> different effector prote<strong>in</strong> types expressed by Hpa Waco9 dur<strong>in</strong>g Arabidopsis<br />

leaf tissue colonization <strong>and</strong> before the developmental transition to asexual <strong>and</strong><br />

sexual sporulation has allowed us to select effector c<strong>and</strong>idates for further <strong>functional</strong><br />

studies on <strong>in</strong>terference with the host immune system. The activities <strong>and</strong> <strong>in</strong>teractions<br />

<strong>of</strong> Waco9-derived <strong>effectors</strong> as well as the extensive allelic diversity <strong>of</strong> <strong>in</strong>dividual<br />

RXLR genes among Hpa isolates <strong>and</strong> oomycete pathogen species provides a<br />

rich source <strong>of</strong> material to trace the co-evolutionary history <strong>of</strong> this plant-biotroph<br />

system.


46 Chapter 2<br />

Materials <strong>and</strong> Methods<br />

Hpa isolates <strong>and</strong> plant material<br />

Hpa isolates used <strong>in</strong> this study were orig<strong>in</strong>ally collected from Arabidopsis populations<br />

with<strong>in</strong> the UK (isolates Cala2, Emwa1, Emco5, Emoy2, H<strong>in</strong>d2, Maks9,<br />

Noco2, Noks1) <strong>and</strong> the Netherl<strong>and</strong>s (Waco9) [16,18,67,68] . Arabidopsis plants were<br />

grown at 22°C with ~75% relative humidity (RH) <strong>and</strong> a 10 h light period. For Hpa<br />

<strong>in</strong>fections, conidiospore suspensions (5×104 conidiospores.ml -1 ) were spray <strong>in</strong>oculated<br />

on 2-week-old Arabidopsis seedl<strong>in</strong>gs. Plants were allowed to dry for 1 h <strong>and</strong><br />

kept at 100% RH for 24 h <strong>in</strong> a growth chamber with 10 h light at 16°C. Plants were<br />

then moved to ~75% RH for an additional 4 to 6 days to delay asexual sporulation.<br />

Hpa growth on Arabidopsis leaves was visualized on whole-leaf mounts sta<strong>in</strong>ed<br />

with trypan blue as described previously [67] <strong>and</strong> exam<strong>in</strong>ed by differential-<strong>in</strong>terference<br />

contrast microscopy.<br />

RNA isolation <strong>and</strong> cDNA library construction<br />

For RNA isolations, <strong>in</strong>fected leaf material was ground to a f<strong>in</strong>e powder <strong>in</strong> liquid<br />

nitrogen. Total RNA <strong>of</strong> Waco9-<strong>in</strong>fected Ws eds1-1 plants was isolated us<strong>in</strong>g the<br />

RNeasy Plant M<strong>in</strong>i Kit (Qiagen), follow<strong>in</strong>g manufacturer’s <strong>in</strong>structions. Poly (A+)<br />

RNA was purified from 1.3 mg <strong>of</strong> total RNA us<strong>in</strong>g dynabeads oligo (dT)25 (Dynal<br />

Biotech). To elim<strong>in</strong>ate rRNA contam<strong>in</strong>ation, the mRNA was purified twice. RNA<br />

concentrations were determ<strong>in</strong>ed on a UV m<strong>in</strong>i 1240 spectrophotometer (Shimadzu)<br />

<strong>and</strong> quality was assessed with the bioanalyzer 2100 us<strong>in</strong>g the RNA 6000 Nano<br />

Assay kit (Agilent Technologies). Poly (A+) RNA (5 µg) was used to construct a<br />

directional cDNA library <strong>in</strong> the λ-Zap vector (ZAP-cDNA synthesis, GigapackIII<br />

clon<strong>in</strong>g kit, Agilent Technologies) follow<strong>in</strong>g manufacturer’s <strong>in</strong>structions. cDNA<br />

was synthesized conta<strong>in</strong><strong>in</strong>g EcoRI <strong>and</strong> XhoI sites at the 5′ <strong>and</strong> 3′ ends, respectively,<br />

allow<strong>in</strong>g unidirectional clon<strong>in</strong>g <strong>of</strong> cDNA. Size fractionation <strong>of</strong> the synthesized<br />

cDNA’s was performed <strong>and</strong> 12 fractions were collected <strong>and</strong> precipitated with 100%<br />

ethanol. The pellet was resuspended <strong>in</strong> RNase-free water <strong>and</strong> verified on the Bioanalyzer<br />

2100 us<strong>in</strong>g the DNA 7500 LabChip Kit (Agilent Technologies). Phagemid<br />

DNA was excised without library amplification. DNA isolations <strong>and</strong> sequenc<strong>in</strong>g<br />

were done by Macrogen (Korea). Sequenc<strong>in</strong>g reactions were performed from the 5′<br />

end us<strong>in</strong>g a T3 promoter primer.


Isolate-specific <strong>effectors</strong> from Hyaloperonospora ESTs<br />

47<br />

Sequence process<strong>in</strong>g <strong>and</strong> <strong>analysis</strong><br />

Base call<strong>in</strong>g, quality clipp<strong>in</strong>g <strong>and</strong> vector screen<strong>in</strong>g were performed with pregap4,<br />

which is part <strong>of</strong> the Staden sequence <strong>analysis</strong> package [69] . ESTs were assembled<br />

<strong>in</strong>to contigs us<strong>in</strong>g CAP3 [70] . To def<strong>in</strong>e sequence orig<strong>in</strong>s, the assembled sequences<br />

were queried (BLASTN, e-value cut<strong>of</strong>f 1 e-5, no low complexity filter<strong>in</strong>g) [71]<br />

aga<strong>in</strong>st versions 6, 8.3 <strong>and</strong> trace files <strong>of</strong> the Hpa genome [25] , version 8 <strong>of</strong> the TAIR<br />

Arabidopsis genome [72] , version 1 <strong>of</strong> the Phytophthora <strong>in</strong>festans [24] , P. ramorum<br />

<strong>and</strong> P. sojae [23] genomes <strong>and</strong> NCBI non-redundant (nr) nucleotide database [73] . EST<br />

sequences were then split <strong>in</strong>to subsets based on the best blast match. ESTs from Ha<br />

were submitted to dbEST (NCBI).<br />

The most likely ORF <strong>of</strong> the Hpa set <strong>of</strong> sequences was identified by translat<strong>in</strong>g<br />

the assembled EST sequences <strong>and</strong> s<strong>in</strong>gletons <strong>in</strong> 3 positive frames <strong>and</strong> select<strong>in</strong>g the<br />

longest ORF. Prote<strong>in</strong> predictions shorter than 10 am<strong>in</strong>o acids were discarded. For<br />

selection <strong>of</strong> the secreted prote<strong>in</strong>s, all prote<strong>in</strong> models were trimmed to start with a<br />

methion<strong>in</strong>e. Signal peptide predictions were performed by SignalP version 3.0 [43,44] ,<br />

us<strong>in</strong>g both the neural network method <strong>and</strong> the hidden markov model methods at<br />

default cut<strong>of</strong>fs. Sequences with predicted transmembrane helices downstream<br />

<strong>of</strong> the signal peptide determ<strong>in</strong>ed by TMHMM version 2 (http://www.cbs.dtu.<br />

dk/services/TMHMM/) [74] were discarded. Putative functions were assigned<br />

by doma<strong>in</strong> composition after scann<strong>in</strong>g the sequences aga<strong>in</strong>st Pfam [45] us<strong>in</strong>g the<br />

gather<strong>in</strong>g threshold as cut-<strong>of</strong>f. Additionally, functions were manually assigned<br />

based on homology derived by similarity matches to NCBI nr (us<strong>in</strong>g blast), am<strong>in</strong>o<br />

acid composition or presence <strong>of</strong> an RLXR, RXLQ or RXLG motif after the signal<br />

peptide cleavage site (only consider<strong>in</strong>g prote<strong>in</strong>s with 40 or more am<strong>in</strong>o acids after<br />

the RXL sequence). The number <strong>of</strong> <strong>effectors</strong> encoded <strong>in</strong> the Hpa genome was<br />

either taken from the Hpa genome paper [25] , determ<strong>in</strong>ed by Pfam searches, or by<br />

manual annotation (e.g. for the number <strong>of</strong> cyste<strong>in</strong>e residues). For the elicit<strong>in</strong>s, the<br />

pI was determ<strong>in</strong>ed at http://www3.embl.de/cgi/pi-wrapper.pl. GPI anchor sites<br />

were predicted by the program big-PI Plant Predictor [75] <strong>and</strong> potential sites for<br />

O-glycosylation were predicted by NetOGlyc 3.1 [76] . Psort prediction (http://psort.<br />

hgc.jp/) [77] was used to identify putative nuclear localization signals <strong>in</strong> RXLR<br />

prote<strong>in</strong>s. Sequences <strong>of</strong> the HaELL, HaCR <strong>and</strong> HaRXLR genes were submitted to<br />

GenBank (accession numbers JF800099-JF800135).<br />

<strong>Identification</strong> <strong>of</strong> Hpa- <strong>and</strong> isolate Waco9-specific sequences<br />

For identification <strong>of</strong> secreted prote<strong>in</strong>s specific to Hpa or to isolate Waco9,<br />

similarity searches were conducted with BLASTP <strong>and</strong> TBLASTN with disabled<br />

low complexity filter<strong>in</strong>g <strong>and</strong> a fixed database size <strong>of</strong> 1.000.000 [70] . Sequences were


48 Chapter 2<br />

queried aga<strong>in</strong>st a local NCBI nr prote<strong>in</strong> <strong>and</strong> nucleotide databases (downloaded<br />

23rd June 2010) <strong>and</strong> a set <strong>of</strong> three oomycete genome sequences (P. <strong>in</strong>festans<br />

version 1 [24] , P. sojae version 2, <strong>and</strong> P. ramorum version 2 [23] .Sequences with no<br />

significant similarity aga<strong>in</strong>st other organisms (Hpa sequences were excluded;<br />

e-value cut<strong>of</strong>f 1e−5; covered for >75% to exclude hits with only local similarity)<br />

were selected <strong>and</strong> def<strong>in</strong>ed as Hpa-specific sequences. The predicted proteome <strong>and</strong><br />

the genome assembly <strong>of</strong> Hpa isolate Emoy2 (versions 6.0 <strong>and</strong> 8.3) was searched<br />

to identify sequences potentially specific for isolate Waco9. All sequences with<br />

a significant hit (e-value cut<strong>of</strong>f 1e−10) <strong>and</strong> an identity ratio <strong>of</strong> >80% ((identity%<br />

<strong>of</strong> alignment*length alignment)/length query) [26] were filtered. If two Waco9<br />

sequences had the same Emoy2 sequence as a best hit, we excluded the better hit<br />

<strong>and</strong> reta<strong>in</strong>ed the other one. The rema<strong>in</strong><strong>in</strong>g sequences were compared manually to<br />

the Hpa Emoy2 trace files that also conta<strong>in</strong> reads not present <strong>in</strong> genome assembly.<br />

Sequences without significant blast hits were def<strong>in</strong>ed as Waco9-specific.<br />

Hpa allele sequences <strong>and</strong> <strong>analysis</strong><br />

To sequence the RXLR alleles <strong>of</strong> Hpa isolates Cala2, Emco5, Emoy2, H<strong>in</strong>d2,<br />

Maks9 <strong>and</strong> Noks1, genomic DNA was isolated from Hpa-<strong>in</strong>fected Ws eds1-1<br />

leaves us<strong>in</strong>g DNeasy Plant M<strong>in</strong>i Kit (Qiagen). Primer pairs (Table S1) flank<strong>in</strong>g<br />

or with<strong>in</strong> the cod<strong>in</strong>g sequence were designed from Waco9 assembled sequences<br />

<strong>and</strong> used to amplify alleles <strong>of</strong> the Hpa isolates from genomic DNA. If a s<strong>in</strong>gle<br />

amplification product was obta<strong>in</strong>ed, the PCR product was sequenced directly<br />

us<strong>in</strong>g the amplification primers. If multiple PCR fragments were amplified from a<br />

s<strong>in</strong>gle isolate these were <strong>in</strong>dividually purified from gel us<strong>in</strong>g NucleoSp<strong>in</strong> Extract<br />

II (Machery-Nagel) <strong>and</strong> sequenced. Obta<strong>in</strong>ed sequences that were not readable due<br />

to amplification <strong>of</strong> different products <strong>of</strong> the same size, Phusion (F<strong>in</strong>nzymes)-amplified<br />

PCR products were cloned <strong>in</strong> pENTR/D-TOPO (Invitrogen) <strong>and</strong> sequenced.<br />

In cases where the obta<strong>in</strong>ed sequences were not full-length (3′or 5′ sequences<br />

miss<strong>in</strong>g), new primers were designed based on the Emoy2 genome sequence<br />

(Versions 6 <strong>and</strong> 8.3). When no PCR product was amplified, new reactions were<br />

performed us<strong>in</strong>g up to three new primer sets.<br />

The RXLR DNA <strong>and</strong> predicted prote<strong>in</strong> sequences were analysed us<strong>in</strong>g Mega4<br />

s<strong>of</strong>tware [78] . Alignments <strong>of</strong> the obta<strong>in</strong>ed allele sequences (prote<strong>in</strong> level) were performed<br />

us<strong>in</strong>g the ClustalW option [79] <strong>and</strong> manually edited. The number <strong>of</strong> variable<br />

sites was analysed by the Sequence Data Explorer tool. Alignments <strong>of</strong> the allele<br />

sequences (nucleotide level) were used to calculate the rate <strong>of</strong> non-synonymous<br />

(dN) <strong>and</strong> synonymous (dS) substitutions. The rates <strong>of</strong> substitutions were calculated<br />

us<strong>in</strong>g the Nei <strong>and</strong> Gojobori’s method [80] , as implemented <strong>in</strong> the MEGA4 program.<br />

St<strong>and</strong>ard error was determ<strong>in</strong>ed by 500 bootstrap replications. The null hypothesis


Isolate-specific <strong>effectors</strong> from Hyaloperonospora ESTs<br />

49<br />

<strong>of</strong> no selection (H0: dN = dS) versus the positive selection hypothesis (H1: dN ><br />

dS) were tested us<strong>in</strong>g the Z-test: Z = (dN-dS)/ √(Var(dS)+Var(dN)).<br />

RXLR29 delivery by Pseudomonas syr<strong>in</strong>gae<br />

The cod<strong>in</strong>g sequences <strong>of</strong> Hpa Waco9 RXLR29 (without signal peptide) <strong>and</strong> YFP<br />

were amplified by PCR <strong>and</strong> cloned <strong>in</strong> pENTR/D-TOPO (Invitrogen) us<strong>in</strong>g primers:<br />

CACCATGGAGGTGGTCCTGATC (forward) <strong>and</strong> TTACTTGCCAGGACGCGC<br />

(reverse) for RXLR29 <strong>and</strong> CACCATGGTGAGCAAGGGCGAGGAGCTGTTC<br />

(forward) <strong>and</strong> AGTCTAGAGCTCTTACTTGTACAGCTCGTCCATGC (reverse)<br />

for YFP. Follow<strong>in</strong>g Gateway clon<strong>in</strong>g procedures these genes were cloned <strong>in</strong>to<br />

pEDV6, a variant <strong>of</strong> the previously described pEDV3 [42] that has a gateway cassette<br />

<strong>in</strong>stead <strong>of</strong> a multiple clon<strong>in</strong>g site (k<strong>in</strong>dly provided by K. Sohn, G. Fabro <strong>and</strong> J.<br />

Jones, Sa<strong>in</strong>sbury Laboratory, Norwich, UK). Plasmids were mobilized from E. coli<br />

DH5α to Pst DC3000ΔCEL or Pst DC3000-LUX, which has stable chromosomal<br />

<strong>in</strong>tegration <strong>of</strong> the luxCDABE operon from Photorhabdus lum<strong>in</strong>escens [81] , by<br />

st<strong>and</strong>ard triparental mat<strong>in</strong>g us<strong>in</strong>g E. coli HB101 (pRK2013) as a helper stra<strong>in</strong>. Pst<br />

DC3000ΔCEL-ATR13 (Emco5) <strong>and</strong> Pst DC3000-LUX-ATR13 (Emco5) were<br />

k<strong>in</strong>dly provided by G. Fabro <strong>and</strong> J. Jones.<br />

Callose sta<strong>in</strong><strong>in</strong>g <strong>and</strong> microscopic <strong>analysis</strong><br />

Leaves <strong>of</strong> 5-week-old Arabidopsis accession Col-0 plants were h<strong>and</strong>-<strong>in</strong>filtrated<br />

with 1×10 8 cfu/ml Pst DC3000ΔCEL suspensions. A total <strong>of</strong> ~48 leaf samples were<br />

taken for callose sta<strong>in</strong><strong>in</strong>g 12–14 h after <strong>in</strong>filtration. Leaves were cleared with 100%<br />

ethanol, <strong>and</strong> re-hydrated <strong>and</strong> sta<strong>in</strong>ed with anil<strong>in</strong>e blue (0.05% <strong>in</strong> phosphate buffer<br />

pH 8.0) for 24 h. Images were taken us<strong>in</strong>g an Olympus AX70 Microscope with UV<br />

filter. Callose spots were counted us<strong>in</strong>g ImageJ (http://rsb.<strong>in</strong>fo.nih.gov/ij/) [82] .<br />

Bacterial growth assay<br />

Leaves <strong>of</strong> 5-week-old Arabidopsis accession Col-0 were h<strong>and</strong>-<strong>in</strong>filtrated with<br />

a bacterial <strong>in</strong>oculum <strong>of</strong> 5×10 5 cfu/ml. Initially, PstDC3000-LUX was used for<br />

assessment <strong>of</strong> bacterial growth by measur<strong>in</strong>g <strong>in</strong>creased luciferase activity as previously<br />

published [81] . For colony count<strong>in</strong>g, <strong>in</strong>fected leaves were collected at 0 <strong>and</strong><br />

3 days after bacterial <strong>in</strong>filtration. A total <strong>of</strong> 12 leaves divided <strong>in</strong>to three biological<br />

replicates were harvested per sample <strong>and</strong> time po<strong>in</strong>t. Bacterial growth was measured<br />

by gr<strong>in</strong>d<strong>in</strong>g <strong>in</strong>fected leaves <strong>and</strong> plat<strong>in</strong>g serial dilutions on solid KB medium<br />

with appropriate antibiotics. Similar results were obta<strong>in</strong>ed <strong>in</strong> two <strong>in</strong>dependent<br />

experiments.


50 Chapter 2<br />

Acknowledgments<br />

We thank Sh<strong>in</strong>pei Katou, Joyce Elberse <strong>and</strong> Tale Sliedrecht for technical assistance,<br />

Aless<strong>and</strong>ro Guida <strong>and</strong> Henk van den Toorn for bio<strong>in</strong>formatics assistance, <strong>and</strong> Kee<br />

Sohn, Georg<strong>in</strong>a Fabro, <strong>and</strong> Jonathan Jones for k<strong>in</strong>dly provid<strong>in</strong>g the EDV6 vector<br />

<strong>and</strong> Pst ΔCEL mutant.


Isolate-specific <strong>effectors</strong> from Hyaloperonospora ESTs<br />

51<br />

References<br />

1 Alfano JR (2009) Roadmap for future research on plant pathogen <strong>effectors</strong>. Molecular Plant<br />

Pathology 10, 805-13.<br />

2 Tian M, Huitema E, Da Cunha L, Torto-Alalibo T & Kamoun S (2004) A Kazal-like extracellular<br />

ser<strong>in</strong>e protease <strong>in</strong>hibitor from Phytophthora <strong>in</strong>festans targets the tomato pathogenesis-related<br />

protease P69B. The Journal <strong>of</strong> Biological Chemistry 279, 26370-7.<br />

3 Abramovitch RB, Kim Y-J, Chen S, Dickman MB & Mart<strong>in</strong> GB (2003) Pseudomonas type III<br />

effector AvrPtoB <strong>in</strong>duces plant disease susceptibility by <strong>in</strong>hibition <strong>of</strong> host programmed cell death.<br />

The EMBO Journal 22, 60-9.<br />

4 Van Esse HP, Bolton MD, Stergiopoulos I, De Wit PJGM & Thomma BPHJ (2007) The chit<strong>in</strong>b<strong>in</strong>d<strong>in</strong>g<br />

Cladosporium fulvum effector prote<strong>in</strong> Avr4 is a virulence factor. Molecular Plant-<br />

Microbe Interactions 20, 1092-101.<br />

5 Zipfel C, Kunze G, Ch<strong>in</strong>chilla D, Caniard A, Jones JDG, Boller T & Felix G (2006) Perception <strong>of</strong><br />

the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation.<br />

Cell 125, 749-60.<br />

6 Gómez-Gómez L & Boller T (2000) FLS2: an LRR receptor-like k<strong>in</strong>ase <strong>in</strong>volved <strong>in</strong> the<br />

perception <strong>of</strong> the bacterial elicitor flagell<strong>in</strong> <strong>in</strong> Arabidopsis. Molecular Cell 5, 1003-11.<br />

7 Miya A, Albert P, Sh<strong>in</strong>ya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H<br />

& Shibuya N (2007) CERK1, a LysM receptor k<strong>in</strong>ase, is essential for chit<strong>in</strong> elicitor signal<strong>in</strong>g <strong>in</strong><br />

Arabidopsis. Proceed<strong>in</strong>gs <strong>of</strong> the National Academy <strong>of</strong> Sciences <strong>of</strong> the United States <strong>of</strong> America<br />

104, 19613-8.<br />

8 Kim MG, Da Cunha L, McFall AJ, Belkhadir Y, DebRoy S, Dangl JL & Mackey D (2005) Two<br />

Pseudomonas syr<strong>in</strong>gae type III <strong>effectors</strong> <strong>in</strong>hibit RIN4-regulated basal defense <strong>in</strong> Arabidopsis. Cell<br />

121, 749-59.<br />

9 He P, Shan L, L<strong>in</strong> N-C, Mart<strong>in</strong> GB, Kemmerl<strong>in</strong>g B, Nürnberger T & Sheen J (2006) Specific<br />

bacterial suppressors <strong>of</strong> MAMP signal<strong>in</strong>g upstream <strong>of</strong> MAPKKK <strong>in</strong> Arabidopsis <strong>in</strong>nate immunity.<br />

Cell 125, 563-75.<br />

10 Guo M, Tian F, Wamboldt Y & Alfano JR (2009) The majority <strong>of</strong> the type III effector <strong>in</strong>ventory<br />

<strong>of</strong> Pseudomonas syr<strong>in</strong>gae pv. tomato DC3000 can suppress plant immunity. Molecular Plant-<br />

Microbe Interactions 22, 1069-80.<br />

11 Allen RL, Bittner-Eddy PD, Grenville-Briggs LJ, Meitz JC, Rehmany AP, Rose LE & Beynon JL<br />

(2004) Host-parasite coevolutionary conflict between Arabidopsis <strong>and</strong> <strong>downy</strong> <strong>mildew</strong>. Science<br />

306, 1957-60.<br />

12 W<strong>in</strong> J, Morgan W, Bos J, Krasileva KV, Cano LM, Chaparro-Garcia A, Ammar R, Staskawicz BJ<br />

& Kamoun S (2007) Adaptive evolution has targeted the C-term<strong>in</strong>al doma<strong>in</strong> <strong>of</strong> the RXLR<br />

<strong>effectors</strong> <strong>of</strong> plant pathogenic oomycetes. The Plant Cell 19, 2349-69.<br />

13 Allen RL, Meitz JC, Baumber RE, Hall SA, Lee SC, Rose LE & Beynon JL (2008) Natural<br />

variation reveals key am<strong>in</strong>o acids <strong>in</strong> a <strong>downy</strong> <strong>mildew</strong> effector that alters recognition specificity by<br />

an Arabidopsis resistance gene. Molecular Plant Pathology 9, 511-23.<br />

14 O’Connell RJ & Panstruga R (2006) Tête à tête <strong>in</strong>side a plant cell: establish<strong>in</strong>g compatibility<br />

between plants <strong>and</strong> biotrophic fungi <strong>and</strong> oomycetes. The New Phytologist 171, 699-718.


52 Chapter 2<br />

15 Koch E & Slusarenko A (1990) Arabidopsis is susceptible to <strong>in</strong>fection by a <strong>downy</strong> <strong>mildew</strong> fungus.<br />

The Plant Cell 2, 437-45.<br />

16 Holub EB, Beynon JL & Crute IR (1994) Phenotypic <strong>and</strong> genotypic characterization <strong>of</strong><br />

<strong>in</strong>teractions between isolates <strong>of</strong> Peronospora parasitica <strong>and</strong> accessions <strong>of</strong> Arabidopsis thaliana.<br />

Molecular Plant Microbe Interactions 7, 223-39.<br />

17 Slusarenko AJ & Schlaich NL (2003) Downy <strong>mildew</strong> <strong>of</strong> Arabidopsis thaliana caused by<br />

Hyaloperonospora parasitica (formerly Peronospora parasitica). Molecular Plant Pathology 4,<br />

159-70.<br />

18 McDowell JM, Dh<strong>and</strong>aydham M, Long TA, Aarts MG, G<strong>of</strong>f S, Holub EB & Dangl JL (1998)<br />

Intragenic recomb<strong>in</strong>ation <strong>and</strong> diversify<strong>in</strong>g selection contribute to the evolution <strong>of</strong> <strong>downy</strong> <strong>mildew</strong><br />

resistance at the RPP8 locus <strong>of</strong> Arabidopsis. The Plant Cell 10, 1861-74.<br />

19 Botella MA, Parker JE, Frost LN, Bittner-Eddy PD, Beynon JL, Daniels MJ, Holub EB &<br />

Jones JD (1998) Three genes <strong>of</strong> the Arabidopsis RPP1 complex resistance locus recognize dist<strong>in</strong>ct<br />

Peronospora parasitica avirulence determ<strong>in</strong>ants. The Plant Cell 10, 1847-60.<br />

20 Van der Biezen EA, Freddie CT, Kahn K, Parker JE & Jones JDG (2002) Arabidopsis RPP4<br />

is a member <strong>of</strong> the RPP5 multigene family <strong>of</strong> TIR-NB-LRR genes <strong>and</strong> confers <strong>downy</strong> <strong>mildew</strong><br />

resistance through multiple signall<strong>in</strong>g components. The Plant Journal 29, 439-51.<br />

21 Parker JE, Coleman MJ, Szabò V, Frost LN, Schmidt R, Van der Biezen EA, Moores T, Dean C,<br />

Daniels MJ & Jones JD (1997) The Arabidopsis <strong>downy</strong> <strong>mildew</strong> resistance gene RPP5 shares<br />

similarity to the toll <strong>and</strong> <strong>in</strong>terleuk<strong>in</strong>-1 receptors with N <strong>and</strong> L6. The Plant Cell 9, 879-94.<br />

22 Baldauf SL (2003) The deep roots <strong>of</strong> eukaryotes. Science 300, 1703-6.<br />

23 Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RHY, Aerts A, Arredondo FD, Baxter L,<br />

Bensasson D, Beynon JL, Chapman J, Damasceno CMB, Dorrance AE, Dou D, Dickerman AW,<br />

Dubchak IL, Garbelotto M, Gijzen M, Gordon SG, Govers F, Grunwald NJ, Huang W, Ivors KL,<br />

Jones RW, Kamoun S, Krampis K, Lamour KH, Lee M-K, McDonald WH, Med<strong>in</strong>a M,<br />

Meijer HJG, Nordberg EK, Maclean DJ, Osp<strong>in</strong>a-Giraldo MD, Morris PF, Phuntumart V,<br />

Putnam NH, Rash S, Rose JKC, Sakihama Y, Salamov AA, Savidor A, Scheur<strong>in</strong>g CF, Smith BM,<br />

Sobral BWS, Terry A, Torto-Alalibo TA, W<strong>in</strong> J, Xu Z, Zhang H, Grigoriev IV, Rokhsar DS &<br />

Boore JL (2006) Phytophthora genome sequences uncover evolutionary orig<strong>in</strong>s <strong>and</strong> mechanisms<br />

<strong>of</strong> pathogenesis. Science 313, 1261-6.<br />

24 Haas BJ, Kamoun S, Zody MC, Jiang RHY, H<strong>and</strong>saker RE, Cano LM, Grabherr M, Kodira CD,<br />

Raffaele S, Torto-Alalibo T, Bozkurt TO, Ah-Fong AMV, Alvarado L, Anderson VL,<br />

Armstrong MR, Avrova A, Baxter L, Beynon J, Boev<strong>in</strong>k PC, Bollmann SR, Bos JIB, Bulone V,<br />

Cai G, Cakir C, Carr<strong>in</strong>gton JC, Chawner M, Conti L, Costanzo S, Ewan R, Fahlgren N,<br />

Fischbach MA, Fugelstad J, Gilroy EM, Gnerre S, Green PJ, Grenville-Briggs LJ, Griffith J,<br />

Grünwald NJ, Horn K, Horner NR, Hu C-H, Huitema E, Jeong D-H, Jones AME, Jones JDG,<br />

Jones RW, Karlsson EK, Kunjeti SG, Lamour K, Liu Z, Ma L, Maclean D, Chibucos MC,<br />

McDonald H, McWalters J, Meijer HJG, Morgan W, Morris PF, Munro CA, O’Neill K, Osp<strong>in</strong>a-<br />

Giraldo M, P<strong>in</strong>zón A, Pritchard L, Ramsahoye B, Ren Q, Restrepo S, Roy S, Sadan<strong>and</strong>om A,<br />

Savidor A, Schornack S, Schwartz DC, Schumann UD, Schwess<strong>in</strong>ger B, Seyer L, Sharpe T,<br />

Silvar C, Song J, Studholme DJ, Sykes S, Th<strong>in</strong>es M, Van de Vondervoort PJI, Phuntumart V,<br />

Wawra S, Weide R, W<strong>in</strong> J, Young C, Zhou S, Fry W, Meyers BC, Van West P, Rista<strong>in</strong>o J,<br />

Govers F, Birch PRJ, Whisson SC, Judelson HS & Nusbaum C (2009) Genome sequence <strong>and</strong><br />

<strong>analysis</strong> <strong>of</strong> the Irish potato fam<strong>in</strong>e pathogen Phytophthora <strong>in</strong>festans. Nature 461, 393-8.


Isolate-specific <strong>effectors</strong> from Hyaloperonospora ESTs<br />

53<br />

25 Baxter L, Tripathy S, Ishaque N, Boot N, Cabral A, Kemen E, Th<strong>in</strong>es M, Ah-Fong A, Anderson R,<br />

Badejoko W, Bittner-Eddy P, Boore JL, Chibucos MC, Coates M, Dehal P, Delehaunty K, Dong S,<br />

Downton P, Dumas B, Fabro G, Fronick C, Fuerstenberg SI, Fulton L, Gaul<strong>in</strong> E, Govers F,<br />

Hughes L, Humphray S, Jiang RHY, Judelson H, Kamoun S, Kyung K, Meijer H, M<strong>in</strong>x P,<br />

Morris P, Nelson J, Phuntumart V, Qutob D, Rehmany A, Rougon-Cardoso A, Ryden P, Torto-<br />

Alalibo T, Studholme D, Wang Y, W<strong>in</strong> J, Wood J, Clifton SW, Rogers J, Van den Ackerveken G,<br />

Jones JDG, McDowell JM, Beynon J & Tyler BM (2010) Signatures <strong>of</strong> adaptation to obligate<br />

biotrophy <strong>in</strong> the Hyaloperonospora arabidopsidis genome. Science 330, 1549-51.<br />

26 Sierra R, Rodríguez-R LM, Chaves D, P<strong>in</strong>zón A, Grajales A, Rojas A, Mutis G, Cárdenas M,<br />

Burbano D, Jiménez P, Bernal A & Restrepo S (2010) Discovery <strong>of</strong> Phytophthora <strong>in</strong>festans genes<br />

expressed <strong>in</strong> planta through m<strong>in</strong><strong>in</strong>g <strong>of</strong> cDNA libraries. PLoS ONE 5, e9847.<br />

27 Torto-Alalibo TA, Tripathy S, Smith BM, Arredondo FD, Zhou L, Li H, Chibucos MC, Qutob D,<br />

Gijzen M, Mao C, Sobral BWS, Waugh ME, Mitchell TK, Dean RA & Tyler BM (2007)<br />

Expressed sequence tags from phytophthora sojae reveal genes specific to development <strong>and</strong><br />

<strong>in</strong>fection. Molecular Plant-Microbe Interactions 20, 781-93.<br />

28 R<strong>and</strong>all TA, Dwyer RA, Huitema E, Beyer K, Cvitanich C, Kelkar H, Fong AMVA, Gates K,<br />

Roberts S, Yatzkan E, Gaffney T, Law M, Testa A, Torto-Alalibo T, Zhang M, Zheng L,<br />

Mueller E, W<strong>in</strong>dass J, B<strong>in</strong>der A, Birch PRJ, Gisi U, Govers F, Gow NA, Mauch F, Van West P,<br />

Waugh ME, Yu J, Boller T, Kamoun S, Lam ST & Judelson HS (2005) Large-scale gene discovery<br />

<strong>in</strong> the oomycete Phytophthora <strong>in</strong>festans reveals likely components <strong>of</strong> phytopathogenicity shared<br />

with true fungi. Molecular Plant-Microbe Interactions 18, 229-43.<br />

29 Armstrong MR, Whisson SC, Pritchard L, Bos JIB, Venter E, Avrova AO, Rehmany AP,<br />

Böhme U, Brooks K, Cherevach I, Haml<strong>in</strong> N, White B, Fraser A, Lord A, Quail MA, Churcher C,<br />

Hall N, Berriman M, Huang S, Kamoun S, Beynon JL & Birch PRJ (2005) An ancestral oomycete<br />

locus conta<strong>in</strong>s late blight avirulence gene Avr3a, encod<strong>in</strong>g a prote<strong>in</strong> that is recognized <strong>in</strong> the host<br />

cytoplasm. Proceed<strong>in</strong>gs <strong>of</strong> the National Academy <strong>of</strong> Sciences <strong>of</strong> the United States <strong>of</strong> America 102,<br />

7766-71.<br />

30 Rehmany AP, Gordon A, Rose LE, Allen RL, Armstrong MR, Whisson SC, Kamoun S, Tyler BM,<br />

Birch PRJ & Beynon JL (2005) Differential recognition <strong>of</strong> highly divergent <strong>downy</strong> <strong>mildew</strong><br />

avirulence gene alleles by RPP1 resistance genes from two Arabidopsis l<strong>in</strong>es. The Plant Cell 17,<br />

1839-50.<br />

31 Shan W, Cao M, Leung D & Tyler BM (2004) The Avr1b locus <strong>of</strong> Phytophthora sojae encodes an<br />

elicitor <strong>and</strong> a regulator required for avirulence on soybean plants carry<strong>in</strong>g resistance gene Rps1b.<br />

Molecular Plant-Microbe Interactions 17, 394-403.<br />

32 Qutob D, Tedman-Jones J, Dong S, Kuflu K, Pham H, Wang Y, Dou D, Kale SD, Arredondo FD,<br />

Tyler BM & Gijzen M (2009) Copy number variation <strong>and</strong> transcriptional polymorphisms <strong>of</strong><br />

Phytophthora sojae RXLR effector genes Avr1a <strong>and</strong> Avr3a. PLoS ONE 4, e5066.<br />

33 Dong S, Qutob D, Tedman-Jones J, Kuflu K, Wang Y, Tyler BM & Gijzen M (2009) The<br />

Phytophthora sojae avirulence locus Avr3c encodes a multi-copy RXLR effector with sequence<br />

polymorphisms among pathogen stra<strong>in</strong>s. PLoS ONE 4, e5556.<br />

34 Bos JIB, Kanneganti T-D, Young C, Cakir C, Huitema E, W<strong>in</strong> J, Armstrong MR, Birch PRJ<br />

& Kamoun S (2006) The C-term<strong>in</strong>al half <strong>of</strong> Phytophthora <strong>in</strong>festans RXLR effector AVR3a is<br />

sufficient to trigger R3a-mediated hypersensitivity <strong>and</strong> suppress INF1-<strong>in</strong>duced cell death <strong>in</strong><br />

Nicotiana benthamiana. The Plant Journal 48, 165-76.


54 Chapter 2<br />

35 Dou D, Kale SD, Wang XX, Chen Y, Wang Q, Jiang RHY, Arredondo FD, Anderson RG,<br />

Thakur PB, McDowell JM, Wang Y & Tyler BM (2008) Conserved C-term<strong>in</strong>al motifs required for<br />

avirulence <strong>and</strong> suppression <strong>of</strong> cell death by Phytophthora sojae effector Avr1b. The Plant Cell 20,<br />

1118-33.<br />

36 Whisson SC, Boev<strong>in</strong>k PC, Moleleki L, Avrova AO, Morales JG, Gilroy EM, Armstrong MR,<br />

Grouffaud S, Van West P, Chapman S, He<strong>in</strong> I, Toth IK, Pritchard L & Birch PRJ (2007) A<br />

translocation signal for delivery <strong>of</strong> oomycete effector prote<strong>in</strong>s <strong>in</strong>to host plant cells. Nature 450,<br />

115-8.<br />

37 Kale SD, Gu B, Capelluto DGS, Dou D, Feldman E, Rumore A, Arredondo FD, Hanlon R,<br />

Fudal I, Rouxel T, Lawrence CB, Shan W & Tyler BM (2010) External lipid PI3P mediates entry<br />

<strong>of</strong> eukaryotic pathogen <strong>effectors</strong> <strong>in</strong>to plant <strong>and</strong> animal host cells. Cell 142, 284-95.<br />

38 Van der Biezen EA, Juwana H, Parker JE & Jones JD (2000) cDNA-AFLP display for the<br />

isolation <strong>of</strong> Peronospora parasitica genes expressed dur<strong>in</strong>g <strong>in</strong>fection <strong>in</strong> Arabidopsis thaliana.<br />

Molecular Plant-Microbe Interactions 13, 895-8.<br />

39 Bittner-Eddy PD, Allen RL, Rehmany AP, Birch P & Beynon JL (2003) Use <strong>of</strong> suppression<br />

subtractive hybridization to identify <strong>downy</strong> <strong>mildew</strong> genes expressed dur<strong>in</strong>g <strong>in</strong>fection <strong>of</strong><br />

Arabidopsis thaliana. Molecular Plant Pathology 4, 501-7.<br />

40 Parker JE, Holub EB, Frost LN, Falk A, Gunn ND & Daniels MJ (1996) Characterization <strong>of</strong> eds1,<br />

a mutation <strong>in</strong> Arabidopsis suppress<strong>in</strong>g resistance to Peronospora parasitica specified by several<br />

different RPP genes. The Plant Cell 8, 2033-46.<br />

41 Bos JIB, Armstrong MR, Gilroy EM, Boev<strong>in</strong>k PC, He<strong>in</strong> I, Taylor RM, Zhendong T, Engelhardt S,<br />

Vetukuri RR, Harrower B, Dixelius C, Bryan G, Sadan<strong>and</strong>om A, Whisson SC, Kamoun S<br />

& Birch PRJ (2010) Phytophthora <strong>in</strong>festans effector AVR3a is essential for virulence <strong>and</strong><br />

manipulates plant immunity by stabiliz<strong>in</strong>g host E3 ligase CMPG1. Proceed<strong>in</strong>gs <strong>of</strong> the National<br />

Academy <strong>of</strong> Sciences <strong>of</strong> the United States <strong>of</strong> America 107, 9909-14.<br />

42 Sohn KH, Lei R, Nemri A & Jones JDG (2007) The <strong>downy</strong> <strong>mildew</strong> effector prote<strong>in</strong>s ATR1 <strong>and</strong><br />

ATR13 promote disease susceptibility <strong>in</strong> Arabidopsis thaliana. The Plant Cell 19, 4077-90.<br />

43 Bendtsen JD, Nielsen H, von Heijne G & Brunak S (2004) Improved prediction <strong>of</strong> signal<br />

peptides: SignalP 3.0. Journal <strong>of</strong> Molecular Biology 340, 783-95.<br />

44 Nielsen H, Engelbrecht J, Brunak S & von Heijne G (1997) A neural network method for<br />

identification <strong>of</strong> prokaryotic <strong>and</strong> eukaryotic signal peptides <strong>and</strong> prediction <strong>of</strong> their cleavage sites.<br />

International Journal <strong>of</strong> Neural Systems 8, 581-99.<br />

45 Sonnhammer EL, Eddy SR & Durb<strong>in</strong> R (1997) Pfam: a comprehensive database <strong>of</strong> prote<strong>in</strong><br />

doma<strong>in</strong> families based on seed alignments. Prote<strong>in</strong>s 28, 405-20.<br />

46 Gijzen M & Nürnberger T (2006) Nep1-like prote<strong>in</strong>s from plant pathogens: recruitment <strong>and</strong><br />

diversification <strong>of</strong> the NPP1 doma<strong>in</strong> across taxa. Phytochemistry 67, 1800-7.<br />

47 Kamoun S (2006) A catalogue <strong>of</strong> the effector secretome <strong>of</strong> plant pathogenic oomycetes. Annual<br />

Review Phytopathology 44, 41-60.<br />

48 Gan PHP, Shan W, Blackman LM & Hardham AR (2009) Characterization <strong>of</strong> cyclophil<strong>in</strong>encod<strong>in</strong>g<br />

genes <strong>in</strong> Phytophthora. Molecular Genetics <strong>and</strong> Genomics 281, 565-78.


Isolate-specific <strong>effectors</strong> from Hyaloperonospora ESTs<br />

55<br />

49 Jiang RHY, Tyler BM, Whisson SC, Hardham AR & Govers F (2006) Ancient orig<strong>in</strong> <strong>of</strong> elicit<strong>in</strong><br />

gene clusters <strong>in</strong> Phytophthora genomes. Molecular Biology <strong>and</strong> Evolution 23, 338-51.<br />

50 Nespoulous C, Huet J-claude & Pernollet J-claude (1992) Structure-function relationships <strong>of</strong> α<br />

<strong>and</strong> β elicit<strong>in</strong>s, signal prote<strong>in</strong>s <strong>in</strong>volved <strong>in</strong> the plant-Phytophthora <strong>in</strong>teraction. Planta 186, 551-7.<br />

51 Luderer R, Takken FLW, De Wit PJGM & Joosten MHAJ (2002) Cladosporium fulvum<br />

overcomes Cf-2-mediated resistance by produc<strong>in</strong>g truncated AVR2 elicitor prote<strong>in</strong>s. Molecular<br />

Microbiology 45, 875-84.<br />

52 Joosten MH, Cozijnsen TJ & De Wit PJ (1994) Host resistance to a fungal tomato pathogen lost<br />

by a s<strong>in</strong>gle base-pair change <strong>in</strong> an avirulence gene. Nature 367, 384-6.<br />

53 Van Kan JA, Van den Ackerveken GF & De Wit PJ (1991) Clon<strong>in</strong>g <strong>and</strong> characterization <strong>of</strong> cDNA<br />

<strong>of</strong> avirulence gene avr9 <strong>of</strong> the fungal pathogen Cladosporium fulvum, causal agent <strong>of</strong> tomato leaf<br />

mold. Molecular Plant-Microbe Interactions 4, 52-9.<br />

54 Aguileta G, Refrégier G, Yockteng R, Fournier E & Giraud T (2009) Rapidly evolv<strong>in</strong>g genes <strong>in</strong><br />

pathogens: methods for detect<strong>in</strong>g positive selection <strong>and</strong> examples among fungi, bacteria, viruses<br />

<strong>and</strong> protists. Infection, Genetics <strong>and</strong> Evolution 9, 656-70.<br />

55 Alfano JR, Charkowski AO, Deng WL, Badel JL, Petnicki-Ocwieja T, Van Dijk K & Collmer A<br />

(2000) The Pseudomonas syr<strong>in</strong>gae Hrp pathogenicity isl<strong>and</strong> has a tripartite mosaic structure<br />

composed <strong>of</strong> a cluster <strong>of</strong> type III secretion genes bounded by exchangeable effector <strong>and</strong><br />

conserved effector loci that contribute to parasitic fitness <strong>and</strong> pathogenicity <strong>in</strong> pl. Proceed<strong>in</strong>gs <strong>of</strong><br />

the National Academy <strong>of</strong> Sciences <strong>of</strong> the United States <strong>of</strong> America 97, 4856-61.<br />

56 DebRoy S, Thilmony R, Kwack Y-B, Nomura K & He SY (2004) A family <strong>of</strong> conserved bacterial<br />

<strong>effectors</strong> <strong>in</strong>hibits salicylic acid-mediated basal immunity <strong>and</strong> promotes disease necrosis <strong>in</strong> plants.<br />

Proceed<strong>in</strong>gs <strong>of</strong> the National Academy <strong>of</strong> Sciences <strong>of</strong> the United States <strong>of</strong> America 101, 9927-32.<br />

57 Hauck P, Thilmony R & He SY (2003) A Pseudomonas syr<strong>in</strong>gae type III effector suppresses cell<br />

wall-based extracellular defense <strong>in</strong> susceptible Arabidopsis plants. Proceed<strong>in</strong>gs <strong>of</strong> the National<br />

Academy <strong>of</strong> Sciences <strong>of</strong> the United States <strong>of</strong> America 100, 8577-82.<br />

58 Torto TA, Li S, Styer A, Huitema E, Testa A, Gow NAR, Van West P & Kamoun S (2003) EST<br />

m<strong>in</strong><strong>in</strong>g <strong>and</strong> <strong>functional</strong> expression assays identify extracellular effector prote<strong>in</strong>s from the plant<br />

pathogen Phytophthora. Genome Research 13, 1675-85.<br />

59 Catanzariti A-M, Dodds PN, Lawrence GJ, Ayliffe MA & Ellis JG (2006) Haustorially expressed<br />

secreted prote<strong>in</strong>s from flax rust are highly enriched for avirulence elicitors. The Plant Cell 18,<br />

243-56.<br />

60 Panabières F, Ponchet M, Allasia V, Card<strong>in</strong> L & Ricci P (1997) Characterization <strong>of</strong> border species<br />

among Pythiaceae: several Pythium isolates produce elicit<strong>in</strong>s, typical prote<strong>in</strong>s from Phytophthora<br />

spp. Mycological Research 101, 1459-68.<br />

61 Mikes V, Milat ML, Ponchet M, Panabières F, Ricci P & Ble<strong>in</strong> JP (1998) Elicit<strong>in</strong>s, prote<strong>in</strong>aceous<br />

elicitors <strong>of</strong> plant defense, are a new class <strong>of</strong> sterol carrier prote<strong>in</strong>s. Biochemical <strong>and</strong> Biophysical<br />

Research Communications 245, 133-9.<br />

62 Rodrigues ML, Archer M, Martel P, Mir<strong>and</strong>a S, Thomaz M, Enguita FJ, Baptista RP, P<strong>in</strong>ho e<br />

Melo E, Sousa N, Cravador A & Carrondo MA (2006) Crystal structures <strong>of</strong> the free <strong>and</strong> sterolbound<br />

forms <strong>of</strong> beta-c<strong>in</strong>namom<strong>in</strong>. Biochimica et Biophysica Acta 1764, 110-21.


56 Chapter 2<br />

63 Boissy G, O’Donohue M, Gaudemer O, Perez V, Pernollet JC & Brunie S (1999) The 2.1 A<br />

structure <strong>of</strong> an elicit<strong>in</strong>-ergosterol complex: a recent addition to the Sterol Carrier Prote<strong>in</strong> family.<br />

Prote<strong>in</strong> Science 8, 1191-9.<br />

64 Stergiopoulos I & De Wit PJGM (2009) Fungal effector prote<strong>in</strong>s. Annual Review <strong>of</strong><br />

Phytopathology 47, 233-63.<br />

65 Van Poppel PMJA, Guo J, Van de Vondervoort PJI, Jung MWM, Birch PRJ, Whisson SC &<br />

Govers F (2008) The Phytophthora <strong>in</strong>festans avirulence gene Avr4 encodes an RXLR-dEER<br />

effector. Molecular Plant-Microbe Interactions 21, 1460-70.<br />

66 Stergiopoulos I, De Kock MJD, L<strong>in</strong>dhout P & De Wit PJGM (2007) Allelic variation <strong>in</strong> the<br />

effector genes <strong>of</strong> the tomato pathogen Cladosporium fulvum reveals different modes <strong>of</strong> adaptive<br />

evolution. Molecular Plant-Microbe Interactions 20, 1271-83.<br />

67 Van Damme M, Andel A, Huibers RP, Panstruga R, Weisbeek PJ & Van den Ackerveken G<br />

(2005) <strong>Identification</strong> <strong>of</strong> arabidopsis loci required for susceptibility to the <strong>downy</strong> <strong>mildew</strong> pathogen<br />

Hyaloperonospora parasitica. Molecular Plant-Microbe Interactions 18, 583-92.<br />

68 Bittner-Eddy P, Can C, Gunn N, P<strong>in</strong>el M, Tör M, Crute I, Holub EB & Beynon J (1999) Genetic<br />

<strong>and</strong> physical mapp<strong>in</strong>g <strong>of</strong> the RPP13 locus, <strong>in</strong> Arabidopsis, responsible for specific recognition <strong>of</strong><br />

several Peronospora parasitica (<strong>downy</strong> <strong>mildew</strong>) isolates. Molecular Plant-Microbe Interactions<br />

12, 792-802.<br />

69 Staden R, Beal KF & Bonfield JK (2000) The Staden package, 1998. Methods <strong>in</strong> Molecular<br />

Biology 132, 115-30.<br />

70 Huang X & Madan A (1999) CAP3: A DNA sequence assembly program. Genome Research 9,<br />

868-77.<br />

71 Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ (1990) Basic local alignment search<br />

tool. Journal <strong>of</strong> Molecular Biology 215, 403-10.<br />

72 Rhee SY (2003) The Arabidopsis Information Resource (TAIR): a model organism database<br />

provid<strong>in</strong>g a centralized, curated gateway to Arabidopsis biology, research materials <strong>and</strong><br />

community. Nucleic Acids Research 31, 224-8.<br />

73 Pruitt KD, Tatusova T & Maglott DR (2005) NCBI Reference Sequence (RefSeq): a curated nonredundant<br />

sequence database <strong>of</strong> genomes, transcripts <strong>and</strong> prote<strong>in</strong>s. Nucleic Acids Research 33,<br />

D501-4.<br />

74 Krogh A, Larsson B, von Heijne G & Sonnhammer EL (2001) Predict<strong>in</strong>g transmembrane prote<strong>in</strong><br />

topology with a hidden Markov model: application to complete genomes. Journal <strong>of</strong> Molecular<br />

Biology 305, 567-80.<br />

75 Eisenhaber B, Wildpaner M, Schultz CJ, Borner GHH, Dupree P & Eisenhaber F (2003)<br />

Glycosylphosphatidyl<strong>in</strong>ositol lipid anchor<strong>in</strong>g <strong>of</strong> plant prote<strong>in</strong>s. Sensitive prediction from<br />

sequence- <strong>and</strong> genome-wide studies for Arabidopsis <strong>and</strong> rice. Plant Physiology 133, 1691-701.<br />

76 Julenius K, Mølgaard A, Gupta R & Brunak S (2005) Prediction, conservation <strong>analysis</strong>, <strong>and</strong><br />

structural characterization <strong>of</strong> mammalian muc<strong>in</strong>-type O-glycosylation sites. Glycobiology 15,<br />

153-64.<br />

77 Nakai K & Horton P (1999) PSORT: a program for detect<strong>in</strong>g sort<strong>in</strong>g signals <strong>in</strong> prote<strong>in</strong>s <strong>and</strong><br />

predict<strong>in</strong>g their subcellular localization. Trends <strong>in</strong> Biochemical Sciences 24, 34-6.


Isolate-specific <strong>effectors</strong> from Hyaloperonospora ESTs<br />

57<br />

78 Tamura K, Dudley J, Nei M & Kumar S (2007) MEGA4: Molecular Evolutionary Genetics<br />

Analysis (MEGA) s<strong>of</strong>tware version 4.0. Molecular Biology <strong>and</strong> Evolution 24, 1596-9.<br />

79 Thompson JD, Higg<strong>in</strong>s DG & Gibson TJ (1994) CLUSTAL W: improv<strong>in</strong>g the sensitivity <strong>of</strong><br />

progressive multiple sequence alignment through sequence weight<strong>in</strong>g, position-specific gap<br />

penalties <strong>and</strong> weight matrix choice. Nucleic Acids Research 22, 4673-80.<br />

80 Nei M & Gojobori T (1986) Simple methods for estimat<strong>in</strong>g the numbers <strong>of</strong> synonymous <strong>and</strong><br />

nonsynonymous nucleotide substitutions. Molecular Biology <strong>and</strong> Evolution 3, 418-26.<br />

81 Fan J, Crooks C & Lamb C (2008) High-throughput quantitative lum<strong>in</strong>escence assay <strong>of</strong> the<br />

growth <strong>in</strong> planta <strong>of</strong> Pseudomonas syr<strong>in</strong>gae chromosomally tagged with Photorhabdus lum<strong>in</strong>escens<br />

luxCDABE. The Plant Journal 53, 393-9.<br />

82 Abràm<strong>of</strong>f MD, Magalhães PJ & Ram SJ (2004) Image Process<strong>in</strong>g with ImageJ. Biophotonics<br />

International 11, 36-42.


58 Chapter 2<br />

Supplemental Information<br />

A<br />

B<br />

C<br />

D<br />

Figure S1: Growth <strong>of</strong> Hpa Emoy2<br />

<strong>and</strong> Waco9 isolates <strong>in</strong> Arabidopsis.<br />

The level <strong>of</strong> colonization <strong>of</strong><br />

cotyledons <strong>of</strong> 2-week-old Arabidopsis<br />

Ws eds1-1 seedl<strong>in</strong>gs <strong>in</strong>fected with<br />

Hpa isolates Emoy2 (A,B) <strong>and</strong> Waco9<br />

(C,D) at 7 dpi is visualized by trypan<br />

blue-sta<strong>in</strong><strong>in</strong>g <strong>and</strong> light microscopy.<br />

Fluorescence<br />

Fluorescence<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

At<br />

120<br />

25% Hpa 20% Hpa<br />

100<br />

20 25 30 35 40 45 50 55<br />

Migration time (sec)<br />

Hpa<br />

80<br />

50% Hpa 33% Hpa<br />

Fluorescence<br />

20 25 30 35 40 45 50 55 20 25 30 35 40 45 50 55<br />

Migration time (sec)<br />

Migration time (sec)<br />

Fluorescence<br />

60<br />

40<br />

20<br />

0<br />

80<br />

60<br />

40<br />

20<br />

0<br />

20 25 30 35 40 45 50 55<br />

Migration time (sec)<br />

Figure S2: Determ<strong>in</strong>ation <strong>of</strong> Hpa<br />

rRNA peaks on the Bioanalyzer 2100.<br />

Total RNA isolated from Hpa<br />

conidiospores <strong>and</strong> Arabidopsis<br />

leaves was mixed <strong>in</strong> different<br />

proportions to allow identification<br />

<strong>of</strong> the correspond<strong>in</strong>g rRNA peaks <strong>of</strong><br />

Hpa <strong>and</strong> Arabidopsis <strong>in</strong> bioanalyzer<br />

pr<strong>of</strong>iles. Peak sizes correlated with the<br />

relative amount <strong>of</strong> plant <strong>and</strong> pathogen<br />

total RNA.<br />

HaCr<strong>in</strong>kler<br />

(393 aa)<br />

SP LRLYVAKR C<br />

Figure S3: Schematic representation<br />

<strong>of</strong> the Hpa Cr<strong>in</strong>kler identified <strong>in</strong> the<br />

Waco9 cDNA library.<br />

The signal peptide (SP), the variable<br />

CRN motif (LYVAK) <strong>and</strong> the<br />

C-term<strong>in</strong>al doma<strong>in</strong> (C) are shown.


Isolate-specific <strong>effectors</strong> from Hyaloperonospora ESTs<br />

59<br />

RXLR29_Emoy ATGCGTCTGTCTGC-ATCCTGTTCTTGATTGTGGCTCCCCTGCATCTTTGTGTCGGCGAG 59<br />

RXLR29_Noks ATGCGTCTGTCTGC-ATCCTGTTCTTGATTGTGGCTCCCCTGCATCTTTGTGTCGGCGAG 59<br />

RXLR29_Cala ATGCGTCTGTCTGC-ATCCTGTTCTTGATTGTGGCTCCCCTGCATCTTTGTGTCGGCGAG 59<br />

RXLR29_Emco ATGCGTCTGTCTGC-ATCCTGTTCTTGATTGTGGCTCCCCTGCATCTTTGTGTCGGCGAG 59<br />

RXLR29_H<strong>in</strong>d ATGCGTCTGTCTGC-ATCCTGTTCTTGATTGTGGCTCCCCTGCATCTTTGTGTCGGCGAG 59<br />

RXLR29_Maks1 ATGCGTCTGTCTGC-ATCCTGTTCTTGATTGTGGCTCCCCTGCATCTTTGTGTCGGCGAG 59<br />

RXLR29_Maks2 ATGCGTCTGTCTGCTATCCTGCCCTTGATTGTGGCTCCC-TGCATCTTTGTGTCGGCGAG 59<br />

RXLR29_Waco ATGCGTCTGTCTGCTATCCTGCCCTTGATTGTGGCTCCCCTGCATCTTTGTGTCGGCGAG 60<br />

************** ****** **************** ********************<br />

RXLR29_Emoy GTGGTTCTGATCCCTGCGACGATGGAGAACCCACTTCTTCGTTCGGCTTCTTCTGCTGGT 119<br />

RXLR29_Noks GTGGTTCTGATCCCTGCGACGATGGAGAACCCACTTCTTCGTTCGGCTTCTTCTGCTGGT 119<br />

RXLR29_Cala GTGGTTCTGATCCCTGCGACGATGGAGAACCCACTTCTTCGTTCGGCTTCTTCTGCTGGT 119<br />

RXLR29_Emco GTGGTTCTGATCCCTGCGACGATGGAGAACCCACTTCTTCGTTCGGCTTCTTCTGCTGGT 119<br />

RXLR29_H<strong>in</strong>d GTGGTTCTGATCCCTGCGACGATGGAGAACCCACTTCTTCGTTCGGCTTCTTCTGCTGGT 119<br />

RXLR29_Maks1 GTGGTTCTGATCCCTGCGACGATGGAGAACCCACTTCTTCGTTCGGCTTCTTCTGCTGGT 119<br />

RXLR29_Maks2 GTGGTCCTGATCCCTGCGACGATGGAGAACCCACTTCTTCGTTCGGCTTCTTCTCCTGGT 119<br />

RXLR29_Waco GTGGTCCTGATCCCTGCGACGATGGAGAACCCACTTCTTCGTTCGGCTTCTTCTGCTGGT 120<br />

***** ************************************************ *****<br />

RXLR29_Emoy GCTGG-GCACGCAACGACGGCCGATCCCTGCGAGAACTAAATTCAGCGGCTGGTATTGGC 178<br />

RXLR29_Noks GCTGG-GCACGCAACGACGGCCGATCCCTGCGAGAACTAAATTCAGCGGCTGGTATTGGC 178<br />

RXLR29_Cala GCTGG-GCACGCAACGACGGCCGATCCCTGCGAGAACTAAATTCAGCGGCTGGTATTGGC 178<br />

RXLR29_Emco GCTGG-GCACGCAACGACGGCCGATCCCTGCGAGAACTAAATTCAGCGGCTGGTATTGGC 178<br />

RXLR29_H<strong>in</strong>d GCTGG-GCACGCAACGACGGCCGATCCCTGCGAGAACTAAATTCAGCGGCTGGTATTGGC 178<br />

RXLR29_Maks1 GCTGG-GCACGCAACGACGGCCGATCCCTGCGAGAACTAAATTCAGCGGCTGGTATTGGC 178<br />

RXLR29_Maks2 GCTGGTGCACGCAACGACGGCCGATCCCTGCGAGAACTAAATTCAGCGGCTGGTATTGGC 179<br />

RXLR29_Waco GCTGGTGCACGCAACGACGGCCGATCCCTGCGAGAACTAAATTCAGCGGCTGGTATTGGC 180<br />

***** ******************************************************<br />

RXLR29_Emoy GCGGAAATGTCGAAAGTAGTCTCCGAGTTCGGAGGACATTTCAAAGGGACAACAGGCACT 238<br />

RXLR29_Noks GCGGAAATGTCGAAAGTAGTCTCCGAGTTCGGAGGACATTTCAAAGGGACAACAGGCACT 238<br />

RXLR29_Cala GCGGAAATGTCGAAAGTAGTCTCCGAGTTCGGAGGACATTTCAAAGGGACAACAGGCACT 238<br />

RXLR29_Emco GCGGAAATGTCGAAAGTAGTCTCCGAGTTCGGAGGACATTTCAAAGGGACAACAGGCACT 238<br />

RXLR29_H<strong>in</strong>d GCGGAAATGTCGAAAGTAGTCTCCGAGTTCGGAGGACATTTCAAAGGGACAACAGGCACT 238<br />

RXLR29_Maks1 GCGGAAATGTCGAAAGTAGTCTCCGAGTTCGGAGGACATTTCAAAGGGACAACAGGCACT 238<br />

RXLR29_Maks2 GCGGAAATGTCGAAAGTAGCCTCCAAGTTTGGAGGACATTTCAAAGGGACAACAGGCACT 239<br />

RXLR29_Waco GGGGAAATGTCGAAAGTAGTTTCCGAGTTCGGAGGACATTTCAAAGGGACAACAGGCACT 240<br />

* ***************** *** **** ******************************<br />

RXLR29_Emoy TCGGAGAGTGTTGCATCAAAGAAAGCCGAAGATGCAGCAATGGGGGCAGCAGATCGTGAT 298<br />

RXLR29_Noks TCGGAGAGTGTTGCATCAAAGAAAGCCGAAGATGCAGCAATGGGGGCAGCAGATCGTGAT 298<br />

RXLR29_Cala TCGGAGAGTGTTGCATCAAAGAAAGCCGAAGATGCAGCAATGGGAGCAGCAGATCGTGAT 298<br />

RXLR29_Emco TCGGAGAGTGTTGCATCAAAGAAAGCCGAAGATGCAGCAATGGGAGCAGCAGATCGTGAT 298<br />

RXLR29_H<strong>in</strong>d TCGGAGAGTGTTGCATCAAAGAAAGCCGAAGATGCAGCAATGGGAGCAGCAGATCGTGAT 298<br />

RXLR29_Maks1 TCGGAGAGTGTTGCATCAAAGAAAGCCGAAGATGCAGCAATGGGGGCAGCAGATCGTGAT 298<br />

RXLR29_Maks2 TCGGAGAGTGTCGCATCAAAGAAAGCCGAAGATGCAGCAATGAGGGCAGCAGATGATGAT 299<br />

RXLR29_Waco TCGGAGAGTGTCGCATCAAAGAAAGCCAAAGATGCAGCAATGAGGGCAGCAGATGATGAT 300<br />

*********** *************** ************** * ********* ****<br />

RXLR29_Emoy GAAGGACCCATTTGGGCGACGAGAAAAGACCTCGAAGATGTTTTGAATGTTGGAAAAAAA 358<br />

RXLR29_Noks GAAGGACCCATTTGGGCGACGAGAAAAGACCTCGAAGATGTTTTGAATGTTGGAAAAAAA 358<br />

RXLR29_Cala GAAGGACCCATTTGGGCGACGAGAAAAGACCTCGAAGATGTTTTGAATGTTGGAAAAAAA 358<br />

RXLR29_Emco GAAGGACCCATTTGGGCGACGAGAAAAGACCTCGAAGATGTTTTGAATGTTGGAAAAAAA 358<br />

RXLR29_H<strong>in</strong>d GAAGGACCCATTTGGGCGACGAGAAAAGACCTCGAAGATGTTTTGAATGTTGGAAAAAAA 358<br />

RXLR29_Maks1 GAAGGACCCATTTGGGCGACGAGAAAAGACCTCGAAGATGTTTTGAATGTTGGAAAAAAA 358<br />

RXLR29_Maks2 GAAGGACCCATTTTTGCGACGAGAGAAGACCTCGATGATGTTATGAAAGCTGGAAAAGAA 359<br />

RXLR29_Waco GAAGGACCCATTTTTGCGACGAAAGAAGACCTCGCTGATGTTTTGGCTGTTGGAAAAGAT 360<br />

************* ******* * ********* ****** ** * ******* *<br />

RXLR29_Emoy AAACTGAC-AAGAAAAAAA-GGCGCGTCCTGGCAAGTAA 395<br />

RXLR29_Noks AAACTGAC-AAGAAAAAAA-GGCGCGTCCTGGCAAGTAA 395<br />

RXLR29_Cala AAACTGAC-AAGAAAAAAAAGGCGCGTCCTGGCAAGTAA 396<br />

RXLR29_Emco AAACTGAC-AAGAAAAAAAAGGCGCGTCCTGGCAAGTAA 396<br />

RXLR29_H<strong>in</strong>d AAACTGAC-AAGAAAAAAAAGGCGCGTCCTGGCAAGTAA 396<br />

RXLR29_Maks1 AA-CTGAC-AAGAAAAAAA-GGCGCGTCCTGGCAAGTAA 394<br />

RXLR29_Maks2 AAACCGGCCAGGAAAAAAAAGGTGCGTCCTGGCAAGTAA 398<br />

RXLR29_Waco AAACCGGCCAGGAAAAAAAAGGCGCGTCCTGGCAAGTAA 399<br />

** * * * * ******** ** ****************<br />

Figure S4: Multiple alignment <strong>of</strong> RXLR29 sequences from 7 Hpa isolates. Stop codons are shaded grey.


60 Chapter 2<br />

Table S1: Primers used for RXLR allele sequenc<strong>in</strong>g.<br />

Gene Forward Reverse<br />

RXLR3 AGATGCGTCTTCACATCCTG TTGTTGTTATTCTGCTGCTGCT<br />

RXLR4 GGAAAGATGCGTCTTCACAT ATTGTTGTTATTCTGCTGCTGCT<br />

RXLR5 TTTTTCGTTGACAACCATGC CAATAACCTCGCTGGCTTACA<br />

RXLR6 CACGTCGTAAGTTGACCATG ACATCGATTGCTCGCATCAC<br />

RXLR7 CGTCCCGTCCGACATACTTA GTAGCTACCGCCACCCAGT<br />

RXLR9 TCTCTTAAGCTTGTGCGATCTTC AAGTCCTCACCTCCAGTCCA<br />

RXLR13 TCGACCCCTTCACCTGTTAC GACATCAGGTCTGCGTCTCA<br />

RXLR15 CACAACGTCAAACCGACATC GGGTTTATTGCCGTTTCGTA<br />

RXLR16 ATGCTGCCAGCTCGCGCAG TCAAATCGCCGCATTGATGTC<br />

RXLR17 CACCCACCGAGAACGAGTAT TGAATGTCTATCCGCCGTCT<br />

RXLR18 CAATTTAATAATAGAGGGAGAGTCACG AGGCTGCCAAAGCTTCAAGT<br />

RXLR19 CGATTCATCGCCCTCACC CGGTTTCATCACCCACTACG<br />

RXLR20 CTTTCACCTTGGGTCCTTCC AAGCACACTTAAGTTCTACTATTACGC<br />

RXLR20 CGATATGCGACGGAGAGCTG CAGCTCTCCGTCGCATATCG<br />

RXLR21 CGACGATGTAGGATCAGATACG TTTGTGTTTTAGCTGCTACGG<br />

RXLR23 TCGACCCCTTCACCTGTTAC CCACGCACTACCTTAGCACA<br />

RXLR29 AAGTCCTCACCTCCAGTCCA CATTGCCGTAGCTCCTTTGT


Isolate-specific <strong>effectors</strong> from Hyaloperonospora ESTs<br />

61<br />

Table S2: Enrichment <strong>of</strong> prote<strong>in</strong> class members <strong>in</strong> the EST project compared to the genome-wide<br />

occurunce.<br />

A hypergeometric propability value


62 Chapter 2<br />

Table S3: Functional classification <strong>of</strong> 90 unigenes based on Pfam doma<strong>in</strong> predictions, BLASTX <strong>and</strong><br />

manual annotation (cont<strong>in</strong>ued on next page). For manual annotations the IDs are given <strong>in</strong> lists.<br />

Pfam doma<strong>in</strong> predictions<br />

ID Pfam ID Pfam name E-value<br />

Pro3526IW PF00012.13 HSP70 2.8e-98<br />

Pro1991IW PF00026.16 Asp 5e-58<br />

Pro2490IW PF00043.18 GST_C 2.9e-06<br />

Pro3738IW PF00056.16 Ldh_1_N 1.2e-35<br />

Pro2968IW PF00085.13 Thioredox<strong>in</strong> 6.1e-27<br />

Pro2968IW PF00085.13 Thioredox<strong>in</strong> 2e-27<br />

Pro2875IW PF00085.13 Thioredox<strong>in</strong> 2e-28<br />

Pro2875IW PF00085.13 Thioredox<strong>in</strong> 1.7e-26<br />

Pro3759IW PF00085.13 Thioredox<strong>in</strong> 6e-31<br />

Pro3759IW PF00085.13 Thioredox<strong>in</strong> 2.2e-31<br />

TC1311MERGE PF00106.18 adh_short 1.3e-10<br />

Pro2915IW PF00149.21 Metallophos 0.00014<br />

Pro3807IW PF00150.11 Cellulase 6.1e-12<br />

Pro3351IW PF00160.14 Pro_isomerase 4.9e-46<br />

Pro3776IW PF00245.13 Alk_phosphatase 7.2e-76<br />

Pro3221IW PF00254.21 FKBP_C 4.3e-32<br />

Pro3019IW PF00300.15 PGAM 3.5e-10<br />

Pro2270IW PF00400.25 WD40 1.3<br />

Pro2270IW PF00400.25 WD40 0.00033<br />

Pro2270IW PF00400.25 WD40 2.4e-10<br />

Pro3224IW PF00428.12 Ribosomal_60s 2.2e-20<br />

Pro3566IW PF00445.11 Ribonuclease_T2 5.6e-32<br />

Pro1764IW PF00450.15 Peptidase_S10 2e-81<br />

Pro2843IW PF00450.15 Peptidase_S10 1.5e-80<br />

Pro534IW PF00462.17 Glutaredox<strong>in</strong> 9.9e-20<br />

Pro93IW PF00487.17 FA_desaturase 1.7e-23<br />

Pro2024IW PF00614.15 PLDc 2.9e-09<br />

Pro3222IW PF00639.14 Rotamase 1.1e-15<br />

Pro3222IW PF00639.14 Rotamase 1.8e-16<br />

Pro203IW PF00742.12 Homoser<strong>in</strong>e_dh 3.8e-39<br />

Pro2119IW PF00899.14 ThiF 1.6e-36<br />

Pro3133IW PF00964.10 Elicit<strong>in</strong> 4.7e-07<br />

HaELL1_Waco PF00964.10 Elicit<strong>in</strong> 4.6e-15<br />

HaELL2_Waco PF00964.10 Elicit<strong>in</strong> 6.2e-15<br />

HaELL3_Waco PF00964.10 Elicit<strong>in</strong> 3.8e-13<br />

Pro3815IW PF01011.14 PQQ 1.5e-05<br />

Pro3584IW PF01095.12 Pect<strong>in</strong>esterase 1.2e-48<br />

Pro3481IW PF01263.13 Aldose_epim 2.5e-19<br />

Pro3763IW PF01263.13 Aldose_epim 6.1e-17<br />

Pro5506MERGE PF01341.10 Glyco_hydro_6 2.1e-53<br />

Pro245IW PF01435.11 Peptidase_M48 1.7e-55<br />

Pro2157IW PF01451.14 LMWPc 1e-25


Isolate-specific <strong>effectors</strong> from Hyaloperonospora ESTs<br />

63<br />

Pfam doma<strong>in</strong> predictions<br />

ID Pfam ID Pfam name E-value<br />

Pro776IW PF02219.10 MTHFR 2.7e-83<br />

Pro2250IW PF02466.12 Tim17 6.2e-12<br />

Pro2490IW PF02798.13 GST_N 3.7e-16<br />

Pro9IW PF02815.12 MIR 3.2e-12<br />

Pro3738IW PF02866.11 Ldh_1_C 7.6e-34<br />

Pro1884IW PF03330.11 DPBB_1 1.4e-09<br />

Pro2846IW PF03372.16 Exo_endo_phos 4.7e-10<br />

Pro35IW PF03388.6 Lect<strong>in</strong>_leg-like 2.4e-30<br />

Pro985IW PF03446.8 NAD_b<strong>in</strong>d<strong>in</strong>g_2 1.4e-29<br />

Pro203IW PF03447.9 NAD_b<strong>in</strong>d<strong>in</strong>g_3 1e-17<br />

Pro2681IW PF03813.7 Nrap 1.7e-40<br />

Pro1930IW PF04597.7 Ribophor<strong>in</strong>_I 3e-23<br />

Pro1396IW PF04616.7 Glyco_hydro_43 5.4e-27<br />

Pro3361IW PF04981.6 NMD3 8.9e-70<br />

Pro3632IW PF05162.6 Ribosomal_L41 2.2e-08<br />

HaNLP1_Waco9 PF05630.4 NPP1 2.4e-48<br />

HaNLP2_Waco9 PF05630.4 NPP1 2.6e-45<br />

Pro964IW PF07542.4 ATP12 2.2e-13<br />

Pro3759IW PF07749.5 ERp29 3.1e-13<br />

Pro3232IW PF09360.3 zf-CDGSH 1.6e-09<br />

Pro2891IW PF10988.1 DUF2807 8e-07<br />

Pro388IW PF11380.1 DUF3184 5.2e-17<br />

Pro547IW PF11779.1 DUF3317 4.8e-07<br />

Manual annotation (ID lists)<br />

Cyste<strong>in</strong>erich<br />

searches<br />

BlastX<br />

RXLR<br />

HaCR1 RXLR3 Cr<strong>in</strong>kler<br />

HaCR2 RXLR4<br />

HaCR3 RXLR5<br />

HaCR4 RXLR6<br />

HaCR5 RXLR7<br />

HaCR6 RXLR9<br />

HaCR7 RXLR12<br />

HaCR8 RXLR13<br />

HaCR9 RXLR15<br />

HaCR10 RXLR16<br />

HaCR11 RXLR17<br />

HaCR12 RXLR18<br />

HaCR13 RXLR19<br />

HaCR14 RXLR20<br />

HaCR15 RXLR21<br />

HaCR16 RXLR22<br />

RXLR23<br />

RXLR29


65<br />

Chapter 3:<br />

Effector identification <strong>in</strong> the lettuce <strong>downy</strong><br />

<strong>mildew</strong> Bremia lactucae by massively parallel<br />

transcriptome sequenc<strong>in</strong>g<br />

Joost H. M. Stassen 1 , Michael F. Seidl 2,3 , Pim W. J. Vergeer 1 ,<br />

Isaäc J. Nijman 4 , Berend Snel 2,3 , Edw<strong>in</strong> Cuppen 4 ,<br />

Guido Van den Ackerveken 1,3<br />

1<br />

Plant-Microbe Interactions, Department <strong>of</strong> Biology, Utrecht University,<br />

Padualaan 8, 3508 CH Utrecht, the Netherl<strong>and</strong>s<br />

2<br />

Theoretical Biology <strong>and</strong> Bio<strong>in</strong>formatics, Department <strong>of</strong> Biology,<br />

Utrecht University, Padualaan 8, 3508 CH Utrecht, the Netherl<strong>and</strong>s<br />

3<br />

Centre for BioSystems Genomics (CBSG), Wagen<strong>in</strong>gen University,<br />

B<strong>in</strong>nenhaven 5, 6709 PD Wagen<strong>in</strong>gen, the Netherl<strong>and</strong>s<br />

4<br />

Hubrecht Institute, Developmental Biology <strong>and</strong> Stem Cell Research,<br />

KNAW <strong>and</strong> University Medical Center Utrecht, Uppsalalaan 8, Utrecht,<br />

the Netherl<strong>and</strong>s<br />

Molecular Plant Pathology.<br />

doi: 10.1111/j.1364-3703.2011.00780.x


66 Chapter 3<br />

Abstract<br />

Lettuce <strong>downy</strong> <strong>mildew</strong> (Bremia lactucae) is a rapidly adapt<strong>in</strong>g oomycete pathogen<br />

affect<strong>in</strong>g commercial lettuce cultivation. Oomycetes are known to use a diverse<br />

arsenal <strong>of</strong> secreted prote<strong>in</strong>s (<strong>effectors</strong>) to manipulate their hosts. Two classes <strong>of</strong><br />

effector are known to be translocated by the host: the RXLRs <strong>and</strong> Cr<strong>in</strong>klers. To<br />

ga<strong>in</strong> <strong>in</strong>sight <strong>in</strong>to the repertoire <strong>of</strong> <strong>effectors</strong> used by B. lactucae to manipulate its<br />

host, we performed massively parallel sequenc<strong>in</strong>g <strong>of</strong> cDNA derived from B. lactucae<br />

spores <strong>and</strong> <strong>in</strong>fected lettuce (Lactuca sativa) seedl<strong>in</strong>gs. From over 2.3 million<br />

454 GS FLX reads, 59 618 contigs were assembled represent<strong>in</strong>g both plant <strong>and</strong><br />

pathogen transcripts. Of these, 19 663 contigs were determ<strong>in</strong>ed to be <strong>of</strong> B. lactucae<br />

orig<strong>in</strong> as they matched pathogen genome sequences (SOLiD) that were obta<strong>in</strong>ed<br />

from >270 million reads <strong>of</strong> spore-derived genomic DNA. After correction <strong>of</strong> cDNA<br />

sequenc<strong>in</strong>g errors with SOLiD data, translation <strong>in</strong>to prote<strong>in</strong> models <strong>and</strong> filter<strong>in</strong>g,<br />

16 372 prote<strong>in</strong> models rema<strong>in</strong>ed, 1023 <strong>of</strong> which were predicted to be secreted.<br />

This secretome <strong>in</strong>cluded elicit<strong>in</strong>s, necrosis <strong>and</strong> ethylene-<strong>in</strong>duc<strong>in</strong>g peptide 1-like<br />

prote<strong>in</strong>s, glucanase <strong>in</strong>hibitors <strong>and</strong> lect<strong>in</strong>s, <strong>and</strong> was enriched <strong>in</strong> cyste<strong>in</strong>e-rich<br />

prote<strong>in</strong>s. C<strong>and</strong>idate host-translocated <strong>effectors</strong> <strong>in</strong>cluded 77 prote<strong>in</strong> models with<br />

RXLR effector features. In addition, we found <strong>in</strong>dications for an unknown number<br />

<strong>of</strong> Cr<strong>in</strong>kler-like sequences. Similarity cluster<strong>in</strong>g <strong>of</strong> secreted prote<strong>in</strong>s revealed<br />

additional effector c<strong>and</strong>idates. We provide a first look at the transcriptome <strong>of</strong><br />

B. lactucae <strong>and</strong> its encoded effector arsenal.


Effector identification <strong>in</strong> B. lactucae<br />

67<br />

Introduction<br />

Oomycete plant pathogens cause devastat<strong>in</strong>g diseases on a wide variety <strong>of</strong> crops.<br />

These organisms resemble fungi, but are more closely related to brown algae. Wellknown<br />

oomycete pathogens are the obligate biotrophic <strong>downy</strong> <strong>mildew</strong>s <strong>and</strong> the<br />

hemibiotrophic Phytophthora species, <strong>in</strong>clud<strong>in</strong>g P. <strong>in</strong>festans, the causative agent<br />

<strong>of</strong> the Irish potato fam<strong>in</strong>e, <strong>and</strong> P. ramorum, which causes sudden oak death. The<br />

<strong>downy</strong> <strong>mildew</strong>s have a narrow host range, for <strong>in</strong>stance Hyaloperonospora arabidopsidis<br />

grows only on liv<strong>in</strong>g Arabidopsis thaliana plants, Plasmopara viticola is<br />

an important grape pathogen <strong>and</strong> Bremia lactucae is the most important pathogen<br />

<strong>of</strong> lettuce (Lactuca sativa). The control <strong>of</strong> B. lactucae is an <strong>in</strong>creas<strong>in</strong>gly difficult<br />

task as fungicides have been phased out because <strong>of</strong> environmental concerns, <strong>and</strong><br />

fungicide resistance is becom<strong>in</strong>g more widespread [1] . Genetically controlled resistance<br />

to B. lactucae is present <strong>in</strong> most commercial lettuce varieties, but is quickly<br />

overcome by new rapidly evolv<strong>in</strong>g B. lactucae races.<br />

The B. lactucae life cycle starts from a spore l<strong>and</strong><strong>in</strong>g on the plant’s epidermis,<br />

followed by penetration, hyphal colonization <strong>of</strong> host tissue <strong>and</strong> sporulation, lead<strong>in</strong>g<br />

to the release <strong>of</strong> large numbers <strong>of</strong> spores. At all stages, B. lactucae is <strong>in</strong> contact<br />

with its host, so that it can <strong>in</strong>terfere with defence <strong>and</strong> manipulate host processes<br />

to obta<strong>in</strong> nutrients. In contrast with many oomycetes, B. lactucae <strong>in</strong>fection<br />

usually starts with the direct germ<strong>in</strong>ation <strong>of</strong> asexual spores, without a zoospore<br />

<strong>in</strong>termediate stage. B. lactucae also does not rely on entry via stomata, but, <strong>in</strong>stead,<br />

usually penetrates directly through the cuticula <strong>in</strong>to an epidermal cell. A primary<br />

vesicle <strong>and</strong>, later, a secondary vesicle are then formed <strong>in</strong> the epidermal cell, after<br />

which hyphae grow <strong>in</strong> the <strong>in</strong>tercellular space <strong>of</strong> the mesophyll tissue. Haustoria<br />

are formed <strong>in</strong> most mesophyll <strong>and</strong> epidermal cells encountered by the hyphae<br />

(reviewed by Lebeda et al. [2] ). The B. lactucae–lettuce <strong>in</strong>teraction is a classic<br />

example <strong>of</strong> a gene-for-gene <strong>in</strong>teraction, <strong>in</strong> which s<strong>in</strong>gle dom<strong>in</strong>ant avirulence genes<br />

<strong>in</strong> B. lactucae are genetically recognized by dom<strong>in</strong>ant resistance genes <strong>in</strong> lettuce<br />

(reviewed by Michelmore <strong>and</strong> Wong [3] ). Knowledge on the molecular biology <strong>and</strong><br />

basis <strong>of</strong> B. lactucae pathogenicity, however, is mostly lack<strong>in</strong>g.<br />

Studies <strong>of</strong> oomycete–plant <strong>in</strong>teractions at the molecular level are now reveal<strong>in</strong>g<br />

more <strong>and</strong> more details on the molecular toolbox used by these remarkable<br />

pathogens. The genomes <strong>of</strong> the sequenced oomycete species Albugo c<strong>and</strong>ida [4] ,<br />

A. laibachii [5] , H. arabidopsidis [6] , P. <strong>in</strong>festans [7] , P. sojae [8] , P. ramorum [8] ,<br />

Pseudoperonospora cubensis [9] <strong>and</strong> Pythium ultimum [10] represent a treasure<br />

trove <strong>of</strong> <strong>in</strong>formation on the effector repertoires secreted by these pathogens to<br />

manipulate their hosts. Various types <strong>of</strong> <strong>effectors</strong> are predicted to act <strong>in</strong> the apoplast<br />

<strong>and</strong>, <strong>in</strong> addition, two classes <strong>of</strong> oomycete effector translocate <strong>in</strong>to the host cell<br />

(reviewed by Stassen <strong>and</strong> Van den Ackerveken [11] ). Effectors from one <strong>of</strong> the


68 Chapter 3<br />

host-translocated classes are referred to as RXLR <strong>effectors</strong>, after the RXLR am<strong>in</strong>o<br />

acid motif conta<strong>in</strong>ed by the first characterized <strong>effectors</strong> <strong>of</strong> this class [12] , although<br />

variations <strong>in</strong> this motif also permit host translocation [13] . Examples <strong>of</strong> variants <strong>of</strong><br />

RXLR motifs <strong>in</strong>clude the QXLR motif found <strong>in</strong> host-translocat<strong>in</strong>g <strong>effectors</strong> <strong>of</strong><br />

the oomycete pathogen <strong>of</strong> cucumber, Ps. cubensis [9] , <strong>and</strong> the GXLR motif found<br />

<strong>in</strong> the P. <strong>in</strong>festans effector SNE1 [14] . Furthermore, ATR5 <strong>of</strong> H. arabidopsidis is<br />

recognized <strong>in</strong>side host cells <strong>and</strong> has homology to the RXLR motif-conta<strong>in</strong><strong>in</strong>g<br />

<strong>effectors</strong>, but does not conta<strong>in</strong> an RXLR motif [15] . A second class <strong>of</strong> host-translocated<br />

<strong>effectors</strong> are the Cr<strong>in</strong>klers, which conta<strong>in</strong> two conserved am<strong>in</strong>o acid motifs<br />

preced<strong>in</strong>g a modular C-term<strong>in</strong>al section. In a number <strong>of</strong> Cr<strong>in</strong>klers, the doma<strong>in</strong>s<br />

that form the modules <strong>in</strong> this C-term<strong>in</strong>al section <strong>in</strong>duce cell death when expressed<br />

<strong>in</strong> Nicotiana benthamiana [7] . Two Cr<strong>in</strong>klers from P. sojae are even thought to<br />

be <strong>in</strong>dispensable for successful <strong>in</strong>fection <strong>of</strong> soybean [16] . Although the effector<br />

repertoire is generally highly divergent between species, features such as motifs<br />

associated with host-translocated <strong>effectors</strong> allow for the identification <strong>of</strong> potential<br />

<strong>effectors</strong> encoded by gene models or mRNA sequences.<br />

Access to the catalogue <strong>of</strong> the <strong>effectors</strong> <strong>of</strong> a species allows for the clon<strong>in</strong>g<br />

<strong>and</strong> <strong>in</strong>vestigation <strong>of</strong> <strong>in</strong>dividual effector genes. This has led to the identification <strong>of</strong><br />

various activities <strong>of</strong> <strong>effectors</strong> on host processes. Examples <strong>in</strong>clude the disruption<br />

<strong>of</strong> host cell wall–membrane adhesion [17] , suppression <strong>of</strong> defensive protease activity<br />

[18‐20]<br />

<strong>and</strong> suppression <strong>of</strong> effector-triggered immunity (e.g. [14,16] ). In addition, the<br />

first cytoplasmic target <strong>and</strong> mode <strong>of</strong> action <strong>of</strong> a host-translocated effector has been<br />

identified; host E3 ligase CMPG1 is stabilized by P. <strong>in</strong>festans effector AVR3a<br />

[21]<br />

, reveal<strong>in</strong>g more details about the mechanisms by which oomycetes establish a<br />

successful <strong>in</strong>fection <strong>of</strong> their hosts.<br />

In this article, we <strong>in</strong>vestigate the potential effector arsenal <strong>of</strong> B. lactucae by<br />

cDNA sequenc<strong>in</strong>g <strong>and</strong> de novo assembly <strong>of</strong> transcript sequences. Transcripts<br />

obta<strong>in</strong>ed from B. lactucae-<strong>in</strong>fected lettuce were compared with short reads <strong>of</strong><br />

B. lactucae genomic DNA (gDNA) to select for B. lactucae transcripts. From the<br />

predicted B. lactucae secretome, we identified homologues <strong>of</strong> known effector<br />

families as well as new groups <strong>of</strong> potential effector prote<strong>in</strong>s.<br />

Results<br />

Bremia lactucae transcriptome sequenc<strong>in</strong>g<br />

Two sources <strong>of</strong> RNA were used for B. lactucae transcriptome sequenc<strong>in</strong>g: RNA<br />

isolated from asexual B. lactucae conidiospores <strong>and</strong> RNA isolated from B. lactucae-<strong>in</strong>fected<br />

lettuce leaves. Many effector genes are known to be differentially<br />

expressed dur<strong>in</strong>g different stages <strong>of</strong> <strong>in</strong>fection, with transcripts <strong>of</strong> early-stage effec-


Effector identification <strong>in</strong> B. lactucae<br />

69<br />

tors be<strong>in</strong>g present <strong>in</strong> spores, <strong>and</strong> transcripts <strong>of</strong> later stage (hyphal growth) <strong>effectors</strong><br />

be<strong>in</strong>g expressed <strong>in</strong> B. lactucae grow<strong>in</strong>g <strong>in</strong> planta. To <strong>in</strong>crease the number <strong>of</strong><br />

different <strong>in</strong>fection stages <strong>and</strong>, as a result, transcript diversity, lettuce seedl<strong>in</strong>gs were<br />

<strong>in</strong>oculated twice with a 3-day <strong>in</strong>terval (see time l<strong>in</strong>e <strong>in</strong> Fig. 1A). Lettuce seedl<strong>in</strong>gs<br />

were <strong>in</strong>oculated with conidiospores (Fig. 1B) that germ<strong>in</strong>ate on the leaf surface,<br />

penetrate through epidermal cells <strong>and</strong> then cont<strong>in</strong>ue to grow <strong>in</strong>tercellular hyphae<br />

<strong>in</strong> the mesophyll, form<strong>in</strong>g haustoria <strong>in</strong> plant cells (Fig. 1C). Plants were kept under<br />

low relative humidity <strong>and</strong>, as a result, when material was harvested for RNA isolation<br />

(day 7), no B. lactucae sporulation was observed, although abundant growth <strong>of</strong><br />

<strong>in</strong>tercellular hyphae <strong>and</strong> the formation <strong>of</strong> haustoria were visible (Fig. 1D).<br />

Figure 1: Preparation <strong>of</strong> Bremia lactucae-<strong>in</strong>fected lettuce leaves for transcriptome <strong>analysis</strong>. (A) Time<br />

l<strong>in</strong>e <strong>of</strong> sampl<strong>in</strong>g. Light grey bars represent periods <strong>in</strong> which <strong>in</strong>fected lettuce was kept at high humidity.<br />

(B) Spores were spray <strong>in</strong>oculated at time po<strong>in</strong>t 0 <strong>and</strong> at a second time po<strong>in</strong>t at 3 days post-<strong>in</strong>oculation<br />

(dpi). (C) Bremia lactucae establishes an <strong>in</strong>fection <strong>and</strong> forms hyphae between plant cells, creat<strong>in</strong>g<br />

haustoria <strong>in</strong> adjacent cells. (D) Leaf material heavily colonized with B. lactucae hyphae <strong>and</strong> haustoria<br />

is harvested for RNA isolation at 7 dpi.<br />

Transcript sequenc<strong>in</strong>g was performed us<strong>in</strong>g 454 sequenc<strong>in</strong>g technology on<br />

cDNA <strong>of</strong> spores <strong>and</strong> B. lactucae-<strong>in</strong>fected cotyledons generated by either oligo<br />

dT prim<strong>in</strong>g <strong>and</strong> 5′ enrichment, or by r<strong>and</strong>om prim<strong>in</strong>g <strong>and</strong> normalization. An<br />

overview <strong>of</strong> the number <strong>of</strong> obta<strong>in</strong>ed sequences per approach is given <strong>in</strong> Table 1.<br />

Normalization selectively removes sequences present <strong>in</strong> relatively high abundance,<br />

improv<strong>in</strong>g the sampl<strong>in</strong>g <strong>of</strong> rare transcripts. It is important to sample transcripts<br />

that are present <strong>in</strong> low abundance, as <strong>effectors</strong> may be produced very locally <strong>and</strong><br />

can therefore be present at low abundance <strong>in</strong> the overall sample. We generated<br />

r<strong>and</strong>om-primed cDNA to more evenly spread coverage over the entire length <strong>of</strong> the<br />

transcripts. Pools 3 <strong>and</strong> 4 (Table 1) are r<strong>and</strong>om primed <strong>and</strong> normalized, <strong>and</strong> were<br />

used to generate the majority <strong>of</strong> reads (>90%). We also sequenced the 450–650-bp


70 Chapter 3<br />

fragments from both the 3′ <strong>and</strong> 5′ ends, as the expected ~200-bp read size <strong>of</strong> the<br />

454 sequenc<strong>in</strong>g technology (GS FLX) used would otherwise probably miss the 3′<br />

ends <strong>of</strong> transcripts. In addition, we sequenced the 5′-enriched non-normalized pools<br />

to provide stronger coverage <strong>of</strong> the 5′ ends <strong>of</strong> transcripts that are most important<br />

when look<strong>in</strong>g for N-term<strong>in</strong>al signal peptides <strong>of</strong> secreted prote<strong>in</strong>s.<br />

Table 1: Materials <strong>and</strong> method <strong>of</strong> preparation <strong>of</strong> cDNA for transcriptome sequenc<strong>in</strong>g. The contribution<br />

<strong>of</strong> each pool to the number <strong>of</strong> reads <strong>and</strong> number <strong>of</strong> bases is <strong>in</strong>dicated.<br />

Pool Material Strategy 5’ Reads 1 Total 5’ nt 3’ Reads 2 Total 3’ nt<br />

1 Spores 5’ sequenc<strong>in</strong>g 86 352 22 212 388 nd nd<br />

2 Interaction 5’ sequenc<strong>in</strong>g 115 413 30 335 206 nd nd<br />

3 Interaction<br />

R<strong>and</strong>om-primed +<br />

normalized<br />

701 499 182 312 369<br />

4 Mixed<br />

R<strong>and</strong>om-primed +<br />

normalized<br />

637 709 165 624 293<br />

1 013 411 262 824 074<br />

1<br />

The DNA code <strong>in</strong> the adapter that l<strong>in</strong>ks a read to a pool could not be resolved for 19,422 reads that are<br />

not <strong>in</strong>cluded <strong>in</strong> this table.<br />

2<br />

The DNA code was not sequenced <strong>in</strong> 3’ Reads.<br />

A total <strong>of</strong> 523 477 146 bases from 2 349 338 cDNA reads (91.28% <strong>of</strong> all available<br />

reads) was assembled <strong>in</strong>to 59 618 contigs. The total length <strong>of</strong> contig consensus<br />

sequences was 36 217 753 bases <strong>and</strong> the average coverage <strong>of</strong> these sequences was<br />

14.6-fold. The average length <strong>of</strong> contig consensus sequences was 607.5 bases.<br />

Further statistics relat<strong>in</strong>g to the assembled sequences can be found <strong>in</strong> Table 2.<br />

Table 2: Assembly process statistics regard<strong>in</strong>g the number <strong>of</strong> <strong>in</strong>put reads, reads after filter<strong>in</strong>g <strong>and</strong><br />

rema<strong>in</strong><strong>in</strong>g s<strong>in</strong>gletons. The number <strong>and</strong> total length <strong>of</strong> contigs are given for all <strong>and</strong> large (>500<br />

nucleotide) contigs.<br />

Transcriptome assembly<br />

Reads<br />

Total number <strong>of</strong> reads 2 573 806<br />

Number <strong>of</strong> reads after filter<strong>in</strong>g 2 349 338 (91.28%)<br />

Number <strong>of</strong> bases <strong>in</strong> reads after filter<strong>in</strong>g 523 477 146 (90.65%)<br />

S<strong>in</strong>gletons rema<strong>in</strong><strong>in</strong>g after assembly 82 194 (3.19%)<br />

Contigs<br />

Contigs 59 618<br />

Bases <strong>in</strong> consensus sequences 36 217 753<br />

Large contigs (>500bp) 26 358 (44.21%)<br />

Bases <strong>in</strong> large contigs 26 543 633 (73.29%)<br />

Average size <strong>of</strong> large contigs 1 007<br />

N50 size <strong>of</strong> large contigs 1 087


Effector identification <strong>in</strong> B. lactucae<br />

71<br />

The assembled contigs are derived from both B. lactucae <strong>and</strong> lettuce, as most<br />

transcript sequences were derived from RNA <strong>of</strong> <strong>in</strong>fected plants. To determ<strong>in</strong>e<br />

which transcripts are derived from B. lactucae <strong>and</strong> to correct 454 sequenc<strong>in</strong>g<br />

errors, we generated additional sequence <strong>in</strong>formation by SOLiD sequenc<strong>in</strong>g <strong>of</strong><br />

B. lactucae gDNA. Conidiospores were used for gDNA isolation as they are the<br />

only life stage <strong>of</strong> B. lactucae that can be well separated from its lettuce host. We<br />

sequenced gDNA rather than mRNA from spores, as the transcript pool <strong>in</strong> spores<br />

most probably lacks many transcripts that are <strong>in</strong>volved <strong>in</strong> the <strong>in</strong>teraction with the<br />

host plant. The B. lactucae gDNA SOLiD sequenc<strong>in</strong>g data obta<strong>in</strong>ed consist <strong>of</strong><br />

173 428 926 reads <strong>of</strong> ~50 bp.<br />

By mapp<strong>in</strong>g B. lactucae gDNA reads to the assembled 454 reads, contigs<br />

represent<strong>in</strong>g B. lactucae transcripts can be differentiated from lettuce-derived or<br />

poorly assembled sequences. Transcripts with high average gDNA read coverage<br />

probably represent B. lactucae transcriptome sequences, whereas low or no coverage<br />

<strong>in</strong>dicates a lettuce or contam<strong>in</strong>ant orig<strong>in</strong>. A total <strong>of</strong> 20 925 <strong>of</strong> 59 618 contigs, or<br />

35.2%, had at least one SOLiD gDNA read mapped to the sequence. The average<br />

gDNA read coverage per contig peaked at 37–40-fold coverage, as shown <strong>in</strong> Fig. 2.<br />

The shoulder seen at approximately half this coverage (18–20-fold coverage) <strong>in</strong><br />

Fig. 2 may represent alleles that have been assembled as separate transcripts. We<br />

def<strong>in</strong>ed the B. lactucae transcriptome set as the 19 663 contigs with a 10-fold<br />

or higher average SOLiD-sequenced gDNA read coverage. The vast majority<br />

<strong>of</strong> excluded sequences had no gDNA read coverage <strong>and</strong>, <strong>of</strong> those that did, most<br />

had an average gDNA read coverage <strong>of</strong> less than one-fold (Fig. 2). The average<br />

length <strong>of</strong> the sequences <strong>in</strong> our B. lactucae transcriptome set <strong>of</strong> 19 663 contigs was<br />

736.7 bp, up from 607.5 bp <strong>in</strong> the overall set, probably as a result <strong>of</strong> the exclusion<br />

<strong>of</strong> short contam<strong>in</strong>ant sequences. Of all the assembled spore-derived reads (pool 1),<br />

over 93% were found <strong>in</strong> consensus sequences that were classified as B. lactucae.<br />

Figure 2: Number <strong>of</strong> consensus sequences with <strong>in</strong>dicated average genomic DNA (gDNA) read<br />

coverage. Read coverages are assigned <strong>in</strong>to groups by tak<strong>in</strong>g the <strong>in</strong>teger + 1 <strong>of</strong> the actual average read<br />

coverage.


72 Chapter 3<br />

For the non-normalized, <strong>in</strong>teraction-derived reads (pool 2), we found 20% <strong>of</strong><br />

reads <strong>in</strong> B. lactucae contigs, whereas, from normalized pools (pools 3 <strong>and</strong> 4), 47%<br />

matched to B. lactucae. This suggests that the normalization procedure <strong>in</strong>creased<br />

the proportion <strong>of</strong> B. lactucae transcript sequences <strong>in</strong> the <strong>in</strong>teraction cDNA. To<br />

assess whether lettuce transcripts were successfully excluded, we compared our<br />

assembled sequences with a collection <strong>of</strong> 226 050 expressed sequence tags (ESTs)<br />

from Lactuca species (The Compositae Genome Project; http://cgpdb.ucdavis.edu).<br />

For the sequences excluded from the B. lactucae transcriptome, we found match<strong>in</strong>g<br />

ESTs for ~70% <strong>of</strong> our sequences. More importantly, we found only 151 sequences<br />

(


Effector identification <strong>in</strong> B. lactucae<br />

73<br />

tively. The B. lactucae transcripts represent the genes expressed dur<strong>in</strong>g <strong>in</strong>fection,<br />

<strong>and</strong> may therefore not represent all genes that are present <strong>in</strong> the genome. With a<br />

match <strong>of</strong> 79%, the B. lactucae transcriptome is well represented.<br />

The prote<strong>in</strong> sequences correspond<strong>in</strong>g to a set <strong>of</strong> 119 core orthologous genes<br />

were used to determ<strong>in</strong>e the place <strong>of</strong> B. lactucae <strong>in</strong> oomycete phylogeny by<br />

comparison with six pathogenic oomycete species <strong>and</strong> four nonpathogenic<br />

stramenochromes for which predicted proteomes are available. As depicted <strong>in</strong><br />

Fig. 3, the stramenochromes branch <strong>of</strong>f first, after which Saprolegnia parasitica<br />

<strong>and</strong> then Py. ultimum branch <strong>of</strong>f <strong>in</strong> the evolutionary tree. We then f<strong>in</strong>d B. lactucae,<br />

followed by H. arabidopsidis <strong>and</strong>, f<strong>in</strong>ally, three Phytophthora species. We can<br />

therefore compare B. lactucae with the earlier branch<strong>in</strong>g necrotrophic oomycete<br />

Py. ultimum <strong>and</strong> the later branch<strong>in</strong>g biotrophic <strong>downy</strong> <strong>mildew</strong> H. arabidopsidis <strong>and</strong><br />

hemibiotrophic Phytophthora species.<br />

Saprolegnia parasitica<br />

100<br />

Pythium ultimum<br />

100<br />

Bremia lactucae<br />

100<br />

Hyaloperonospora<br />

arabidopsidis<br />

96<br />

93<br />

Phytophthora<br />

spp.<br />

0.2<br />

Figure 3: Phylogeny <strong>of</strong> Bremia lactucae <strong>and</strong> related stramenochromes determ<strong>in</strong>ed from a multiple<br />

sequence alignment <strong>of</strong> 119 concatenated orthologous sequences. The scale bar represents 0.2<br />

substitutions per am<strong>in</strong>o acid. Numbers represent the bootstrap support for the given branch.<br />

To def<strong>in</strong>e the B. lactucae secretome, we determ<strong>in</strong>ed which prote<strong>in</strong> models<br />

conta<strong>in</strong>ed a signal peptide but no transmembrane helix predictions. Of the 16 372<br />

models considered, 1023 were predicted to be secreted. The size <strong>of</strong> the secretome<br />

is close to that predicted for the <strong>downy</strong> <strong>mildew</strong> H. arabidopsidis (1016 predicted<br />

secreted prote<strong>in</strong>s) <strong>and</strong> Py. ultimum (1123 secreted prote<strong>in</strong>s), as shown <strong>in</strong> Fig. 4.<br />

The 1023 c<strong>and</strong>idate secreted B. lactucae prote<strong>in</strong>s were further analysed for prote<strong>in</strong><br />

doma<strong>in</strong>s <strong>and</strong> other features related to <strong>effectors</strong>.


74 Chapter 3<br />

B. lactucae<br />

H. arabidopsidis<br />

P. <strong>in</strong>festans<br />

P. ramorum<br />

P. sojae<br />

P. ultimum<br />

S. parasitica<br />

Figure 4: The size <strong>of</strong> the secretome<br />

encoded <strong>in</strong> the genomes <strong>of</strong> different<br />

oomycetes, as determ<strong>in</strong>ed from the<br />

presence <strong>of</strong> signal peptides <strong>and</strong> the<br />

absence <strong>of</strong> transmembrane helices <strong>in</strong> the<br />

prote<strong>in</strong> models <strong>of</strong> each species.<br />

Doma<strong>in</strong> composition <strong>of</strong> the B. lactucae secretome<br />

An <strong>in</strong>itial approach to catalogue the secretome was to determ<strong>in</strong>e which Pfam<br />

doma<strong>in</strong>s, families <strong>and</strong> repeats were present. We obta<strong>in</strong>ed a total <strong>of</strong> 348 Pfam<br />

annotations for 295 <strong>of</strong> the 1023 secretome prote<strong>in</strong> models. Prevalent doma<strong>in</strong>s <strong>in</strong><br />

the B. lactucae secretome (Table 3) <strong>in</strong>cluded various doma<strong>in</strong>s that may be l<strong>in</strong>ked<br />

to pathogenicity. The most prevalent doma<strong>in</strong> <strong>in</strong> the B. lactucae secretome was the<br />

elicit<strong>in</strong> doma<strong>in</strong>. Elicit<strong>in</strong>s are small highly conserved secreted prote<strong>in</strong>s characterized<br />

by a doma<strong>in</strong> that conta<strong>in</strong>s six cyste<strong>in</strong>e residues important for structure. Of the 12<br />

B. lactucae prote<strong>in</strong> models with elicit<strong>in</strong> doma<strong>in</strong> matches, n<strong>in</strong>e conta<strong>in</strong>ed at least<br />

six cyste<strong>in</strong>es <strong>in</strong> the predicted mature peptide. Phytophthora elicit<strong>in</strong>s trigger a<br />

hypersensitive response <strong>in</strong> host plants, an effect that is l<strong>in</strong>ked to sterol b<strong>in</strong>d<strong>in</strong>g <strong>and</strong><br />

transport<strong>in</strong>g activity for which a surface-exposed polar residue is important [23‐28] .<br />

Elicit<strong>in</strong>s may play a role <strong>in</strong> the uptake <strong>of</strong> sterols by oomycetes that do not synthesize<br />

their own, as the presence <strong>of</strong> elicit<strong>in</strong>s appears to be correlated with the loss <strong>of</strong><br />

the sterol biosynthetic pathway [28‐30] . Elicit<strong>in</strong>s are found <strong>in</strong> higher numbers <strong>in</strong> the<br />

hemibiotroph P. <strong>in</strong>festans <strong>and</strong> the necrotroph Py. ultimum than <strong>in</strong> H. arabidopsidis<br />

<strong>and</strong> B. lactucae (Table 3), suggest<strong>in</strong>g that they may be selected aga<strong>in</strong>st <strong>in</strong> biotrophs<br />

that adapt a more stealthy <strong>in</strong>fection strategy. All <strong>of</strong> the B. lactucae elicit<strong>in</strong>s are<br />

α-elicit<strong>in</strong>s [31] , which generally provoke a less marked host response than do<br />

β-elicit<strong>in</strong>s.<br />

Tryps<strong>in</strong> doma<strong>in</strong>s, found <strong>in</strong> peptidases, are present <strong>in</strong> B. lactucae <strong>in</strong> numbers<br />

similar to those <strong>in</strong> P. <strong>in</strong>festans <strong>and</strong> Py. ultimum, whereas fewer are found <strong>in</strong><br />

H. arabidopsidis. The role <strong>of</strong> oomycete proteases <strong>in</strong> pathogenesis has not been<br />

determ<strong>in</strong>ed, with only a s<strong>in</strong>gle report <strong>of</strong> a P. <strong>in</strong>festans protease with an <strong>in</strong>tact


Effector identification <strong>in</strong> B. lactucae<br />

75<br />

Table 3: Number <strong>of</strong> prote<strong>in</strong> models <strong>in</strong> Bremia lactucae, Phytophthora <strong>in</strong>festans, Hyaloperonospora<br />

arabidopsidis, <strong>and</strong> Pythium ultimum that are predicted to conta<strong>in</strong> the doma<strong>in</strong>s that are most prevalent<br />

<strong>in</strong> the B. lactucae secretome.<br />

Pfam Doma<strong>in</strong> B. lactucae H. arabidopsidis P. <strong>in</strong>festans P. ultimum<br />

Elicit<strong>in</strong> 12 9 28 37<br />

Tryps<strong>in</strong> 11 4 13 14<br />

Jacal<strong>in</strong> 7 4 4 0<br />

DnaJ 6 3 5 5<br />

Cyste<strong>in</strong>e-rich secretory prote<strong>in</strong> family 6 7 14 9<br />

Ric<strong>in</strong>-B-lect<strong>in</strong> 4 2 1 0<br />

catalytic triad that is expressed dur<strong>in</strong>g <strong>in</strong>fection [32] . More common are catalytically<br />

<strong>in</strong>active tryps<strong>in</strong>-like prote<strong>in</strong>s that act as glucanase <strong>in</strong>hibitors [33] . The B. lactucae<br />

prote<strong>in</strong>s with tryps<strong>in</strong> matches do not have <strong>in</strong>tact catalytic residues <strong>in</strong> the active site<br />

<strong>and</strong> could therefore function as glucanase <strong>in</strong>hibitors. Host glucanases can damage<br />

the oomycete cell wall, imped<strong>in</strong>g oomycete growth <strong>and</strong> releas<strong>in</strong>g glucan-oligosaccharide<br />

elictors [34] , <strong>and</strong> are therefore a potentially useful target for <strong>in</strong>hibition by an<br />

<strong>in</strong>vad<strong>in</strong>g oomycete.<br />

Jacal<strong>in</strong> doma<strong>in</strong>s <strong>and</strong> Ric<strong>in</strong>-B-lect<strong>in</strong> doma<strong>in</strong>s, both found <strong>in</strong> lect<strong>in</strong>s, are present<br />

<strong>in</strong> larger numbers than <strong>in</strong> the other oomycetes. A Jacal<strong>in</strong> doma<strong>in</strong>-match<strong>in</strong>g<br />

oomycete prote<strong>in</strong> has been proposed to act <strong>in</strong> cell wall degradation [32] , <strong>and</strong> roles<br />

<strong>in</strong> host attachment have been suggested on the basis <strong>of</strong> homology to lect<strong>in</strong>s [35] <strong>and</strong><br />

lect<strong>in</strong>-like activities [36] . Host lect<strong>in</strong>s, however, act <strong>in</strong> defence <strong>and</strong> may recognize<br />

oomycete-derived carbohydrates or glycosylation features. Pathogen lect<strong>in</strong>s could<br />

therefore also be <strong>in</strong>strumental <strong>in</strong> mask<strong>in</strong>g these signals, as has been demonstrated<br />

for the ECP6 effector <strong>of</strong> the plant-pathogenic fungus Cladosporium fulvum, which<br />

masks chit<strong>in</strong> oligosaccharides that normally trigger plant immune responses [37] .<br />

Cyste<strong>in</strong>e-rich secreted prote<strong>in</strong>s <strong>and</strong> prote<strong>in</strong>s mediat<strong>in</strong>g disulphide bond formation<br />

may play an important role <strong>in</strong> deal<strong>in</strong>g with the protease-rich conditions <strong>in</strong><br />

the extracellular environment. Cyste<strong>in</strong>e residues can form disulphide bridges that<br />

may contribute to prote<strong>in</strong> stability <strong>and</strong> protect aga<strong>in</strong>st proteases. In addition, DnaJ<br />

prote<strong>in</strong>s may act as molecular chaperones to further stabilize apoplastic prote<strong>in</strong>s.<br />

Many prote<strong>in</strong> families <strong>in</strong>volved <strong>in</strong> pathogenicity, found <strong>in</strong> other oomycetes, are<br />

small cyste<strong>in</strong>e-rich prote<strong>in</strong>s. Examples <strong>in</strong>clude the aforementioned elicit<strong>in</strong>s,<br />

Phytophthora PcFs [38‐40] <strong>and</strong> H. arabidopsidis PPATs [41] <strong>and</strong> HaCRs [42] . Although<br />

there are six prote<strong>in</strong>s match<strong>in</strong>g the Pfam cyste<strong>in</strong>e-rich secretory doma<strong>in</strong> model,


76 Chapter 3<br />

these prote<strong>in</strong> models conta<strong>in</strong> few cyste<strong>in</strong>e residues. Nonetheless, 135 cyste<strong>in</strong>e-rich<br />

prote<strong>in</strong>s (>5% cyste<strong>in</strong>e) are found <strong>in</strong> the B. lactucae secretome. The majority<br />

<strong>of</strong> these are short (


Effector identification <strong>in</strong> B. lactucae<br />

77<br />

Host-translocated <strong>effectors</strong><br />

To f<strong>in</strong>d potential host-translocated RXLR <strong>effectors</strong>, a search for the am<strong>in</strong>o acid<br />

motif RXLR was performed on the predicted B. lactucae secretome. This search<br />

identified 44 potential RXLR <strong>effectors</strong>, count<strong>in</strong>g only hits with the RXLR located<br />

between positions 30 <strong>and</strong> 60 <strong>in</strong> prote<strong>in</strong>s <strong>of</strong> at least 65 am<strong>in</strong>o acids. As variants<br />

<strong>of</strong> the RXLR motif also allow host entry, we exp<strong>and</strong>ed our search to <strong>in</strong>clude<br />

prote<strong>in</strong> models that are similar to known RXLRs. We therefore performed a blast<br />

search with all H. arabidopsidis [6] <strong>and</strong> Phytophthora spp. [7] RXLRs aga<strong>in</strong>st the<br />

B. lactucae secretome. To rule out matches based on homology to conserved<br />

signal peptide sequences, they were removed from the B. lactucae prote<strong>in</strong>s. In this<br />

search, 38 matches were found <strong>in</strong> the B. lactucae secretome, irrespective <strong>of</strong> the<br />

presence or absence <strong>of</strong> an RXLR or RXLR-like motif. In a third approach to f<strong>in</strong>d<br />

RXLR <strong>effectors</strong>, we selected the RXLR motif <strong>and</strong> 20 residues on either side <strong>in</strong> the<br />

sequences that were identified by the motif search, <strong>and</strong> used these as <strong>in</strong>put for a<br />

jackhmmer search. jackhmmer is an iterative search that uses matches to an <strong>in</strong>itial<br />

<strong>in</strong>put sequence to construct an alignment pr<strong>of</strong>ile which is employed to search for<br />

additional matches <strong>in</strong> the target database <strong>and</strong> to further ref<strong>in</strong>e the pr<strong>of</strong>ile. Seven<br />

new c<strong>and</strong>idates were identified <strong>in</strong> a set <strong>of</strong> 52 that <strong>in</strong>cluded 42 <strong>in</strong>put sequences<br />

<strong>and</strong> three sequences that were found by blast. Ten prote<strong>in</strong>s were predicted by all<br />

three methods (Fig. 5). The comb<strong>in</strong>ed set consists <strong>of</strong> 77 unique potential RXLR<br />

<strong>effectors</strong>, the details <strong>of</strong> which are provided <strong>in</strong> Table 4. We also found prote<strong>in</strong><br />

models by blast comparison that did not have an RXLR motif or variant there<strong>of</strong>,<br />

but did have an EER motif, albeit slightly more N-term<strong>in</strong>al <strong>of</strong> the location at which<br />

the RXLR motif would be expected. For 11 B. lactucae contigs encod<strong>in</strong>g RXLR<br />

<strong>and</strong> RXLR-like prote<strong>in</strong>s, we observed clear<br />

differential expression based on transcript<br />

reads between spores <strong>and</strong> <strong>in</strong> planta stages<br />

(Table S1). Most <strong>of</strong> the B. lactucae RXLR<br />

<strong>and</strong> RXLR-like <strong>effectors</strong> were not found <strong>in</strong><br />

the genomes <strong>of</strong> other <strong>downy</strong> <strong>mildew</strong>s. Bidirectional<br />

blast matches (E-value < 1e-3 both<br />

ways) were found for only seven B. lactucae<br />

versus eight H. arabidopsidis RXLRs, <strong>and</strong><br />

none for Ps. cubensis. In addition, between<br />

Ps. cubensis <strong>and</strong> H. arabidopsidis only three<br />

RXLR matches were found.<br />

23<br />

2<br />

10<br />

32<br />

Motif<br />

3<br />

7<br />

Blast<br />

HMM<br />

Figure 5: Venn diagram depict<strong>in</strong>g the<br />

overlap <strong>of</strong> the three methods used for the<br />

prediction <strong>of</strong> RXLR <strong>effectors</strong>. HMM,<br />

hidden Markov model.


78 Chapter 3<br />

Table 4 (cont<strong>in</strong>ued next page): RXLR <strong>and</strong> RXLR-like motifs found <strong>in</strong> Bremia lactucae secretome<br />

prote<strong>in</strong> models identified as potential RXLR <strong>effectors</strong> based on a motif search, BLAST comparison<br />

with RXLRs <strong>of</strong> other oomycetes or a jackhmmer search with B. lactucae RXLR motifs <strong>and</strong> surround<strong>in</strong>g<br />

am<strong>in</strong>o acids as <strong>in</strong>put. All sequence coord<strong>in</strong>ates are given <strong>in</strong> am<strong>in</strong>o acids. Evidence codes are built up <strong>of</strong><br />

M (motif search), B (BLAST comparison) <strong>and</strong> H (jackhmmer search)<br />

contig ID<br />

RXLR<br />

EER(like)<br />

RXLR EER start<br />

start<br />

motif 1 Stop codon Evidence 2<br />

16131 44 RRLR 55 EER 363 MBH<br />

16134 41 RRLR 50 EER 454 MBH<br />

23155 49 RLLR 61 EQEER - MBH<br />

27267 55 RALR 68 EER - MBH<br />

35642 42 RRLR 60 EDR - MBH<br />

40355 50 RRLR 64 DER 270 MBH<br />

42290 45 RGLR 200 NEK 333 MBH<br />

43449 35 RMLR - - MBH<br />

45396 53 RLLR - 130 MBH<br />

49490 44 RRLR 57 DER - MBH<br />

19377 49 RRLR - 269 MB<br />

22293 45 RFLR 65 DEK - MB<br />

07991 43 RQLR 78 EER 161 MH<br />

08247 52 RSLR - 103 MH<br />

08248 52 RSLR - 146 MH<br />

08983 49 RRLR - - MH<br />

16394 46 RRLR 59 QNDER - MH<br />

18684 50 RRLR - 282 MH<br />

18840 49 RPLR 61 NQEER - MH<br />

20700 56 RELR - 252 MH<br />

21364 47 RALR 58 EDK - MH<br />

23333 35 RFLR - - MH<br />

24965 57 RSLR 62 DENR 107 MH<br />

29191 46 RKLR - 75 MH<br />

31910 45 RLLR 54 DNNEER 160 MH<br />

32917-1 47 RSLR 60 NDER - MH<br />

33962 39 RILR - 74 MH<br />

36117 38 RDLR - 424 MH<br />

36219 45 RHLR 60 ENR 201 MH<br />

38529 40 RQLR 91 EDK - MH<br />

39974 41 RQLR 50 DER - MH<br />

40514 44 RLLR 56 EER 126 MH<br />

41799 42 RALR - 90 MH<br />

41935 44 RLLR 53 DDNDER - MH<br />

43687 55 RSLR - 91 MH<br />

43968 33 RGLR - 185 MH


Effector identification <strong>in</strong> B. lactucae<br />

79<br />

contig ID<br />

RXLR<br />

EER(like)<br />

RXLR EER start<br />

start<br />

motif 1 Stop codon Evidence 2<br />

45726 42 RLLR - - MH<br />

46714 45 RSLR 82 NQR - MH<br />

48006 46 RALR 55 NEDR 92 MH<br />

48013 55 RALR - 82 MH<br />

50216 47 RSLR 60 DEER 102 MH<br />

53213 43 RGLR 61 EER - MH<br />

53460 47 RSLR 60 DEER - MH<br />

59265 49 RLLR 62 EE - MH<br />

22259 - 52 EER 375 BH<br />

29756 36 RSLLQ 51 DER - BH<br />

56090 42 RSLQ 55 EER - BH<br />

07727 45 RRLK 63 EER - B<br />

07952 - 65 NEER 304 B<br />

08155 55 RRLQ 109 EEK 321 B<br />

09272 - 58 DEER 346 B<br />

09828 - 48 EEK 652 B<br />

11813 - 49 EER 629 B<br />

12298 63 RLKREQ - 612 B<br />

13165 114 RSLR 360 DEK - B<br />

14316 - 50 EER 365 B<br />

16501 481 RKLR - 485 B<br />

17177 - - - B<br />

18477 42 QNLR - - B<br />

19297 57 KVLR - 253 B<br />

24419 - 54 DEER 434 B<br />

24503 - - 520 B<br />

28334 43 EKLR 53 ENR 479 B<br />

29771 - - 263 B<br />

35494 - - - B<br />

35745 169 RSLR 72 EER - B<br />

48427 62 RLLD - - B<br />

51693 - 49 EER - B<br />

51725 39 PSLR - - B<br />

56746 - 49 EER - B<br />

23857 42 GKLR 55 DER 243 H<br />

25695 44 GKLR 57 DER 336 H<br />

26201 58 RSLR 63 DENR 111 H<br />

31920 44 GRLR 57 DER 233 H<br />

38296 63 RRLR - - H<br />

46806 43 QLRLR 57 DER - H<br />

50948 41 GRLR 54 DER - H<br />

1<br />

Determ<strong>in</strong>ed as [DENQ]{2,}[RK]<br />

2<br />

Evidence codes are as follows: M = Motif, B = Blast, H = jackhmmer.


80 Chapter 3<br />

Us<strong>in</strong>g the collection <strong>of</strong> Cr<strong>in</strong>kler <strong>effectors</strong> <strong>of</strong> Phytophthora species [7] , we performed<br />

similarity searches to identify these <strong>effectors</strong> <strong>in</strong> the B. lactucae secretome.<br />

We found six c<strong>and</strong>idates, three <strong>of</strong> which conta<strong>in</strong>ed an LXFLA am<strong>in</strong>o acid motif<br />

that was similar to the motifs reported <strong>in</strong> Phytophthora species. Interest<strong>in</strong>gly,<br />

gDNA read coverage was higher than expected for four c<strong>and</strong>idates: two conta<strong>in</strong><strong>in</strong>g<br />

the LXFLA motif (six- <strong>and</strong> three-fold) <strong>and</strong> two without this sequence (22- <strong>and</strong><br />

40-fold). This suggests that more gene copies or pseudogenes may be present <strong>in</strong><br />

the genome than are detected <strong>in</strong> our transcriptome set, or that multiple genes have<br />

been assembled <strong>in</strong>to a s<strong>in</strong>gle sequence. The sequences conta<strong>in</strong><strong>in</strong>g an LXFLA motif<br />

are not complete, suggest<strong>in</strong>g problems with assembly. We therefore used the HMM<br />

models <strong>of</strong> Cr<strong>in</strong>kler doma<strong>in</strong>s [7] to screen all predicted peptides for the potential<br />

presence <strong>of</strong> Cr<strong>in</strong>kler doma<strong>in</strong>s. All peptides were <strong>in</strong>cluded as many <strong>of</strong> the potential<br />

Phytophthora Cr<strong>in</strong>klers do not have a signal peptide <strong>and</strong> signal peptides may have<br />

been assembled separately. We found a total <strong>of</strong> 75 sequences that had homology<br />

to one or more <strong>of</strong> the reported Cr<strong>in</strong>kler doma<strong>in</strong>s. In total, we found matches to 14<br />

different C-term<strong>in</strong>al Cr<strong>in</strong>kler doma<strong>in</strong>s <strong>in</strong> B. lactucae (Table 5), aga<strong>in</strong> with higher<br />

than expected gDNA coverage. Interest<strong>in</strong>gly, we also found traces <strong>of</strong> D2, DC <strong>and</strong><br />

DBF doma<strong>in</strong>s, which are also found <strong>in</strong> cell death-<strong>in</strong>duc<strong>in</strong>g P. <strong>in</strong>festans Cr<strong>in</strong>klers [7] .<br />

Table 5: Matches to hidden Markov models <strong>of</strong> Cr<strong>in</strong>kler<br />

doma<strong>in</strong>s (as def<strong>in</strong>ed by Haas et al [7] ) <strong>in</strong> the Bremia<br />

lactucae transcriptome, <strong>and</strong> the predicted copy numbers<br />

there<strong>of</strong>.<br />

Doma<strong>in</strong><br />

Peptide<br />

predictions<br />

Predicted<br />

copy number 1<br />

N-term<strong>in</strong>al<br />

LFLAK 15 64<br />

DWL 13 101<br />

C-term<strong>in</strong>al<br />

D2 11 11<br />

DAB 2 4<br />

DBE 4 22<br />

DBF 3 3<br />

DC 2 1<br />

DDB 3 2<br />

DDC 2 1<br />

DFA 2 2<br />

DFB 8 111<br />

DFC 9 68<br />

DN17 1 1<br />

DN7 1 1<br />

DX9 1 1<br />

DXX 15 135<br />

1<br />

The predicted copy number is determ<strong>in</strong>ed<br />

by divid<strong>in</strong>g the observed average genomic<br />

DNA coverage <strong>of</strong> the assembled transcripts<br />

<strong>in</strong> which the <strong>in</strong>dicated doma<strong>in</strong>s are encoded<br />

by the average genomic coverage <strong>of</strong> all<br />

assembled B. lactucae transcripts.


Effector identification <strong>in</strong> B. lactucae<br />

81<br />

Exp<strong>and</strong>ed sequence families <strong>in</strong> B. lactucae<br />

The cluster<strong>in</strong>g <strong>of</strong> B. lactucae secretome sequences with those <strong>of</strong> six other oomycete<br />

species <strong>and</strong> four stramenopile species was performed on the basis <strong>of</strong> a comparison<br />

<strong>of</strong> all sequences with each other. A cluster <strong>of</strong> closely related genes may <strong>in</strong>dicate<br />

a recently exp<strong>and</strong>ed family <strong>of</strong> genes that plays an important role <strong>in</strong> pathogenesis<br />

<strong>and</strong> adaptation to the host. Cluster<strong>in</strong>g revealed 85 groups <strong>of</strong> sequences conta<strong>in</strong><strong>in</strong>g<br />

multiple B. lactucae members. We focused on eight clusters with three or more<br />

B. lactucae members that conta<strong>in</strong>ed significantly more B. lactucae members than<br />

would be expected on the basis <strong>of</strong> the presence <strong>of</strong> members <strong>of</strong> six other oomycetes<br />

<strong>and</strong> four other stramenopiles.<br />

Two clusters could be categorized on the basis <strong>of</strong> Pfam doma<strong>in</strong> hits. The first is<br />

a B. lactucae-unique cluster conta<strong>in</strong><strong>in</strong>g a three-member subset <strong>of</strong> the Pfam elicit<strong>in</strong><br />

doma<strong>in</strong>-match<strong>in</strong>g sequences. The second cluster, with 11 B. lactucae members <strong>and</strong><br />

two H. arabidopsidis, five P. <strong>in</strong>festans, 10 P. sojae <strong>and</strong> 18 P. ramorum members,<br />

conta<strong>in</strong>s all seven Jacal<strong>in</strong> doma<strong>in</strong>-conta<strong>in</strong><strong>in</strong>g prote<strong>in</strong>s. The members <strong>of</strong> this cluster<br />

have blast hits <strong>in</strong> the NCBI NR prote<strong>in</strong> database to P. <strong>in</strong>festans hypothetical<br />

conserved prote<strong>in</strong>s, but also to NPP1, an NLP, <strong>and</strong> putative adhes<strong>in</strong>s. The<br />

sequences are dist<strong>in</strong>ct from the sequences with a Pfam NLP prediction, as those<br />

cluster together <strong>in</strong> another cluster, with eight B. lactucae, n<strong>in</strong>e H. arabidopsidis, 25<br />

P. <strong>in</strong>festans, 40 P. sojae <strong>and</strong> 56 P. ramorum members.<br />

Of the rema<strong>in</strong><strong>in</strong>g six clusters, five consist <strong>of</strong> three B. lactucae sequences each,<br />

<strong>and</strong> one cluster consists <strong>of</strong> four B. lactucae sequences. All but one cluster could<br />

be l<strong>in</strong>ked to identified RXLR effector c<strong>and</strong>idates. The four-member cluster most<br />

closely represents the ‘classic’ RXLR effector, with an RXLR motif <strong>in</strong> all members<br />

<strong>and</strong> a DER motif <strong>in</strong> one <strong>of</strong> them. The four clusters <strong>of</strong> three sequences share<br />

similar sequence features that are more apparent when these clusters are aligned<br />

(Fig. 6). No significant similarity to sequences <strong>in</strong> the NCBI NR prote<strong>in</strong> database<br />

was found for sequences <strong>in</strong> these four clusters. All members <strong>of</strong> the C1 cluster had<br />

already been identified as potential RXLR <strong>effectors</strong>, as well as a s<strong>in</strong>gle member<br />

<strong>of</strong> each <strong>of</strong> two other clusters (C4 contig18477 <strong>and</strong> C3 contig28334). One member<br />

<strong>of</strong> C1, contig49490, has an <strong>in</strong>tact RXLR motif that aligns with similar features <strong>in</strong><br />

sequences <strong>in</strong> all sequence clusters. The presence <strong>of</strong> these sequences <strong>in</strong> groups <strong>of</strong><br />

related sequences, with features similar to those found <strong>in</strong> known RXLR <strong>effectors</strong>,<br />

suggests that these prote<strong>in</strong>s may be host-translocated <strong>effectors</strong>. The cluster that<br />

could not be l<strong>in</strong>ked to RXLR <strong>effectors</strong> has no RXLR-like motif (not shown) <strong>and</strong><br />

conta<strong>in</strong>s no members that were identified as potential RXLR <strong>effectors</strong>, although all<br />

members conta<strong>in</strong> an EER motif.


82 Chapter 3<br />

Figure 6: Alignment <strong>of</strong> the sequences <strong>of</strong> four Bremia lactucae-specific clusters <strong>of</strong> predicted secreted<br />

prote<strong>in</strong>s. The columns <strong>in</strong> which potential RXLR <strong>and</strong> dEER-like motifs can be found are <strong>in</strong>dicated<br />

above the alignment.<br />

The cluster<strong>in</strong>g <strong>of</strong> secreted sequences highlights three elicit<strong>in</strong>s specific for B. lactucae.<br />

It also shows that the family <strong>of</strong> jacal<strong>in</strong> doma<strong>in</strong> prote<strong>in</strong>s occurs <strong>in</strong> a cluster<br />

with vary<strong>in</strong>g numbers <strong>of</strong> family members <strong>in</strong> other oomycete species, suggest<strong>in</strong>g<br />

that they might fulfil a species-specific role. F<strong>in</strong>ally, it identifies other potential<br />

host-translocated <strong>effectors</strong> that were not predicted by other methods.<br />

Discussion<br />

The B. lactucae transcriptome sequences that have been generated by next-generation<br />

sequenc<strong>in</strong>g methods provide a first look at the toolbox used by B. lactucae to<br />

manipulate its host. Potential apoplastic <strong>and</strong> host-translocated <strong>effectors</strong> could be<br />

predicted from the assembled transcript sequences. We showed that 79% <strong>of</strong> a set <strong>of</strong><br />

conserved eukaryotic genes used to assess genome completion are represented <strong>in</strong><br />

the B. lactucae transcriptome, underl<strong>in</strong><strong>in</strong>g a broad sampl<strong>in</strong>g <strong>of</strong> the transcriptome.<br />

The transcriptome is far more plastic than the genome, <strong>and</strong> the rema<strong>in</strong><strong>in</strong>g 21% <strong>of</strong><br />

conserved eukaryotic genes may not have been sampled because not all developmental<br />

stages <strong>of</strong> B. lactucae were represented <strong>in</strong> our material (e.g. sporangiophore<br />

formation, but also sexual reproduction). Another possibility is that the transcripts<br />

have been sampled, but are not assembled as full-length transcripts <strong>and</strong> therefore<br />

do not satisfy the cut-<strong>of</strong>f values for the models <strong>of</strong> the conserved eukaryotic genes.<br />

Prote<strong>in</strong> predictions were based on the use <strong>of</strong> homology to known prote<strong>in</strong>s to<br />

select the most probable open read<strong>in</strong>g frame (ORF) from the contigs. In 432 cases,<br />

this suggested a model that spanned multiple ORFs <strong>in</strong> a s<strong>in</strong>gle contig, <strong>in</strong> which<br />

case these ORFs were taken together as a s<strong>in</strong>gle prote<strong>in</strong> model. Manual <strong>in</strong>spection<br />

revealed that this may be a result <strong>of</strong> the <strong>in</strong>clusion <strong>of</strong> unprocessed <strong>in</strong>trons <strong>in</strong> the<br />

cDNA sample. Although <strong>in</strong>trons are thought to be rare <strong>in</strong> oomycetes, one study [45]


Effector identification <strong>in</strong> B. lactucae<br />

83<br />

found that, <strong>of</strong> a total <strong>of</strong> 128 alternative splic<strong>in</strong>g events detected <strong>in</strong> P. sojae, <strong>in</strong>tron<br />

skipp<strong>in</strong>g was the most common event, expla<strong>in</strong><strong>in</strong>g 97 cases.<br />

Sequenc<strong>in</strong>g <strong>of</strong> plant-pathogenic oomycetes has revealed a variable number <strong>of</strong><br />

RXLR <strong>effectors</strong> <strong>in</strong> different organisms. We identified 77 potential RXLR <strong>effectors</strong><br />

<strong>in</strong> the B. lactucae secretome, 43 <strong>of</strong> which conta<strong>in</strong>ed a conserved RXLR motif. This<br />

is a relatively small number compared with the 134 found <strong>in</strong> H. arabidopsidis [6]<br />

<strong>and</strong> the 563 found <strong>in</strong> P. <strong>in</strong>festans [7] , but close to the 32 RXLR <strong>effectors</strong> found <strong>in</strong><br />

Ps. cubensis [9] . In addition, 29 potential <strong>effectors</strong> with a QXLR motif were found <strong>in</strong><br />

Ps. cubensis. There is evidence that QXLR motif prote<strong>in</strong>s can also translocate <strong>in</strong>to<br />

the host [9] , illustrat<strong>in</strong>g that strict conformation to the RXLR motif is not required.<br />

In B. lactucae, we identified four clusters <strong>of</strong> three related B. lactucae sequences<br />

that all conta<strong>in</strong> sequence features rem<strong>in</strong>iscent <strong>of</strong> RXLR motifs.<br />

We reported traces <strong>of</strong> Cr<strong>in</strong>kler prote<strong>in</strong>s <strong>in</strong> the B. lactucae transcriptome. These<br />

sequences were not completely assembled <strong>and</strong> had a higher than expected coverage<br />

<strong>of</strong> genomic DNA reads. This may <strong>in</strong>dicate that our sampl<strong>in</strong>g strategy is suboptimal<br />

for captur<strong>in</strong>g Cr<strong>in</strong>klers; EST sequenc<strong>in</strong>g <strong>of</strong> H. arabidopsidis material collected <strong>in</strong> a<br />

similar manner revealed a s<strong>in</strong>gle partially assembled Cr<strong>in</strong>kler [42] . It may be that, <strong>in</strong><br />

these obligate biotrophs, Cr<strong>in</strong>klers are expressed <strong>in</strong> smaller numbers or <strong>in</strong> a more<br />

limited timeframe. Alternatively, key Cr<strong>in</strong>kler-derived reads may be lost dur<strong>in</strong>g<br />

normalization <strong>and</strong> assembly because <strong>of</strong> high sequence similarity.<br />

Sequenc<strong>in</strong>g <strong>of</strong> the transcriptome <strong>of</strong> B. lactucae has provided a wealth <strong>of</strong><br />

<strong>in</strong>formation about the prote<strong>in</strong>s expressed dur<strong>in</strong>g <strong>in</strong>fection <strong>of</strong> the host. The prote<strong>in</strong><br />

models described are an extensive source <strong>of</strong> potential <strong>effectors</strong>. C<strong>and</strong>idate <strong>effectors</strong><br />

can now be cloned <strong>and</strong> tested to study their role <strong>in</strong> the <strong>in</strong>fection process, e.g. as<br />

suppressors <strong>of</strong> host immunity. An important next challenge is to determ<strong>in</strong>e how<br />

these prote<strong>in</strong>s manipulate host processes. Ultimately, host susceptibility <strong>and</strong><br />

resistance genes can then be identified from Lactuca resources, allow<strong>in</strong>g for novel<br />

strategies <strong>in</strong> breed<strong>in</strong>g for resistance aga<strong>in</strong>st B. lactucae.<br />

Experimental procedures<br />

454 sequenc<strong>in</strong>g<br />

Bremia lactucae isolate BL24 was grown on Lactuca sativa cultivar Ol<strong>of</strong> <strong>and</strong><br />

the enhanced B. lactucae-susceptible Lactuca sativa cv. Ol<strong>of</strong> × Lactuca saligna<br />

recomb<strong>in</strong>ant <strong>in</strong>bred l<strong>in</strong>e BIL4.4 [61,62] . Plants were kept at 17 °C under 9 h light per<br />

day (100 µE/m 2 /s). Bremia lactucae spores were spray <strong>in</strong>oculated at 150 spores/µL<br />

suspension on 7-day-old soil-grown lettuce seedl<strong>in</strong>gs until run-<strong>of</strong>f was imm<strong>in</strong>ent.<br />

Inoculation was repeated at 3 days after the <strong>in</strong>itial <strong>in</strong>oculation. After each <strong>in</strong>oculation,<br />

plants were kept under high humidity for 24 h <strong>and</strong> thereafter at low humidity.


84 Chapter 3<br />

Trypan blue sta<strong>in</strong><strong>in</strong>g was performed by boil<strong>in</strong>g <strong>in</strong> sta<strong>in</strong><strong>in</strong>g solution for 5 m<strong>in</strong>, <strong>and</strong><br />

otherwise as described for H. arabidopsidis [46] . Material was harvested 7 days after<br />

the <strong>in</strong>itial <strong>in</strong>oculation. For spore isolations, <strong>in</strong>oculated plants were kept at high<br />

humidity for 7 days, after which spores were r<strong>in</strong>sed <strong>of</strong>f leaves <strong>in</strong> water. Spores<br />

were filtered through a double layer <strong>of</strong> miracloth <strong>and</strong> then spun down (3650 g) <strong>and</strong><br />

washed <strong>in</strong> water three times. Spores <strong>and</strong> <strong>in</strong>fected leaf material were snap frozen<br />

<strong>and</strong> ground us<strong>in</strong>g a mortar <strong>and</strong> pestle. RNA was isolated from ground material<br />

us<strong>in</strong>g the Qiagen (Venlo, The Netherl<strong>and</strong>s) plant RNA m<strong>in</strong>i kit employ<strong>in</strong>g RLC<br />

buffer accord<strong>in</strong>g to the manufacturer’s <strong>in</strong>structions.<br />

Isolated RNA was sent for preparation for sequenc<strong>in</strong>g to Vertis Biotechnologie<br />

AG (Freis<strong>in</strong>g, Germany). Poly(A) RNA was selected from all samples. Two<br />

cDNA synthesis strategies were then performed. In the first, the poly(A) RNA was<br />

<strong>in</strong>cubated with calf <strong>in</strong>test<strong>in</strong>e phosphatase (CIP) <strong>and</strong> tobacco acid pyrophosphatase<br />

(TAP), followed by ligation <strong>of</strong> an RNA adapter to the 5′-phosphate <strong>of</strong> decapped<br />

mRNAs. First-str<strong>and</strong> cDNA synthesis was then performed with an adapter-r<strong>and</strong>om<br />

hexamer primer <strong>and</strong> M-MLV-RNase H reverse transcriptase. The result<strong>in</strong>g cDNAs<br />

were amplified with 21 cycles <strong>of</strong> long <strong>and</strong> accurate polymerase cha<strong>in</strong> reaction<br />

(LA-PCR). In the second approach, first-str<strong>and</strong> cDNA synthesis was primed with<br />

a r<strong>and</strong>om hexamer primer, after which 454 adapters A <strong>and</strong> B were ligated to the 5′<br />

<strong>and</strong> 3′ ends <strong>of</strong> the cDNA. The cDNA was f<strong>in</strong>ally amplified with PCR us<strong>in</strong>g a pro<strong>of</strong><br />

read<strong>in</strong>g enzyme (17 cycles). To normalize samples, one cycle <strong>of</strong> denaturation <strong>and</strong><br />

reassociation <strong>of</strong> the cDNA <strong>and</strong> subsequent separation <strong>of</strong> s<strong>in</strong>gle-str<strong>and</strong>ed cDNA<br />

(normalized cDNA) <strong>of</strong> double-str<strong>and</strong>ed RNA by hydroxylapatite chromatography<br />

were performed. Normalized cDNA was amplified with eight PCR cycles. For both<br />

approaches, cDNA <strong>in</strong> the size range 450–650 bp was eluted from agarose gel us<strong>in</strong>g<br />

the Macherey & Nagel (Düren, Germany) NucleoSp<strong>in</strong> Extract II kit. Sequenc<strong>in</strong>g<br />

was performed on the 454 GS FLX system, us<strong>in</strong>g st<strong>and</strong>ard reagents.<br />

SOLiD sequenc<strong>in</strong>g<br />

Lettuce leaves were surface sterilized <strong>in</strong> 4% bleach for 3 m<strong>in</strong>, r<strong>in</strong>sed with water<br />

<strong>and</strong> placed abaxial side up on wet filter paper. The leaves were then spray <strong>in</strong>oculated<br />

(200 spores/µL) with B. lactucae isolate BL24 <strong>and</strong> kept at high humidity<br />

for 8 days. Spores were snap frozen <strong>and</strong> lysed by bead beat<strong>in</strong>g <strong>and</strong> <strong>in</strong>cubation<br />

<strong>in</strong> cetyltrimethylammonium bromide (CTAB). DNA was extracted with phenol–<br />

chlor<strong>of</strong>orm; 7 µg <strong>of</strong> DNA was sheared <strong>in</strong>to 100–110-bp mean size fragments,<br />

end-repaired with the End-It DNA End-Repair Kit (Epicentre Biotechnology,<br />

Madison, WI, USA) accord<strong>in</strong>g to the manufacturer’s <strong>in</strong>structions, <strong>and</strong> cleaned by<br />

phenol–chlor<strong>of</strong>orm extraction. Adapters were ligated as recommended by Applied<br />

Biosystems (Carlsbad, CA, USA) <strong>and</strong> cleaned by phenol–chlor<strong>of</strong>orm extraction.


Effector identification <strong>in</strong> B. lactucae<br />

85<br />

Fragments <strong>of</strong> 150–200 bp were excised from a 2% agarose electrophoresis gel <strong>and</strong><br />

purified us<strong>in</strong>g the QIAquick Gel Extraction Kit (Qiagen). Further steps <strong>in</strong> sample<br />

preparation <strong>and</strong> sequenc<strong>in</strong>g were taken as recommended by Applied Biosystems.<br />

Sequence <strong>analysis</strong><br />

The 454 transcriptome sequences were assembled us<strong>in</strong>g Roche (Basel, Switzerl<strong>and</strong>)<br />

gsAssembler (version 2.0.00) s<strong>of</strong>tware with an expected coverage <strong>of</strong> 15-fold<br />

(based on <strong>in</strong>itial assembly coverage levels) <strong>and</strong> otherwise default sett<strong>in</strong>gs. SOLiD<br />

reads were mapped to the assembled 454 reads by Burrows–Wheeler Aligner<br />

(BWA) [47] (version 0.5.8 r1442; maximum edit distance, 10; first 25 bases as seed;<br />

maximally two mismatches <strong>in</strong> the seed; otherwise default sett<strong>in</strong>gs for colourspace<br />

alignment). Assembled sequences were corrected us<strong>in</strong>g <strong>in</strong>sertion/deletion<br />

<strong>in</strong>formation from the mapp<strong>in</strong>g process. Correction effectiveness was determ<strong>in</strong>ed<br />

by comparison with the NCBI NR database by blastx [48] (E-value < 1e-3, best hit).<br />

Sequences with >10-fold average SOLiD read coverage were kept as B. lactucae<br />

sequences. Prote<strong>in</strong>s were predicted from these sequences by select<strong>in</strong>g an ORF<br />

based on the blastx comparison with the NCBI NR database or, fail<strong>in</strong>g matches,<br />

select<strong>in</strong>g the ORF(s) <strong>of</strong> greatest length. In cases <strong>in</strong> which blast comparison led to<br />

the selection <strong>of</strong> adjacent ORFs, these ORFs were concatenated <strong>in</strong>to a s<strong>in</strong>gle model.<br />

ORF lengths were determ<strong>in</strong>ed from methion<strong>in</strong>e to stop unless the ORF was at the<br />

5′ or 3′ end, <strong>in</strong> which case the length was determ<strong>in</strong>ed from the 5′ or up to the 3′,<br />

respectively, as sequences may be <strong>in</strong>complete. Sequences were trimmed to start<br />

with a methion<strong>in</strong>e <strong>and</strong> sequences shorter than 20 am<strong>in</strong>o acids were removed before<br />

signal peptide prediction by SignalP (3.0a) [49,50] (first 70 am<strong>in</strong>o acids, eukaryote,<br />

default cut-<strong>of</strong>fs). Transmembrane helices were predicted us<strong>in</strong>g TMHMM (2.0)<br />

(http://www.cbs.dtu.dk/services/TMHMM/). Secretome criteria were the prediction<br />

<strong>of</strong> a signal peptide by both neural network <strong>and</strong> HMM prediction methods <strong>and</strong> no<br />

predicted transmembrane helices (unless overlapp<strong>in</strong>g at least 10 am<strong>in</strong>o acids <strong>of</strong><br />

the signal peptide). All blast comparisons were performed with an E-value cut-<strong>of</strong>f<br />

<strong>of</strong> 1e-3. HMM <strong>and</strong> jackhmmer (version 2.3.2; http://hmmer.org/) searches were<br />

performed with an E-value cut-<strong>of</strong>f <strong>of</strong> 1e-3 <strong>and</strong> otherwise default sett<strong>in</strong>gs, except<br />

for the genome completeness models, for which bit-score cut-<strong>of</strong>fs were provided.<br />

For jackhmmer searches us<strong>in</strong>g B. lactucae RXLRs, the RXLR motif <strong>and</strong> the 20<br />

am<strong>in</strong>o acids N- <strong>and</strong> C-term<strong>in</strong>al there<strong>of</strong> were used as <strong>in</strong>put. Pfam [51] searches were<br />

performed at the gather<strong>in</strong>g threshold.<br />

To obta<strong>in</strong> a phylogeny <strong>of</strong> NLP prote<strong>in</strong>s <strong>in</strong> B. lactucae <strong>and</strong> other oomycetes, we<br />

predicted the presence <strong>of</strong> the NLP doma<strong>in</strong> (PF05630, Pfam v24; http://pfam.sanger.<br />

ac.uk/ [51] ) <strong>in</strong> their proteomes us<strong>in</strong>g hmmer3 (http://hmmer.org/) (gather<strong>in</strong>g cut-<strong>of</strong>f).<br />

To predict full-length NLP doma<strong>in</strong>s, we retrieved the seed alignments from the


86 Chapter 3<br />

Pfam database <strong>and</strong> created a calibrated hmmer2 model. hmmer2 (gather<strong>in</strong>g cut-<strong>of</strong>f)<br />

was used with this model on the hmmer3-identified c<strong>and</strong>idates. Short doma<strong>in</strong><br />

hits (50% <strong>of</strong> both target <strong>and</strong> query sequences, <strong>and</strong> had >20% effective coverage<br />

(fraction <strong>of</strong> covered am<strong>in</strong>o acids), were taken <strong>in</strong>to account, with the exception<br />

that B. lactucae sequences did not need to span 50% <strong>of</strong> non-B. lactucae sequences.<br />

Bremia lactucae sequences may be truncated <strong>and</strong> therefore not span 50% <strong>of</strong> the<br />

non-B. lactucae sequence. The similarity network was then clustered <strong>in</strong>to families<br />

us<strong>in</strong>g the Markov-Cluster-Algorithm (MCL; http://micans.org/mcl/, v09-308,<br />

1.008, <strong>in</strong>flation = 3) [57,58] . Clustered sequences were aligned <strong>in</strong> Jalview [59] us<strong>in</strong>g the<br />

MAFFT web service [60] . We predicted a reliable species phylogeny utiliz<strong>in</strong>g a multi-prote<strong>in</strong><br />

marker conta<strong>in</strong><strong>in</strong>g 119 concatenated 1 : 1 : 1 families retrieved from the<br />

prote<strong>in</strong> clusters determ<strong>in</strong>ed beforeh<strong>and</strong>. These families were aligned us<strong>in</strong>g mafft<br />

(v6.713b; maxiterate 1000; localpair) [60] <strong>and</strong> subsequently concatenated. Positions<br />

conta<strong>in</strong><strong>in</strong>g >20% gaps, as well as less conserved adjacent positions, were removed<br />

until a conserved column with a median <strong>of</strong> the pairwise BLOSUM62 <strong>of</strong> ≥0 was<br />

reached. The phylogenetic tree was predicted us<strong>in</strong>g RAxML [52] (v7.0.4; gamma<br />

model <strong>of</strong> <strong>in</strong>variant sites, WAG substitution model, fast bootstrap approximation)<br />

<strong>and</strong> the robustness <strong>of</strong> the topology was assessed by 1000 bootstrap replicates.


Effector identification <strong>in</strong> B. lactucae<br />

87<br />

Accession numbers<br />

Bremia lactucae sequences longer than 200 nucleotides were deposited <strong>in</strong> the<br />

NCBI Transcriptome Shotgun Assembly sequence database under accession<br />

numbers JP948721-JP965883. All nucleotide data <strong>and</strong> prote<strong>in</strong> translations are<br />

available at http://web.science.uu.nl/pmi/data/bremia/.<br />

Acknowledgements<br />

This project was supported by the foundation TTI Green Genetics (TTI GG) <strong>in</strong><br />

collaboration with Wagen<strong>in</strong>gen University (Wagen<strong>in</strong><strong>in</strong>gen, The Netherl<strong>and</strong>s),<br />

Enza zaden (Enkhuizen, The Netherl<strong>and</strong>s), Nunhems (Nunhem, The Netherl<strong>and</strong>s),<br />

Syngenta (Enkhuizen, The Netherl<strong>and</strong>s), Rijk-Zwaan (De Lier, The Netherl<strong>and</strong>s)<br />

<strong>and</strong> Vilmor<strong>in</strong> (La Ménitré, France). We thank Ewart de Bruijn <strong>and</strong> Patrick van Zon<br />

for excellent technical assistance.


88 Chapter 3<br />

References<br />

1 Brown S, Koike ST, Ochoa OE, Laemmlen F & Michelmore RW (2004) Insensitivity to the<br />

fungicide fosetyl-alum<strong>in</strong>um <strong>in</strong> California isolates <strong>of</strong> the lettuce <strong>downy</strong> <strong>mildew</strong> pathogen, Bremia<br />

lactucae. Plant Disease 88, 502-8.<br />

2 Lebeda A, Sedlářová M, Petřivalský M & Prokopová J (2008) Diversity <strong>of</strong> defence mechanisms<br />

<strong>in</strong> plant–oomycete <strong>in</strong>teractions: a case study <strong>of</strong> Lactuca spp. <strong>and</strong> Bremia lactucae. European<br />

Journal <strong>of</strong> Plant Pathology 122, 71-89.<br />

3 Michelmore RW & Wong J (2008) Classical <strong>and</strong> molecular genetics <strong>of</strong> Bremia lactucae, cause <strong>of</strong><br />

lettuce <strong>downy</strong> <strong>mildew</strong>. European Journal <strong>of</strong> Plant Pathology 122, 19-30.<br />

4 L<strong>in</strong>ks MG, Holub E, Jiang RHY, Sharpe AG, Hegedus D, Beynon E, Sillito D, Clarke WE,<br />

Uzuhashi S & Borhan MH (2011) De novo sequence assembly <strong>of</strong> Albugo c<strong>and</strong>ida reveals a small<br />

genome relative to other biotrophic oomycetes. BMC genomics 12, 503.<br />

5 Kemen E, Gard<strong>in</strong>er A, Schultz-Larsen T, Kemen AC, Balmuth AL, Robert-Seilaniantz A,<br />

Bailey K, Holub E, Studholme DJ, Maclean D & Jones JDG (2011) Gene ga<strong>in</strong> <strong>and</strong> loss dur<strong>in</strong>g<br />

evolution <strong>of</strong> obligate parasitism <strong>in</strong> the white rust pathogen <strong>of</strong> Arabidopsis thaliana. PLoS Biology<br />

9, e1001094.<br />

6 Baxter L, Tripathy S, Ishaque N, Boot N, Cabral A, Kemen E, Th<strong>in</strong>es M, Ah-Fong A, Anderson R,<br />

Badejoko W, Bittner-Eddy P, Boore JL, Chibucos MC, Coates M, Dehal P, Delehaunty K, Dong S,<br />

Downton P, Dumas B, Fabro G, Fronick C, Fuerstenberg SI, Fulton L, Gaul<strong>in</strong> E, Govers F,<br />

Hughes L, Humphray S, Jiang RHY, Judelson H, Kamoun S, Kyung K, Meijer H, M<strong>in</strong>x P,<br />

Morris P, Nelson J, Phuntumart V, Qutob D, Rehmany A, Rougon-Cardoso A, Ryden P, Torto-<br />

Alalibo T, Studholme D, Wang Y, W<strong>in</strong> J, Wood J, Clifton SW, Rogers J, Van den Ackerveken G,<br />

Jones JDG, McDowell JM, Beynon J & Tyler BM (2010) Signatures <strong>of</strong> adaptation to obligate<br />

biotrophy <strong>in</strong> the Hyaloperonospora arabidopsidis genome. Science 330, 1549-51.<br />

7 Haas BJ, Kamoun S, Zody MC, Jiang RHY, H<strong>and</strong>saker RE, Cano LM, Grabherr M, Kodira CD,<br />

Raffaele S, Torto-Alalibo T, Bozkurt TO, Ah-Fong AMV, Alvarado L, Anderson VL,<br />

Armstrong MR, Avrova A, Baxter L, Beynon J, Boev<strong>in</strong>k PC, Bollmann SR, Bos JIB, Bulone V,<br />

Cai G, Cakir C, Carr<strong>in</strong>gton JC, Chawner M, Conti L, Costanzo S, Ewan R, Fahlgren N,<br />

Fischbach MA, Fugelstad J, Gilroy EM, Gnerre S, Green PJ, Grenville-Briggs LJ, Griffith J,<br />

Grünwald NJ, Horn K, Horner NR, Hu C-H, Huitema E, Jeong D-H, Jones AME, Jones JDG,<br />

Jones RW, Karlsson EK, Kunjeti SG, Lamour K, Liu Z, Ma L, Maclean D, Chibucos MC,<br />

McDonald H, McWalters J, Meijer HJG, Morgan W, Morris PF, Munro CA, O’Neill K, Osp<strong>in</strong>a-<br />

Giraldo M, P<strong>in</strong>zón A, Pritchard L, Ramsahoye B, Ren Q, Restrepo S, Roy S, Sadan<strong>and</strong>om A,<br />

Savidor A, Schornack S, Schwartz DC, Schumann UD, Schwess<strong>in</strong>ger B, Seyer L, Sharpe T,<br />

Silvar C, Song J, Studholme DJ, Sykes S, Th<strong>in</strong>es M, Van de Vondervoort PJI, Phuntumart V,<br />

Wawra S, Weide R, W<strong>in</strong> J, Young C, Zhou S, Fry W, Meyers BC, Van West P, Rista<strong>in</strong>o J,<br />

Govers F, Birch PRJ, Whisson SC, Judelson HS & Nusbaum C (2009) Genome sequence <strong>and</strong><br />

<strong>analysis</strong> <strong>of</strong> the Irish potato fam<strong>in</strong>e pathogen Phytophthora <strong>in</strong>festans. Nature 461, 393-8.<br />

8 Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RHY, Aerts A, Arredondo FD, Baxter L,<br />

Bensasson D, Beynon JL, Chapman J, Damasceno CMB, Dorrance AE, Dou D, Dickerman AW,<br />

Dubchak IL, Garbelotto M, Gijzen M, Gordon SG, Govers F, Grunwald NJ, Huang W, Ivors KL,<br />

Jones RW, Kamoun S, Krampis K, Lamour KH, Lee M-K, McDonald WH, Med<strong>in</strong>a M,<br />

Meijer HJG, Nordberg EK, Maclean DJ, Osp<strong>in</strong>a-Giraldo MD, Morris PF, Phuntumart V,<br />

Putnam NH, Rash S, Rose JKC, Sakihama Y, Salamov AA, Savidor A, Scheur<strong>in</strong>g CF, Smith BM,<br />

Sobral BWS, Terry A, Torto-Alalibo TA, W<strong>in</strong> J, Xu Z, Zhang H, Grigoriev IV, Rokhsar DS &<br />

Boore JL (2006) Phytophthora genome sequences uncover evolutionary orig<strong>in</strong>s <strong>and</strong> mechanisms<br />

<strong>of</strong> pathogenesis. Science 313, 1261-6.


Effector identification <strong>in</strong> B. lactucae<br />

89<br />

9 Tian M, W<strong>in</strong> J, Savory E, Burkhardt A, Held M, Br<strong>and</strong>izzi F & Day B (2011) 454 Genome<br />

sequenc<strong>in</strong>g <strong>of</strong> Pseudoperonospora cubensis reveals effector prote<strong>in</strong>s with a QXLR translocation<br />

motif. Molecular Plant-Microbe Interactions 24, 543-53.<br />

10 Lévesque CA, Brouwer H, Cano L, Hamilton JP, Holt C, Huitema E, Raffaele S, Robideau GP,<br />

Th<strong>in</strong>es M, W<strong>in</strong> J, Zerillo MM, Beakes GW, Boore JL, Busam D, Dumas B, Ferriera S,<br />

Fuerstenberg SI, Gachon CMM, Gaul<strong>in</strong> E, Govers F, Grenville-Briggs LJ, Horner NR, Hostetler J,<br />

Jiang RHY, Johnson J, Krajaejun T, L<strong>in</strong> H, Meijer HJG, Moore B, Morris PF, Phuntumart V,<br />

Puiu D, Shetty J, Stajich JE, Tripathy S, Wawra S, Van West P, Whitty BR, Cout<strong>in</strong>ho PM,<br />

Henrissat B, Mart<strong>in</strong> F, Thomas PD, Tyler BM, De Vries RP, Kamoun S, Y<strong>and</strong>ell M, Tisserat N &<br />

Buell CR (2010) Genome sequence <strong>of</strong> the necrotrophic plant pathogen Pythium ultimum reveals<br />

orig<strong>in</strong>al pathogenicity mechanisms <strong>and</strong> effector repertoire. Genome Biology 11, R73.<br />

11 Stassen JHM & Van den Ackerveken G (2011) How do oomycete <strong>effectors</strong> <strong>in</strong>terfere with plant<br />

life Current Op<strong>in</strong>ion <strong>in</strong> Plant Biology 14, 407-14.<br />

12 Rehmany AP, Gordon A, Rose LE, Allen RL, Armstrong MR, Whisson SC, Kamoun S, Tyler BM,<br />

Birch PRJ & Beynon JL (2005) Differential recognition <strong>of</strong> highly divergent <strong>downy</strong> <strong>mildew</strong><br />

avirulence gene alleles by RPP1 resistance genes from two Arabidopsis l<strong>in</strong>es. The Plant Cell 17,<br />

1839-50.<br />

13 Kale SD, Gu B, Capelluto DGS, Dou D, Feldman E, Rumore A, Arredondo FD, Hanlon R,<br />

Fudal I, Rouxel T, Lawrence CB, Shan W & Tyler BM (2010) External lipid PI3P mediates entry<br />

<strong>of</strong> eukaryotic pathogen <strong>effectors</strong> <strong>in</strong>to plant <strong>and</strong> animal host cells. Cell 142, 284-95.<br />

14 Kelley BS, Lee S-J, Damasceno CMB, Chakravarthy S, Kim B-D, Mart<strong>in</strong> GB & Rose JKC (2010)<br />

A secreted effector prote<strong>in</strong> (SNE1) from Phytophthora <strong>in</strong>festans is a broadly act<strong>in</strong>g suppressor <strong>of</strong><br />

programmed cell death. The Plant Journal 62, 357-366.<br />

15 Bailey K, Cevik V, Holton NJ, Byrne-Richardson J, Sohn KH, Coates M, Woods-Tör A,<br />

Aksoy HM, Hughes L, Baxter L, Jones JDG, Beynon J, Holub EB & Tör M (2011) Molecular<br />

clon<strong>in</strong>g <strong>of</strong> ATR5Emoy2 from Hyaloperonospora arabidopsidis, an avirulence determ<strong>in</strong>ant that<br />

triggers RPP5-mediated defense <strong>in</strong> Arabidopsis. Molecular Plant-Microbe Interactions 24,<br />

827-38.<br />

16 Liu T, Ye W, Ru Y, Yang X, Gu B, Tao K, Lu S, Dong S, Zheng X, Shan W, Wang Y & Dou D<br />

(2011) Two host cytoplasmic <strong>effectors</strong> are required for pathogenesis <strong>of</strong> Phytophthora sojae by<br />

suppression <strong>of</strong> host defenses. Plant Physiology 155, 490-501.<br />

17 Bouwmeester K, De Sa<strong>in</strong> M, Weide R, Gouget A, Klamer S, Canut H & Govers F (2011) The<br />

lect<strong>in</strong> receptor k<strong>in</strong>ase LecRK-I.9 is a novel Phytophthora resistance component <strong>and</strong> a potential<br />

host target for a RXLR effector. PLoS Pathogens 7, e1001327.<br />

18 Kaschani F, Shabab M, Bozkurt T, Sh<strong>in</strong>do T, Schornack S, Gu C, Ilyas M, W<strong>in</strong> J, Kamoun S<br />

& Van der Hoorn RAL (2010) An effector-targeted protease contributes to defense aga<strong>in</strong>st<br />

Phytophthora <strong>in</strong>festans <strong>and</strong> is under diversify<strong>in</strong>g selection <strong>in</strong> natural hosts. Plant Physiology 154,<br />

1794-804.<br />

19 Song J, W<strong>in</strong> J, Tian M, Schornack S, Kaschani F, Ilyas M, Van Der Hoorn RAL & Kamoun S<br />

(2009) Apoplastic <strong>effectors</strong> secreted by two unrelated eukaryotic plant pathogens target the<br />

tomato defense protease Rcr3. Proceed<strong>in</strong>gs <strong>of</strong> the National Academy <strong>of</strong> Sciences <strong>of</strong> the United<br />

States <strong>of</strong> America 106, 1654-9.


90 Chapter 3<br />

20 Tian M, W<strong>in</strong> J, Song J, Van der Hoorn R, Van der Knaap E & Kamoun S (2007) A Phytophthora<br />

<strong>in</strong>festans cystat<strong>in</strong>-like prote<strong>in</strong> targets a novel tomato papa<strong>in</strong>-like apoplastic protease. Plant<br />

Physiology 143, 364-77.<br />

21 Bos JIB, Armstrong MR, Gilroy EM, Boev<strong>in</strong>k PC, He<strong>in</strong> I, Taylor RM, Zhendong T, Engelhardt S,<br />

Vetukuri RR, Harrower B, Dixelius C, Bryan G, Sadan<strong>and</strong>om A, Whisson SC, Kamoun S<br />

& Birch PRJ (2010) Phytophthora <strong>in</strong>festans effector AVR3a is essential for virulence <strong>and</strong><br />

manipulates plant immunity by stabiliz<strong>in</strong>g host E3 ligase CMPG1. Proceed<strong>in</strong>gs <strong>of</strong> the National<br />

Academy <strong>of</strong> Sciences <strong>of</strong> the United States <strong>of</strong> America 107, 9909-14.<br />

22 Parra G, Bradnam K & Korf I (2007) CEGMA: a pipel<strong>in</strong>e to accurately annotate core genes <strong>in</strong><br />

eukaryotic genomes. Bio<strong>in</strong>formatics 23, 1061-7.<br />

23 Hirasawa K-I, Amano T & Shioi Y (2004) Lipid-b<strong>in</strong>d<strong>in</strong>g form is a key conformation to <strong>in</strong>duce a<br />

programmed cell death <strong>in</strong>itiated <strong>in</strong> tobacco BY-2 cells by a prote<strong>in</strong>aceous elicitor <strong>of</strong> cryptoge<strong>in</strong>.<br />

Physiologia Plantarum 121, 196-203.<br />

24 Mikes V, Milat ML, Ponchet M, Ricci P & Ble<strong>in</strong> JP (1997) The fungal elicitor cryptoge<strong>in</strong> is a<br />

sterol carrier prote<strong>in</strong>. FEBS Letters 416, 190-2.<br />

25 Mikes V, Milat ML, Ponchet M, Panabières F, Ricci P & Ble<strong>in</strong> JP (1998) Elicit<strong>in</strong>s, prote<strong>in</strong>aceous<br />

elicitors <strong>of</strong> plant defense, are a new class <strong>of</strong> sterol carrier prote<strong>in</strong>s. Biochemical <strong>and</strong> Biophysical<br />

Research Communications 245, 133-9.<br />

26 Plešková V, Kašparovský T, Obořil M, Ptáčková N, Chaloupková R, Ladislav D, Damborský J<br />

& Lochman J (2011) Elicit<strong>in</strong>–membrane <strong>in</strong>teraction is driven by a positive charge on the prote<strong>in</strong><br />

surface: Role <strong>of</strong> Lys13 residue <strong>in</strong> lipids load<strong>in</strong>g <strong>and</strong> resistance <strong>in</strong>duction. Plant Physiology <strong>and</strong><br />

Biochemistry 49, 321-8.<br />

27 Ricci P, Bonnet P, Huet JC, Sallant<strong>in</strong> M, Beauvais-Cante F, Bruneteau M, Billard V, Michel G<br />

& Pernollet JC (1989) Structure <strong>and</strong> activity <strong>of</strong> prote<strong>in</strong>s from pathogenic fungi Phytophthora<br />

elicit<strong>in</strong>g necrosis <strong>and</strong> acquired resistance <strong>in</strong> tobacco. European Journal <strong>of</strong> Biochemistry 183,<br />

555-63.<br />

28 Vauthr<strong>in</strong> S, Mikes V, Milat ML, Ponchet M, Maume B, Osman H & Ble<strong>in</strong> JP (1999) Elicit<strong>in</strong>s<br />

trap <strong>and</strong> transfer sterols from micelles, liposomes <strong>and</strong> plant plasma membranes. Biochimica et<br />

Biophysica Acta 1419, 335-42.<br />

29 Gaul<strong>in</strong> E, Bott<strong>in</strong> A & Dumas B (2010) Sterol biosynthesis <strong>in</strong> oomycete pathogens. Plant<br />

Signal<strong>in</strong>g & Behavior 5, 258-60.<br />

30 Jiang RHY, Tyler BM, Whisson SC, Hardham AR & Govers F (2006) Ancient orig<strong>in</strong> <strong>of</strong> elicit<strong>in</strong><br />

gene clusters <strong>in</strong> Phytophthora genomes. Molecular Biology <strong>and</strong> Evolution 23, 338-51.<br />

31 Nespoulous C, Huet J-claude & Pernollet J-claude (1992) Structure-function relationships <strong>of</strong><br />

α <strong>and</strong> β elicit<strong>in</strong>s, signal prote<strong>in</strong>s <strong>in</strong>volved <strong>in</strong> the plant-Phytophthora <strong>in</strong>teraction. Planta 186,<br />

551-557.<br />

32 Raffaele S, Farrer RA, Cano LM, Studholme DJ, MacLean D, Th<strong>in</strong>es M, Jiang RHY, Zody MC,<br />

Kunjeti SG, Don<strong>of</strong>rio NM, Meyers BC, Nusbaum C & Kamoun S (2010) Genome Evolution<br />

Follow<strong>in</strong>g Host Jumps <strong>in</strong> the Irish Potato Fam<strong>in</strong>e Pathogen L<strong>in</strong>eage. Science 330, 1540-3.<br />

33 Rose JKC, Ham K-S, Darvill AG & Albersheim P (2002) Molecular clon<strong>in</strong>g <strong>and</strong> characterization<br />

<strong>of</strong> glucanase <strong>in</strong>hibitor prote<strong>in</strong>s: coevolution <strong>of</strong> a counterdefense mechanism by plant pathogens.<br />

The Plant Cell 14, 1329-45.


Effector identification <strong>in</strong> B. lactucae<br />

91<br />

34 Van Loon LC, Rep M & Pieterse CMJ (2006) Significance <strong>of</strong> <strong>in</strong>ducible defense-related prote<strong>in</strong>s <strong>in</strong><br />

<strong>in</strong>fected plants. Annual Review <strong>of</strong> Phytopathology 44, 135-62.<br />

35 Ottmann C, Luberacki B, Küfner I, Koch W, Brunner F, Wey<strong>and</strong> M, Matt<strong>in</strong>en L, Pirhonen M,<br />

Anderluh G, Seitz HU, Nürnberger T & Oeck<strong>in</strong>g C (2009) A common tox<strong>in</strong> fold mediates<br />

microbial attack <strong>and</strong> plant defense. Proceed<strong>in</strong>gs <strong>of</strong> the National Academy <strong>of</strong> Sciences <strong>of</strong> the<br />

United States <strong>of</strong> America 106, 10359-64.<br />

36 Gaul<strong>in</strong> E, Jauneau A, Villalba F, Rickauer M, Esquerré-Tugayé M-T & Bott<strong>in</strong> A (2002) The CBEL<br />

glycoprote<strong>in</strong> <strong>of</strong> Phytophthora parasitica var-nicotianae is <strong>in</strong>volved <strong>in</strong> cell wall deposition <strong>and</strong><br />

adhesion to cellulosic substrates. Journal <strong>of</strong> Cell Science 115, 4565-75.<br />

37 De Jonge R, Van Esse HP, Kombr<strong>in</strong>k A, Sh<strong>in</strong>ya T, Desaki Y, Bours R, Van der Krol S, Shibuya N,<br />

Joosten MHAJ & Thomma BPHJ (2010) Conserved fungal LysM effector Ecp6 prevents chit<strong>in</strong>triggered<br />

immunity <strong>in</strong> plants. Science 329, 953-5.<br />

38 Bos JIB, Armstrong M, Whisson SC, Torto TA, Ochwo M, Birch PRJ & Kamoun S (2003)<br />

Intraspecific comparative genomics to identify avirulence genes from Phytophthora. New<br />

Phytologist 159, 63-72.<br />

39 Liu Z, Bos JIB, Armstrong M, Whisson SC, Da Cunha L, Torto-Alalibo T, W<strong>in</strong> J, Avrova AO,<br />

Wright F, Birch PRJ & Kamoun S (2005) Patterns <strong>of</strong> diversify<strong>in</strong>g selection <strong>in</strong> the phytotox<strong>in</strong>-like<br />

scr74 gene family <strong>of</strong> Phytophthora <strong>in</strong>festans. Molecular Biology <strong>and</strong> Evolution 22, 659-72.<br />

40 Orsom<strong>and</strong>o G, Lorenzi M, Raffaelli N, Dalla Rizza M, Mezzetti B & Ruggieri S (2001)<br />

Phytotoxic prote<strong>in</strong> PcF, purification, characterization, <strong>and</strong> cDNA sequenc<strong>in</strong>g <strong>of</strong> a novel<br />

hydroxyprol<strong>in</strong>e-conta<strong>in</strong><strong>in</strong>g factor secreted by the strawberry pathogen Phytophthora cactorum.<br />

The Journal <strong>of</strong> Biological Chemistry 276, 21578-84.<br />

41 Bittner-Eddy PD, Allen RL, Rehmany AP, Birch P & Beynon JL (2003) Use <strong>of</strong> suppression<br />

subtractive hybridization to identify <strong>downy</strong> <strong>mildew</strong> genes expressed dur<strong>in</strong>g <strong>in</strong>fection <strong>of</strong><br />

Arabidopsis thaliana. Molecular Plant Pathology 4, 501-7.<br />

42 Cabral A, Stassen JHM, Seidl MF, Bautor J, Parker JE & Van den Ackerveken G (2011)<br />

<strong>Identification</strong> <strong>of</strong> Hyaloperonospora arabidopsidis transcript sequences expressed dur<strong>in</strong>g <strong>in</strong>fection<br />

reveals isolate-specific <strong>effectors</strong>. PLoS ONE 6, e19328.<br />

43 Kanneganti T-D, Huitema E, Cakir C & Kamoun S (2006) Synergistic <strong>in</strong>teractions <strong>of</strong> the plant<br />

cell death pathways <strong>in</strong>duced by Phytophthora <strong>in</strong>festans Nepl-like prote<strong>in</strong> PiNPP1.1 <strong>and</strong> INF1<br />

elicit<strong>in</strong>. Molecular Plant-Microbe Interactions 19, 854-63.<br />

44 Qutob D, Kamoun S & Gijzen M (2002) Expression <strong>of</strong> a Phytophthora sojae necrosis-<strong>in</strong>duc<strong>in</strong>g<br />

prote<strong>in</strong> occurs dur<strong>in</strong>g transition from biotrophy to necrotrophy. The Plant Journal 32, 361-73.<br />

45 Shen D, Ye W, Dong S, Wang Y & Dou D (2011) Characterization <strong>of</strong> <strong>in</strong>tronic structures <strong>and</strong><br />

alternative splic<strong>in</strong>g <strong>in</strong> Phytophthora sojae by comparative <strong>analysis</strong> <strong>of</strong> expressed sequence tags <strong>and</strong><br />

genomic sequences. Canadian Journal <strong>of</strong> Microbiology 57, 84-90.<br />

46 Van Damme M, Andel A, Huibers RP, Panstruga R, Weisbeek PJ & Van den Ackerveken G<br />

(2005) <strong>Identification</strong> <strong>of</strong> arabidopsis loci required for susceptibility to the <strong>downy</strong> <strong>mildew</strong> pathogen<br />

Hyaloperonospora parasitica. Molecular Plant-Microbe Interactions 18, 583-92.<br />

47 Li H & Durb<strong>in</strong> R (2009) Fast <strong>and</strong> accurate short read alignment with Burrows-Wheeler transform.<br />

Bio<strong>in</strong>formatics 25, 1754-60.


92 Chapter 3<br />

48 Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W & Lipman DJ (1997)<br />

Gapped BLAST <strong>and</strong> PSI-BLAST: a new generation <strong>of</strong> prote<strong>in</strong> database search programs. Nucleic<br />

Acids Research 25, 3389-402.<br />

49 Bendtsen JD, Nielsen H, von Heijne G & Brunak S (2004) Improved prediction <strong>of</strong> signal<br />

peptides: SignalP 3.0. Journal <strong>of</strong> Molecular Biology 340, 783-95.<br />

50 Nielsen H & Krogh A (1998) Prediction <strong>of</strong> signal peptides <strong>and</strong> signal anchors by a hidden Markov<br />

model. Proceed<strong>in</strong>gs <strong>of</strong> the International Conference on Intelligent Systems for Molecular Biology<br />

6, 122-30.<br />

51 F<strong>in</strong>n RD, Mistry J, Tate J, Coggill P, Heger A, Poll<strong>in</strong>gton JE, Gav<strong>in</strong> OL, Gunasekaran P, Ceric G,<br />

Forslund K, Holm L, Sonnhammer ELL, Eddy SR & Bateman A (2010) The Pfam prote<strong>in</strong><br />

families database. Nucleic Acids Research 38, D211-22.<br />

52 Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with<br />

thous<strong>and</strong>s <strong>of</strong> taxa <strong>and</strong> mixed models. Bio<strong>in</strong>formatics 22, 2688-90.<br />

53 Armbrust EV, Berges JA, Bowler C, Green BR, Mart<strong>in</strong>ez D, Putnam NH, Zhou S, Allen AE,<br />

Apt KE, Bechner M, Brzez<strong>in</strong>ski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS,<br />

Detter JC, Glav<strong>in</strong>a T, Goodste<strong>in</strong> D, Hadi MZ, Hellsten U, Hildebr<strong>and</strong> M, Jenk<strong>in</strong>s BD, Jurka J,<br />

Kapitonov VV, Kröger N, Lau WWY, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Med<strong>in</strong>a M,<br />

Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA,<br />

Saito MA, Schwartz DC, Thamatrakoln K, Valent<strong>in</strong> K, Vardi A, Wilkerson FP & Rokhsar DS<br />

(2004) The genome <strong>of</strong> the diatom Thalassiosira pseudonana: ecology, evolution, <strong>and</strong> metabolism.<br />

Science 306, 79-86.<br />

54 Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C,<br />

Maumus F, Otillar RP, Rayko E, Salamov A, V<strong>and</strong>epoele K, Beszteri B, Gruber A, Heijde M,<br />

Kat<strong>in</strong>ka M, Mock T, Valent<strong>in</strong> K, Verret F, Berges JA, Brownlee C, Cadoret J-P, Chiovitti A,<br />

Choi CJ, Coesel S, De Mart<strong>in</strong>o A, Detter JC, Durk<strong>in</strong> C, Falciatore A, Fournet J, Haruta M,<br />

Huysman MJJ, Jenk<strong>in</strong>s BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kröger N,<br />

Kroth PG, La Roche J, L<strong>in</strong>dquist E, Lommer M, Mart<strong>in</strong>-Jézéquel V, Lopez PJ, Lucas S,<br />

Mangogna M, McG<strong>in</strong>nis K, Medl<strong>in</strong> LK, Montsant A, Oudot-Le Secq M-P, Napoli C, Obornik M,<br />

Parker MS, Petit J-L, Porcel BM, Poulsen N, Robison M, Rychlewski L, Rynearson TA,<br />

Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, von Dassow P,<br />

Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, Van<br />

de Peer Y & Grigoriev IV (2008) The Phaeodactylum genome reveals the evolutionary history <strong>of</strong><br />

diatom genomes. Nature 456, 239-44.<br />

55 Cock JM, Sterck L, Rouzé P, Scornet D, Allen AE, Amoutzias G, Anthouard V, Artiguenave F,<br />

Aury J-M, Badger JH, Beszteri B, Billiau K, Bonnet E, Bothwell JH, Bowler C, Boyen C,<br />

Brownlee C, Carrano CJ, Charrier B, Cho GY, Coelho SM, Collén J, Corre E, Da Silva C,<br />

Delage L, Delaroque N, Dittami SM, Doulbeau S, Elias M, Farnham G, Gachon CMM,<br />

Gschloessl B, Heesch S, Jabbari K, Jub<strong>in</strong> C, Kawai H, Kimura K, Kloareg B, Küpper FC,<br />

Lang D, Le Bail A, Leblanc C, Lerouge P, Lohr M, Lopez PJ, Martens C, Maumus F, Michel G,<br />

Mir<strong>and</strong>a-Saavedra D, Morales J, Moreau H, Motomura T, Nagasato C, Napoli CA, Nelson DR,<br />

Nyvall-Collén P, Peters AF, Pommier C, Pot<strong>in</strong> P, Poula<strong>in</strong> J, Quesneville H, Read B, Rens<strong>in</strong>g SA,<br />

Ritter A, Rousvoal S, Samanta M, Samson G, Schroeder DC, Ségurens B, Strittmatter M,<br />

Tonon T, Tregear JW, Valent<strong>in</strong> K, von Dassow P, Yamagishi T, Van de Peer Y & W<strong>in</strong>cker P (2010)<br />

The Ectocarpus genome <strong>and</strong> the <strong>in</strong>dependent evolution <strong>of</strong> multicellularity <strong>in</strong> brown algae. Nature<br />

465, 617-21.


Effector identification <strong>in</strong> B. lactucae<br />

93<br />

56 Gobler CJ, Berry DL, Dyhrman ST, Wilhelm SW, Salamov A, Lobanov AV, Zhang Y, Collier JL,<br />

Wurch LL, Kustka AB, Dill BD, Shah M, VerBerkmoes NC, Kuo A, Terry A, Pangil<strong>in</strong>an J,<br />

L<strong>in</strong>dquist EA, Lucas S, Paulsen IT, Hattenrath-Lehmann TK, Talmage SC, Walker EA, Koch F,<br />

Burson AM, Marcoval MA, Tang Y-Z, Lecleir GR, Coyne KJ, Berg GM, Bertr<strong>and</strong> EM, Saito MA,<br />

Gladyshev VN & Grigoriev IV (2011) Niche <strong>of</strong> harmful alga Aureococcus anophagefferens<br />

revealed through ecogenomics. Proceed<strong>in</strong>gs <strong>of</strong> the National Academy <strong>of</strong> Sciences <strong>of</strong> the United<br />

States <strong>of</strong> America 108, 4352-7.<br />

57 Van Dongen SM (2000) Graph cluster<strong>in</strong>g by Flow Simulation. Thesis, Utrecht University, 1-196.<br />

58 Enright AJ, Van Dongen S & Ouzounis CA (2002) An efficient algorithm for large-scale detection<br />

<strong>of</strong> prote<strong>in</strong> families. Nucleic Acids Research 30, 1575-84.<br />

59 Waterhouse AM, Procter JB, Mart<strong>in</strong> DMA, Clamp M & Barton GJ (2009) Jalview Version 2--a<br />

multiple sequence alignment editor <strong>and</strong> <strong>analysis</strong> workbench. Bio<strong>in</strong>formatics 25, 1189-91.<br />

60 Katoh K & Toh H (2008) Recent developments <strong>in</strong> the MAFFT multiple sequence alignment<br />

program. Brief<strong>in</strong>gs <strong>in</strong> Bio<strong>in</strong>formatics 9, 286-98.<br />

61 Zhang NW, L<strong>in</strong>dhout P, Niks RE & Jeuken MJW (2009) Genetic dissection <strong>of</strong> Lactuca saligna<br />

nonhost resistance to <strong>downy</strong> <strong>mildew</strong> at various lettuce developmental stages. Plant Pathology 58,<br />

923-32.<br />

62 Zhang NW, Pelgrom K, Niks RE, Visser RGF & Jeuken MJW (2009) Three comb<strong>in</strong>ed<br />

quantitative trait loci from nonhost Lactuca saligna are sufficient to provide complete resistance<br />

<strong>of</strong> lettuce aga<strong>in</strong>st Bremia lactucae. Molecular plant-microbe <strong>in</strong>teractions 22, 1160-8.


94 Chapter 3


Effector identification <strong>in</strong> B. lactucae<br />

95<br />

Supplemental Information<br />

Figure S1 (previous page): Phylogenetic relationship between NLPs [necrosis <strong>and</strong> ethylene-<strong>in</strong>duc<strong>in</strong>g<br />

peptide 1 (NEP1)-like prote<strong>in</strong>s] from various oomycete plant pathogens.<br />

Four <strong>of</strong> the NLPs <strong>in</strong> the Bremia lactucae secretome provided full-length NLP doma<strong>in</strong> matches <strong>and</strong><br />

are <strong>in</strong>cluded <strong>in</strong> the ma<strong>in</strong> tree, <strong>in</strong>dicated <strong>in</strong> purple. The positions <strong>of</strong> fragments <strong>of</strong> the doma<strong>in</strong>s found<br />

<strong>in</strong> the complete B. lactucae transcriptome were determ<strong>in</strong>ed separately (<strong>in</strong>dicated <strong>in</strong> the ma<strong>in</strong> tree by<br />

stars), as they are difficult to locate based on the alignment <strong>of</strong> the full-length doma<strong>in</strong>. Bremia lactucae<br />

NLPs are spread more widely across the oomycete NLP gene tree than are the Hyaloperonospora<br />

arabidopsidis NLPs (<strong>in</strong>dicated <strong>in</strong> bold as clade or <strong>in</strong>dividual common names), <strong>and</strong> do not fall with<strong>in</strong><br />

H. arabidopsidis or Pythium ultimum subclades. Bremia lactucae NLPs cluster close to the two H.<br />

arabidopsidis NLPs outside <strong>of</strong> the H. arabidopsidis-specific subclade. NLP names <strong>in</strong>dicated <strong>in</strong> blue<br />

belong to NLPs that have been shown to <strong>in</strong>duce necrosis when expressed <strong>in</strong> tobacco leaves. Scale bar<br />

<strong>in</strong>dicates 0.1 substitutions per am<strong>in</strong>o acid. Stars <strong>in</strong>dicate the location <strong>of</strong> subtrees that conta<strong>in</strong> short<br />

fragments (<strong>in</strong>complete assembly) <strong>of</strong> Bremia NLPs that were assessed separately.<br />

Table S1 (cont<strong>in</strong>ued next page): Number <strong>of</strong> reads from spore <strong>and</strong> <strong>in</strong>fection sequenc<strong>in</strong>g pools per contig<br />

for those that show a five-fold or greater difference <strong>in</strong> the number <strong>of</strong> reads between spore <strong>and</strong> <strong>in</strong>fection<br />

stages as determ<strong>in</strong>ed from 5′ end sequences <strong>of</strong> the non-normalized sequenc<strong>in</strong>g pools.<br />

Differential expression was observed for contigs correspond<strong>in</strong>g to prote<strong>in</strong> models <strong>of</strong> all the <strong>in</strong>dicated<br />

categories, except for those encod<strong>in</strong>g for DnaJ doma<strong>in</strong> prote<strong>in</strong>s <strong>and</strong> NLPs [necrosis <strong>and</strong> ethylene<strong>in</strong>duc<strong>in</strong>g<br />

peptide 1 (NEP1)-like prote<strong>in</strong>s] for which no difference <strong>in</strong> abundance was found.<br />

Overal Spores Interaction 1<br />

Reads considered 67615 20169<br />

Contigs conta<strong>in</strong><strong>in</strong>g reads 8667 6567<br />

Average reads /<br />

contig conta<strong>in</strong><strong>in</strong>g reads<br />

7.8 3.1<br />

Controls Spores Interaction<br />

Act<strong>in</strong><br />

contig12283 3 9<br />

Tubul<strong>in</strong><br />

contig12868 4 5<br />

18s Ribosomal<br />

contig01002 25 32<br />

Phospholipase A2<br />

contig36115 2 3<br />

1<br />

(count<strong>in</strong>g only Bremia)


96 Chapter 3<br />

Spores Interaction Spores Interaction<br />

Elicit<strong>in</strong>s<br />

Tryps<strong>in</strong><br />

contig32983 26 1 contig34965 26 0<br />

contig43325 0 11 contig56967 49 1<br />

contig46242 20 1 >5% cyste<strong>in</strong>e<br />

contig48912 16 1 contig08246 54 2<br />

Jacal<strong>in</strong> contig10442 20 1<br />

contig06799 11 1 contig16641 6 1<br />

contig12503 15 0 contig17422 17 2<br />

contig14955 48 2 contig19602 0 8<br />

CAP contig28850 6 0<br />

contig36558 9 0 contig30126 1 9<br />

Ric<strong>in</strong>-B-Lect<strong>in</strong> contig31077 10 0<br />

contig22692 16 1 contig38644 46 5<br />

contig28297 33 2 contig39684 14 1<br />

RXLR <strong>and</strong> RXLR-likes contig40030 8 1<br />

contig07991 1 8 contig40488 16 0<br />

contig08248 35 3 contig44287 8 0<br />

contig09272 2 14 contig44488 0 6<br />

contig16131 6 0 contig44717 0 11<br />

contig18840 17 0 contig44719 0 23<br />

contig23155 135 0 contig50965 6 1<br />

contig24965 0 29 contig52084 0 14<br />

contig40514 0 19 contig56102 5 0<br />

contig41935 11 0 contig57102 6 0<br />

contig43968 0 12 contig57464 5 0<br />

contig51725 6 0 contig57969 12 1<br />

Table S2: Versions <strong>and</strong> sources <strong>of</strong> genomes used for <strong>analysis</strong>.<br />

Species name Version Source TaxonID<br />

Number<br />

predicted References<br />

prote<strong>in</strong>s<br />

Aureococcus anophagefferens 1 JGI 44056 11501<br />

[56]<br />

Phaeodactylum tricornutum 2 JGI 2850 10402<br />

[54]<br />

Thalassiosira pseudonana 3 JGI 35128 11776<br />

[53]<br />

Ectocarpus siliculosus 1 Gent 2880 16582<br />

[55]<br />

Phytophthora <strong>in</strong>festans 1 BROAD 4787 18138<br />

[7]<br />

Phytophthora ramorum 1 BROAD 164328 14394<br />

[8]<br />

Phytophthora sojae 1 BROAD 67593 16989<br />

[8]<br />

Pythium ultimum 4 BROAD 65071 15323<br />

[10]<br />

Hyaloperonospora arabidopsidis 8.3 VBI 272952 14910<br />

[6]<br />

Saprolegnia parasitica 1 BROAD 101203 18729<br />

A<br />

A<br />

www.broad<strong>in</strong>stitute.org/annotation/genome/Saprolegnia_parasitica/MultiHome.html


97<br />

Chapter 4:<br />

Effectors <strong>of</strong> the lettuce <strong>downy</strong> <strong>mildew</strong> Bremia<br />

lactucae enhance host susceptibility<br />

Joost H. M. Stassen, Pim W. J. Vergeer, Annemiek Andel,<br />

Guido Van den Ackerveken<br />

Plant-Microbe Interactions, Department <strong>of</strong> Biology, Faculty <strong>of</strong> Science,<br />

Utrecht University, Utrecht, The Netherl<strong>and</strong>s


98 Chapter 4<br />

Abstract<br />

Bremia lactucae is an obligate biotrophic oomycete that causes <strong>downy</strong> <strong>mildew</strong>, an<br />

important disease <strong>of</strong> lettuce. Bremia uses an arsenal <strong>of</strong> effector prote<strong>in</strong>s that are<br />

thought to manipulate the host <strong>and</strong> establish a successful <strong>in</strong>fection. Among these<br />

are RXLR <strong>effectors</strong> that are proposed to be host-translocated <strong>and</strong> to act <strong>in</strong>side<br />

the host cell. A set <strong>of</strong> 34 potential RXLR <strong>effectors</strong> <strong>of</strong> Bremia was cloned <strong>and</strong><br />

sequence verified by Sanger sequenc<strong>in</strong>g. The contribution <strong>of</strong> each effector to host<br />

susceptibility was <strong>in</strong>vestigated by Agrobacterium-mediated transient expression<br />

<strong>of</strong> effector genes <strong>in</strong> lettuce leaf discs <strong>and</strong> subsequent <strong>in</strong>oculation with Bremia.<br />

The number <strong>of</strong> spores formed by Bremia on these leaf discs provides a measure <strong>of</strong><br />

host susceptibility towards Bremia. A trend towards enhanc<strong>in</strong>g susceptibility was<br />

observed for most potential <strong>effectors</strong>. Transient expression <strong>of</strong> two effector genes,<br />

BLR16 <strong>and</strong> BLR27 significantly <strong>in</strong>creased host susceptibility, whilst transient<br />

expression <strong>of</strong> BLR03 significantly reduced host susceptibility. The temporal expression<br />

<strong>of</strong> selected <strong>effectors</strong> dur<strong>in</strong>g <strong>in</strong>fection <strong>of</strong> lettuce by Bremia was determ<strong>in</strong>ed,<br />

reveal<strong>in</strong>g that BLR03 expression was limited to early <strong>in</strong>fection stages, whereas<br />

BLR16 <strong>and</strong> BLR27 were expressed at all <strong>in</strong>fection stages. To analyse the enhanced<br />

susceptibility phenotype, a set <strong>of</strong> biotic stress-associated markers was developed<br />

from lettuce transcripts that are highly abundant dur<strong>in</strong>g <strong>in</strong>fection. C<strong>and</strong>idate<br />

markers were selected based on homology to A. thaliana genes that are annotated<br />

as biotic stress-responsive or were found to be responsive to biotic stress <strong>in</strong> data<br />

from publicly available microarray experiments. Strong <strong>in</strong>duction <strong>of</strong> five lettuce<br />

biotic stress-associated markers was found <strong>in</strong> response to <strong>in</strong>fection by both Bremia<br />

<strong>and</strong> Agrobacterium. Us<strong>in</strong>g these markers, however, no evidence was found for<br />

strong suppression <strong>of</strong> biotic stress-responses <strong>in</strong> leaf material transiently express<strong>in</strong>g<br />

susceptibility-enhanc<strong>in</strong>g Bremia effector c<strong>and</strong>idates. This work clearly shows that<br />

several c<strong>and</strong>idate <strong>effectors</strong> <strong>of</strong> Bremia enhance disease susceptibility. The identification<br />

<strong>of</strong> these <strong>effectors</strong> <strong>of</strong> Bremia now opens the way to <strong>in</strong>vestigate their activity <strong>and</strong><br />

targets <strong>in</strong> the lettuce host.


Bremia <strong>effectors</strong> enhance host susceptibility<br />

99<br />

Introduction<br />

Bremia lactucae is an obligate biotrophic oomycete that causes <strong>downy</strong> <strong>mildew</strong><br />

<strong>of</strong> lettuce. Losses <strong>in</strong> susceptible crops are large, <strong>and</strong> considerable effort is put<br />

<strong>in</strong>to breed<strong>in</strong>g resistant lettuce cultivars. Many agricultural crops are attacked by<br />

oomycetes, a diverse group <strong>of</strong> organisms with fungal-like features belong<strong>in</strong>g to the<br />

Stramenopiles. Oomycete pathogens differ <strong>in</strong> lifestyle, rang<strong>in</strong>g from necrotrophic<br />

species such as Pythium ultimum through hemibiotrophic Phytophthora species<br />

(e.g. P. <strong>in</strong>festans <strong>and</strong> P. sojae) to the obligate biotrophic <strong>downy</strong> <strong>mildew</strong>s. Examples<br />

<strong>of</strong> crops affected by <strong>downy</strong> <strong>mildew</strong> are grapev<strong>in</strong>e (caused by Plasmopara<br />

viticola), sunflower (caused by Plasmopara halstedii) <strong>and</strong> cucurbits (caused by<br />

Pseudoperonospora cubensis). Much <strong>of</strong> our current underst<strong>and</strong><strong>in</strong>g <strong>of</strong> the molecular<br />

biology <strong>of</strong> <strong>downy</strong> <strong>mildew</strong>-host <strong>in</strong>teractions has been learnt from the <strong>in</strong>teraction<br />

between Hyaloperonospora arabidopsidis <strong>and</strong> Arabidopsis thaliana, which is a<br />

prime host-pathogen model system (reviewed by Coates <strong>and</strong> Beynon [1] ), whereas<br />

the lettuce-Bremia <strong>in</strong>teraction has been ma<strong>in</strong>ly studied as model for gene-for-gene<br />

<strong>in</strong>teractions (reviewed by Michelmore <strong>and</strong> Wong [2] ). The lifestyle <strong>of</strong> H. arabidopsidis<br />

is similar to that <strong>of</strong> Bremia, though there are clear differences. Bremia <strong>and</strong><br />

H. arabidopsidis <strong>in</strong>fections start from a sporangio- or conidiospore germ<strong>in</strong>at<strong>in</strong>g<br />

on plant leaves. Bremia then forms an appressorium that serves to penetrate the<br />

epidermis, allow<strong>in</strong>g the establishment <strong>of</strong> a primary vesicle, <strong>and</strong> later a secondary<br />

one, <strong>in</strong> an epidermal cell [3] . H. arabidopsidis does not penetrate through epidermal<br />

cells, rather it forces a hyphae through the anticl<strong>in</strong>al wall between two epidermal<br />

cells. Both pathogens then grow hyphae between mesophyll cells, penetrat<strong>in</strong>g the<br />

cell walls <strong>and</strong> <strong>in</strong>vag<strong>in</strong>at<strong>in</strong>g the host membrane to form protrusions called haustoria.<br />

In order to successfully <strong>in</strong>teract with their hosts, oomycetes use an arsenal <strong>of</strong><br />

different <strong>effectors</strong>. A number <strong>of</strong> these <strong>effectors</strong> act on the outside <strong>of</strong> the host cell,<br />

whilst other types are translocated across the host cell wall <strong>and</strong> cell membrane <strong>in</strong>to<br />

<strong>in</strong>tracellular compartments <strong>of</strong> the host (reviewed by Göhre <strong>and</strong> Robatzek [4] ). The<br />

different lifestyles <strong>of</strong> oomycetes are reflected <strong>in</strong> the <strong>effectors</strong> <strong>of</strong> different groups<br />

<strong>of</strong> pathogens. Whereas necrotrophic <strong>and</strong> hemibiotrophic oomycete species encode<br />

<strong>effectors</strong> that are thought to act similar to tox<strong>in</strong>s, biotrophs do not kill their host<br />

<strong>and</strong> are thought to adapt a more stealthy lifestyle [5] . This requires extensive <strong>in</strong>terference<br />

with host cell processes to promote disease susceptibility <strong>in</strong> the broadest<br />

sense. Effectors can serve to suppress immunity, but also to promote or alter host<br />

metabolism <strong>and</strong> to redirect nutrient transport <strong>in</strong> favour <strong>of</strong> the pathogen.<br />

Suppression <strong>of</strong> plant immunity by <strong>effectors</strong> <strong>of</strong> bacterial pathogens is a<br />

well-studied phenomenon (Reviewed by Göhre <strong>and</strong> Robatzek [6] <strong>and</strong> Rodríguez-<br />

Herva et al. [7] ). Gram-negative bacteria, e.g. those belong<strong>in</strong>g to genera <strong>of</strong><br />

Pseudomonas or Xanthomonas, deliver <strong>effectors</strong> <strong>in</strong>to host cells via a Type Three


100 Chapter 4<br />

Secretion System (TTSS) to <strong>in</strong>terfere with plant immunity by act<strong>in</strong>g on host<br />

targets. A recent example <strong>of</strong> surpris<strong>in</strong>g targets <strong>in</strong>clude the tomato PsbQ prote<strong>in</strong>,<br />

which is a member <strong>of</strong> the oxygen evolv<strong>in</strong>g complex <strong>of</strong> photosystem II [8] . Target<strong>in</strong>g<br />

<strong>of</strong> this prote<strong>in</strong> by the P. syr<strong>in</strong>gae pv tomato DC3000 effector HopN1 compromised<br />

the production <strong>of</strong> defence-related reactive oxygen species <strong>and</strong> programmed cell<br />

death. Effectors can also act on processes not related to plant immunity to enhance<br />

disease susceptibility. For example, the PthXO1 effector <strong>of</strong> Xanthomonas oryzae<br />

pv oryzae PXO99 <strong>in</strong>duces the ectopic expression <strong>of</strong> the rice OsSWEET11 sugar<br />

transporter by directly b<strong>in</strong>d<strong>in</strong>g to the promoter <strong>of</strong> its encod<strong>in</strong>g gene. Apparently<br />

the activation <strong>of</strong> the sugar transporter is important for nutrient acquisition by the<br />

<strong>in</strong>vad<strong>in</strong>g pathogen [9] .<br />

Oomycetes do not deploy a TTSS to <strong>in</strong>troduce <strong>effectors</strong> <strong>in</strong>to the host cell, but<br />

rather use a two-step procedure. Effectors <strong>of</strong> oomycetes are thought to be secreted<br />

from the haustorium, after which they are taken up or translocate across the hostcell<br />

membrane [10] . Two motifs that are associated with host-cell entry have been<br />

described <strong>in</strong> multiple oomycete species. Based on the presence <strong>of</strong> these motifs<br />

the RXLR <strong>effectors</strong> <strong>and</strong> the Cr<strong>in</strong>kler <strong>effectors</strong> are dist<strong>in</strong>guished as major classes<br />

<strong>of</strong> <strong>effectors</strong>. In <strong>downy</strong> <strong>mildew</strong>s fewer Cr<strong>in</strong>kler <strong>effectors</strong> appear to be expressed<br />

compared to RXLR <strong>effectors</strong> [11–13] . The RXLR <strong>effectors</strong> conta<strong>in</strong> a signal peptide for<br />

secretion from the pathogen, <strong>and</strong> a translocation doma<strong>in</strong> that conta<strong>in</strong>s the RXLR<br />

motif, or a variant there<strong>of</strong>, <strong>and</strong> an optional EER motif. The region C-term<strong>in</strong>al <strong>of</strong> the<br />

translocation doma<strong>in</strong> is referred to as the effector doma<strong>in</strong>. Uptake <strong>of</strong> these <strong>effectors</strong><br />

by host cells appears to take place <strong>in</strong> absence <strong>of</strong> a pathogen-encoded mach<strong>in</strong>ery<br />

<strong>and</strong> is associated with the RXLR motif [10,14,15] , though there are also reports <strong>of</strong><br />

translocation <strong>of</strong> <strong>effectors</strong> with a less conserved RXLR motifs or only an EER motif<br />

[16–18]<br />

. The exact mechanism <strong>of</strong> host-cell entry by RXLR <strong>effectors</strong> is under debate,<br />

with reports <strong>of</strong> b<strong>in</strong>d<strong>in</strong>g to cell surface-exposed phosphatidyl<strong>in</strong>ositol-3-phosphate <strong>in</strong><br />

plant <strong>and</strong> human cells [19] , <strong>and</strong> tyros<strong>in</strong>e-O-sulphate-modified cell surface molecules<br />

<strong>in</strong> fish [15] as <strong>in</strong>itial steps <strong>in</strong> host entry.<br />

RXLR <strong>effectors</strong> have been predicted from the genomes <strong>of</strong> oomycetes based on<br />

the presence <strong>of</strong> predicted signal peptides <strong>and</strong> RXLR motifs. Many <strong>of</strong> these <strong>effectors</strong><br />

have been <strong>functional</strong>ly analysed for suppression <strong>of</strong> plant immunity. Two <strong>of</strong><br />

32 tested P. <strong>in</strong>festans <strong>effectors</strong> were found to suppress Infest<strong>in</strong>-1 (INF-1) <strong>in</strong>duced<br />

hypersensitive cell death when expressed by Agrobacterium transient transformation<br />

24 hours before challenge <strong>in</strong>oculation with an Agrobacterium stra<strong>in</strong> carry<strong>in</strong>g<br />

an INF-1 construct [20] . In a similar setup, the majority <strong>of</strong> a large collection <strong>of</strong> P.<br />

sojae <strong>effectors</strong> was shown to suppress cell death <strong>in</strong>duced by the mouse pro-apoptotic<br />

prote<strong>in</strong> BAX or by the INF-1 <strong>in</strong> Nicotiana benthamiana [21] . Constructs <strong>of</strong><br />

RXLR <strong>effectors</strong> <strong>of</strong> the <strong>downy</strong> <strong>mildew</strong> H. arabidopsidis fused with TTSS target<strong>in</strong>g<br />

signal have been expressed <strong>in</strong> Pseudomonas syr<strong>in</strong>gae <strong>and</strong> targeted to the host


Bremia <strong>effectors</strong> enhance host susceptibility<br />

101<br />

cytoplasm via the TTSS. This revealed a surpris<strong>in</strong>gly high number <strong>of</strong> <strong>effectors</strong> that<br />

enhanced susceptibility to P. syr<strong>in</strong>gae <strong>in</strong>fection <strong>and</strong> decreased defence-associated<br />

callose deposition by the host [11,22,23] .<br />

Details on the molecular mechanisms underly<strong>in</strong>g the actions <strong>of</strong> host-translocated<br />

oomycetes are largely unknown, but are beg<strong>in</strong>n<strong>in</strong>g to be elucidated. Most<br />

potential <strong>effectors</strong> do not conta<strong>in</strong> any known doma<strong>in</strong>s or motifs other than the<br />

motifs associated with translocation. An exception is Avr3b, a P. sojae-specific<br />

effector, which is a <strong>functional</strong> Nudix hydrolase [24] . Details <strong>of</strong> the target <strong>and</strong> mode<br />

<strong>of</strong> action are known for P. <strong>in</strong>festans effector Avr3a, which stabilises the host<br />

E3 ligase CMPG1 <strong>in</strong> order to manipulate host immunity [25] . Host defences are<br />

also affected by P. <strong>in</strong>festans AVRBlb2, which associates with C14, a papa<strong>in</strong>-like<br />

cyste<strong>in</strong>e protease normally secreted by the host as a defence measure. This<br />

association occurs around haustoria <strong>and</strong> blocks secretion <strong>of</strong> C14 [26] . The targets <strong>and</strong><br />

functions <strong>of</strong> other <strong>effectors</strong> rema<strong>in</strong> to be elucidated, though there are <strong>in</strong>dications<br />

that multiple <strong>effectors</strong> <strong>of</strong> different species may share the same host targets.<br />

High-throughput yeast-2-hybrid <strong>analysis</strong> <strong>of</strong> H. arabidopsidis effector c<strong>and</strong>idates,<br />

P. syr<strong>in</strong>gae <strong>effectors</strong>, <strong>and</strong> A. thaliana prote<strong>in</strong>s revealed that, though separated by<br />

two billion years <strong>of</strong> evolution, 18 <strong>of</strong> 165 effector targets are shared between both<br />

pathogens [27] . Between the targets 139 prote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teractions were identified,<br />

<strong>in</strong>dicat<strong>in</strong>g that the direct targets are highly <strong>in</strong>terconnected. In other words, both<br />

pathogens act on a limited <strong>and</strong> overlapp<strong>in</strong>g set <strong>of</strong> target modules <strong>in</strong> plant defence.<br />

Although the lettuce-Bremia <strong>in</strong>teraction has been studied extensively, details<br />

<strong>of</strong> Bremia <strong>effectors</strong> <strong>and</strong> their activities have only recently started to emerge.<br />

Previously, we identified potential RXLR <strong>and</strong> RXLR-like <strong>effectors</strong> <strong>of</strong> Bremia from<br />

the transcriptome <strong>of</strong> <strong>downy</strong> <strong>mildew</strong>-<strong>in</strong>fected lettuce plants [13] . Here we <strong>in</strong>vestigate<br />

the role <strong>of</strong> these potential <strong>effectors</strong> <strong>in</strong> modulat<strong>in</strong>g host susceptibility or suppress<strong>in</strong>g<br />

plant defence.<br />

Results<br />

A Bremia effector set for <strong>in</strong> planta expression<br />

Previously, we predicted 77 potential RXLR <strong>and</strong> RXLR-like <strong>effectors</strong> from our<br />

Bremia transcriptome data [13] . Based on these predictions we cloned a set <strong>of</strong> 16<br />

full-length effector c<strong>and</strong>idates that were verified by Sanger sequenc<strong>in</strong>g. We had<br />

previously verified <strong>and</strong> cloned 12 potential <strong>effectors</strong> that were predicted <strong>in</strong> previous<br />

prelim<strong>in</strong>ary assemblies. F<strong>in</strong>ally, we also determ<strong>in</strong>ed the full-length sequence <strong>of</strong> 6<br />

potential <strong>effectors</strong> that were not full-length <strong>in</strong> the assembled 454-transcript data by<br />

us<strong>in</strong>g additional data from short reads <strong>of</strong> spore-derived genomic DNA or 3’ RACE.<br />

The complete set therefore comprises 34 Bremia effector c<strong>and</strong>idates. An overview


102 Chapter 4<br />

Table 1: Overview <strong>of</strong> cloned Bremia effector c<strong>and</strong>idates. The first RXLR or RXLR-like motif <strong>and</strong><br />

position with<strong>in</strong> 100 am<strong>in</strong>o acids from the start codon are <strong>in</strong>dicated. The first EER or EER-like motif<br />

<strong>and</strong> position <strong>of</strong> which the first am<strong>in</strong>o acid is with<strong>in</strong> 20 am<strong>in</strong>o acids <strong>of</strong> the first am<strong>in</strong>o acid <strong>of</strong> the RXLR<br />

motif are shown. Source: M – ma<strong>in</strong> assembly, 3 – 3’ RACE, E – transcript extended with SOLiD data,<br />

P – prelim<strong>in</strong>ary assemblies.<br />

RXLR-like<br />

EER-like<br />

ID Source Contig ID length start motif start motif<br />

BLR01 P - 86 42 RKLR 52 EQK<br />

BLR02 P - 146 85 RLLR<br />

BLR03 P - 141 48 RFLR 59 EEER<br />

BLR04 P - 76 45 RELR 60 DIK<br />

BLR05 P - 97 32 RALR 58 DED<br />

BLR06 P - 281 46 RCLR<br />

BLR07 P - 253 47 RALR 68 EEER<br />

BLR08 P - 135 38 RLLR<br />

BLR09 P - 112 37 RRLR 81 EER<br />

BLR10 P - 112 37 RRLR 81 EER<br />

BLR11 P - 463 46 RRLR 57 DESER<br />

BLR12 P - 123 49 RYLR 61 ELEK<br />

BLR13 M 16131 363 44 RRLR 55 EER<br />

BLR14 M 29191 75 46 RKLR<br />

BLR15 M 50216 102 47 RSLR 60 DEER<br />

BLR16 M 32917-1 98 47 RSLR 60 NDER<br />

BLR17 M 18684 282 50 RRLR 64 DAEK<br />

BLR18 M 48006 92 46 RALR 55 NEDR<br />

BLR19 M 31910 160 45 RLLR 54 DNNEER<br />

BLR20 M 45396 130 53 RLLR 69 DEAD<br />

BLR21 M 33962 65 39 RILR<br />

BLR22 M 43968 185 33 RGLR<br />

BLR23 M 24965 107 57 RSLR 62 DENR<br />

BLR24 M 43687 91 55 RSLR 74 ELEQ<br />

BLR25 M 48013 82 55 RALR<br />

BLR26 E 16394 187 46 RRLR 59 QNDER<br />

BLR27 E 38529 434 40 RQLR<br />

BLR28 3 08983 279 49 RRLR<br />

BLR29 3 43449 311 35 RMLR 46 EES<br />

BLR30 3 50216 101 47 RSLR 60 DEER<br />

BLQ01 3 59265 79 49 QLLR 61 DEEQR<br />

BLG01 M 25695 336 44 GKLR 57 DER<br />

BLG02 M 31920 233 44 GRLR 57 DER<br />

BLG03 M 23857 243 42 GKLR 55 DER


Bremia <strong>effectors</strong> enhance host susceptibility<br />

103<br />

<strong>of</strong> the cloned effector c<strong>and</strong>idates is given <strong>in</strong> Table 1, <strong>and</strong> sequences can found <strong>in</strong><br />

Supplemental Information 1.<br />

Our set <strong>of</strong> potential <strong>effectors</strong> consists <strong>of</strong> 30 RXLR prote<strong>in</strong>s (BLR, for Bremia<br />

lactucae RXLR) <strong>and</strong> four c<strong>and</strong>idates with an RXLR-like motif. These Bremia<br />

RXLR-like effector c<strong>and</strong>idates were identified based on their similarity to <strong>effectors</strong><br />

<strong>of</strong> other oomycetes <strong>and</strong> by comparison to a hidden Markov model based on the<br />

am<strong>in</strong>o acid sequence surround<strong>in</strong>g the RXLR motifs <strong>of</strong> Bremia <strong>effectors</strong> with an<br />

RXLR motif. In three <strong>of</strong> these RXLR-like motifs the first arg<strong>in</strong><strong>in</strong>e is replaced by a<br />

glyc<strong>in</strong>e (BLG01, BLG02 <strong>and</strong> BLG03), <strong>and</strong> <strong>in</strong> the fourth this residue is a glutam<strong>in</strong>e<br />

(BLQ01). EER-like doma<strong>in</strong>s (am<strong>in</strong>o acid sequences rich <strong>in</strong> E,Q,D or N residues,<br />

preferably end<strong>in</strong>g <strong>in</strong> R or K) were found <strong>in</strong> the majority <strong>of</strong> effector c<strong>and</strong>idates. The<br />

length <strong>of</strong> the cloned <strong>effectors</strong> varies from 65 to 463 am<strong>in</strong>o acids, with an average<br />

length <strong>of</strong> just under 180 am<strong>in</strong>o acids.<br />

Constructs for Agrobacterium-mediated transient expression <strong>in</strong> planta were<br />

created by eng<strong>in</strong>eer<strong>in</strong>g a new start codon upstream <strong>of</strong> the cod<strong>in</strong>g sequence <strong>of</strong> the<br />

cleaved secreted prote<strong>in</strong>, so that the first am<strong>in</strong>o acid after the start codon <strong>in</strong> the<br />

constructs corresponds to the codon for the first am<strong>in</strong>o acid after the predicted<br />

signal peptide cleavage site. In planta expression <strong>of</strong> the constructs is driven by<br />

a 35S CaMV promoter. Because <strong>of</strong> the deletion <strong>of</strong> the signal peptide sequence,<br />

the effector prote<strong>in</strong> will be translated <strong>in</strong> the host cell cytoplasm, where it is also<br />

expected to be present dur<strong>in</strong>g <strong>in</strong>fection by Bremia.<br />

Bremia <strong>effectors</strong> modulate plant susceptibility<br />

Modulation <strong>of</strong> host susceptibility by the Bremia RXLR <strong>effectors</strong> was tested <strong>in</strong><br />

a leaf-disc assay based on the idea that transient expression <strong>of</strong> <strong>effectors</strong> <strong>in</strong> leaf<br />

tissue could enhance the susceptibility to Bremia <strong>in</strong>fection, result<strong>in</strong>g <strong>in</strong> higher<br />

colonisation <strong>and</strong> sporulation levels. To test our system we transiently expressed<br />

the lettuce orthologue <strong>of</strong> a gene encod<strong>in</strong>g a negative regulator <strong>of</strong> plant immunity,<br />

DMR6 [28] , as positive control. A T-DNA GUS-<strong>in</strong>tron construct (hereafter: GUS)<br />

was used as a control for T-DNA transfer <strong>and</strong> transgene expression, <strong>and</strong> was used<br />

to determ<strong>in</strong>e the effect <strong>of</strong> Agrobacterium <strong>in</strong>filtration on susceptibility to Bremia<br />

<strong>in</strong> our assay. Figure 1 shows the amount <strong>of</strong> spores that could be recovered from<br />

mock-<strong>in</strong>filtrated <strong>and</strong> DMR6 express<strong>in</strong>g leaf discs, relative to the amount <strong>of</strong> spores<br />

recovered from leaf discs express<strong>in</strong>g GUS. Leaf discs that are <strong>in</strong>filtrated with only<br />

<strong>in</strong>filtration medium are more susceptible to Bremia than those <strong>in</strong>filtrated with Agrobacterium,<br />

probably because <strong>of</strong> the <strong>in</strong>duction <strong>of</strong> plant defence. The Agrobacterium<br />

sta<strong>in</strong> carry<strong>in</strong>g a GUS construct is therefore a more relevant control to <strong>in</strong>vestigate<br />

the effect <strong>of</strong> the Bremia effector c<strong>and</strong>idates on host susceptibility. DMR6 <strong>in</strong>creases<br />

host susceptibility to Bremia, as is evident from the <strong>in</strong>creased numbers <strong>of</strong> spores


104 Chapter 4<br />

Figure 1: Median relative amount <strong>of</strong> Bremia spores harvested from lettuce discs <strong>in</strong>filtrated with<br />

<strong>in</strong>filtration medium (IM), GUS-Agrobacterium or DMR6-Agrobacterium. Based on 23 observations per<br />

treatment. Error bars <strong>in</strong>dicate 95% confidence <strong>in</strong>terval.<br />

that can be harvested from leaf discs transiently over-express<strong>in</strong>g DMR6. This is<br />

<strong>in</strong> accordance with observations <strong>of</strong> enhanced susceptibility <strong>of</strong> A. thaliana DMR6<br />

over-expression l<strong>in</strong>es to the <strong>downy</strong> <strong>mildew</strong> H. arabidopsidis <strong>and</strong> the bacterial pathogen<br />

P. syr<strong>in</strong>gae pv tomato DC3000 [28] . We verified that Bremia can be negatively<br />

affected by effector-<strong>in</strong>duced responses us<strong>in</strong>g the P. sojae effector PsojNIP, which<br />

<strong>in</strong>duces cell death <strong>in</strong> lettuce [29] . PsojNIP-express<strong>in</strong>g leaf discs underwent extensive<br />

cell-death <strong>and</strong> no Bremia spores could be recovered from them as a result. This<br />

leaf-disc assay is therefore capable <strong>of</strong> uncover<strong>in</strong>g changes <strong>in</strong> susceptibility <strong>and</strong> can<br />

be used to <strong>in</strong>vestigate the effect <strong>of</strong> Bremia <strong>effectors</strong> on host immunity.<br />

We used the leaf-disc assay to test the 34 cloned Bremia <strong>effectors</strong>. The effect<br />

<strong>of</strong> transient over-expression <strong>of</strong> Bremia <strong>effectors</strong> <strong>in</strong> advance <strong>of</strong> <strong>in</strong>oculation with<br />

Bremia differs between tested <strong>effectors</strong> (Figure 2). Transient expression <strong>of</strong> all<br />

but three <strong>effectors</strong> appeared to allow recovery <strong>of</strong> more Bremia spores from leaf<br />

discs compared to GUS controls, though variation between replicates is high.<br />

Expression <strong>of</strong> six <strong>effectors</strong> even led to sporulation levels higher then those on leaf<br />

discs <strong>in</strong>filtrated with only medium. Sample sizes were small (4-23 observations)<br />

<strong>and</strong> the assumption <strong>of</strong> homogeneity <strong>of</strong> variances is violated (p < 0.05), rul<strong>in</strong>g out<br />

the use <strong>of</strong> an ANOVA. All treatment groups were compared <strong>in</strong>dividually to GUS<br />

to determ<strong>in</strong>e which Bremia <strong>effectors</strong> <strong>and</strong> controls significantly affect spore counts<br />

us<strong>in</strong>g the Mann-Whitney U test, <strong>and</strong> correction for multiple test<strong>in</strong>g was performed<br />

us<strong>in</strong>g the Bonferroni method. Significantly enhanced susceptibility was observed<br />

only for host tissue express<strong>in</strong>g BLR16 <strong>and</strong> BLR27. Leaf tissue <strong>in</strong> which either <strong>of</strong>


Bremia <strong>effectors</strong> enhance host susceptibility<br />

105<br />

Figure 2: Median relative amount <strong>of</strong> Bremia spores harvested from lettuce leaf-discs <strong>in</strong>filtrated with<br />

Agrobacterium carry<strong>in</strong>g <strong>in</strong>dicated Bremia RXLR effector c<strong>and</strong>idates, or control genes for GUS <strong>and</strong><br />

DMR6, or <strong>in</strong>filtration medium (IM). Striped bars <strong>in</strong>dicate the treatments that did not <strong>in</strong>clude Bremia<br />

<strong>effectors</strong>. Spores amounts are <strong>in</strong>dicated relative to the number <strong>of</strong> spores harvested from Agrobacterium-<br />

GUS <strong>in</strong>filtrated leaf discs. Values are based on m<strong>in</strong>imally 4 observations. Error bars <strong>in</strong>dicate 95%<br />

confidence <strong>in</strong>terval. Asterisks <strong>in</strong>dicate treatments that differ significantly from Agrobacterium-GUS<br />

treatment (p < 0.05) after Bonferroni correction.<br />

these <strong>effectors</strong> is expressed supports spore production levels that lie closer to those<br />

on DMR6-express<strong>in</strong>g tissue than those on GUS-express<strong>in</strong>g tissue. Conversely,<br />

expression <strong>of</strong> BLR03 has a significant negative impact on host susceptibility<br />

result<strong>in</strong>g <strong>in</strong> lower sporulation levels <strong>of</strong> Bremia. The number <strong>of</strong> spores harvested<br />

from BLR03-express<strong>in</strong>g host tissue was generally around half <strong>of</strong> that harvested<br />

from GUS-express<strong>in</strong>g control tissue.<br />

To test if the presumed translocation doma<strong>in</strong> is dispensable for the effects on<br />

host susceptibility, we also expressed the effector doma<strong>in</strong> only <strong>of</strong> BLR03 <strong>and</strong><br />

BLR16 <strong>in</strong> lettuce-leaf discs. Prelim<strong>in</strong>ary results <strong>in</strong>dicate that reduction <strong>of</strong> host<br />

susceptibility <strong>in</strong> leaf discs express<strong>in</strong>g BLR03 without translocation doma<strong>in</strong> was<br />

comparable to that found <strong>in</strong> leaf discs express<strong>in</strong>g BLR03 with translocation doma<strong>in</strong><br />

(not shown). Likewise, susceptibility was comparably enhanced <strong>in</strong> leaf discs<br />

express<strong>in</strong>g BLR16 without its translocation doma<strong>in</strong> <strong>and</strong> similar to that <strong>of</strong> BLR16<br />

with its translocation doma<strong>in</strong>. These prelim<strong>in</strong>ary results suggest that the translocation<br />

doma<strong>in</strong> is not required for the <strong>in</strong> planta susceptibility-modulat<strong>in</strong>g activities <strong>of</strong><br />

these <strong>effectors</strong>, confirm<strong>in</strong>g that the effector doma<strong>in</strong> starts after the EER-like motif.<br />

Effectors are expressed at different stages <strong>of</strong> <strong>in</strong>fection<br />

To <strong>in</strong>vestigate at which stage <strong>of</strong> the <strong>in</strong>fection process the potential <strong>effectors</strong><br />

are expressed, we determ<strong>in</strong>ed the relative mRNA levels <strong>of</strong> selected effector genes.<br />

The selection <strong>of</strong> effector genes was based on promis<strong>in</strong>g prelim<strong>in</strong>ary results <strong>in</strong> our


106 Chapter 4<br />

leaf disc assay <strong>and</strong> <strong>in</strong>cludes the <strong>effectors</strong> that significantly affected susceptibility<br />

to Bremia. All <strong>effectors</strong> were cloned from cDNA <strong>and</strong> were therefore already<br />

known to be expressed <strong>in</strong> Bremia. A more detailed look at expression levels <strong>and</strong><br />

differential expression throughout the <strong>in</strong>fection process is given <strong>in</strong> Figure 3.<br />

Bremia Act<strong>in</strong> expression levels were compared to L. sativa Act<strong>in</strong> expression at<br />

each time po<strong>in</strong>t by subtract<strong>in</strong>g the number <strong>of</strong> qPCR cycles required for the L.<br />

sativa Act<strong>in</strong> amplicon to reach a threshold, from the number <strong>of</strong> qPCR cycles <strong>of</strong><br />

the Bremia Act<strong>in</strong> amplicon to reach the same threshold (ΔC T<br />

). Similarly, effector<br />

gene expression was normalised to Bremia Act<strong>in</strong>. Relative Bremia Act<strong>in</strong> levels<br />

<strong>in</strong>dicate substantial relative Bremia growth dur<strong>in</strong>g the entire time course (Figure 3,<br />

Act<strong>in</strong>). Based on our transcriptome data, i.e. relative abundance <strong>of</strong> non-normalised<br />

5’ reads <strong>in</strong> the spore-derived <strong>and</strong> <strong>in</strong>oculated-lettuce-derived pools, we predicted<br />

BLR22 to be ma<strong>in</strong>ly present <strong>in</strong> spores, <strong>and</strong> BLR23 to be more highly expressed<br />

dur<strong>in</strong>g <strong>in</strong> planta growth [11] . Indeed, expression <strong>of</strong> BLR22 strongly decreased after<br />

the first two days post <strong>in</strong>oculation (dpi), whilst the expression <strong>of</strong> BLR23 <strong>in</strong>creased<br />

Figure 3: Temporal expression <strong>of</strong> <strong>in</strong>dicated Bremia genes. Bremia Act<strong>in</strong> expression was compared to<br />

lettuce Act<strong>in</strong> expression. All other Bremia genes were normalised to Bremia Act<strong>in</strong>. As lower C T<br />

values<br />

<strong>in</strong>dicate higher expression, the Y-axis scale has been reversed to ease <strong>in</strong>terpretation. Error bars <strong>in</strong>dicate<br />

st<strong>and</strong>ard deviation from the mean <strong>of</strong> three technical replicates.


Bremia <strong>effectors</strong> enhance host susceptibility<br />

107<br />

from two dpi onwards (Figure 3). BLR05, BLR09 <strong>and</strong> BLR27 are more actively<br />

transcribed dur<strong>in</strong>g the spore stage <strong>and</strong> at 1 dpi, with expression slightly decl<strong>in</strong><strong>in</strong>g<br />

until 3 dpi. BLG02 expression levels are much higher at 1 dpi compared to spores,<br />

but expression decreases steadily from then on. BLR16, which shows a significant<br />

positive effect on host-susceptibility, appears to be slightly up-regulated at 1 dpi,<br />

with expression be<strong>in</strong>g lower at 2 dpi <strong>and</strong> steadily <strong>in</strong>creas<strong>in</strong>g aga<strong>in</strong> to higher levels<br />

at the end <strong>of</strong> the time course, similar to that <strong>of</strong> BLR23. The expression <strong>of</strong> BLR03,<br />

on the other h<strong>and</strong>, drops rapidly dur<strong>in</strong>g early <strong>in</strong> planta stages, similar to that <strong>of</strong><br />

BLR22, though the low expression levels <strong>of</strong> BLR03 are reached at 3 dpi, whereas<br />

expression <strong>of</strong> BLR22 is already low at 2 dpi. This suggests an early role for BLR03,<br />

<strong>and</strong> could expla<strong>in</strong> that when expressed outside <strong>of</strong> its normal w<strong>in</strong>dow <strong>of</strong> expression<br />

BLR03 can have a negative <strong>in</strong>fluence on host susceptibility, as we observed <strong>in</strong> the<br />

leaf disc assay. The expression pr<strong>of</strong>iles <strong>of</strong> the Bremia <strong>effectors</strong> were found to be<br />

similar <strong>in</strong> a second experiment on an <strong>in</strong>dependent time course (not shown).<br />

Modulation <strong>of</strong> biotic stress-associated gene expression <strong>in</strong> lettuce<br />

To address the question whether <strong>effectors</strong> change the expression <strong>of</strong> genes that are<br />

responsive to biotic stress we set out to identify immunity-related marker genes <strong>in</strong><br />

lettuce. We identified lettuce sequences that are highly abundant <strong>in</strong> the transcriptome<br />

<strong>of</strong> Bremia-<strong>in</strong>fected lettuce plants. A non-normalised sequenc<strong>in</strong>g pool derived<br />

from full-length mRNA <strong>of</strong> lettuce <strong>in</strong>fected with Bremia was previously sequenced<br />

from the 5’ end <strong>and</strong> used for de novo assembly <strong>of</strong> Bremia <strong>and</strong> lettuce transcripts [13] .<br />

The number <strong>of</strong> reads derived from this pool that is assembled <strong>in</strong>to each contig<br />

allows an estimate <strong>of</strong> the relative abundance <strong>of</strong> the transcript represented by the<br />

contig. Our transcript data did not <strong>in</strong>clude transcripts derived from un<strong>in</strong>fected<br />

lettuce that could be used to identify Bremia-<strong>in</strong>duced transcripts based on relative<br />

abundance, so highly abundant transcripts were searched for biotic stress-associated<br />

transcripts as follows. First, transcripts were compared with annotated<br />

Arabidopsis gene models to identify homologous sequences. Potential markers<br />

were then selected by two methods. Homologues <strong>of</strong> Arabidopsis genes annotated<br />

as biotic stress-responsive were selected. Furthermore, Arabidopsis homologues <strong>of</strong><br />

the most highly present lettuce transcripts were <strong>in</strong>vestigated <strong>in</strong> over 6000 publicly<br />

available Arabidopsis microarray experiments via Genevestigator [30] to determ<strong>in</strong>e<br />

whether they were strongly responsive to biotic stresses. The selected genes, listed<br />

<strong>in</strong> Table 2, were further <strong>in</strong>vestigated for their usefulness as markers.<br />

We determ<strong>in</strong>ed the response <strong>of</strong> the selected lettuce genes to Bremia <strong>in</strong>fection<br />

<strong>and</strong> Agrobacterium <strong>in</strong>oculation. Induction by Bremia was tested to determ<strong>in</strong>e<br />

the relevance <strong>of</strong> the markers dur<strong>in</strong>g Bremia <strong>in</strong>fection <strong>of</strong> lettuce (Figure 4A). The<br />

expression <strong>of</strong> all <strong>of</strong> the eleven tested marker c<strong>and</strong>idates was <strong>in</strong>duced dur<strong>in</strong>g Bremia


108 Chapter 4<br />

Table 2: Overview <strong>of</strong> lettuce biotic stress-associated marker c<strong>and</strong>idates <strong>and</strong> their Arabidopsis<br />

homologues.<br />

ID<br />

(contig)<br />

5’<br />

reads<br />

Arabidopsis<br />

gene ID<br />

Blast<br />

e-value<br />

Symbols Description<br />

00337 44 AT5G58600.2 2e-95 PMR5<br />

Plant prote<strong>in</strong> <strong>of</strong> unknown<br />

function (DUF828)<br />

00744 25 AT4G30210.2 0 ATR2, AR2 P450 reductase 2<br />

03859 32 AT5G64120.1 1e-67 Peroxidase superfamily prote<strong>in</strong><br />

04174 21 AT3G45640.1<br />

ATMPK3, MPK3, Mitogen-activated prote<strong>in</strong><br />

7e-64<br />

ATMAPK3 k<strong>in</strong>ase 3<br />

06346 51 AT4G16260.1 2e-95<br />

Glycosyl hydrolase superfamily<br />

prote<strong>in</strong><br />

08313 23 AT4G33430.1<br />

BAK1, RKS10,<br />

SERK3, ELG, BRI1-associated receptor k<strong>in</strong>ase<br />

ATSERK3, ATBAK1<br />

07164 37 AT3G10985.1<br />

SAG20, WI12,<br />

2e-23<br />

ATWI-12<br />

Senescence associated gene 20<br />

15736 37 AT1G70170.1 4e-42 MMP Matrix metalloprote<strong>in</strong>ase<br />

15964 22 AT2G39210.1 0<br />

Major facilitator superfamily<br />

prote<strong>in</strong><br />

33411 99 AT2G36690.1 3e-119<br />

2-oxoglutarate (2OG) <strong>and</strong><br />

Fe(II)-dependent oxygenase<br />

superfamily prote<strong>in</strong><br />

37274 22 AT2G25000.1 3e-39 WRKY60,<br />

ATWRKY60<br />

WRKY DNA-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> 60<br />

<strong>in</strong>fection. Induction <strong>of</strong> two marker genes, 3859 <strong>and</strong> 4174, was higher than 3 C T<br />

<strong>and</strong><br />

three other markers, 15964, 33411 <strong>and</strong> 37274, showed a higher than 6 C T<br />

<strong>in</strong>duction.<br />

The Bremia effector genes that we planned to <strong>in</strong>vestigate were to be tested by<br />

Agrobacterium-mediated transient transformation. We therefore <strong>in</strong>vestigated<br />

the lettuce response to Agrobacterium <strong>in</strong>filtration (Figure 4B) for marker gene<br />

c<strong>and</strong>idates that showed a greater than 3 C T<br />

<strong>in</strong>duction <strong>in</strong> Bremia-treated compared<br />

to mock-treated leaf material. Induction was similar between Bremia <strong>and</strong> Agrobacterium<br />

<strong>in</strong>oculation, with the largest differences <strong>in</strong> the level <strong>of</strong> <strong>in</strong>duction <strong>of</strong> markers<br />

3859 (stronger <strong>in</strong>duction by Agrobacterium) <strong>and</strong> 37274 (stronger <strong>in</strong>duction by<br />

Bremia). The Agrobacterium <strong>in</strong>filtration <strong>of</strong> lettuce can therefore serve a dual<br />

purpose: i, to <strong>in</strong>duce biotic stress, <strong>and</strong> ii, for transient effector gene expression.<br />

We <strong>in</strong>vestigated whether transient expression <strong>of</strong> any <strong>of</strong> the six <strong>effectors</strong> that<br />

most strongly enhanced susceptibility <strong>in</strong> leaf discs, <strong>and</strong> BLR03, which reduces host<br />

susceptibility (Figure 2), modulates expression <strong>of</strong> lettuce biotic stress-markers.<br />

Background expression <strong>of</strong> the biotic stress-markers was determ<strong>in</strong>ed <strong>in</strong> mocktreated<br />

plants. All marker gene expression values were normalised to L. sativa<br />

Act<strong>in</strong> (ΔC T<br />

) <strong>and</strong> normalised values were compared between different treatments


Bremia <strong>effectors</strong> enhance host susceptibility<br />

109<br />

Figure 4: (A) Induction <strong>of</strong> expression <strong>of</strong> biotic-stress-responsive genes <strong>in</strong> Bremia <strong>in</strong>oculated lettuce.<br />

All expression values were normalised towards L. sativa Act<strong>in</strong> <strong>and</strong> compared to normalised mocktreated<br />

values, <strong>and</strong> are given as ΔΔC T<br />

. Error bars <strong>in</strong>dicate the st<strong>and</strong>ard deviation <strong>of</strong> the average <strong>of</strong><br />

three technical replicates. The experiment was repeated with similar results. The scale <strong>of</strong> the Y-axis<br />

has been <strong>in</strong>verted to ease <strong>in</strong>terpretation. (B) Induction <strong>of</strong> expression <strong>of</strong> biotic-stress-responsive genes<br />

<strong>in</strong> Agrobacterium <strong>in</strong>filtrated lettuce. Values are calculated similar to those <strong>in</strong> (A). Error bars <strong>in</strong>dicate<br />

the st<strong>and</strong>ard deviation <strong>of</strong> the average <strong>of</strong> three technical replicates. The experiment was repeated with<br />

similar results. The scale <strong>of</strong> the Y-axis has been <strong>in</strong>verted to ease <strong>in</strong>terpretation.<br />

<strong>and</strong> mock (ΔΔC T<br />

). The <strong>in</strong>duction level <strong>of</strong> biotic stress-markers <strong>in</strong> lettuce leaf<br />

material transiently express<strong>in</strong>g <strong>in</strong>dividual <strong>effectors</strong> is shown <strong>in</strong> Figure 5. Basel<strong>in</strong>e<br />

Agrobacterium-<strong>in</strong>duced marker expression can be determ<strong>in</strong>ed <strong>in</strong> leaf material<br />

transiently express<strong>in</strong>g GUS, as the encoded β-glucuronidase is not expected to<br />

modulate host processes. Induction <strong>of</strong> biotic stress-markers is affected to a limited<br />

degree by transient expression <strong>of</strong> DMR6, a negative regulator <strong>of</strong> host defence, with<br />

a 1-1.5 C T<br />

difference <strong>in</strong> <strong>in</strong>duction <strong>of</strong> both 33411 <strong>and</strong> 37274 compared to expression<br />

<strong>of</strong> GUS. No large differences <strong>in</strong> the expression <strong>of</strong> markers 3859 <strong>and</strong> 4174 were<br />

found between GUS <strong>and</strong> <strong>in</strong>dividual Bremia <strong>effectors</strong>. A trend towards higher<br />

expression <strong>of</strong> 15964 was found <strong>in</strong> response to the majority <strong>of</strong> <strong>effectors</strong>, whilst<br />

expression <strong>of</strong> 33411 is reduced <strong>in</strong> response to nearly half <strong>of</strong> the <strong>effectors</strong>. Expression<br />

<strong>of</strong> 37274 is also <strong>in</strong>duced by a number <strong>of</strong> <strong>effectors</strong>, though it is suppressed by<br />

expression <strong>of</strong> DMR6. Response <strong>of</strong> the markers to different Bremia <strong>effectors</strong> turned<br />

out to be variable, when tested <strong>in</strong> an <strong>in</strong>dependent second experiment (not shown).<br />

The biological variation <strong>in</strong> these experiments was too large to rule out m<strong>in</strong>or<br />

effects. We conclude that there is no strong major effect <strong>of</strong> any <strong>of</strong> the tested Bremia<br />

<strong>effectors</strong> on the expression <strong>of</strong> the selected markers <strong>of</strong> biotic stress.


110 Chapter 4<br />

Figure 5: Relative transcript abundance <strong>of</strong> L. sativa biotic stress-markers <strong>in</strong> leaf sections that were<br />

<strong>in</strong>filtrated with Agrobacterium <strong>and</strong> transiently expressed <strong>in</strong>dicated Bremia <strong>effectors</strong>, GUS, or L. sativa<br />

DMR6. All expression values were normalised towards L. sativa Act<strong>in</strong> <strong>and</strong> compared to normalised<br />

mock-treated values, <strong>and</strong> are given as ΔΔC T<br />

. Error bars <strong>in</strong>dicate the st<strong>and</strong>ard deviation <strong>of</strong> the average <strong>of</strong><br />

three technical replicates. The scale <strong>of</strong> the Y-axis has been <strong>in</strong>verted to ease <strong>in</strong>terpretation (so that higher<br />

bars <strong>in</strong>dicate higher <strong>in</strong>duction levels).<br />

Discussion<br />

A set <strong>of</strong> 34 predicted Bremia <strong>effectors</strong> was analysed for their contribution to<br />

the modulation <strong>of</strong> host susceptibility. Effects <strong>of</strong> over-expression <strong>of</strong> <strong>effectors</strong> <strong>in</strong><br />

the pathogen itself have been reported for other species. For example, P. sojae<br />

transformants constitutively express<strong>in</strong>g high levels <strong>of</strong> Avr1b-1 are more virulent on<br />

soybean than wild-type isolates [31] . Silenc<strong>in</strong>g <strong>of</strong> <strong>effectors</strong> <strong>in</strong> Phytophthora species<br />

has also revealed contributions to pathogenicity, e.g. by P. <strong>in</strong>festans AVR3a [25] <strong>and</strong><br />

P. sojae AVH238 [21] . Unfortunately, attempts at transformation <strong>of</strong> Bremia have been<br />

unsuccessful so far, rul<strong>in</strong>g out the possibility <strong>of</strong> manipulat<strong>in</strong>g expression <strong>of</strong> <strong>effectors</strong><br />

<strong>in</strong> the oomycete itself. We therefore transiently expressed Bremia <strong>effectors</strong> <strong>in</strong><br />

lettuce leaf material us<strong>in</strong>g Agrobacterium.<br />

Most <strong>of</strong> the <strong>in</strong>vestigated Bremia <strong>effectors</strong> enhance susceptibility <strong>in</strong> the host.<br />

The experimental setup we used measures the level <strong>of</strong> susceptibility by quantify<strong>in</strong>g<br />

spore-production <strong>of</strong> Bremia. Susceptibility is likely a comb<strong>in</strong>ation <strong>of</strong> multiple<br />

factors (see <strong>in</strong>troduction) <strong>and</strong> by quantify<strong>in</strong>g <strong>in</strong>fection levels based on a late stage<br />

<strong>of</strong> the pathogen life cycle, any manipulation <strong>of</strong> host processes that impacts both<br />

early <strong>and</strong> late pathogen development can potentially be identified. The system is<br />

potentially limited by its dependence on three different organisms (i.e. L. sativa,<br />

Agrobacterium <strong>and</strong> Bremia) that each <strong>in</strong>troduce their own variation. By us<strong>in</strong>g<br />

appropriate controls <strong>and</strong> us<strong>in</strong>g fixed leaf area <strong>and</strong> <strong>in</strong>oculum size, we m<strong>in</strong>imised


Bremia <strong>effectors</strong> enhance host susceptibility<br />

111<br />

variation.<br />

Increased susceptibility by suppression <strong>of</strong> plant immunity has been more<br />

extensively studied <strong>and</strong> appears to be a common function <strong>of</strong> <strong>effectors</strong>. In a P.<br />

sojae effector screen, Wang <strong>and</strong> co-workers assayed for suppression <strong>of</strong> cell death<br />

<strong>in</strong>duced by BAX, other <strong>effectors</strong>, or INF-1 <strong>in</strong> N. benthamiana [21] . When expressed<br />

24 hours before challenge, 107 <strong>of</strong> 169 <strong>effectors</strong> were able to suppress cell death,<br />

suggest<strong>in</strong>g that cell-death suppression is a common function <strong>of</strong> P. sojae <strong>effectors</strong>.<br />

Hemibiotrophs such as P. sojae may use cell death suppress<strong>in</strong>g <strong>effectors</strong> to tightly<br />

regulate the onset <strong>of</strong> the necrotrophic phase [17] . A screen <strong>of</strong> <strong>effectors</strong> <strong>in</strong> the <strong>downy</strong><br />

<strong>mildew</strong> H. arabidopsidis by Fabro et al. [23] focused on the manipulation <strong>of</strong> immune<br />

responses triggered by Ps. syr<strong>in</strong>gae pv tomato DC3000, which was also used as<br />

effector delivery system. The authors conclude from the screen that many <strong>of</strong> the<br />

tested <strong>effectors</strong> suppress immunity, but also that the effects <strong>of</strong> <strong>in</strong>dividual <strong>downy</strong><br />

<strong>mildew</strong> <strong>effectors</strong> are <strong>of</strong>ten weak <strong>and</strong> host accession-specific. Similar host-dependent<br />

differences between Bremia <strong>effectors</strong> may await discovery.<br />

Effector screens allow study<strong>in</strong>g the effect <strong>of</strong> <strong>in</strong>dividual effector prote<strong>in</strong>s on<br />

a particular host process <strong>of</strong> <strong>in</strong>terest. Currently these processes are still broadly<br />

def<strong>in</strong>ed, e.g. ‘host susceptibility’. Effector activities can be assayed for <strong>in</strong> more<br />

specific screens, though this requires better underst<strong>and</strong><strong>in</strong>g <strong>of</strong> the specific components<br />

that underlie host susceptibility. Based on the knowledge <strong>of</strong> non-oomycete<br />

<strong>effectors</strong>, host susceptibility can be <strong>in</strong>fluenced at many levels. A previously<br />

mentioned example is PthX01-<strong>in</strong>duced OsSWEET11 expression that is thought<br />

to result <strong>in</strong> a sugar efflux that feeds the bacterial pathogen [9] . The corn-smut<br />

fungus Ustilago maydis directs a chorismate mutase to the host-cell cytoplasm to<br />

metabolically prime the cell for <strong>in</strong>fection, reduc<strong>in</strong>g the levels <strong>of</strong> salicylic acid <strong>and</strong><br />

thereby enhanc<strong>in</strong>g susceptibility [32] . Further <strong>in</strong>vestigation is required to elucidate<br />

the mechanisms by which Bremia <strong>effectors</strong> enhance susceptibility.<br />

We found one effector, BLR03, with a seem<strong>in</strong>gly negative contribution to<br />

virulence. This effector does not <strong>in</strong>duce a hypersensitive response <strong>in</strong> host plants,<br />

but does decrease susceptibility to Bremia when tested on its own. The effector<br />

may fulfil a function dur<strong>in</strong>g normal <strong>in</strong>fection that is not detected <strong>in</strong> our assay. The<br />

negative effect observed <strong>in</strong> our assay can be the result <strong>of</strong> the tim<strong>in</strong>g or high-level<br />

<strong>of</strong> effector expression. Tight regulation <strong>of</strong> effector expression has been shown to be<br />

important for pathogen virulence. For example, misexpression <strong>of</strong> P. sojae effector<br />

genes Avh172 <strong>and</strong> Avh238 can disrupt <strong>in</strong>fection [21] . Interest<strong>in</strong>gly, both constitutive<br />

over-expression <strong>and</strong> transient silenc<strong>in</strong>g <strong>of</strong> Avh238 <strong>in</strong> P. sojae led to reduced<br />

virulence. The expression pr<strong>of</strong>ile <strong>of</strong> BLR03 dur<strong>in</strong>g <strong>in</strong>fection shows a strong decl<strong>in</strong>e<br />

<strong>of</strong> transcript levels dur<strong>in</strong>g the first days <strong>of</strong> <strong>in</strong>fection. The 35S-driven <strong>in</strong> planta<br />

transient expression level <strong>of</strong> BLR03 is likely far higher than expression levels<br />

<strong>in</strong> Bremia. The negative effect on host susceptibility <strong>in</strong> our leaf-disc assay may


112 Chapter 4<br />

therefore be the effect <strong>of</strong> misexpression <strong>of</strong> the effector.<br />

Us<strong>in</strong>g lettuce biotic stress-associated markers we show that both Bremia <strong>and</strong><br />

Agrobacterium <strong>in</strong>duce strong transcriptional responses <strong>in</strong> lettuce. Over-expression<br />

<strong>of</strong> DMR6, which encodes a negative regulator <strong>of</strong> plant immunity, appeared to<br />

have a limited effect on marker expression levels. Variation <strong>in</strong> marker expression<br />

levels <strong>in</strong> leaf material express<strong>in</strong>g different Bremia <strong>effectors</strong> between <strong>in</strong>dependent<br />

experiments was too large to detect suppression by the <strong>effectors</strong> on marker gene<br />

expression. The observations do, however, suggest that it is unlikely that the tested<br />

Bremia <strong>effectors</strong> <strong>in</strong>duce strong major changes <strong>in</strong> expression <strong>of</strong> biotic stress-markers.<br />

Enhancement <strong>of</strong> host susceptibility by these Bremia <strong>effectors</strong> therefore is not<br />

likely to act by general repression <strong>of</strong> biotic stress responses, but is more likely the<br />

result <strong>of</strong> very specific <strong>and</strong> limited modulation <strong>of</strong> the host. Also, modulation <strong>of</strong> host<br />

processes may not lead to detectable transcriptional changes; e.g. block<strong>in</strong>g <strong>of</strong> C14<br />

secretion by AVRBlb2 [26] is not likely to <strong>in</strong>duce a strong transcriptional response.<br />

The basis <strong>of</strong> the susceptibility enhanc<strong>in</strong>g effects <strong>of</strong> Bremia <strong>effectors</strong> thus rema<strong>in</strong>s<br />

to be determ<strong>in</strong>ed. The identification <strong>of</strong> disease susceptibility-enhanc<strong>in</strong>g <strong>effectors</strong> <strong>of</strong><br />

Bremia now opens the way to <strong>in</strong>vestigate their activity <strong>and</strong> host targets.<br />

Materials <strong>and</strong> methods<br />

Clon<strong>in</strong>g <strong>and</strong> sequenc<strong>in</strong>g<br />

Effector predictions were sequence-verified from PCR product us<strong>in</strong>g flank<strong>in</strong>g<br />

primers <strong>and</strong> sequenced by Macrogen Inc. For primer sequences used <strong>in</strong> this study,<br />

see Supplemental Table 1. Verified effector c<strong>and</strong>idates were TOPO-cloned <strong>in</strong>to<br />

the pENTR vector us<strong>in</strong>g the pENTR/D-TOPO Clon<strong>in</strong>g kit (Invitrogen) accord<strong>in</strong>g<br />

to manufacturer’s <strong>in</strong>structions start<strong>in</strong>g from the sequence after the predicted<br />

signal peptide cleavage site <strong>of</strong> the <strong>effectors</strong>, unless otherwise <strong>in</strong>dicated, <strong>and</strong> were<br />

preceded by a newly <strong>in</strong>troduced start codon. Constructs were then recomb<strong>in</strong>ed <strong>in</strong>to<br />

the pK2GW7 vector (Plant-Systems Biology VIB, Ghent). The PsojNIP construct<br />

was previously described [33] . Clones were electro-transformed <strong>in</strong>to Agrobacterium<br />

tumefaciens stra<strong>in</strong> C58C1 (pGV2260).<br />

Leaf disc assays<br />

Lactuca sativa cv. Ol<strong>of</strong> was sown <strong>and</strong> kept at high humidity (closed tray with<br />

transparent lid) at 17°C, 9 h <strong>of</strong> light (100 μE/m 2 /s) to germ<strong>in</strong>ate for one week.<br />

Seedl<strong>in</strong>gs were then grown for 2 weeks at 21°C, 16 h <strong>of</strong> light (200 μE/m 2 /s), 70%<br />

RH. Per experiment, a number <strong>of</strong> leaf discs (14 mm diameter) <strong>in</strong> excess <strong>of</strong> that<br />

required for the experiment were punched from Lactuca sativa cv. Ol<strong>of</strong>, mixed, <strong>and</strong>


Bremia <strong>effectors</strong> enhance host susceptibility<br />

113<br />

r<strong>and</strong>omly divided over treatment conditions. Agrobacterium tumefaciens stra<strong>in</strong>s<br />

conta<strong>in</strong><strong>in</strong>g the 35S-effector T-DNA were grown overnight <strong>in</strong> selective media at<br />

28°C, 220 RPM. Cells were spun down at 2500 g for 10 m<strong>in</strong>utes <strong>and</strong> re-suspended<br />

<strong>in</strong> <strong>in</strong>duction medium (1x M9 salts, 1% glucose, 50μM acetosyr<strong>in</strong>gone) with appropriate<br />

antibiotics. After growth for 4 h at 28°C, 220 RPM, cells were spun down<br />

at 2500 g for 10 m<strong>in</strong> <strong>and</strong> re-suspended <strong>in</strong> <strong>in</strong>filtration medium (0.5x Murashige &<br />

Skoog salts, 10mM MES, 0.5% fructose, 0.5% sucrose, 150μM acetosyr<strong>in</strong>gone).<br />

Leaf discs were vacuum <strong>in</strong>filtrated with Agrobacterium suspension until fully suspension-logged.<br />

Infiltrated leaf-discs were placed on 4 layers <strong>of</strong> 260x410mm filter<br />

paper wet with 65ml dH 2<br />

O <strong>and</strong> were kept at 21°C for 24 h. Drop-<strong>in</strong>oculation <strong>of</strong> 20<br />

μl <strong>of</strong> 150 spores μl -1 spore suspension was performed the next day. Leaf discs were<br />

from then on kept at 17°C <strong>and</strong> high humidity. Seven days post-<strong>in</strong>oculation lids<br />

were sprayed with dH 2<br />

O. Spores were harvested at 8 dpi by pool<strong>in</strong>g 9 discs <strong>in</strong> 4 ml<br />

H 2<br />

O. Each observation is the average <strong>of</strong> the spore count <strong>in</strong> 5 x 1μl. All statistical<br />

analyses were performed us<strong>in</strong>g SPSS 19 (IBM). The assumption <strong>of</strong> homogeneity<br />

<strong>of</strong> variances was tested by Levene’s test. An <strong>in</strong>dependent samples median test was<br />

performed to determ<strong>in</strong>e whether <strong>in</strong>filtration with different Agrobacterium stra<strong>in</strong>s<br />

had a significant effect on spore counts. Spore counts <strong>of</strong> leaf discs <strong>in</strong>filtrated with<br />

<strong>in</strong>dividual Agrobacterium stra<strong>in</strong>s were then compared to those <strong>of</strong> the discs <strong>in</strong>filtrated<br />

with Agrobacterium-GUS (Mann-Whitney U test). Correction for multiple<br />

test<strong>in</strong>g was performed us<strong>in</strong>g the Bonferroni method.<br />

qPCR <strong>analysis</strong><br />

For time-course experiments one-week old L. sativa cv. Ol<strong>of</strong> seedl<strong>in</strong>gs were<br />

spray-<strong>in</strong>oculated with 150 spores μl -1 until run<strong>of</strong>f was imm<strong>in</strong>ent. Seedl<strong>in</strong>gs were<br />

grown under high humidity (closed tray with transparent lid) at 17°C with 9 h <strong>of</strong><br />

light (100 μE/m 2 /s) <strong>and</strong> kept under these conditions for the duration <strong>of</strong> the experiment.<br />

Samples were taken <strong>and</strong> snap-frozen immediately after spray<strong>in</strong>g <strong>and</strong> every<br />

24 h until 5 days post-<strong>in</strong>oculation.<br />

For the <strong>analysis</strong> <strong>of</strong> expression changes <strong>of</strong> biotic stress-responsive genes<br />

Agrobacterium stra<strong>in</strong>s were prepared as described <strong>and</strong> pressure <strong>in</strong>filtrated with<br />

a needleless syr<strong>in</strong>ge <strong>in</strong>to three-week old lettuce leaves. Lettuce was grown as<br />

described for leaf disc assays <strong>and</strong> kept at 21°C, 16 h <strong>of</strong> light (200 μE/m 2 /s), 70%<br />

RH after <strong>in</strong>filtration. Infiltration sites were excised <strong>and</strong> snap-frozen 65 h post-<strong>in</strong>filtration.<br />

Total RNA was extracted us<strong>in</strong>g the Spectrum Plant Total RNA Kit (Sigma<br />

Life Science) <strong>and</strong> treated with DNAse (Fermentas). cDNA was synthesised us<strong>in</strong>g<br />

RevertAid H m<strong>in</strong>us Reverse Transcriptase (Fermentas) <strong>and</strong> Oligo(dT)15. Cycle<br />

thresholds were determ<strong>in</strong>ed <strong>in</strong> triplicate per transcript us<strong>in</strong>g the ABI PRISM 7900<br />

HT or the Life technologies ViiA7 system us<strong>in</strong>g SYBR Green as reporter dye.


114 Chapter 4<br />

References<br />

1 Coates ME & Beynon JL (2010) Hyaloperonospora Arabidopsidis as a pathogen model. Annual<br />

review <strong>of</strong> phytopathology 48, 329-45.<br />

2 Michelmore RW & Wong J (2008) Classical <strong>and</strong> molecular genetics <strong>of</strong> Bremia lactucae, cause <strong>of</strong><br />

lettuce <strong>downy</strong> <strong>mildew</strong>. European Journal <strong>of</strong> Plant Pathology 122, 19-30.<br />

3 Bennett M, Gallagher M, Fagg J, Bestwick C, Paul T, Beale M & Mansfield J (1996) The<br />

hypersensitive reaction, membrane damage <strong>and</strong> accumulation <strong>of</strong> aut<strong>of</strong>luorescent phenolics <strong>in</strong><br />

lettuce cells challenged by Bremia lactucae. The Plant Journal 9, 851-865.<br />

4 Stassen JHM & Van den Ackerveken G (2011) How do oomycete <strong>effectors</strong> <strong>in</strong>terfere with plant<br />

life Current Op<strong>in</strong>ion <strong>in</strong> Plant Biology 14, 407-14.<br />

5 Baxter L, Tripathy S, Ishaque N, Boot N, Cabral A, Kemen E, Th<strong>in</strong>es M, Ah-Fong A,<br />

Anderson RG, Badejoko W, Bittner-Eddy P, Boore JL, Chibucos MC, Coates ME, Dehal P,<br />

Delehaunty K, Dong S, Downton P, Dumas B, Fabro G, Fronick C, Fuerstenberg SI, Fulton L,<br />

Gaul<strong>in</strong> E, Govers F, Hughes L, Humphray S, Jiang RHY, Judelson H, Kamoun S, Kyung K,<br />

Meijer H, M<strong>in</strong>x P, Morris P, Nelson J, Phuntumart V, Qutob D, Rehmany A, Rougon-Cardoso A,<br />

Ryden P, Torto-Alalibo T, Studholme DJ, Wang Y, W<strong>in</strong> J, Wood J, Clifton SW, Rogers J, Van den<br />

Ackerveken G, Jones JDG, McDowell JM, Beynon J & Tyler BM (2010) Signatures <strong>of</strong> adaptation<br />

to obligate biotrophy <strong>in</strong> the Hyaloperonospora arabidopsidis genome. Science 330, 1549-51.<br />

6 Göhre V & Robatzek S (2008) Break<strong>in</strong>g the barriers: microbial effector molecules subvert plant<br />

immunity. Annual review <strong>of</strong> phytopathology 46, 189-215.<br />

7 Hann DR, Gimenez-Ibanez S & Rathjen JP (2010) Bacterial virulence <strong>effectors</strong> <strong>and</strong> their<br />

activities. Current Op<strong>in</strong>ion <strong>in</strong> Plant Biology 13, 388-93.<br />

8 Rodríguez-Herva JJ, González-Melendi P, Cuartas-Lanza R, Antúnez-Lamas M, Río-Alvarez I,<br />

Li Z, López-Torrejón G, Díaz I, Del Pozo JC, Chakravarthy S, Collmer A, Rodríguez-<br />

Palenzuela P & López-Solanilla E (2012) A bacterial cyste<strong>in</strong>e protease effector prote<strong>in</strong> <strong>in</strong>terferes<br />

with photosynthesis to suppress plant <strong>in</strong>nate immune responses. Cellular Microbiology 14,<br />

669-81.<br />

9 Chen L-Q, Hou B-H, Lalonde S, Takanaga H, Hartung ML, Qu X-Q, Guo W-J, Kim J-G,<br />

Underwood W, Chaudhuri B, Chermak D, Antony G, White FF, Somerville SC, Mudgett MB &<br />

Frommer WB (2010) Sugar transporters for <strong>in</strong>tercellular exchange <strong>and</strong> nutrition <strong>of</strong> pathogens.<br />

Nature 468, 527-32.<br />

10 Whisson SC, Boev<strong>in</strong>k PC, Moleleki L, Avrova AO, Morales JG, Gilroy EM, Armstrong MR,<br />

Grouffaud S, Van West P, Chapman S, He<strong>in</strong> I, Toth IK, Pritchard L & Birch PRJ (2007) A<br />

translocation signal for delivery <strong>of</strong> oomycete effector prote<strong>in</strong>s <strong>in</strong>to host plant cells. Nature 450,<br />

115-8.<br />

11 Cabral A, Stassen JHM, Seidl MF, Bautor J, Parker JE & Van den Ackerveken G (2011)<br />

<strong>Identification</strong> <strong>of</strong> Hyaloperonospora arabidopsidis transcript sequences expressed dur<strong>in</strong>g <strong>in</strong>fection<br />

reveals isolate-specific <strong>effectors</strong>. PLoS ONE 6, e19328.<br />

12 Savory EA, Adhikari BN, Hamilton JP, Vaillancourt B, Buell CR & Day B (2012) mRNA-seq<br />

<strong>analysis</strong> <strong>of</strong> the Pseudoperonospora cubensis transcriptome dur<strong>in</strong>g cucumber (Cucumis sativus L.)<br />

<strong>in</strong>fection. PLoS ONE 7, e35796.


Bremia <strong>effectors</strong> enhance host susceptibility<br />

115<br />

13 Stassen JHM, Seidl MF, Vergeer PWJ, Nijman IJ, Snel B, Cuppen E & Van den Ackerveken G<br />

(2012) Effector identification <strong>in</strong> the lettuce <strong>downy</strong> <strong>mildew</strong> Bremia lactucae by massively<br />

parallel transcriptome sequenc<strong>in</strong>g. Molecular Plant Pathology, In press, doi: 10.1111/j.1364-<br />

3703.2011.00780.x.<br />

14 Dou D, Kale SD, Wang X, Jiang RHY, Bruce NA, Arredondo FD, Zhang X & Tyler BM (2008)<br />

RXLR-mediated entry <strong>of</strong> Phytophthora sojae effector Avr1b <strong>in</strong>to soybean cells does not require<br />

pathogen-encoded mach<strong>in</strong>ery. The Plant Cell 20, 1930-47.<br />

15 Wawra S, Ba<strong>in</strong> J, Durward E, De Bruijn I, M<strong>in</strong>or KL, Matena A, Löbach L, Whisson SC, Bayer P,<br />

Porter AJ, Birch PRJ, Secombes CJ & Van West P (2012) Host-target<strong>in</strong>g prote<strong>in</strong> 1 (SpHtp1)<br />

from the oomycete Saprolegnia parasitica translocates specifically <strong>in</strong>to fish cells <strong>in</strong> a tyros<strong>in</strong>e-<br />

O-sulphate-dependent manner. Proceed<strong>in</strong>gs <strong>of</strong> the National Academy <strong>of</strong> Sciences <strong>of</strong> the United<br />

States <strong>of</strong> America 109, 2096-101.<br />

16 Bailey K, Cevik V, Holton NJ, Byrne-Richardson J, Sohn KH, Coates ME, Woods-Tör A,<br />

Aksoy HM, Hughes L, Baxter L, Jones JDG, Beynon J, Holub EB & Tör M (2011) Molecular<br />

clon<strong>in</strong>g <strong>of</strong> ATR5Emoy2 from Hyaloperonospora arabidopsidis, an avirulence determ<strong>in</strong>ant that<br />

triggers RPP5-mediated defense <strong>in</strong> Arabidopsis. Molecular Plant-Microbe Interactions 24,<br />

827-38.<br />

17 Kelley BS, Lee S-J, Damasceno CMB, Chakravarthy S, Kim B-D, Mart<strong>in</strong> GB & Rose JKC (2010)<br />

A secreted effector prote<strong>in</strong> (SNE1) from Phytophthora <strong>in</strong>festans is a broadly act<strong>in</strong>g suppressor <strong>of</strong><br />

programmed cell death. The Plant Journal 62, 357-66.<br />

18 Tian M, W<strong>in</strong> J, Savory EA, Burkhardt A, Held M, Br<strong>and</strong>izzi F & Day B (2011) 454 genome<br />

sequenc<strong>in</strong>g <strong>of</strong> Pseudoperonospora cubensis reveals effector prote<strong>in</strong>s with a putative QXLR<br />

translocation motif. Molecular Plant-Microbe Interactions 3, 6.<br />

19 Kale SD, Gu B, Capelluto DGS, Dou D, Feldman E, Rumore A, Arredondo FD, Hanlon R,<br />

Fudal I & Rouxel T (2010) External lipid PI3P mediates entry <strong>of</strong> eukaryotic pathogen <strong>effectors</strong><br />

<strong>in</strong>to plant <strong>and</strong> animal host cells. Cell 142, 284-95.<br />

20 Oh S-K, Young C, Lee M, Oliva R, Bozkurt TO, Cano LM, W<strong>in</strong> J, Bos JIB, Liu H-Y, Van<br />

Damme M, Morgan W, Choi D, Van der Vossen EAG, Vleeshouwers VGAA & Kamoun S (2009)<br />

In planta expression screens <strong>of</strong> Phytophthora <strong>in</strong>festans RXLR <strong>effectors</strong> reveal diverse phenotypes,<br />

<strong>in</strong>clud<strong>in</strong>g activation <strong>of</strong> the Solanum bulbocastanum disease resistance prote<strong>in</strong> Rpi-blb2. The Plant<br />

Cell 21, 2928-47.<br />

21 Wang Q, Han C, Ferreira AO, Yu X, Ye W, Tripathy S, Kale SD, Gu B, Sheng Y, Sui Y,<br />

Wang X, Zhang Z, Cheng B, Dong S, Shan W, Zheng X, Dou D, Tyler BM & Wang Y (2011)<br />

Transcriptional programm<strong>in</strong>g <strong>and</strong> <strong>functional</strong> <strong>in</strong>teractions with<strong>in</strong> the Phytophthora sojae RXLR<br />

effector repertoire. The Plant Cell 23, 2064-86.<br />

22 Sohn KH, Lei R, Nemri A & Jones JDG (2007) The <strong>downy</strong> <strong>mildew</strong> effector prote<strong>in</strong>s ATR1 <strong>and</strong><br />

ATR13 promote disease susceptibility <strong>in</strong> Arabidopsis thaliana. The Plant Cell 19, 4077-90.<br />

23 Fabro G, Ste<strong>in</strong>brenner J, Coates ME, Ishaque N, Baxter L, Studholme DJ, Körner E, Allen RL,<br />

Piquerez SJM, Rougon-Cardoso A, Greenshields D, Lei R, Badel JL, Caillaud M-C, Sohn KH,<br />

Van den Ackerveken G, Parker JE, Beynon J & Jones JDG (2011) Multiple c<strong>and</strong>idate <strong>effectors</strong><br />

from the oomycete pathogen Hyaloperonospora arabidopsidis suppress host plant immunity. PLoS<br />

pathogens 7, e1002348.


116 Chapter 4<br />

24 Dong S, Y<strong>in</strong> W, Kong G, Yang X, Qutob D, Chen Q, Kale SD, Sui Y, Zhang Z, Dou D, Zheng X,<br />

Gijzen M, M Tyler B & Wang Y (2011) Phytophthora sojae avirulence effector Avr3b is a<br />

secreted NADH <strong>and</strong> ADP-ribose pyrophosphorylase that modulates plant immunity. PLoS<br />

pathogens 7, e1002353.<br />

25 Bos JIB, Armstrong MR, Gilroy EM, Boev<strong>in</strong>k PC, He<strong>in</strong> I, Taylor RM, Zhendong T, Engelhardt S,<br />

Vetukuri RR, Harrower B, Dixelius C, Bryan G, Sadan<strong>and</strong>om A, Whisson SC, Kamoun S<br />

& Birch PRJ (2010) Phytophthora <strong>in</strong>festans effector AVR3a is essential for virulence <strong>and</strong><br />

manipulates plant immunity by stabiliz<strong>in</strong>g host E3 ligase CMPG1. Proceed<strong>in</strong>gs <strong>of</strong> the National<br />

Academy <strong>of</strong> Sciences <strong>of</strong> the United States <strong>of</strong> America 107, 9909-14.<br />

26 Bozkurt TO, Schornack S, W<strong>in</strong> J, Sh<strong>in</strong>do T, Ilyas M, Oliva R, Cano LM, Jones AME, Huitema E,<br />

Van der Hoorn RAL & Kamoun S (2011) Phytophthora <strong>in</strong>festans effector AVRblb2 prevents<br />

secretion <strong>of</strong> a plant immune protease at the haustorial <strong>in</strong>terface. Proceed<strong>in</strong>gs <strong>of</strong> the National<br />

Academy <strong>of</strong> Sciences <strong>of</strong> the United States <strong>of</strong> America 108, 20832-7.<br />

27 Mukhtar MS, Carvunis A-R, Dreze M, Epple P, Ste<strong>in</strong>brenner J, Moore J, Tasan M, Galli M,<br />

Hao T, Nishimura MT, Pevzner SJ, Donovan SE, Ghamsari L, Santhanam B, Romero V,<br />

Poul<strong>in</strong> MM, Gebreab F, Gutierrez BJ, Tam S, Monachello D, Boxem M, Harbort CJ,<br />

McDonald N, Gai L, Chen H, He Y, V<strong>and</strong>enhaute J, Roth FP, Hill DE, Ecker JR, Vidal M,<br />

Beynon J, Braun P & Dangl JL (2011) Independently evolved virulence <strong>effectors</strong> converge onto<br />

hubs <strong>in</strong> a plant immune system network. Science 333, 596-601.<br />

28 Zeilmaker T (2012) Functional <strong>and</strong> applied aspects <strong>of</strong> the DOWNY MILDEW RESISTANT 1 <strong>and</strong><br />

6 genes <strong>in</strong> Arabidopsis. Thesis, Utrecht University, 1-147.<br />

29 Jeuken MJW, Zhang NW, McHale LK, Pelgrom K, den Boer E, L<strong>in</strong>dhout P, Michelmore RW,<br />

Visser RGF & Niks RE (2009) R<strong>in</strong>4 causes hybrid necrosis <strong>and</strong> race-specific resistance <strong>in</strong> an<br />

<strong>in</strong>terspecific lettuce hybrid. The Plant Cell 21, 3368-78.<br />

30 Zimmermann P, Hirsch-H<strong>of</strong>fmann M, Hennig L & Gruissem W (2004) GENEVESTIGATOR.<br />

Arabidopsis microarray database <strong>and</strong> <strong>analysis</strong> toolbox. Plant Physiology 136, 2621-32.<br />

31 Dou D, Kale SD, Wang X, Chen Y, Wang Q, Wang X, Jiang RHY, Arredondo FD, Anderson RG,<br />

Thakur PB, McDowell JM, Wang Y & Tyler BM (2008) Conserved C-term<strong>in</strong>al motifs required for<br />

avirulence <strong>and</strong> suppression <strong>of</strong> cell death by Phytophthora sojae effector Avr1b. The Plant Cell 20,<br />

1118-33.<br />

32 Djamei A, Schipper K, Rabe F, Ghosh A, V<strong>in</strong>con V, Kahnt J, Osorio S, Tohge T, Fernie AR,<br />

Feussner I, Feussner K, Me<strong>in</strong>icke P, Stierh<strong>of</strong> Y-D, Schwarz H, Macek B, Mann M & Kahmann R<br />

(2011) Metabolic prim<strong>in</strong>g by a secreted fungal effector. Nature 478, 395-8.<br />

33 Cabral A, Oome S, S<strong>and</strong>er N, Küfner I, Nürnberger T & Van den Ackerveken G (2012) Nontoxic<br />

Nep1-like prote<strong>in</strong>s <strong>of</strong> the <strong>downy</strong> <strong>mildew</strong> pathogen Hyaloperonospora arabidopsidis: repression <strong>of</strong><br />

necrosis-<strong>in</strong>duc<strong>in</strong>g activity by a surface-exposed region. Molecular Plant-Microbe Interactions 25,<br />

697-708.


Bremia <strong>effectors</strong> enhance host susceptibility<br />

117<br />

Supplemental Information<br />

Supplemental Table 1 (cont<strong>in</strong>ued next page): Overview <strong>of</strong> primers used <strong>in</strong> this study. Types are<br />

Flank<strong>in</strong>g, Clon<strong>in</strong>g, qPCR, 3’ RACE, <strong>and</strong> Clon<strong>in</strong>g Effector Doma<strong>in</strong>. Reverse primers start<strong>in</strong>g with TCM<br />

yield products that <strong>in</strong>clude a stop codon (TGA) or a codon for Glyc<strong>in</strong>e (GGA) <strong>in</strong>stead. Products without<br />

stop codon can be used de generate constructs with a C-term<strong>in</strong>al tag (not used <strong>in</strong> this study).<br />

Effector Type Forward Reverse<br />

BLG01 F AAACGCGATAAGGTCTCAAAA TGACTTCGGTCCTCATTAAAC<br />

BLG01 C CACCATGACTTTACAGTTGACGTCGGTA TCAATTTCGTTTGGCGTTGGG<br />

BLG02 F AATTTCTATTGCGAGCACAGC GTTCGCATGACTCACACCTC<br />

BLG02 C CACCATGACTTCACCACTGACGCTGG TCAAGTAGGTCGCAATTTGTTC<br />

BLG02 q GACGAAGCAAGCGTGTACTG TCGGTTACGTCGAACGTTTT<br />

BLG03 F AAGATGTCGCAACGCAGAG TCCACTTGGCAAAGAGCAC<br />

BLG03 C CACCATGTCATCGGTAACTACTGAAGAAGGTG TCACATCTCAACGTCGCTAGGTG<br />

BLQ01 3 CTCCAACACTTTCCGCTCTC -<br />

BLQ01 C CACCATGTTTCCAATGGAGAAGATTTCGT TCAAAATASTTTTGGCAACCAAC<br />

BLR01 F AGTGTGACTGATGAGGTTGCT TGTCTTTCACATCGTTGTCTTC<br />

BLR01 C CACCATGCGAAACAACAGCCTGGTGAC TCMAAGAATTGCTTGAGCTTCTT<br />

BLR02 F AGCACATGCGTTTAAATTTTCG ACACGACCATCACTCCTCCATT<br />

BLR02 C CACCATGCAGCTGGACACTCACGAAA TCMCTCCTCCATTGAGCAAAC<br />

BLR03 F GCTTTGACCTCGAGCAATAAAATAGC TTAGAGGCGCCCAAATGCTATGAAGC<br />

BLR03 C CACCATGGCGGATGCAGCTAAAGTCAA TCMGTCTGGTCCTCTAATTATAAA<br />

BLR03 E CACCATGTTAAGCATTTGGACCTCTTTTAAAG TCMGTCTGGTCCTCTAATTATAAA<br />

BLR03 q TCAAAATGCTTACCCAGTCG TCTTCCTCTGCTTCGTCAATG<br />

BLR04 F ACCATGGGATCGCTGCTCTTCAATCT GCAACTGTAGCCCGTTACAATACGCA<br />

BLR04 C CACCATGCGCTGGATCGCTGAAC TCMGCAGCGAGAAAAAACATGC<br />

BLR05 F TGGTTGATGGCGCTAACATTTGCCA TTGCGGTGATCCCTAAGACAGTTGA<br />

BLR05 C CACCATGTATTACGAAATAGACGATGATTC TCMCAGGCAAAACGGAAGACAG<br />

BLR05 q ATCTCTTGGCGTTGGTTGTC ACGGAAGGACGTAAGGCTCT<br />

BLR06 F TGACGGTAGTTGCTAATCAAGGGGCA ACGTGAAAATGCAGGTCTACCAGTTCC<br />

BLR06 C CACCATGGCTGAGAACGGATCAT TCMGGTTTGCCCAACATCAGA<br />

BLR07 F CAACAACTTTTGCAATGGCGTA AACCACGTTGCAGCCATCTT<br />

BLR07 C CACCATGACTATAGAAGGGTCCAAGCG TCAATTCGCTTTTTTCCCAGG<br />

BLR08 F TGTCGATTGGTCAAATCTCTAAAA AGGCATGAAAGCAATTATTATTTAGG<br />

BLR08 C CACCATGAACGCCGACCTCACTCC TCMGCTCGAGCGATACTTGA<br />

BLR09 F AGTTTGCCGTCCAGCTATTATCCCGA TCGCATTGGTCCATGTCGCCAGTTTA<br />

BLR09 C CACCATGACCAAGAACGTCACCCAAGT TCMAGTGATGCCGTAGCAAG<br />

BLR09 q GTGAATTGGAAGAGCGAGGA ATGCCGTAGCAAGCAGAGAT<br />

BLR10 F TAAATTTGTCGCATCGGACATT CCACGAGCAAATATGATTAGCAA<br />

BLR10 C CACCATGAAGAACGTCACCCAAGTG TCMAGTGATGCCGTAGCAAGC<br />

BLR11 F GCAGCGAAAACCTAAAACAATCC TTCTAATCTTTACCGAGTCTTTATTCACT<br />

BLR11 C CACCATGGCCTTCCAACAAGTGCCAGC TCMATACTTGAGACCAGAGCTA<br />

BLR12 F AATGGAAGGGAGGCGATTCGGTACAA ATGCACTGGAGCAGTCATTGTGAAGC<br />

BLR12 C CCACATGGCTGTATTGAGCTCAACGC TCMCCGATTACAGACGTAGAA<br />

BLR13 F CTCAGCTGTCTCTGTCGTTTTAGCA TGCATGTTATCAAAAGCGCCCCAGT<br />

BLR13 C CACCATGGCACTGGTGGCTAGGGAG TCAAGATCCAGTTTTCTGCTTT<br />

BLR14 F CCAACTTTCATCATTCCACCA GCTACCGGCTCCCTATCTTT<br />

BLR14 C CACCATGGCGATGAATAGCGCTGCTC TCMACTGAAAACCTTGGACAATA<br />

BLR15 F TCCACAAATGACTAGTCGCAAGCGT TTTATTGATCTCACGCAGCCAGCGA<br />

BLR15 C CACCATGAAATTTAGCTTGGGCACTGCA TCAAGGATCTGGAGGAAAGAA<br />

BLR16 F TTCGTGGATTAACGAAGCTTTT AAGCACCATTCACAGCTATCACA


118 Chapter 4<br />

Effector Type Forward Reverse<br />

BLR16 C CACCATGGAATCCAGCTTGGTCCGTGC TCMGATAGGAAGCGATCTGTAT<br />

BLR16 E CACCATGATCAGTTTGAAAGATGTCGTGG TCMGATAGGAAGCGATCTGTAT<br />

BLR16 q ATGGAGAGCCTCGAAGTCAA CTTTCCCACGACATCTTTCAA<br />

BLR17 F ATCGTAATTTTCCCGCCAACCACCA CACGCCGTAGATGAAACATACAGCA<br />

BLR17 C CACCATGCACAGTRTGTCCATATTTACGC TCMCGATTTTAGTAAGGCCTGA<br />

BLR18 F TCCATAGACCACAAGAGCCTTT CGGGTTATGGTGTGAGAGCTT<br />

BLR18 C CACCATGATTGAAACTCTAGAGGGTC TCMTTCGTTGAGAGCTTTCGC<br />

BLR19 F AGCGACTTACCTGCTGACTTTG AAGCTGCGACATGCTTCTTTC<br />

BLR19 C CACCATGCAAGACTCGGAAGCAGATC TCMCCTGCTGACTTTGTCCC<br />

BLR20 F ACACCGCATGTGAACGACCAAAACT TGCCAAATCAAACTTGTCCTTAGCCCG<br />

BLR20 C CACCATGAGTTGGGAGACCATTTCGGT TCMATGATGATTATTGTAGTATCGT<br />

BLR21 F TATTCCTTGATTGCCGACTTCT CTGGAAGGTGGGGCAGAT<br />

BLR21 C CACCATGTCCAACCCTGAAGACGACG TCMTTGCCTAGGGTCATTATACAG<br />

BLR22 F GGCAAACAACAGTCAAAAGCAG CGAACAACAACACTCACGATGG<br />

BLR22 C CACCATGGAAGTAGAATCCAGCATCGC TCMAACGGAAAGCAAATCAACTC<br />

BLR22 q CGTCGCTAAACTTGAACTTGC TGACTCCCCGTTCTGATGTT<br />

BLR23 F CTCCACATCATTGGCAAAAGC GAGCCCTTTGCCTGATTTCAA<br />

BLR23 C CACCATGGATTTCCAAGCGGCTTCC TCMATTAATATGTTTGGCTGGATA<br />

BLR23 q GGAAGTGATGCGAAAACGAT TGGCTGGATAAAATGGATTG<br />

BLR24 F TGCAGCAATGAAGAATTGACGGCAC ACGCCTACCACCACGTCACTAACATT<br />

BLR24 C CACCATGAAACATGGTAAAGCTGATAAGGA TCMTGTYAACTTAAAGTGAAGCA<br />

BLR25 F TTTTATTTCTACCAAAGTATCAATTCG CGGAGAGAGTCTGCCTATGG<br />

BLR25 C CACCATGAGTCCTAACACTATGACTCTTA TCAGAATGCCAACTTCCAGC<br />

BLR26 F TTGTTGTACGCCTTGGCTGTCGATT ATTGGGTAGCGTTGCACAAAAGCCA<br />

BLR26 C CACCATGGCAACAACAGCACCAAACGC TCMAAGGCTCAGCATGCATCGA<br />

BLR27 F AAAATACCTTTTGTCTCATCTCATC TCGCATTGGTCCATGTCGCCAGTTTA<br />

BLR27 C CACCATGATCGAGAACGTCGCGCTGA TCAAGCTATTTTGACCCCC<br />

BLR27 q AGCACTCGTGACCAGACTTG ATAGCAAGGCCAACCACTTG<br />

BLR28 3 ACCAGCTTCAAGACACCAAGAT -<br />

BLR28 C CACCATGCATACTGTGGCGCTATCCAC TCATATTCCGAACTTTCGACAGAC<br />

BLR29 3 CATCTCATAACTCCAACACTTT -<br />

BLR29 C CACCATGTACACGGGTGCCGCATCCT TCAAGGCGGGGGGGATACG<br />

BLR30 3 TTCACTTCTTCGTTCGCATC -<br />

BLR30 C CACCATGGAGTCCAGCTTGGGCACTG TCAACGTTCTGGTAAGTGCTC<br />

Gene Type Forward Reverse<br />

337 q TCGCATTGGATACAGGCTTA TGGGTAGGGGACACTGATTG<br />

744 q CGGATCTATGGAATTTGCTTTC ACAATGGTGTGGAGGGTTCT<br />

3859 q ATGGACCCGACCCGTCTATT CCAGTATCAAGAGCCACACG<br />

4174 q AATTACATGGATGCTAAGAGAACC CAGGTGGAGGAACTACATCTTTT<br />

8313 q CCGATGTTTTTGGATATGGTG AGCAACATGACATCATCATCATT<br />

6346 q CAGAGGGACAACAGGGACAC CTCCGACTCTTCACCAGGTT<br />

7164 q GGCATAATCACTCAGGTACGG TAATGGAGCGGGATTTTGAA<br />

15736 q TGATGCGGATGAAAATTGG ATGACCAAGCCCAAGAAGGT<br />

15964 q AAAGCAGGGTGAGGATCTGA AAGCGAAATAAATGCACCAAA<br />

33411 q CGTCACCAAAGCTCATTGAC TTGCACTTGAATTCCGAAGA<br />

37274 q TTCAAATCTCCAAAGGAGGTG CAGCGAGCTCTTCAATGAAAT<br />

Lettuce<br />

Act<strong>in</strong><br />

q CTATCCAGGCTGTGCTTTCC ACCCTTCGTAGATCGGGACT<br />

Bremia<br />

Act<strong>in</strong><br />

q AGGCCGTGCTGTCTCTCTAC GCGCATAGCCTTCGTAGATT


Bremia <strong>effectors</strong> enhance host susceptibility<br />

119<br />

Supplemental Information 1: Am<strong>in</strong>o acid <strong>and</strong> nucleotide sequences <strong>of</strong> cloned <strong>effectors</strong>.<br />

Indicated <strong>in</strong> bold <strong>and</strong> underl<strong>in</strong>ed is the first codon after the predicted signal peptide cleavage site. All<br />

<strong>effectors</strong> were cloned start<strong>in</strong>g from this codon <strong>and</strong> preceded by a newly <strong>in</strong>troduced start codon.<br />

BLR01<br />

1 M R L L H A A L K R L A D L L A Q I Y L<br />

1 ATGAGGTTGCTGCATGCAGCGCTGAAAAGGCTTGCGGACTTGCTAGCGCAGATATACTTA<br />

21 A T L N V A R S R N N S L V T R Y P I E<br />

61 GCTACATTAAACGTAGCAAGATCTCGAAACAACAGCCTGGTGACGAGGTATCCGATCGAA<br />

41 L R K L R R H S C E R E Q K M R N V G G<br />

121 TTGCGCAAATTACGGAGGCATTCCTGCGAGCGCGAACAAAAAATGAGAAATGTAGGAGGA<br />

61 S N A A S P Q A S E T N L Q E A Q A I L<br />

181 AGCAATGCAGCATCACCGCAAGCAAGTGAAACAAATTTACAAGAAGCTCAAGCAATTCTT<br />

81 -<br />

241 TGA<br />

BLR02<br />

1 M R L N F R S F S D M M V V L L V F V S<br />

1 ATGCGTTTAAATTTTCGTTCTTTTTCCGACATGATGGTTGTTCTGCTGGTCTTCGTATCG<br />

21 G I V L H K A L A Q L D T H E S S A R V<br />

61 GGGATTGTGCTTCACAAAGCTCTCGCCCAGCTGGACACTCACGAAAGTAGCGCAAGAGTC<br />

41 N V W E R S F S A F R D T P A S I V E S<br />

121 AACGTATGGGAAAGATCCTTTTCGGCTTTCAGGGACACTCCTGCTTCGATCGTCGAAAGC<br />

61 M S F E V L Q Y N L F G R P Y E V S K D<br />

181 ATGAGCTTTGAGGTGCTTCAGTACAATTTATTCGGCCGGCCGTATGAAGTGTCCAAGGAC<br />

81 G Q R E R L L R V P E S L H R I S E T I<br />

241 GGACAGAGAGAGCGGCTGCTGCGAGTACCGGAATCACTGCATCGGATCTCCGAAACAATT<br />

101 D I V T F A E A D I Q T Q R D E M L T N<br />

301 GACATTGTGACGTTTGCTGAGGCAGATATTCAAACTCAACGCGATGAAATGCTGACGAAT<br />

121 F N N L D F I F G R R F C M T Q T R L R<br />

361 TTCAACAATTTGGATTTCATTTTTGGACGACGATTTTGCATGACCCAGACCCGTTTACGA<br />

141 V C S M E E -<br />

421 GTTTGCTCAATGGAGGAGTGA<br />

BLR03<br />

1 M P R C L A V L S F A L F T C C I D A S<br />

1 ATGCCCAGGTGCCTTGCTGTGCTCAGTTTTGCATTATTTACTTGCTGTATCGACGCTTCG<br />

21 T A A D A A K V K M L T Q S R Y P G T V<br />

61 ACAGCTGCGGATGCAGCTAAAGTCAAAATGCTTACCCAGTCGCGCTACCCCGGAACTGTT<br />

41 D R I E K V A R F L R S H S I D E A E E<br />

121 GACAGAATTGAGAAAGTCGCTAGATTCTTGCGTTCTCATAGCATTGACGAAGCAGAGGAA<br />

61 E R L S I W T S F K E L L F G G P F S P<br />

181 GAGAGATTAAGCATTTGGACCTCTTTTAAAGAGCTACTCTTTGGCGGTCCCTTTTCGCCG<br />

81 T R L R A M T A D N A V V Q F T F S A W<br />

241 ACTCGCTTGCGGGCCATGACGGCAGATAACGCAGTCGTTCAATTTACGTTCTCTGCGTGG<br />

101 N K F S H V D I R K L L A E G M K D M D<br />

301 AATAAATTTTCTCACGTCGACATTCGCAAGTTGCTTGCCGAAGGCATGAAGGACATGGAT<br />

121 K Q E I E K L N S I I E L Y F I I R G P<br />

361 AAACAAGAGATAGAGAAGTTGAACAGCATCATCGAGCTTTATTTTATAATTAGAGGACCA<br />

141 D -<br />

421 GACTAA


120 Chapter 4<br />

BLR04<br />

1 M A A L V A L L L A L Y V V G V L L P M<br />

1 ATGGCGGCACTGGTGGCACTATTACTAGCGCTGTACGTCGTTGGTGTTCTATTGCCTATG<br />

21 R W I A E Q E A G K A S A N R K Q P E T<br />

61 CGCTGGATCGCTGAACAGGAGGCAGGTAAAGCTTCCGCAAATAGAAAGCAGCCAGAAACG<br />

41 T S F R R E L R R R G S F S M S F V T D<br />

121 ACGTCATTCCGTAGAGAGCTGCGGCGTCGGGGTAGCTTCAGCATGAGCTTTGTGACCGAT<br />

61 I K A H V F S R C -<br />

181 ATTAAGGCGCATGTTTTTTCTCGCTGCTAA<br />

BLR05<br />

1 M G P Q H L L A L V V V S I L V A A G N<br />

1 ATGGGTCCTCAACATCTCTTGGCGTTGGTTGTCGTGTCCATACTAGTAGCTGCTGGAAAT<br />

21 A Y Y E I D D D S V T R A L R P S V I A<br />

61 GCGTATTACGAAATAGACGATGATTCTGTGACGAGAGCCTTACGTCCTTCCGTCATAGCC<br />

41 D Q E H A V H A I P A T N F I S K D E D<br />

121 GACCAAGAGCACGCAGTTCATGCTATTCCAGCCACAAATTTTATCTCAAAGGACGAAGAT<br />

61 H S K N E K K E I E I I R I A I F S L L<br />

181 CACAGCAAGAACGAGAAAAAGGAAATTGAAATTATAAGAATTGCAATATTTTCACTTCTC<br />

81 V V G V F A I M A L R C L P F C L -<br />

241 GTAGTGGGAGTTTTTGCAATTATGGCGCTTCGCTGTCTTCCGTTTTGCCTGTAG<br />

BLR06<br />

1 M H R X N A S T I A A L L T L L I C L T<br />

1 ATGCACCGTCRAAACGCTTCCACCATCGCTGCGTTATTGACATTGCTCATCTGCCTTACC<br />

21 S V T A A E N G S C S S H E G C C L L C<br />

61 TCCGTCACAGCGGCTGAGAACGGATCATGCTCGTCACACGAGGGGTGCTGCTTGCTCTGC<br />

41 G D E L E R C L R G P C S M H W I T R S<br />

121 GGCGATGAGCTAGAGCGCTGTTTACGCGGTCCATGCAGCATGCATTGGATTACACGCTCT<br />

61 F F S I S A P V I D V G F W D V A F S F<br />

181 TTCTTCAGCATTAGCGCGCCCGTTATTGACGTGGGCTTCTGGGATGTCGCTTTTTCCTTT<br />

81 Y G T V P Y L V P V A I L L D F I F Y C<br />

241 TATGGCACAGTGCCATACCTCGTGCCAGTAGCGATACTGCTCGACTTTATATTTTACTGC<br />

101 R S W T R L F A F L F I P I V G L L N S<br />

301 CGTAGCTGGACGCGGCTTTTTGCATTTCTCTTCATTCCGATCGTAGGTTTATTAAATTCC<br />

121 G I L V T I L G D C S D C P R P C G S C<br />

361 GGCATTCTAGTAACGATTCTCGGTGACTGCAGCGATTGTCCTCGTCCGTGTGGTAGCTGC<br />

141 V S S N G M P S G H A T T A I G L F M W<br />

421 GTTTCCAGCAACGGAATGCCGTCGGGGCATGCCACTACTGCTATTGGATTATTCATGTGG<br />

161 I L L E S L L G V G Y Q W K V V K K V A<br />

481 ATACTACTTGAGTCGCTGCTGGGCGTTGGTTATCAGTGGAAGGTGGTAAAAAAGGTTGCT<br />

181 V C V G I T L L F V P V P Y S R I Y L G<br />

541 GTTTGTGTGGGCATCACCCTGCTTTTTGTACCTGTGCCATACAGCCGCATTTATCTGGGC<br />

201 D H T R L Q V V I G C I N G V L F G L F<br />

601 GATCACACAAGATTGCAAGTCGTCATTGGATGTATAAATGGCGTCTTGTTTGGCCTTTTC<br />

221 Y F F V L R Y G L G R R L S V A T K R I<br />

661 TATTTCTTTGTGCTTCGTTACGGATTAGGAAGACGGCTGTCCGTGGCCACGAAGCGCATT<br />

241 N E G R F H F L H M V N D F H V D R R Y<br />

721 AATGAAGGGCGATTTCATTTTCTGCACATGGTTAACGACTTTCACGTGGATCGTAGATAC<br />

261 L L D S Q F N V E D Q Q F V R S D V G Q<br />

781 TTGCTTGATTCACAATTTAATGTTGAAGACCAGCAGTTCGTCCGATCTGATGTTGGGCAA<br />

281 T -<br />

841 ACCTAA


Bremia <strong>effectors</strong> enhance host susceptibility<br />

121<br />

BLR07<br />

1 M H L N H V A A I F L V G V V T C F T E<br />

1 ATGCATCTCAACCACGTTGCAGCCATCTTCCTTGTTGGAGTCGTGACGTGCTTCACGGAG<br />

21 T I E G S K R R S E I I R E H L A Y P V<br />

61 ACTATAGAAGGGTCCAAGCGTCGAAGTGAAATCATTCGTGAACATCTTGCATATCCTGTA<br />

41 D V A I G S R A L R H T V A S E V K D K<br />

121 GATGTGGCCATCGGTTCACGAGCTCTACGGCATACGGTAGCCTCTGAGGTAAAAGACAAG<br />

61 G D T G P D L E E E R A W W E N A V Q E<br />

181 GGGGACACTGGACCAGATCTAGAGGAAGAGCGAGCTTGGTGGGAGAATGCTGTACAGGAG<br />

81 L R W R L K G P G D F F K S L D A V R K<br />

241 CTGCGGTGGCGACTAAAAGGGCCTGGCGACTTCTTTAAAAGCTTAGATGCCGTACGCAAA<br />

101 G K D L H T D R S F Q W W L H R A A Q F<br />

301 GGGAAAGATTTGCATACTGATCGATCTTTTCAATGGTGGCTGCATCGCGCAGCCCAGTTC<br />

121 R N A H N G F D T S F L K V L Q Q E T S<br />

361 AGGAATGCCCATAACGGGTTTGATACTTCTTTTTTAAAGGTCCTTCAGCAAGAAACATCG<br />

141 Y E Q Q A K L F V W L Q Y S N F Y R D M<br />

421 TACGAGCAACAGGCAAAGCTTTTTGTATGGCTTCAGTATTCCAATTTCTATCGTGATATG<br />

161 N A F A K D Q L L I M E A N P A S R H A<br />

481 AATGCATTTGCGAAAGATCAGCTACTGATTATGGAAGCCAACCCTGCTTCTCGTCACGCC<br />

181 V Y E A W L Q D G K T P G D I C D S S R<br />

541 GTGTATGAAGCATGGCTACAGGATGGAAAAACACCTGGAGATATCTGCGATTCCAGTCGA<br />

201 I G L N F E S W L G Y V V Y Y R S K G N<br />

601 ATCGGCCTTAACTTTGAGAGTTGGCTTGGTTACGTTGTTTATTACCGATCCAAAGGAAAT<br />

221 Q F T N K D I L K T L T S Q D L I K E A<br />

661 CAATTTACCAATAAAGACATTCTCAAGACGCTAACGAGTCAAGATTTGATTAAAGAGGCT<br />

241 V K K L I L L P G K K A N -<br />

721 GTGAAGAAATTGATTTTACTACCTGGGAAAAAAGCGAATTGA<br />

BLR08<br />

1 M A E F R F R P T T L L F L I V A L I F<br />

1 ATGGCCGAGTTTCGGTTCCGCCCCACGACATTGCTATTCCTGATTGTTGCTTTGATCTTC<br />

21 R C A I D P V S A N A D L T P S P R L L<br />

61 AGGTGCGCCATCGACCCTGTCTCCGCCAACGCCGACCTCACTCCCAGCCCGCGATTACTG<br />

41 R D L V Q F D A T Q T V A H T L S N S P<br />

121 CGCGACCTAGTGCAATTCGACGCGACACAGACTGTTGCCCACACCCTATCCAACTCTCCG<br />

61 S A S S S S A E A T V H P A A S A E A S<br />

181 AGCGCCAGCAGCTCCAGTGCAGAAGCGACNGTTCACCCCGCTGCCTCTGCTGAAGCATCG<br />

81 A I S N H T T D N A A S A E S S A E S K<br />

241 GCGATATCGAATCACACTACCGACAATGCCGCCTCGGCTGAGTCCTCGGCTGAATCGAAG<br />

101 H E L P S I M S F I G P A A A G V L A I<br />

301 CACGAATTACCGTCCATCATGTCGTTCATCGGCCCAGCTGCTGCTGGCGTGCTAGCCATC<br />

121 V L I G A V I A F K Y R S S K -<br />

361 GTGCTTATTGGGGCCGTCATCGCTTTCAAGTATCGCTCGAGCAAGTAA<br />

BLR09<br />

1 M R H K C L L A M A V V A S M A F Y S V<br />

1 ATGCGTCACAAGTGCCTCCTAGCTATGGCTGTGGTCGCCAGTATGGCTTTCTACAGCGTC<br />

21 I S T K N V T Q V D T V Q Q E N R R L R<br />

61 ATCAGTACCAAGAACGTCACCCAAGTGGATACGGTGCAACAAGAAAACCGCCGTTTGAGA<br />

41 P R V E P T A N E L D K Q S D V D T K L<br />

121 CCCCGCGTAGAGCCGACAGCTAATGAGTTGGATAAGCAGAGTGATGTCGATACGAAGCTA<br />

61 E A D R R L G Y P G E S G F M L E G E L<br />

181 GAAGCAGATCGACGTTTGGGATACCCTGGAGAGTCGGGTTTCATGCTGGAAGGTGAATTG


122 Chapter 4<br />

81 E E R G G F P W R T F F L G L F A S V I<br />

241 GAAGAGCGAGGAGGATTTCCTTGGAGAACATTTTTTCTTGGTTTATTCGCNTCTGTAATT<br />

101 G V S I I S A C Y G I T -<br />

301 GGTGTCAGCATCATCTCTGCTTGCTACGGCATCACTTAA<br />

BLR10<br />

1 M R H K C L L A M A V V A S M A F Y S V<br />

1 ATGCGTCACAAGTGCCTCCTAGCTATGGCTGTGGTCGCCAGTATGGCTTTCTACAGCGTC<br />

21 I S T K N V T Q V D T V Q Q E N R R L R<br />

61 ATCAGTACCAAGAACGTCACCCAAGTGGATACGGTGCAACAAGAAAACCGCCGTTTGAGA<br />

41 P R V E P T A N E L D K Q S D V D T K L<br />

121 CCCCGCGTAGAGCCGACAGCTAATGAGTTGGATAAGCAGAGTGATGTCGATACGAAGCTA<br />

61 E A D R R L G Y P G E S G F M L E G E L<br />

181 GAAGCAGATCGACGTTTGGGATACCCTGGAGAGTCGGGTTTCATGCTGGAAGGTGAATTG<br />

81 E E R G G F P W R T F F L G L F A S V I<br />

241 GAAGAGCGAGGAGGATTTCCTTGGAGAACATTTTTTCTTGGTTTATTCGCTTCTGTAATT<br />

101 G V S I I S A C Y G I T -<br />

301 GGTGTCAGCATCATCTCTGCTTGCTACGGCATCACTTAA<br />

BLR11<br />

1 M V R L Y L A V L A T F L A Q G N S P L<br />

1 ATGGTTCGATTGTATCTCGCAGTGCTGGCAACTTTCCTCGCTCAAGGCAACAGCCCACTA<br />

21 T L A A F Q Q V P A D A E L L A P D Q E<br />

61 ACTTTAGCTGCCTTCCAACAAGTGCCAGCTGATGCCGAATTGTTAGCTCCTGACCAGGAA<br />

41 G G S L S R R L R V Y D E T S A D E S E<br />

121 GGTGGTTCTTTATCGAGAAGATTACGAGTGTACGATGAAACAAGTGCTGACGAAAGTGAG<br />

61 R G G V S S L L A K L N A S S K P K L E<br />

181 CGAGGAGGAGTCAGCAGTTTGCTAGCAAAACTAAACGCATCTAGTAAGCCAAAACTGGAA<br />

81 D I L A S A K L K V G L D H I L K F Y L<br />

241 GACATATTGGCGTCTGCAAAGTTAAAGGTAGGTCTCGATCATATACTAAAATTTTATCTC<br />

101 F R L E D L E K Q I V K Y N K Y L P K D<br />

301 TTCAGGTTAGAAGATCTGGAGAAACAGATTGTAAAATACAACAAATACTTGCCGAAAGAC<br />

121 K Q L S L Y K L L R E H Q S I P N I A T<br />

361 AAGCAATTATCATTGTATAAGCTACTGAGAGAACATCAAAGCATCCCCAACATAGCAACG<br />

141 A L Y A A K V H I G D E L P P L I A R L<br />

421 GCGCTATACGCCGCTAAAGTGCACATTGGCGACGAGTTGCCACCACTAATTGCTCGTCTA<br />

161 W E D F R N E W K G I D G G I Q K L A N<br />

481 TGGGAGGATTTTCGGAACGAATGGAAAGGAATCGACGGAGGCATACAGAAGCTTGCAAAC<br />

181 E L D M V A D G K E A I L N G K V A V L<br />

541 GAACTTGACATGGTCGCTGATGGTAAAGAAGCCATTCTTAATGGAAAGGTTGCGGTATTG<br />

201 R D Y I A S F S K E N E V D T I L R E Q<br />

601 CGGGACTATATTGCGTCATTCTCGAAAGAGAATGAAGTCGATACCATATTGCGCGAGCAA<br />

221 L T I V F G G E K N L V S I L A K L Y S<br />

661 TTGACGATCGTGTTTGGTGGTGAGAAGAACTTGGTGTCTATTCTTGCGAAACTTTATTCA<br />

241 S A L G N R S A F L E I K P A L P I I E<br />

721 TCGGCACTTGGGAATCGCTCTGCATTCCTTGAAATTAAACCGGCCTTGCCAATTATTGAA<br />

261 S I Q L S V F D K W L K E G L S L N Q V<br />

781 AGCATTCAATTATCTGTCTTTGACAAGTGGCTGAAGGAGGGCCTGTCGCTGAACCAAGTT<br />

281 W S L I V S G R N K G Q D L S I G E Y S<br />

841 TGGTCCCTTATAGTGTCCGGTAGAAACAAGGGCCAAGATCTTTCGATTGGGGAATATTCG<br />

301 V F K A Y A N A F L D R Q M T L K S D K<br />

901 GTGTTTAAAGCGTACGCAAACGCCTTTTTAGATCGTCAAATGACTCTCAAATCAGACAAA


Bremia <strong>effectors</strong> enhance host susceptibility<br />

123<br />

321 F V L Y S V K D I S A A P E A T F L D Y<br />

961 TTTGTGCTTTATAGCGTAAAAGACATCTCGGCGGCACCCGAAGCGACTTTTCTCGATTAT<br />

341 Y D L V L D M S L L D G E R L F F L L D<br />

1021 TACGATTTGGTTTTGGATATGAGCCTTTTGGATGGCGAACGTTTATTTTTTCTATTGGAT<br />

361 R V G A S S F V F E P D F Y R K L Q G F<br />

1081 CGGGTCGGAGCTTCCTCATTTGTATTTGAGCCCGATTTCTATCGAAAACTTCAAGGATTT<br />

381 D K T G D L P G L I T E A I A A K E K T<br />

1141 GATAAAACCGGTGACCTTCCTGGTTTGATTACTGAAGCTATTGCGGCAAAAGAGAAAACG<br />

401 F K L L N T N G E A I K T A K K R G T F<br />

1201 TTCAAGTTACTTAATACAAACGGTGAGGCCATCAAGACTGCAAAAAAACGTGGAACTTTC<br />

421 D V V T P E A K K I N H L Q N K W K Q D<br />

1261 GATGTAGTTACGCCGGAAGCTAAGAAAATCAACCATCTTCAAAATAAGTGGAAGCAAGAC<br />

441 M S F L L K A K H V A S S A K A R S S G<br />

1321 ATGTCGTTTTTACTAAAAGCCAAGCACGTGGCAAGCAGCGCTAAGGCGCGTAGCTCTGGT<br />

461 L K Y -<br />

1381 CTCAAGTATTGA<br />

BLR12<br />

1 M G P G F S F T L L I F T L L T Y Y N E<br />

1 ATGGGTCCTGGCTTCTCCTTCACTCTGCTCATCTTTACTCTACTTACGTACTACAATGAG<br />

21 L S S A A V L S S T H S T S T D I A S S<br />

61 CTTTCAAGTGCGGCTGTATTGAGCTCAACGCATTCAACGTCCACCGATATTGCTAGTAGC<br />

41 R S I V R I A R R Y L R E T A A M E G Q<br />

121 CGCAGCATCGTCCGTATCGCCCGTCGGTACCTTCGGGAGACCGCAGCTATGGAAGGACAG<br />

61 E L E K N L G F D Q T I K N V K K P S L<br />

181 GAGCTGGAAAAGAATCTTGGTTTTGACCAGACTATCAAGAACGTGAAGAAGCCCTCACTT<br />

81 P Q K V Y E N V L E Y L G R M N G K S K<br />

241 CCTCAGAAAGTCTATGAAAACGTACTCGAGTACCTTGGAAGAATGAATGGTAAATCGAAA<br />

101 R D K F F V I A T L L L L P F G I F Y V<br />

301 AGAGATAAGTTTTTCGTCATCGCGACTCTCTTGCTGCTTCCGTTCGGCATCTTCTACGTC<br />

121 C N R -<br />

361 TGTAATCGGTAG<br />

BLR13<br />

1 M K F V F V F G A L F A L F I R L N C A<br />

1 ATGAAGTTTGTTTTTGTGTTTGGAGCGCTTTTTGCTCTCTTCATACGCTTGAATTGTGCC<br />

21 A L V A R E A N S L E L S H D R A N F R<br />

61 GCACTGGTGGCTAGGGAGGCAAATTCACTTGAATTGAGCCACGACCGAGCGAATTTTCGT<br />

41 T I T R R L R I D T L N A S E E R N I F<br />

121 ACAATCACGAGGAGGCTAAGAATTGACACTTTGAACGCTAGTGAAGAGAGAAACATCTTT<br />

61 N F W R R K K H A N W E G L L N V D D V<br />

181 AATTTCTGGCGTCGGAAAAAGCATGCAAACTGGGAGGGTCTTTTGAACGTTGATGATGTG<br />

81 P Q F T P R Q I Q E N I K W S K K D L K<br />

241 CCCCAATTCACTCCTCGTCAAATTCAAGAAAATATCAAGTGGTCGAAGAAGGACTTGAAA<br />

101 E V L T A L N F R K V T S P E V T R Q K<br />

301 GAAGTCTTGACGGCGCTGAACTTTCGCAAAGTGACAAGCCCAGAAGTTACGAGACAGAAG<br />

121 M F Q L D E Y L D S L D L K T E V K T M<br />

361 ATGTTCCAACTCGACGAGTATCTCGATTCGCTGGACCTAAAGACAGAGGTTAAGACGATG<br />

141 D E I V A K R L K V L G M L K G N D W E<br />

421 GACGAAATTGTAGCGAAAAGGTTGAAGGTCTTAGGCATGCTTAAAGGAAATGATTGGGAG<br />

161 H T K E L K R H L A H V W V I K R I P V<br />

481 CACACGAAGGAATTGAAGAGACATTTGGCTCATGTTTGGGTTATTAAAAGGATTCCTGTG


124 Chapter 4<br />

181 R N V Y R G L K M N E E E S L E N L F S<br />

541 AGAAACGTCTACAGGGGCCTAAAAATGAATGAAGAAGAGTCTTTGGAAAACCTTTTCTCG<br />

201 I R S G E E T L D F F L D F F Y A T R K<br />

601 ATTCGAAGCGGCGAAGAGACGCTTGACTTTTTCCTTGATTTCTTTTACGCCACTCGTAAA<br />

221 Y H N D K E E L A E L F L E T Y D V A T<br />

661 TACCACAATGATAAGGAAGAGTTGGCTGAATTGTTTCTCGAGACGTACGATGTAGCAACT<br />

241 V L H L I N V G S R L D S A Q V F V A Q<br />

721 GTCTTGCATTTAATAAATGTCGGATCGCGACTAGACTCAGCACAAGTATTTGTAGCGCAG<br />

261 L E H S L H R K W S S M S H N K V F F D<br />

781 TTGGAGCATAGTCTTCACCGCAAGTGGAGCTCAATGAGCCACAATAAGGTGTTTTTCGAT<br />

281 I L H L D K K G S Q V F N T F E M Q T W<br />

841 ATTCTTCACCTCGACAAAAAGGGATCTCAAGTCTTTAATACGTTTGAGATGCAGACGTGG<br />

301 Y R F I K G T D P D E A E A K T L I F L<br />

901 TACCGATTTATTAAAGGCACCGATCCTGACGAGGCAGAAGCCAAAACATTAATTTTTTTG<br />

321 I H S Y G T A F L S D E L I R G Q G Q S<br />

961 ATCCATAGCTATGGCACCGCTTTTCTCTCGGACGAGTTGATTCGTGGACAAGGACAATCG<br />

341 I S S L R P I F R K A L L D H W A K Q K<br />

1021 ATCTCATCGCTACGTCCGATTTTCCGAAAAGCGTTGCTTGATCATTGGGCAAAGCAGAAA<br />

361 T G S -<br />

1081 ACTGGATCTTAG<br />

BLR14<br />

1 M R L L D V L V A F V I L A A T S S A M<br />

1 ATGCGTCTGCTTGACGTGCTCGTTGCTTTCGTTATCCTCGCTGCTACATCTTCGGCGATG<br />

21 N S A A Q L T P S V D T Q L A D R K H S<br />

61 AATAGCGCTGCTCAGCTTACGCCATCAGTCGACACACAATTGGCCGACAGAAAACATTCT<br />

41 T E D V R R K L R G F N P I T Y L S L K<br />

121 ACCGAGGATGTACGACGAAAATTACGAGGTTTCAATCCGATAACGTATCTAAGTCTCAAA<br />

61 I K E N V A K K V L S K V F S -<br />

181 ATCAAGGAGAACGTTGCCAAGAAGGTATTGTCCAAGGTTTTCAGTTGA<br />

BLR15<br />

1 M Q V C F H V T A L V M I N A L S I S S<br />

1 ATGCAGGTCTGTTTCCACGTTACTGCGTTAGTCATGATCAATGCGCTGTCGATATCAAGT<br />

21 L T S A K F S L G T A A F A L E P S H M<br />

61 CTCACCTCGGCAAAATTTAGCTTGGGCACTGCAGCATTTGCACTTGAACCATCTCACATG<br />

41 E S H E A M R S L R A Q Q T S T L D V D<br />

121 GAGAGCCACGAAGCCATGCGATCGCTGCGGGCCCAACAAACTTCAACTCTCGACGTTGAC<br />

61 E E R L R F K L T R L V G N I C E K I V<br />

181 GAGGAGCGCTTACGCTTCAAACTTACACGTCTTGTGGGAAATATTTGTGAAAAGATTGTT<br />

81 D A F Y R V K N R T K V F Q G E F F P P<br />

241 GATGCTTTCTATAGAGTGAAGAACCGTACTAAGGTTTTCCAGGGTGAGTTCTTTCCTCCA<br />

101 D P -<br />

301 GATCCTTGA<br />

BLR16<br />

1 M Q L P F H V L A L V T T Y A L S T I S<br />

1 ATGCAGCTTCCTTTCCACGTTTTAGCGTTAGTCACGACCTATGCGCTGTCAACGATTAGT<br />

21 Q T S A E S S L V R A T F A H E R Y H M<br />

61 CAAACCTCTGCAGAATCCAGCTTGGTCCGTGCAACATTCGCGCATGAGCGATATCATATG<br />

41 E S L E V K R S L R G Q Q T S P L K D D<br />

121 GAGAGCCTCGAAGTCAAGCGATCGCTAAGAGGCCAGCAGACTTCGCCTCTCAAAGATGAC<br />

61 D E R I S L K D V V G K I K G I I R K I<br />

181 GACGAGCGCATCAGTTTGAAAGATGTCGTGGGAAAGATTAAAGGCATAATCCGAAAAATT


Bremia <strong>effectors</strong> enhance host susceptibility<br />

125<br />

81 M P Q R K G T L R K T K T Y R S L P I -<br />

241 ATGCCTCAAAGAAAAGGCACCTTACGAAAAACCAAAACATACAGATCGCTTCCTATCTAG<br />

BLR17<br />

1 M F S T V L F L V A A C A K S S Y G H S<br />

1 ATGTTTAGCACGGTGCTTTTTCTTGTGGCTGCGTGCGCCAAGTCGTCGTATGGCCACAGT<br />

21 V S I F T R D S T K Y I A S N F D E Y S<br />

61 GTGTCCATATTTACGCGTGACTCTACTAAGTACATTGCGTCAAACTTCGACGAGTATTCG<br />

41 T I P E D I D A K R R L R E A V G V D G<br />

121 ACGATCCCAGAGGATATTGATGCAAAGCGCAGGCTTCGAGAAGCTGTTGGCGTGGATGGG<br />

61 I A R D A E K T F A D I R H S L D R L N<br />

181 ATTGCGCGCGATGCTGAAAAGACTTTTGCAGACATTAGACACTCACTCGATAGACTGAAT<br />

81 K D F V R S N S F K N I N P L I T A E A<br />

241 AAGGACTTTGTGCGTTCAAATTCATTTAAGAACATTAATCCATTAATAACGGCAGAAGCT<br />

101 L V K Q P S F Y Q E A F L P L I T A R G<br />

301 TTGGTCAAACAACCATCTTTTTATCAAGAAGCTTTCTTACCGCTCATAACAGCTCGTGGG<br />

121 I K C S K D F E F A T M A L L G V S P G<br />

361 ATAAAATGTAGCAAAGATTTTGAATTTGCCACAATGGCTTTGCTCGGTGTATCTCCGGGT<br />

141 T L R Q K I Q V A A Q Q P S N I W S Y Q<br />

421 ACTTTGAGACAGAAGATACAGGTAGCAGCACAACAACCCTCCAATATATGGAGTTACCAG<br />

161 T S E Y N E H F V A S Y K K Y L D V V F<br />

481 ACCTCGGAATACAATGAACATTTTGTCGCCAGCTACAAGAAGTATCTCGACGTTGTTTTT<br />

181 M A P T I S E S S A F V K K H I S M S I<br />

541 ATGGCACCGACCATATCAGAATCGTCCGCCTTTGTCAAGAAGCACATCTCAATGTCTATA<br />

201 P E P S E M T Y K L L N A A V I Q L L Q<br />

601 CCTGAGCCGTCCGAGATGACTTATAAGCTTCTCAACGCTGCCGTTATTCAACTGTTGCAG<br />

221 L A I R N V D D V N E L A K L A T S V T<br />

661 TTGGCCATTCGAAATGTAGATGATGTCAACGAGTTGGCGAAATTGGCGACATCGGTTACG<br />

241 F K Y A L E H D E E F S T I M M F G N L<br />

721 TTCAAGTACGCGCTAGAGCACGATGAAGAGTTTTCTACCATTATGATGTTTGGAAACCTG<br />

261 E A W I S N P V L N K L L M V H Q V L L<br />

781 GAAGCTTGGATTTCCAATCCCGTTTTGAACAAACTTCTTATGGTCCATCAGGTCTTACTA<br />

281 K S -<br />

841 AAATCGTAG<br />

BLR18<br />

1 M R T T F F L T V V I A M F C A C I T A<br />

1 ATGCGCACGACATTTTTCCTGACCGTCGTGATAGCAATGTTCTGTGCTTGTATCACTGCG<br />

21 I E T L E G P T T T G R E P N I A D A T<br />

61 ATTGAAACTCTAGAGGGTCCAACTACAACGGGACGTGAGCCGAACATTGCGGACGCAACC<br />

41 P T V V A R A L R G A V A F N E D R L D<br />

121 CCTACTGTCGTTGCAAGGGCGTTGCGAGGTGCCGTGGCGTTCAATGAAGATCGACTTGAT<br />

61 L E G L T N S V A T L F D G A L H E I N<br />

181 CTCGAAGGTCTTACTAATTCCGTTGCTACTTTGTTTGATGGCGCGCTTCATGAAATAAAT<br />

81 P E L V R T A K A L N E -<br />

241 CCGGAGCTTGTGCGAACTGCGAAAGCTCTCAACGAATAA<br />

BLR19<br />

1 M L L S R A I S V V A L L A C I X C G A<br />

1 ATGCTTCTTTCCCGCGCNATATCTGTCGTCGCCCTTCTCGCATGCATTCNTTGTGGGGCG<br />

21 H A Q D S E V D L G T L L T T L D S S M<br />

61 CACGCTCAAGACTCGGAAGTAGATCTCGGGACTCTATTGACCACCCTTGACAGTTCGATG<br />

41 V T S Q R L L R T S V D L D N N E E R V<br />

121 GTCACTTCGCAGCGGCTTCTCAGAACGAGCGTGGACTTGGACAACAACGAAGAACGCGTC


126 Chapter 4<br />

61 K W P F Q N L V T D Y L N Q K A I R K S<br />

181 AAATGGCCATTTCAAAATTTGGTCACTGATTATCTTAATCAGAAAGCAATCAGGAAAAGT<br />

81 L V N Q A K K T V N A H D E N V L E E A<br />

241 CTCGTAAATCAGGCCAAAAAAACAGTTAACGCTCACGATGAGAACGTATTGGAGGAAGCG<br />

101 V K K E I N A G R V K N V K Q A L S K L<br />

301 GTGAAGAAGGAGATAAATGCAGGTCGCGTGAAAAATGTCAAGCAAGCGTTAAGCAAACTG<br />

121 K N G D P A K A K L Q R L Y N A E I L R<br />

361 AAAAATGGCGATCCCGCAAAAGCTAAACTACAACGACTCTACAATGCTGAAATTTTAAGG<br />

141 N L P K T H N S G Q V R I S R D K V S R<br />

421 AATTTACCAAAAACACATAATTCAGGTCAAGTTAGGATCTCGAGGGACAAAGTCAGCAGG<br />

161 -<br />

481 TAA<br />

BLR20<br />

1 M R F I L V I F M T A A T I C A S W E T<br />

1 ATGCGCTTTATTCTCGTCATTTTTATGACTGCAGCCACAATATGTGCAAGTTGGGAGACC<br />

21 I S V E K D G E H D K L L V I T S T T R<br />

61 ATTTCGGTTGAAAAGGATGGCGAACATGATAAACTTTTGGTAATAACTTCAACAACTCGC<br />

41 Y L K E D Y G A V S N S R L L R V S V G<br />

121 TACCTCAAGGAAGACTATGGTGCCGTCTCCAATTCGCGGCTTTTGCGCGTCAGCGTCGGC<br />

61 S N Q S G T M Q D E A D I G E D S Y M D<br />

181 TCCAACCAAAGTGGAACCATGCAAGACGAAGCGGACATTGGCGAAGACTCCTACATGGAT<br />

81 T V Y F K L W R L I G K T P G E V Y T D<br />

241 ACTGTGTACTTTAAGCTCTGGCGTTTGATTGGCAAGACGCCTGGTGAGGTATACACCGAC<br />

101 S F G T M D P A S A A Q N P S Y N R Y I<br />

301 TCATTCGGTACCATGGACCCAGCCTCTGCTGCCCAGAACCCAAGCTATAATAGGTATATT<br />

121 R Y K R Y Y N N H H -<br />

361 CGATACAAACGATACTACAATAATCATCATTAG<br />

BLR21<br />

1 M R T C F L I F V A G A T I L L S T K A<br />

1 ATGCGTACTTGTTTCTTGATCTTTGTGGCTGGGGCAACGATTTTACTCAGCACTAAAGCT<br />

21 S N P E D D V E D R G S A I G Q V R R I<br />

61 TCCAACCCTGAAGACGACGTCGAAGACCGCGGATCAGCAATTGGTCAAGTGAGAAGAATT<br />

41 L R P K T I N Y G A L E P G R S N P L Y<br />

121 TTACGGCCTAAAACGATCAACTACGGGGCGTTGGAGCCTGGTCGATCAAATCCTCTGTAT<br />

61 N D P R Q -<br />

181 AATGACCCTAGGCAATAG<br />

BLR22<br />

1 M L S C K K T F A L C A T A A L I M S G<br />

1 ATGCTTTCCTGCAAAAAAACTTTCGCGCTATGCGCAACTGCGGCTTTGATCATGTCTGGC<br />

21 F S E V E S S I A S Y R R G L R E G A V<br />

61 TTTTCAGAAGTAGAATCCAGCATCGCAAGTTACAGACGCGGCCTGAGGGAGGGCGCTGTA<br />

41 S G E G Y S D K M D Y K R K H Y E H T D<br />

121 AGCGGTGAAGGCTACAGCGACAAGATGGATTACAAGAGAAAACACTATGAACACACCGAT<br />

61 S D G D V G H N G D D T V L Y Q D S Q L<br />

181 TCGGATGGAGACGTTGGCCACAACGGCGATGATACGGTTTTGTATCAGGACTCGCAGCTA<br />

81 H D G L I D I D L V A K L E L A L G L L<br />

241 CATGACGGGCTCATTGATATCGACCTCGTCGCTAAACTTGAACTTGCACTTGGGCTATTG<br />

101 R E D G V D L L S H H N G A L Q H Q N G<br />

301 CGCGAAGATGGAGTCGACCTTTTGAGCCACCACAACGGCGCCTTACAACATCAGAACGGG<br />

121 E S P L H L D D L L E I G V G L E I A I<br />

361 GAGTCACCATTGCACTTGGATGACCTTCTCGAAATCGGCGTCGGTCTTGAAATTGCAATT


Bremia <strong>effectors</strong> enhance host susceptibility<br />

127<br />

141 D L L R E K G V G L L N H H G A E Q H Q<br />

421 GATCTGTTGCGCGAAAAAGGAGTCGGCCTTTTGAACCACCACGGTGCTGAACAGCATCAA<br />

161 N A E T P L H L D N I V D I D A D V G V<br />

481 AACGCGGAGACGCCATTGCACTTGGATAACATTGTTGACATCGATGCCGATGTAGGAGTT<br />

181 D L L S V -<br />

541 GATTTGCTTTCCGTTTAA<br />

BLR23<br />

1 M R L R G S F V T L V A I I A V F Y Q G<br />

1 ATGCGTCTTCGTGGTAGCTTCGTTACATTGGTCGCAATCATCGCGGTTTTCTACCAAGGT<br />

21 E G M D F Q A A S A T F K H V R S P I Q<br />

61 GAAGGTATGGATTTCCAAGCGGCTTCCGCCACCTTCAAGCATGTACGGTCTCCTATACAG<br />

41 N P P N F E M E S V P S A Q M T R S L R<br />

121 AACCCCCCAAACTTCGAAATGGAGAGTGTACCAAGCGCCCAGATGACTCGATCTCTAAGG<br />

61 V D E N R N G G Q L G S D A K T I I T K<br />

181 GTTGACGAAAATCGCAATGGAGGGCAGCTCGGAAGTGATGCGAAAACGATCATAACTAAG<br />

81 V K F P K K A F E N L T M K I K H N P F<br />

241 GTCAAGTTTCCAAAGAAGGCATTTGAAAACCTAACGATGAAGATTAAGCACAATCCATTT<br />

101 Y P A K H I N -<br />

301 TATCCAGCCAAACATATTAATTAA<br />

BLR24<br />

1 M T F A A V M E M S T V K I T L A L A V<br />

1 ATGACATTTGCCGCGGTTATGGAGATGAGTACTGTGAAAATAACTTTAGCTCTGGCTGTT<br />

21 A W G V L A K H G K A D K E E H L E I Y<br />

61 GCATGGGGCGTACTCGCCAAACATGGTAAAGCTGATAAGGAAGAGCATTTGGAAATATAT<br />

41 L C A P I G I E I G E K I L R S L R V Q<br />

121 TTATGCGCTCCGATTGGAATAGAGATTGGCGAAAAAATATTGCGGTCGCTCCGCGTGCAG<br />

61 S P R I S F S G C K K H Y E L E Q A G R<br />

181 AGCCCAAGAATCTCGTTCTCCGGCTGCAAAAAACACTATGAATTAGAGCAGGCGGGGCGA<br />

81 L W S Q L L H F K L T -<br />

241 CTTTGGAGCCAATTGCTTCACTTTAAGTTRACATAA<br />

BLR25<br />

1 M V R S T S K G L T S C T V R R L M L L<br />

1 ATGGTGCGCTCCACGTCCAAGGGTTTAACGTCTTGTACCGTGCGCAGACTCATGCTGCTG<br />

21 A V F A L S A C V A T L S T S P N T M T<br />

61 GCAGTTTTTGCTCTATCAGCGTGCGTGGCAACCCTCTCGACGAGTCCTAACACTATGACT<br />

41 L S S Y R H L K E L P D T R R A L R F P<br />

121 CTTAGCTCTTATCGACACTTGAAAGAGCTGCCTGACACACGACGAGCTCTGCGCTTTCCG<br />

61 K T G S I R T T T C S K Q W L N S W K L<br />

181 AAAACAGGCTCAATTCGTACTACGACTTGCTCAAAGCAATGGCTCAACAGCTGGAAGTTG<br />

81 A F -<br />

241 GCATTCTGA<br />

BLR26<br />

1 M M P V P S E L V I T Q H R R I L L L F<br />

1 ATGATGCCTGTACCATCCGAGCTTGTAATAACTCAGCACAGGCGTATATTACTGCTATTT<br />

21 L A L L A G V T I V M A A T T A P N A V<br />

61 TTGGCTCTGCTGGCGGGCGTGACAATTGTCATGGCGGCAACAACAGCACCAAACGCTGTC<br />

41 A G V F R R R L R E V P N A L V D G Q N<br />

121 GCCGGTGTCTTCCGTCGACGATTAAGAGAGGTGCCAAACGCTCTTGTCGACGGGCAGAAC<br />

61 D E R N S S P S I A V R Q I A E K S L A<br />

181 GATGAAAGGAACAGCTCTCCAAGTATTGCCGTCCGGCAAATTGCGGAAAAGTCGTTGGCA


128 Chapter 4<br />

81 S A K T K G I L P K N F E E F A E N F S<br />

241 TCGGCGAAAACGAAAGGCATTTTGCCGAAGAACTTTGAAGAATTCGCCGAAAACTTTTCA<br />

101 K N N Y S G N D D L D H R M Y A F L N A<br />

301 AAGAACAATTACTCAGGGAATGACGACTTGGATCATCGCATGTACGCATTCCTCAATGCT<br />

121 L T K N K R E A L E Y V F S P N W L Q K<br />

361 CTTACAAAGAATAAAAGAGAAGCTTTGGAGTATGTATTTTCGCCAAATTGGTTGCAGAAA<br />

141 P H A L R F Y N F L V N R W S K Q K L G<br />

421 CCCCACGCGCTGAGATTTTACAATTTCTTAGTAAATCGGTGGTCTAAACAAAAATTAGGC<br />

161 Q N L H L D G I S R E D L N A L I G L K<br />

481 CAAAATTTGCACTTGGACGGGATAAGCCGAGAGGACCTAAATGCTTTGATTGGATTAAAA<br />

181 T R L E K T L -<br />

541 ACGCGACTCGAAAAAACATTATAA<br />

BLR27<br />

1 M T K Y K C S S L I C S L L L L S C Y H<br />

1 ATGACCAAGTACAAGTGCTCGTCGTTGATCTGCTCCCTCCTCCTGCTATCCTGCTACCAC<br />

21 V V T S I E N V A L I E A P V L G K S R<br />

61 GTCGTGACAAGCATCGAGAACGTCGCGCTGATTGAGGCGCCAGTCCTCGGCAAGTCTCGA<br />

41 Q L R S S V E L V E G L L L T S D K L A<br />

121 CAATTACGCTCGAGTGTCGAGCTGGTGGAAGGATTATTGCTTACCTCAGATAAATTGGCC<br />

61 K V I G T L P K N L A K E W L A T F K W<br />

181 AAGGTTATAGGTACACTGCCAAAAAACCTGGCCAAGGAATGGCTCGCGACCTTCAAATGG<br />

81 G I N H F K I L L A E D K V A A A G K I<br />

241 GGTATCAATCATTTCAAGATCCTGCTCGCAGAGGACAAGGTCGCGGCCGCTGGTAAAATT<br />

101 F P D D S A N P I M T K L F E S D A F L<br />

301 TTCCCCGATGATTCGGCCAATCCCATAATGACAAAGCTCTTTGAAAGTGATGCCTTTCTA<br />

121 W W E K L I R R T V D D T Q E E V D T I<br />

361 TGGTGGGAAAAACTCATTCGACGAACTGTAGACGATACCCAAGAGGAAGTGGACACGATC<br />

141 I T S A L V T R L G K G R A I K L F T E<br />

421 ATTACTTCAGCACTCGTGACCAGACTTGGCAAAGGCAGGGCCATCAAACTCTTTACGGAA<br />

161 A G F E A D A I N A K W L A L L Y H A L<br />

481 GCAGGGTTCGAGGCCGATGCGATCAATGCCAAGTGGTTGGCCTTGCTATATCATGCATTG<br />

181 D D E D M P K L F K E I V S S G G F D K<br />

541 GACGATGAAGATATGCCGAAGTTATTTAAAGAGATCGTTTCGAGTGGAGGTTTCGATAAG<br />

201 N S V E F F I K L C A R E N N K D A A Y<br />

601 AACAGCGTCGAGTTTTTCATTAAGTTATGTGCAAGGGAGAACAATAAAGATGCCGCGTAT<br />

221 E I I N S L L Q D K K E Y R E V Y Q K F<br />

661 GAAATTATCAATAGTCTGCTGCAAGACAAGAAAGAATATCGGGAGGTTTATCAGAAATTC<br />

241 D G V V E T Y R T K W D S L K S V Y F K<br />

721 GATGGAGTTGTCGAAACGTACCGTACCAAATGGGATTCTCTCAAAAGCGTGTATTTCAAG<br />

261 A V S D P K L D K S V S P M Q R L R N L<br />

781 GCAGTATCCGATCCGAAACTTGATAAAAGTGTTTCACCAATGCAGAGGCTTCGGAATTTA<br />

281 Y Q T E E L D P V S V A S K I A D I Y A<br />

841 TACCAAACTGAAGAGCTCGATCCTGTGTCCGTGGCATCAAAAATTGCCGACATTTATGCC<br />

301 K T S E G L H L L Q I V K Q T L H D K A<br />

901 AAAACGTCGGAAGGTCTTCATTTACTTCAGATCGTAAAGCAGACGTTGCATGATAAGGCA<br />

321 A T E A D K A F A G L V L D K V H V K W<br />

961 GCAACGGAAGCTGATAAAGCGTTTGCTGGACTAGTCTTGGACAAAGTACATGTGAAGTGG<br />

341 I Q T N Y D V G K M L K S L T R K I K P<br />

1021 ATTCAAACTAATTATGACGTGGGCAAGATGCTCAAGTCTCTTACGCGCAAAATTAAACCA<br />

361 V E T L L N T S E G V A F V F A I R E M<br />

1081 GTCGAAACTCTTCTTAATACGTCAGAGGGTGTGGCATTTGTATTTGCCATAAGAGAAATG


Bremia <strong>effectors</strong> enhance host susceptibility<br />

129<br />

381 K A T E S E G Y S E A V G V F R K T F E<br />

1141 AAGGCGACCGAGTCGGAAGGATATAGTGAGGCGGTCGGTGTGTTTCGAAAGACTTTTGAG<br />

401 A D V L E K M M K N A N S D D T I V A G<br />

1201 GCCGACGTTCTCGAAAAGATGATGAAAAACGCAAATTCAGATGACACTATTGTCGCGGGC<br />

421 F I D A Y I E L M G V K I A -<br />

1261 TTCATTGATGCCTATATAGAGCTTATGGGGGTCAAAATAGCTTAA<br />

BLR28<br />

1 M L R V V L F L V A A C A K T S Y S H T<br />

1 ATGCTCCGTGTGGTGCTTTTTCTTGTGGCTGCGTGTGCCAAGACTTCGTACAGCCATACT<br />

21 V A L S T R N S Q Y I A S K A N E H A T<br />

61 GTGGCGCTATCCACGCGTAACTCGCAGTACATTGCGTCGAAAGCCAACGAGCATGCTACG<br />

41 I P E D I N L N R R L R K A A V I T E V<br />

121 ATTCCAGAGGACATCAACTTAAACCGCAGGCTTCGCAAAGCTGCTGTGATTACAGAGGTA<br />

61 A E T L E S I I E A F N P L R T L R S D<br />

181 GCCGAGACTCTTGAATCTATAATTGAAGCGTTCAATCCACTACGAACTTTAAGAAGTGAT<br />

81 V R S E M S S K T K L E Q D A M L K E P<br />

241 GTCAGATCGGAGATGTCATCGAAAACTAAACTCGAACAGGATGCAATGCTTAAGGAACCA<br />

101 S F Y F R M L K P F S E F R I R A C F E<br />

301 TCGTTTTATTTCAGAATGTTGAAACCTTTCTCTGAATTTCGAATTCGCGCATGTTTTGAG<br />

121 V Y E I D T L I L F G T S P H L L K Q Y<br />

361 GTTTATGAAATCGATACGTTGATTCTGTTTGGTACGTCTCCTCATTTATTGAAACAATAT<br />

141 I Q N G I P R G I L P E S V T V L A T T<br />

421 ATTCAAAATGGAATACCTCGAGGTATCCTCCCCGAAAGCGTAACTGTACTTGCAACTACT<br />

161 G E K L K R F Q R Q F D I F F N P P T G<br />

481 GGAGAAAAACTGAAGCGGTTTCAAAGGCAGTTCGATATATTTTTTAATCCGCCAACAGGG<br />

181 S K P S K P S R A W P Y A R G P Q V Q A<br />

541 TCAAAACCGAGTAAACCCAGTCGCGCTTGGCCTTACGCCCGGGGCCCTCAAGTTCAAGCG<br />

201 N F K K I Y S S D H I K F L A Y A F H H<br />

601 AATTTTAAAAAGATCTATAGTTCCGACCATATTAAATTTTTGGCATACGCCTTTCACCAT<br />

221 L D D V N I L A K L S S S I I Y R F V L<br />

661 CTTGATGATGTGAACATCTTGGCGAAATTGTCGTCATCAATTATTTACAGGTTCGTTCTC<br />

241 D N F K E C R A T I R Y G T V E D W Y K<br />

721 GACAATTTTAAAGAGTGCCGAGCTACTATTCGTTATGGAACGGTGGAAGACTGGTACAAA<br />

261 H P M L N K L L R V H E V C R K F G I -<br />

781 CATCCCATGCTGAACAAACTTCTTCGAGTGCATGAGGTCTGTCGAAAGTTCGGAATATAG<br />

BLR29<br />

1 M I G N F K K G L F V A A V A V A L A T<br />

1 ATGATTGGAAATTTTAAGAAAGGTTTGTTCGTGGCCGCCGTGGCAGTGGCCCTGGCCACA<br />

21 S V E G Y T G A A S Y E S K R M L R Q Q<br />

61 AGTGTCGAAGGGTACACGGGTGCCGCATCCTATGAATCAAAGCGCATGCTTCGACAGCAG<br />

41 T Q A I A E E S V A D D P E C G S L E M<br />

121 ACGCAAGCAATTGCAGAGGAATCAGTTGCGGACGATCCCGAGTGCGGTTCGCTAGAAATG<br />

61 A E I D D P E C G S L E M A E E N N D N<br />

181 GCCGAGATTGACGACCCCGAGTGCGGATCGCTCGAAATGGCCGAAGAGAACAATGACAAC<br />

81 N D N N D N T N D N N N N Y S S G N N G<br />

241 AATGACAACAATGACAATACTAACGACAATAACAACAATTACTCAAGTGGCAACAATGGC<br />

101 N N G N F W T P P D N G N N G N S G N Y<br />

301 AACAATGGCAACTTTTGGACGCCGCCAGACAACGGCAACAACGGCAACAGTGGCAATTAT<br />

121 W T P P D G K K N L H T G Q E G T P S G<br />

361 TGGACGCCACCCGATGGCAAGAAGAATTTACATACGGGCCAAGAAGGAACGCCTTCTGGT


130 Chapter 4<br />

141 Q D T K G N T V I Q T D D T V S N E A E<br />

421 CAGGATACCAAGGGGAATACTGTAATCCAAACGGACGATACCGTGAGCAATGAGGCAGAG<br />

161 T I D P E C G S L D M A E E D N G N E G<br />

481 ACGATAGACCCCGAGTGTGGGTCTTTGGATATGGCCGAGGAGGACAATGGCAATGAAGGA<br />

181 G N Q K S E N P S I K S N L N G G G N A<br />

541 GGCAATCAGAAGTCTGAAAATCCGTCAATAAAGAGTAATTTGAACGGCGGCGGAAACGCT<br />

201 G E K Q E S N K D E K K D G N T N T K E<br />

601 GGCGAAAAACAAGAGTCTAACAAGGATGAGAAGAAAGATGGCAACACGAATACCAAGGAA<br />

221 E N K E S N N G D K N T L Q Q D I G G D<br />

661 GAGAACAAGGAATCCAACAATGGCGACAAGAATACGCTTCAACAAGACATTGGAGGCGAT<br />

241 E V G K A G P Y G D G V E P E C G S L D<br />

721 GAAGTAGGTAAAGCTGGACCCTACGGAGATGGCGTTGAGCCCGAGTGTGGGTCGCTTGAT<br />

261 M A E D N D E C D S L E M A E I G Q E G<br />

781 ATGGCCGAAGACAACGACGAGTGTGATTCGCTTGAAATGGCGGAAATTGGGCAAGAGGGC<br />

281 K S D A V F T G S K S N L S F S P Y Q G<br />

841 AAGAGCGATGCTGTGTTTACTGGATCAAAGTCGAACCTTTCCTTTTCGCCGTACCAAGGT<br />

301 E V N V G T V S P P P -<br />

901 GAGGTCAACGTTGGCACCGTATCCCCCCCGCCTTAA<br />

BLR30<br />

1 M Q V C F K I T A L V M I N A L S I S S<br />

1 ATGCAGGTCTGTTTTAAGATTACTGCGTTAGTCATGATCAATGCGCTGTCGATATCAAGT<br />

21 L I S A E S S L G T A A F A L K T P H M<br />

61 CTCATCTCGGCAGAGTCCAGCTTGGGCACTGCAGCATTTGCGCTTAAAACACCTCACATG<br />

41 E S H E A M R S L R A R H T S T L N V D<br />

121 GAGAGCCACGAAGCCATGCGATCGCTGCGGGCCCGACATACTTCTACTCTCAACGTTGAC<br />

61 E E R L R L K L L R R V E Y I C E K I V<br />

181 GAGGAGCGTTTACGCCTCAAACTTTTACGTCGTGTGGAATATATTTGTGAAAAGATTGTT<br />

81 E A Y N R V K N R N K V F H V E H L P E<br />

241 GAAGCTTATAATAGAGTGAAGAACCGTAATAAGGTTTTCCATGTTGAGCACTTACCAGAA<br />

101 R -<br />

301 CGTTGA<br />

BLQ01<br />

1 M L A L S K I I E A V V I A S I L I G S<br />

1 ATGCTTGCTCTATCCAAGATCATCGAAGCGGTGGTCATCGCATCAATACTCATTGGTAGT<br />

21 S S S F P M E K I S S A T S N D Q T R H<br />

61 AGCAGTTCTTTTCCAATGGAGAAGATTTCGTCAGCAACTTCGAATGACCAAACTCGTCAC<br />

41 Y G F E Q G N G Q L L R G A E K T R L K<br />

121 TACGGATTTGAACAAGGAAACGGACAGCTTTTACGTGGAGCCGAAAAGACGCGTCTCAAG<br />

61 D E E Q R F F K F G L P S W L P K L F -<br />

181 GACGAAGAACAAAGATTTTTTAAATTCGGTCTGCCAAGTTGGTTGCCAAAACTATTTTGA<br />

BLG01<br />

1 M V R V Y V A A L T G F L A L S A S A S<br />

1 ATGGTTCGTGTCTACGTCGCCGCATTGACAGGTTTCCTCGCGCTTAGCGCGTCGGCCTCT<br />

21 A T L Q L T S V N E S L A D A Y D S T A<br />

61 GCTACTTTACAGTTGACGTCGGTAAACGAATCATTGGCTGATGCTTATGACAGTACCGCT<br />

41 P A R G K L R A Y A A T N V E S D E R A<br />

121 CCTGCACGAGGGAAATTACGCGCTTACGCAGCAACAAATGTCGAGAGCGACGAAAGAGCT<br />

61 F S N L L E H L K T L N V L F S P L S K<br />

181 TTCAGTAATTTACTTGAACATCTCAAAACCCTTAATGTTTTGTTCTCGCCGCTTTCAAAG


Bremia <strong>effectors</strong> enhance host susceptibility<br />

131<br />

81 E R M E A A I S K S D S S V V K H L S E<br />

241 GAGCGCATGGAAGCAGCAATATCTAAAAGCGACAGCAGCGTGGTCAAGCATCTCTCGGAG<br />

101 D G A V N E K K L G I G R D G V K A F E<br />

301 GATGGAGCGGTCAACGAGAAGAAACTTGGAATTGGAAGAGATGGTGTAAAAGCTTTTGAA<br />

121 P A K V S K V K M I L E D I F R K P Y N<br />

361 CCTGCAAAAGTTTCGAAGGTGAAGATGATTCTAGAAGACATCTTTCGAAAGCCTTACAAT<br />

141 K I L L K V L S K A N G G E R N L V R N<br />

421 AAAATTTTGTTGAAAGTGCTTTCGAAAGCGAATGGGGGTGAGCGAAATCTAGTGCGCAAC<br />

161 L A Q A E M L G Y K V F F L K S T L A S<br />

481 TTAGCGCAAGCGGAAATGCTCGGTTATAAAGTGTTTTTTCTTAAGTCAACTCTCGCTTCC<br />

181 K W E R D G V S L M D V W S Y I C K D V<br />

541 AAGTGGGAGCGAGACGGTGTGTCGCTGATGGATGTCTGGTCATATATCTGCAAAGATGTG<br />

201 K A P T E E E M K I F S H W C G Y A F V<br />

601 AAAGCCCCAACTGAAGAGGAAATGAAGATTTTCTCGCACTGGTGTGGATATGCTTTTGTT<br />

221 L S A K G K F S A E E T V I E K T L L K<br />

661 CTATCGGCGAAAGGGAAATTCTCGGCAGAGGAGACTGTTATTGAAAAGACGCTCCTCAAA<br />

241 V H N D N K N K K G K L A I N M L A Q I<br />

721 GTTCATAATGACAACAAGAACAAGAAAGGCAAGCTTGCAATCAACATGCTGGCTCAGATT<br />

261 H L S R K F K V D A N F F E L Y D P S P<br />

781 CACCTGTCGCGCAAGTTTAAGGTCGATGCCAATTTCTTTGAATTGTATGATCCGTCACCT<br />

281 S S L K K L L L E L E K S P R A C D L D<br />

841 TCTTCACTCAAGAAATTATTGCTTGAACTTGAGAAGAGTCCGCGTGCTTGCGATCTCGAT<br />

301 V E L Y R L L K Q A V T D D K F M K G I<br />

901 GTAGAGTTATATCGACTTCTCAAACAGGCTGTAACCGACGATAAGTTCATGAAAGGCATT<br />

321 W D R S T K K P E Q P N A K R N -<br />

961 TGGGACAGATCGACCAAGAAGCCTGAACAGCCCAACGCCAAACGAAATTAG<br />

BLG02<br />

1 M V R I Y V A A L T V V L A F S A S C S<br />

1 ATGGTTCGTATCTACGTAGCCGCATTGACCGTCGTCCTCGCGTTTAGTGCCTCGTGCTCT<br />

21 A T S P L T L A K A T P V T A N G S G G<br />

61 GCTACTTCACCACTGACGCTGGCAAAAGCTACACCAGTTACTGCTAATGGAAGTGGCGGT<br />

41 R A Q G R L R A H T T T N V E I D E R S<br />

121 CGTGCTCAAGGGAGATTACGCGCTCACACGACAACAAATGTCGAAATCGACGAGAGAAGC<br />

61 I S D V I Y A I A R Q V A D H R S N L V<br />

181 ATTTCTGACGTTATATATGCTATAGCTCGTCAAGTTGCAGACCACCGTTCTAATTTGGTA<br />

81 Q A P K R T Y T T Y L A T L D L S L D K<br />

241 CAGGCTCCAAAAAGAACATATACTACGTATTTAGCTACACTGGACTTATCCTTAGATAAA<br />

101 V L E Q N W S E L R L L Y V K Q T K R K<br />

301 GTTCTCGAACAGAATTGGAGTGAGCTTCGATTGTTGTACGTGAAGCAAACTAAAAGAAAG<br />

121 R P K D F V S M Y E L L V K K Y G L L K<br />

361 CGTCCAAAAGACTTTGTCTCAATGTATGAGCTGTTGGTAAAAAAGTATGGCCTCTTGAAA<br />

141 L T D M M K K P D Y I S L S E T D N F K<br />

421 TTGACTGACATGATGAAGAAGCCAGATTATATCTCATTAAGCGAAACGGACAATTTTAAG<br />

161 Y L Y D E A S V Y W R K N S V L K Q Y A<br />

481 TATCTGTACGACGAAGCAAGCGTGTACTGGAGAAAAAACAGCGTTTTAAAGCAGTATGCG<br />

181 S E L Y D S K G N S K T F D V T D F E S<br />

541 TCTGAACTATATGATAGCAAAGGGAATAGCAAAACGTTCGACGTAACCGACTTTGAAAGC<br />

201 L Q P F F E R I G R R G D Y L E I T A A<br />

601 CTGCAACCTTTTTTCGAACGCATCGGCCGTCGCGGTGATTATTTGGAGATTACTGCTGCC<br />

221 E H E K W K T N K L R P T -<br />

661 GAGCATGAGAAATGGAAAACGAACAAATTGCGACCTACTTAG


132 Chapter 4<br />

BLG03<br />

1 M V R V Y V A A L A A I F A L S A S A T<br />

1 ATGGTTCGTGTCTACGTCGCCGCATTGGCAGCCATTTTCGCATTAAGTGCCTCTGCTACT<br />

21 L H L T L A N A S S V T T E E G D G R P<br />

61 TTACATTTGACGCTCGCAAACGCTTCATCGGTAACTACTGAAGAAGGTGACGGTCGTCCT<br />

41 Q G K L R V N A A T N V E S D E R F L D<br />

121 CAAGGGAAGTTACGCGTCAATGCAGCAACAAATGTCGAAAGCGACGAGAGATTTCTAGAC<br />

61 G L K A L V R G F Y D L T P F A P R F Q<br />

181 GGATTAAAAGCTCTTGTCCGTGGTTTCTATGACCTTACGCCTTTCGCACCACGCTTTCAG<br />

81 K D T Y S N L L L K L N L S F E Q F S G<br />

241 AAGGACACATATTCCAACCTTTTATTGAAACTGAATTTGTCTTTCGAACAGTTTTCTGGG<br />

101 K D T L Q L R R F Y D A A R R H N K V N<br />

301 AAGGACACCTTGCAGCTTCGGCGATTTTACGACGCCGCTAGGAGGCATAACAAGGTGAAT<br />

121 P T N P V S V Y T G L V E K Y G E F E I<br />

361 CCAACAAACCCTGTCTCGGTATATACAGGATTGGTAGAAAAGTATGGTGAGTTTGAAATA<br />

141 V N M V Y S L K H A Q S S K S R D V L K<br />

421 GTAAACATGGTGTATTCGCTAAAACATGCACAATCAAGCAAATCCCGTGATGTGCTCAAG<br />

161 R L G K E E K W Y W K D K K D A G K M Y<br />

481 CGACTCGGCAAAGAGGAAAAATGGTATTGGAAGGATAAGAAGGATGCGGGGAAAATGTAC<br />

181 A E A L D L G N E F T V K N M V S K L S<br />

541 GCAGAGGCGCTCGACCTGGGCAACGAGTTTACAGTGAAGAATATGGTTTCGAAATTATCG<br />

201 K L E Q F L N R I D Q K A S E E Q L K A<br />

601 AAGCTAGAACAGTTTTTAAATCGCATCGACCAAAAGGCTAGCGAGGAACAATTGAAAGCT<br />

221 L V V A D I E R V K T K K E S V S P S D<br />

661 TTGGTTGTTGCCGATATTGAGAGGGTGAAAACGAAAAAAGAAAGCGTTTCACCTAGCGAC<br />

241 V E M -<br />

721 GTTGAGATGTGA


133<br />

Chapter 5:<br />

Two GKLR prote<strong>in</strong>s <strong>of</strong> the lettuce <strong>downy</strong><br />

<strong>mildew</strong> Bremia lactucae <strong>in</strong>duce effectortriggered<br />

immunity<br />

Joost H.M. Stassen 1 , Erik den Boer 2 , Pim W. J. Vergeer 1 ,<br />

Ursula Ellendorff 4 , Koen Pelgrom 2 , Mathieu Pel 3 ,<br />

Johan Schut 4 , Olaf Zonneveld 5 , Marieke J.W. Jeuken 2 ,<br />

<strong>and</strong> Guido Van den Ackerveken 1,6 .<br />

1<br />

Plant-Microbe Interactions, Department <strong>of</strong> Biology, Utrecht University,<br />

Utrecht, 3584 CH, The Netherl<strong>and</strong>s<br />

2<br />

Laboratory <strong>of</strong> Plant Breed<strong>in</strong>g, Wagen<strong>in</strong>gen University,<br />

Wagen<strong>in</strong>gen, 6700 AJ, The Netherl<strong>and</strong>s<br />

3<br />

Enza zaden, Enkhuizen, 1600 AA, The Netherl<strong>and</strong>s<br />

4<br />

Rijk Zwaan, De Lier, 2678 ZG, The Netherl<strong>and</strong>s<br />

5<br />

Syngenta, Enkhuizen, 1601 BK, The Netherl<strong>and</strong>s<br />

6<br />

Centre for BioSystems Genomics, Wagen<strong>in</strong>gen, 6700 AB, The Netherl<strong>and</strong>s


134 Chapter 5<br />

Abstract<br />

Bremia lactucae, the <strong>downy</strong> <strong>mildew</strong> pathogen <strong>of</strong> lettuce (Lactuca sativa), causes<br />

large losses <strong>in</strong> susceptible crops. Dom<strong>in</strong>ant <strong>downy</strong> <strong>mildew</strong> (Dm) resistance genes<br />

have been used extensively by breeders to generate Bremia-resistant lettuce<br />

cultivars. However, turnover <strong>of</strong> Dm genes has been rapid as Bremia is quick to<br />

adapt. Underst<strong>and</strong><strong>in</strong>g the mechanism <strong>of</strong> resistance gene-mediated recognition <strong>of</strong><br />

<strong>downy</strong> <strong>mildew</strong> <strong>effectors</strong> <strong>and</strong> result<strong>in</strong>g effector-triggered immunity (ETI), as well as<br />

how Dm genes are rendered <strong>in</strong>effective, is essential for the development <strong>of</strong> novel<br />

resistance breed<strong>in</strong>g approaches.<br />

We have previously cloned the cod<strong>in</strong>g sequence <strong>of</strong> 34 potential <strong>effectors</strong><br />

<strong>of</strong> Bremia, based on transcriptome sequenc<strong>in</strong>g, that are RXLR <strong>and</strong> RXLR-like<br />

prote<strong>in</strong>s predicted to be translocated <strong>in</strong>to the host cell, where they may <strong>in</strong>duce<br />

ETI. We screened a collection <strong>of</strong> 129 Lactuca l<strong>in</strong>es, belong<strong>in</strong>g to different species<br />

<strong>and</strong> harbour<strong>in</strong>g putative novel resistance traits, for specific effector recognition.<br />

Two <strong>effectors</strong> <strong>in</strong>duced ETI, visible as a hypersensitive response (cell death). The<br />

first, BLG01 triggered a response <strong>in</strong> 52 l<strong>in</strong>es, predom<strong>in</strong>antly <strong>of</strong> L. saligna, that are<br />

non-hosts <strong>of</strong> Bremia. The second, BLG03 was recognised <strong>in</strong> two L. sativa l<strong>in</strong>es<br />

conta<strong>in</strong><strong>in</strong>g the resistance gene Dm2. BLG01 <strong>and</strong> BLG03 have similar N-term<strong>in</strong>al<br />

sequences conta<strong>in</strong><strong>in</strong>g a signal peptide <strong>and</strong> a GKLR variant <strong>of</strong> the RXLR translocation<br />

motif, but have different C-term<strong>in</strong>al effector doma<strong>in</strong>s that are polymorphic<br />

between Bremia isolates. BLG03 triggered ETI <strong>in</strong> l<strong>in</strong>es that were susceptible to the<br />

Bremia isolate from which it was cloned. Nevertheless, BLG03 ETI co-segregated<br />

with resistance to a Dm2–<strong>in</strong>compatible Bremia isolate, <strong>in</strong>dicat<strong>in</strong>g the locus<br />

required for BLG03 ETI maps to the RGC2 cluster <strong>of</strong> resistance genes. The L.<br />

saligna locus required for BLG01 ETI maps to the bottom <strong>of</strong> chromosome 9 <strong>in</strong> <strong>of</strong>fspr<strong>in</strong>g<br />

<strong>of</strong> a L. saligna x L. sativa cross. However, <strong>of</strong>fspr<strong>in</strong>g that show BLG01 ETI<br />

were susceptible to Bremia isolates that express BLG01. This suggests that these<br />

virulent Bremia races can suppress the recognition <strong>of</strong> BLG <strong>effectors</strong>, possibly by<br />

means <strong>of</strong> other host-translocated <strong>effectors</strong> that have not been identified so far. We<br />

are explor<strong>in</strong>g the Lactuca loci underly<strong>in</strong>g the ETI responses for their application <strong>in</strong><br />

Bremia-resistance breed<strong>in</strong>g <strong>of</strong> lettuce.


Bremia GKLR prote<strong>in</strong>s <strong>in</strong>duce ETI<br />

135<br />

Introduction<br />

The lettuce <strong>downy</strong> <strong>mildew</strong> pathogen, Bremia lactucae (hereafter: Bremia), causes<br />

large losses <strong>in</strong> susceptible host plants <strong>and</strong> has been classified as a pathogen with a<br />

high risk <strong>of</strong> quick adaptation to lettuce resistance traits <strong>and</strong> chemical control [1,2] .<br />

Its large effective population size, high gene flow <strong>and</strong> mixed (both sexual <strong>and</strong><br />

asexual) reproductive system contribute greatly to this risk. Bremia belongs to<br />

the peronosporales, an order <strong>of</strong> the oomycetes that <strong>in</strong>cludes <strong>downy</strong> <strong>mildew</strong>- <strong>and</strong><br />

Phytophthora species. The <strong>downy</strong> <strong>mildew</strong>s are obligate biotrophs that are found<br />

on many plant species, <strong>in</strong>clud<strong>in</strong>g Arabidopsis (Hyaloperonospora arabidopsidis),<br />

cucurbits (Pseudoperonospora cubensis), grapev<strong>in</strong>e (Plasmopara viticola), <strong>and</strong><br />

sunflower (Plasmopara halstedii). Obligate biotrophs depend on the liv<strong>in</strong>g host for<br />

their growth <strong>and</strong> reproduction [3] . For successful <strong>in</strong>fection it is therefore <strong>of</strong> prime<br />

importance that biotrophs cope with <strong>in</strong>ducible defences <strong>of</strong> the host, which can be<br />

described as consist<strong>in</strong>g <strong>of</strong> two overlapp<strong>in</strong>g layers <strong>of</strong> plant immunity [4–6] . The first is<br />

triggered by the recognition <strong>of</strong> pathogen-derived molecules termed pathogen-associated<br />

molecular patterns (PAMPs) by transmembrane pattern recognition receptors<br />

(PRRs), <strong>and</strong> is referred to as PAMP-triggered immunity (PTI). Though pathogens<br />

can avoid <strong>in</strong>duc<strong>in</strong>g PTI, e.g. by mask<strong>in</strong>g PAMPs, a more common mechanism<br />

is the suppression <strong>of</strong> PTI with<strong>in</strong> the host cell [5,7] . Pathogens can achieve this by<br />

translocat<strong>in</strong>g prote<strong>in</strong>s (<strong>effectors</strong>) <strong>in</strong>to host <strong>in</strong>tracellular compartments where they<br />

can manipulate cellular processes, e.g. the suppression <strong>of</strong> plant defence responses,<br />

lead<strong>in</strong>g to effector-triggered susceptibility (ETS). Gram-negative bacterial pathogens<br />

deploy a type III secretion system to br<strong>in</strong>g <strong>effectors</strong> <strong>in</strong>to the host cytoplasm<br />

by means <strong>of</strong> a pilus-like structure (reviewed by Büttner <strong>and</strong> He [8] ). Oomycetes get<br />

<strong>in</strong> close contact with host cells by penetrat<strong>in</strong>g the plant-cell wall <strong>and</strong> <strong>in</strong>vag<strong>in</strong>at<strong>in</strong>g<br />

the plant cell membrane to form haustoria, feed<strong>in</strong>g structures that are thought to<br />

contribute to pathogenicity [3,9,10] . From the haustoria <strong>effectors</strong> are secreted from the<br />

pathogen before they cross the host membrane [10] . In the case <strong>of</strong> the peronosporales<br />

two ma<strong>in</strong> classes <strong>of</strong> <strong>effectors</strong> that enter host cells have been def<strong>in</strong>ed: Cr<strong>in</strong>klers <strong>and</strong><br />

RXLR prote<strong>in</strong>s (reviewed by Stassen <strong>and</strong> Van den Ackerveken [11] ). The canonical<br />

RXLR effector conta<strong>in</strong>s an N-term<strong>in</strong>al signal peptide, <strong>and</strong> a translocation doma<strong>in</strong><br />

that conta<strong>in</strong>s an RXLR am<strong>in</strong>o acid motif <strong>and</strong>, optionally, a dEER motif. The<br />

part C-term<strong>in</strong>al <strong>of</strong> the translocation doma<strong>in</strong> is referred to as the effector doma<strong>in</strong>.<br />

Variation <strong>in</strong> the presence <strong>and</strong> exact sequence <strong>of</strong> motifs <strong>in</strong> the translocation doma<strong>in</strong><br />

have been observed, e.g. QXLR motifs <strong>in</strong> P. cubensis <strong>effectors</strong> [12] <strong>and</strong> the presence<br />

<strong>of</strong> an EER motif but no RXLR motif <strong>in</strong> H. arabidopsis ATR5 [13] .<br />

A second layer <strong>of</strong> plant defence is triggered when host cells recognise pathogen<br />

<strong>effectors</strong>. This effector-triggered immunity (ETI) is mediated by resistance (R)<br />

prote<strong>in</strong>s that can detect <strong>effectors</strong> or their activity on host targets. Most known


136 Chapter 5<br />

R-prote<strong>in</strong>s belong to the family <strong>of</strong> cytoplasmic nucleotide b<strong>in</strong>d<strong>in</strong>g (NB) <strong>and</strong> leuc<strong>in</strong>e-rich<br />

repeat (LRR) prote<strong>in</strong>s [5,14,15] . Defence triggered by recognition <strong>of</strong> <strong>effectors</strong><br />

by R-prote<strong>in</strong>s is <strong>of</strong>ten associated with the hypersensitive response (HR) that is<br />

visible as programmed cell death <strong>of</strong> host tissue. Effectors that are recognised by<br />

host R-prote<strong>in</strong>s <strong>and</strong> trigger HR are termed avirulence prote<strong>in</strong>s (AVRs). All AVRs<br />

cloned from oomycete pathogens so far are RXLR <strong>and</strong> RXLR-like <strong>effectors</strong> [11,16] ,<br />

with the exception <strong>of</strong> ATR5 [13] . RXLR <strong>effectors</strong> are predicted to be present <strong>in</strong> large<br />

numbers <strong>in</strong> the genomes <strong>of</strong> oomycetes belong<strong>in</strong>g to the peronosporales, from 134<br />

<strong>in</strong> H. arabidopsidis [17] to 563 <strong>in</strong> P. <strong>in</strong>festans [18] . RXLR <strong>effectors</strong> are highly diverse<br />

between species [19] <strong>and</strong> can also be differentially present with<strong>in</strong> different isolates<br />

<strong>of</strong> a pathogen species [16,20] . Oomycete pathogens rapidly evolve to overcome R<br />

prote<strong>in</strong>-mediated recognition or ETI by (i) am<strong>in</strong>o acid substitutions <strong>in</strong> the effector<br />

prote<strong>in</strong> [21,22] , (ii) by down-regulation, loss, or silenc<strong>in</strong>g <strong>of</strong> the effector gene [23] , or<br />

(iii) by suppression <strong>of</strong> ETI by other <strong>effectors</strong> [16,24,25] . Resistance is therefore the<br />

outcome <strong>of</strong> a complex network <strong>of</strong> <strong>in</strong>teractions between <strong>effectors</strong> <strong>and</strong> components<br />

<strong>of</strong> the host’s defence mach<strong>in</strong>ery. Unravell<strong>in</strong>g such a network requires knowledge<br />

about the <strong>in</strong>dividual <strong>in</strong>teractions between <strong>effectors</strong>, R-prote<strong>in</strong>s <strong>and</strong> host targets.<br />

The <strong>in</strong>teraction between lettuce <strong>and</strong> Bremia has been extensively studied as a<br />

host-pathogen model for gene-for-gene <strong>in</strong>teractions (reviewed by Michelmore <strong>and</strong><br />

Wong, [26] ). More than 40 major <strong>downy</strong> <strong>mildew</strong>-resistance (Dm) genes are known,<br />

as well as m<strong>in</strong>or-effect resistance genes that may confer partial or field resistance.<br />

A s<strong>in</strong>gle Dm gene, Dm3, has been cloned <strong>and</strong> is part <strong>of</strong> a large locus <strong>of</strong> several<br />

megabases known as Resistance Gene C<strong>and</strong>idate 2 locus (RGC2 locus) [27] that<br />

conta<strong>in</strong>s at least 30 other NB-LRR genes [28] .<br />

Cultivated lettuce (Lactuca sativa) can be crossed with some difficulty with<br />

wild lettuce species that <strong>in</strong>clude Lactuca species that are considered Bremia<br />

non-hosts (e.g. L. saligna). These wild lettuce species provide a pool <strong>of</strong> genetic<br />

material from which new Dm genes <strong>and</strong> resistance QTLs have been identified [29–31] .<br />

Dom<strong>in</strong>ant resistance genes have been used extensively by breeders to generate<br />

Bremia-resistant lettuce cultivars. Turnover <strong>of</strong> Dm genes has, however, been rapid,<br />

as Bremia is quick to adapt to newly <strong>in</strong>troduced resistance genes. To underst<strong>and</strong><br />

the molecular basis <strong>of</strong> ETI <strong>in</strong> the lettuce-Bremia <strong>in</strong>teraction <strong>and</strong> to identify new<br />

R‐genes for resistance breed<strong>in</strong>g we deployed c<strong>and</strong>idate RXLR <strong>and</strong> RXLR-like<br />

<strong>effectors</strong> that were previously identified by transcriptome sequenc<strong>in</strong>g (Chapter 3<br />

<strong>and</strong> 4, [32] ). Here, we describe the screen<strong>in</strong>g <strong>of</strong> a large collection <strong>of</strong> lettuce breed<strong>in</strong>g<br />

l<strong>in</strong>es for the ability to recognise a selection <strong>of</strong> 34 Bremia effector c<strong>and</strong>idates. We<br />

discovered two GKLR prote<strong>in</strong>s that are recognised <strong>in</strong> planta, one <strong>of</strong> which is<br />

recognised by L. sativa cultivars conta<strong>in</strong><strong>in</strong>g the Dm2 resistance gene.


Bremia GKLR prote<strong>in</strong>s <strong>in</strong>duce ETI<br />

137<br />

Results<br />

Bremia <strong>effectors</strong> <strong>and</strong> Lactuca accessions<br />

Of 34 c<strong>and</strong>idate <strong>effectors</strong> <strong>of</strong> Bremia isolate Bl:24 we cloned the cod<strong>in</strong>g sequence,<br />

start<strong>in</strong>g directly after the signal peptide-encod<strong>in</strong>g sequence, <strong>in</strong>to a T-DNA expression<br />

vector under control <strong>of</strong> the 35S promoter. A new start codon was <strong>in</strong>serted<br />

before the cloned sequence to construct a gene that encodes the translocation<br />

doma<strong>in</strong> <strong>and</strong> effector doma<strong>in</strong> <strong>of</strong> each predicted effector. In our assay the <strong>effectors</strong><br />

are expressed <strong>in</strong> the host cell cytoplasm, where they are reta<strong>in</strong>ed as no signal<br />

peptide is encoded <strong>in</strong> our constructs. Intracellular recognition <strong>of</strong> <strong>effectors</strong> by<br />

R-prote<strong>in</strong>s is expected to <strong>in</strong>duce a clearly visible cell death response.<br />

Lactuca accessions were selected represent<strong>in</strong>g a large range <strong>of</strong> Bremia<br />

resistance genes, both dom<strong>in</strong>ant Dm genes as well as partial resistance genes, (See<br />

Supplemental Table 1) <strong>and</strong> other unknown sources <strong>of</strong> resistance to Bremia. They<br />

were chosen on the basis <strong>of</strong> the differential sets EU-A <strong>and</strong> EU-B proposed by the<br />

International Bremia Evaluation Board (IBEB, http://www.worldseed.org/isf/ibeb.<br />

html), a set <strong>of</strong> resistant accessions proposed by Michelmore et al. [33] , parents <strong>of</strong><br />

RIL-populations segregat<strong>in</strong>g for Bremia-resistance [34–37] , <strong>and</strong> other known sources<br />

<strong>of</strong> Bremia-resistance [31,38,39] . Also one resistant L. aculeata <strong>and</strong> two resistant L.<br />

altaica accessions [31] were <strong>in</strong>cluded to widen genetic diversity. To test whether any<br />

<strong>of</strong> the 34 <strong>effectors</strong> are recognised <strong>in</strong> planta, we pressure-<strong>in</strong>filtrated suspensions<br />

<strong>of</strong> the Agrobacterium tumefaciens (hereafter: Agrobacterium) stra<strong>in</strong>s carry<strong>in</strong>g<br />

the effector constructs <strong>in</strong>to leaves <strong>of</strong> the selected lettuce l<strong>in</strong>es. Visual responses<br />

to transient expression <strong>of</strong> effector c<strong>and</strong>idates were scored 5-8 days after Agrobacterium<br />

<strong>in</strong>filtration. We <strong>in</strong>cluded stra<strong>in</strong>s carry<strong>in</strong>g a YFP-conta<strong>in</strong><strong>in</strong>g vector as a<br />

negative control, <strong>and</strong> a Necrosis-<strong>in</strong>duc<strong>in</strong>g prote<strong>in</strong> (NIP) gene-conta<strong>in</strong><strong>in</strong>g vector as<br />

a positive control. Expression <strong>of</strong> YFP is not expected to elicit visible cell death, so<br />

any response seen after <strong>in</strong>filtration with Agrobacterium carry<strong>in</strong>g the YFP construct<br />

is considered background. The NIP gene encod<strong>in</strong>g PsojNIP that is derived from<br />

Phytophthora sojae <strong>in</strong>duces a cell death response <strong>in</strong> lettuce that is visible 1-2 days<br />

after <strong>in</strong>filtration <strong>of</strong> the Agrobacterium stra<strong>in</strong> <strong>and</strong> develops <strong>in</strong>to a dark necrotic<br />

lesion after 48 hours. Hence, the PsojNIP response serves as control for successful<br />

T-DNA transfer <strong>and</strong> transient transgene expression.<br />

Screen<strong>in</strong>g <strong>of</strong> Lactuca accessions reveals recognition <strong>of</strong> two <strong>effectors</strong><br />

Screen<strong>in</strong>g <strong>of</strong> the responses <strong>of</strong> 129 lettuce l<strong>in</strong>es to each <strong>of</strong> the 34 <strong>effectors</strong> was performed.<br />

To identify robust ETI observations were scored <strong>and</strong> averaged per lettuce/<br />

effector comb<strong>in</strong>ation. Scor<strong>in</strong>g was based on the presence <strong>of</strong> no or few visible


138 Chapter 5<br />

Table 1: Details <strong>of</strong> 34 Bremia <strong>effectors</strong> <strong>and</strong> the number <strong>of</strong> Lactuca l<strong>in</strong>es <strong>in</strong> which robust ETI (average<br />

score <strong>of</strong> ≥ 1.3 from ≥ 2 replicates) was observed.<br />

RXLR-like EER-like<br />

ID length start motif start motif Robust ETI<br />

BLR01 86 42 RKLR 52 EQK 0<br />

BLR02 146 85 RLLR 0<br />

BLR03 141 48 RFLR 59 EEER 0<br />

BLR04 76 45 RELR 60 DIK 0<br />

BLR05 97 32 RALR 58 DED 0<br />

BLR06 281 46 RCLR 0<br />

BLR07 253 47 RALR 68 EEER 0<br />

BLR08 135 38 RLLR 0<br />

BLR09 112 37 RRLR 81 EER 0<br />

BLR10 112 37 RRLR 81 EER 0<br />

BLR11 463 46 RRLR 57 DESER 0<br />

BLR12 123 49 RYLR 61 ELEK 0<br />

BLR13 363 44 RRLR 55 EER 0<br />

BLR14 75 46 RKLR 0<br />

BLR15 102 47 RSLR 60 DEER 0<br />

BLR16 98 47 RSLR 60 NDER 0<br />

BLR17 282 50 RRLR 64 DAEK 0<br />

BLR18 92 46 RALR 55 NEDR 0<br />

BLR19 160 45 RLLR 54 DNNEER 0<br />

BLR20 130 53 RLLR 69 DEAD 0<br />

BLR21 65 39 RILR 0<br />

BLR22 185 33 RGLR 0<br />

BLR23 107 57 RSLR 62 DENR 0<br />

BLR24 91 55 RSLR 74 ELEQ 0<br />

BLR25 82 55 RALR 0<br />

BLR26 187 46 RRLR 59 QNDER 0<br />

BLR27 434 40 RQLR 0<br />

BLR28 279 49 RRLR 0<br />

BLR29 311 35 RMLR 46 EES 0<br />

BLR30 101 47 RSLR 60 DEER 0<br />

BLQ01 79 49 QLLR 61 DEEQR 0<br />

BLG01 A 336 44 GKLR 57 DER 23<br />

BLG01 E variant <strong>of</strong> BLG01 A 41<br />

BLG02 233 44 GRLR 57 DER 0<br />

BLG03 243 42 GKLR 55 DER 2


Bremia GKLR prote<strong>in</strong>s <strong>in</strong>duce ETI<br />

139<br />

symptoms (0), strong yellow<strong>in</strong>g <strong>of</strong> the leaf (1) or cell death (2). The average scores<br />

<strong>of</strong> all replicates per lettuce/effector comb<strong>in</strong>ation are given <strong>in</strong> Supplemental Table<br />

2. Details <strong>of</strong> the 34 <strong>effectors</strong>, as well as the number <strong>of</strong> l<strong>in</strong>es show<strong>in</strong>g robust ETI,<br />

def<strong>in</strong>ed as an average score from at least two replicates ≥ 1.3, are given <strong>in</strong> Table 1.<br />

Agrobacterium-mediated transient expression was robust <strong>in</strong> nearly all tested l<strong>in</strong>es,<br />

as can been seen from the cell death response that is <strong>in</strong>duced by PsojNIP expression<br />

(Supplemental Table 2). None <strong>of</strong> the tested l<strong>in</strong>es showed a strong response to<br />

the YFP-conta<strong>in</strong><strong>in</strong>g Agrobacterium stra<strong>in</strong>.<br />

Effector BLG01 was recognised <strong>in</strong> many <strong>of</strong> the tested wild lettuce l<strong>in</strong>es. Of 129<br />

l<strong>in</strong>es, 23 showed a strong reproducible cell death response to BLG01. A variant <strong>of</strong><br />

the mature BLG01 prote<strong>in</strong> (without signal peptide), BLG01 E - based on an allele<br />

from Bremia isolates NL519 <strong>and</strong> F703, was found to <strong>in</strong>duce an even stronger<br />

response than the prote<strong>in</strong> encoded by our reference stra<strong>in</strong> Bl:24 (BLG01 A ). Of the<br />

129 tested l<strong>in</strong>es 41 gave a strong cell death response to BLG01 E (Table 1). Weak,<br />

<strong>in</strong>consistent or unverified responses to BLG01 A <strong>and</strong> BLG01 E were observed for 17<br />

<strong>and</strong> 11 Lactuca l<strong>in</strong>es, respectively (see Supplemental Figure 1 for a full overview).<br />

The higher number <strong>of</strong> BLG01 E responsive l<strong>in</strong>es is likely due to a stronger ETI<br />

response that is more easily detected, as almost all l<strong>in</strong>es that showed a weak<br />

response to BLG01 A showed a strong response to BLG01 E . Additionally, 16 l<strong>in</strong>es<br />

respond only to BLG01 E . Most <strong>of</strong> the BLG01-responsive Lactuca l<strong>in</strong>es <strong>in</strong> our<br />

collection <strong>of</strong> Lactuca l<strong>in</strong>es are <strong>of</strong> the L. saligna species.<br />

A second effector, BLG03, was specifically recognised <strong>in</strong> two L. sativa l<strong>in</strong>es,<br />

Amplus <strong>and</strong> UCDM2 (Table 1, Figure 1). In other l<strong>in</strong>es BLG03 did not <strong>in</strong>duce<br />

responses that could be dist<strong>in</strong>guished from the GUS negative control (e.g. Ol<strong>of</strong>,<br />

Figure 4). The set <strong>of</strong> cultivated lettuce l<strong>in</strong>es (L. sativa) <strong>in</strong>cluded <strong>in</strong> the screen conta<strong>in</strong>s<br />

differential l<strong>in</strong>es that provide a wide range <strong>of</strong> genetically known R-genes <strong>and</strong><br />

can be used to determ<strong>in</strong>e R‐gene specificities. Both Amplus <strong>and</strong> UCDM2 conta<strong>in</strong><br />

the Dm2 resistance specificity that is absent <strong>in</strong> all other L. sativa l<strong>in</strong>es tested. The<br />

Figure 1: ETI triggered by BLG03 <strong>in</strong> L. sativa cv. Amplus <strong>and</strong> L. sativa cv. UCDM2. NIP: GUS<br />

<strong>and</strong> PsojNIP (NIP) serve as controls for responses to Agrobacterium <strong>and</strong> successful T-DNA transfer,<br />

respectively.


140 Chapter 5<br />

recognition <strong>of</strong> BLG03 could therefore be mediated by Dm2.<br />

Strik<strong>in</strong>gly, BLG01 <strong>and</strong> BLG03, which are recognized <strong>in</strong> specific Lactuca l<strong>in</strong>es,<br />

both conta<strong>in</strong> the RXLR-like motif GKLR. In addition, the signal peptide- <strong>and</strong><br />

GKLR-conta<strong>in</strong><strong>in</strong>g N-term<strong>in</strong>i <strong>of</strong> BLG01 <strong>and</strong> BLG03 are highly similar (Figure 2).<br />

The N-term<strong>in</strong>us <strong>of</strong> a third Bremia prote<strong>in</strong>, BLG02, also shows homology to these<br />

<strong>effectors</strong>. However, BLG02 is not recognised <strong>in</strong> any <strong>of</strong> the lettuce l<strong>in</strong>es tested. The<br />

GKLR <strong>and</strong> DER motifs are identical <strong>in</strong> BLG01 <strong>and</strong> BLG03, whilst BLG02 has a<br />

GRLR variant <strong>of</strong> the RXLR motif. The effector doma<strong>in</strong>s do not share the high level<br />

<strong>of</strong> similarity that is seen for the signal peptides <strong>and</strong> G K / R<br />

LR-conta<strong>in</strong><strong>in</strong>g N-term<strong>in</strong>i.<br />

<br />

BLG01 MVRVYVAALTGFLALSASASATLQLTSVNESLADAYDSTAPARGKLRAYAATNVESDERA 60<br />

BLG02 MVRIYVAALTVVLAFSASCSATSPLTLAKATPVTANGSGGRAQGRLRAHTTTNVEIDERS 60<br />

BLG03 MVRVYVAALAAIFALSA--SATLHLTLANASSVTTEEGDGRPQGKLRVNAATNVESDER- 57<br />

***:*****: .:*:** *** ** .: : . : . . .:*:**. ::**** ***<br />

BLG01 FSNLLEHLKTLNVLFSPLSKERMEAAISKSDSSVVKHLSEDGAVNEKKLGIGRDGVKAFE 120<br />

BLG02 ISDVIYAIARQVADHRSNLVQAPKRTYTTYLATLDLSLDKVLEQNWSELRLLY--VKQTK 118<br />

BLG03 FLDGLKALVRGFYDLTPFAPRFQKDTYSNLLLKLNLSFEQFSGKDTLQLRRLYDAARRHN 117<br />

: : : : . . : : :. .: :.: : :* .: :<br />

BLG01 PAKVSKVKMILEDIFRKPYNKILLKVLSKANGGERNLVRNLAQAEMLGYKVFFLKSTLAS 180<br />

BLG02 RKRPKDFVSMYELLVKK-------------------------------YGLLKLTDMMKK 147<br />

BLG03 KVNPTNPVSVYTGLVEK-------------------------------YGEFEIVNMVYS 146<br />

. .. : :..* * : : . : .<br />

BLG01 KWERDGVSLMDVWSYICKDVKAPTEEEMKIFSHWCGYAFVLSAKGKFSAEETVIEKTLLK 240<br />

BLG02 PDYISLSET-DNFKYLYDEASVYWR-KNSVLK---QYASELYDSKGNSKTFDVTDFESLQ 202<br />

BLG03 LKHAQSSKSRDVLKRLGKEEKWYWKDKKDAGK---MYAEALDLGNEFTVKNMVSKLSKLE 203<br />

. . * . : .: . . : . . ** * : * . *:<br />

BLG01 VHNDNKNKKGKLAINMLAQIHLSRKFKVDANFFELYDPSPSSLKKLLLELEKSPRACDLD 300<br />

BLG02 PFFERIGRRGD-----YLEITAAEHEKWKT---NKLRPT--------------------- 233<br />

BLG03 QFLNRIDQKASEEQLKALVVADIERVKTKK---ESVSPSDVEM----------------- 243<br />

. :. .::.. : .: * . : *:<br />

BLG01 VELYRLLKQAVTDDKFMKGIWDRSTKKPEQPNAKRN- 336<br />

BLG02 -------------------------------------<br />

BLG03 -------------------------------------<br />

Figure 2: Alignment <strong>of</strong> the am<strong>in</strong>o acid sequence <strong>of</strong> c<strong>and</strong>idate <strong>effectors</strong> BLG01, BLG02 <strong>and</strong> BLG03.<br />

Signal peptide <strong>and</strong> translocation doma<strong>in</strong>s are <strong>in</strong>dicated above the alignment, the GXLR <strong>and</strong> DER motifs<br />

are underl<strong>in</strong>ed <strong>in</strong> the alignment. Symbols under the alignment <strong>in</strong>dicate the degree <strong>of</strong> conservation <strong>of</strong> the<br />

above residues <strong>and</strong> <strong>in</strong>dicate identical (*) residues, the presence <strong>of</strong> conserved substitutions (:) or semiconserved<br />

substitutions (.). Numbers to the right <strong>of</strong> the alignment <strong>in</strong>dicate the residue number <strong>of</strong> the last<br />

residue <strong>in</strong> the column counted from the start <strong>of</strong> the prote<strong>in</strong>, skipp<strong>in</strong>g gaps.<br />

BLG01, BLG02 <strong>and</strong> BLG03 do not have significant homology to any sequences<br />

<strong>in</strong> the NCBI non-redundant prote<strong>in</strong> database (e-value < 1e-3), nor are there any<br />

significant matches to Pfam [40] doma<strong>in</strong>s. The best BLAST matches <strong>in</strong> a comb<strong>in</strong>ed<br />

database <strong>of</strong> oomycete prote<strong>in</strong>s (H. arabidopsidis, P. <strong>in</strong>festans, P. ramorum, P.<br />

sojae, Pythium ultimum <strong>and</strong> Saprolegnia parasitica) were to a putative P. <strong>in</strong>festans<br />

RXLR effector (PITG_15128, e-value 0.037) for BLG01, a P. sojae RXLR<br />

effector (Ps_133875, e-value 0.81) for BLG03, <strong>and</strong> a P. ramorum RXLR effector<br />

(Pr_97351, e-value 0.032) for BLG02 (Supplemental Information 2).


Bremia GKLR prote<strong>in</strong>s <strong>in</strong>duce ETI<br />

141<br />

Recognition <strong>of</strong> the BLG01 <strong>and</strong> BLG03 <strong>effectors</strong> is specific to a subset <strong>of</strong><br />

lettuce l<strong>in</strong>es, mak<strong>in</strong>g cell death responses as a result <strong>of</strong> over-load<strong>in</strong>g the translation<br />

mach<strong>in</strong>ery or recognition <strong>of</strong> the translocation doma<strong>in</strong> unlikely. To verify whether<br />

the translocation doma<strong>in</strong> is <strong>in</strong>deed dispensable for the recognition we <strong>in</strong>vestigated<br />

whether the effector doma<strong>in</strong> <strong>of</strong> BLG01 is sufficient for recognition <strong>in</strong> lettuce.<br />

Us<strong>in</strong>g the same Agrobacterium-mediated transient transformation system as used<br />

to screen the collection <strong>of</strong> lettuce l<strong>in</strong>es, we expressed BLG01 60-336 <strong>in</strong> L. saligna<br />

l<strong>in</strong>e CGN05271, which showed a cell death response towards BLG01 with the<br />

translocation doma<strong>in</strong> (Figure 3). Cell death responses <strong>in</strong> the zones <strong>in</strong>filtrated with<br />

BLG01 60-336 did not differ from those <strong>in</strong>filtrated with BLG01 with translocation<br />

doma<strong>in</strong> (BLG01 22-336 ), <strong>in</strong>dicat<strong>in</strong>g that the translocation doma<strong>in</strong> is not required for <strong>in</strong><br />

planta recognition <strong>in</strong> CGN05271. The same approach with effector BLG03 (with<br />

translocation doma<strong>in</strong> BLG01 20-243 , without BLG01 58-243 ) <strong>in</strong> Amplus <strong>and</strong> UCDM2<br />

revealed that recognition <strong>of</strong> BLG03 is also <strong>in</strong>dependent <strong>of</strong> the translocation doma<strong>in</strong><br />

(Shown for UCDM2 <strong>in</strong> Figure 4).<br />

Figure 3: Recognition <strong>of</strong> BLG01 without signal<br />

peptide (BLG01 22-336 ) <strong>and</strong> without signal peptide<br />

<strong>and</strong> translocation doma<strong>in</strong> (BLG01 60-336 ) <strong>in</strong> L.<br />

saligna CGN05271. GUS <strong>and</strong> PsojNIP serve<br />

as controls for responses to Agrobacterium <strong>and</strong><br />

successful T-DNA transfer, respectively. Pictures<br />

were taken 8 dpi.<br />

Figure 4: Recognition <strong>of</strong> BLG03 with (+TD;<br />

BLG03 20-243 ) <strong>and</strong> without translocation doma<strong>in</strong><br />

(-TD; BLG03 58-243 ) <strong>in</strong> L. sativa cv. UCDM2.<br />

Neither is recognised <strong>in</strong> L. sativa cv. Ol<strong>of</strong>.<br />

GUS (G) <strong>and</strong> PsojNIP (N) serve as controls<br />

for responses to Agrobacterium <strong>and</strong> successful<br />

T-DNA transfer, respectively. Pictures were<br />

taken 6 dpi.


142 Chapter 5<br />

BLG gene expression <strong>and</strong> genetic variation<br />

In order to be recognized <strong>in</strong> planta these G K / R<br />

LR <strong>effectors</strong> need to be expressed<br />

dur<strong>in</strong>g the <strong>in</strong>fection process. Expression <strong>in</strong> planta was already observed, as the<br />

effector transcripts were identified by transcriptome sequenc<strong>in</strong>g <strong>of</strong> <strong>in</strong>fected lettuce<br />

leaves. To determ<strong>in</strong>e the changes <strong>in</strong> expression dur<strong>in</strong>g the different stages <strong>of</strong> <strong>in</strong>fection<br />

we analysed a time-series by quantitative PCR (qPCR) (Figure 5). L. sativa<br />

cv. Ol<strong>of</strong> seedl<strong>in</strong>gs were spray-<strong>in</strong>oculated with spores <strong>of</strong> Bremia isolate Bl:24 after<br />

which samples were taken every 24 hours start<strong>in</strong>g immediately after spray<strong>in</strong>g.<br />

With<strong>in</strong> the first 24 hours, the majority <strong>of</strong> spores germ<strong>in</strong>ated <strong>and</strong> Bremia had penetrated<br />

the epidermis. Substantial Bremia hyphal growth <strong>and</strong> formation <strong>of</strong> haustoria<br />

<strong>in</strong> mesophyll cells occurred over the next four days. Conidiophores formed by six<br />

days post <strong>in</strong>oculation (dpi), at which time sampl<strong>in</strong>g was stopped. Expression levels<br />

were determ<strong>in</strong>ed as the number <strong>of</strong> qPCR cycles required for the abundance <strong>of</strong> each<br />

amplicon to reach threshold level (C T<br />

), <strong>and</strong> were normalised to L. sativa Act<strong>in</strong> or<br />

Bremia Act<strong>in</strong> (result<strong>in</strong>g <strong>in</strong> ΔC T<br />

values). The expression <strong>of</strong> Bremia Act<strong>in</strong> relative<br />

to L. sativa Act<strong>in</strong> shows the substantial relative growth <strong>of</strong> Bremia throughout the<br />

entire time course (Figure 5). Expression <strong>of</strong> BLG03 <strong>in</strong>creases immediately after<br />

<strong>in</strong>oculation <strong>and</strong> appears to be stable from one dpi onwards. BLG01 gene expression<br />

decreases slightly dur<strong>in</strong>g the course <strong>of</strong> <strong>in</strong>fection, with expression levels comparable<br />

to those <strong>of</strong> BLG03 at the later stages <strong>of</strong> <strong>in</strong>fection. BLG02 shows an <strong>in</strong>crease <strong>of</strong><br />

expression at the first day after <strong>in</strong>oculation similar to that <strong>of</strong> BLG03. After one dpi<br />

expression levels <strong>of</strong> BLG02 decl<strong>in</strong>e, approach<strong>in</strong>g the level seen immediately after<br />

<strong>in</strong>oculation. Similar expression patterns were detected <strong>in</strong> an <strong>in</strong>dependent biological<br />

replicate <strong>of</strong> the time series.<br />

Figure 5: Bremia isolate Bl:24 growth <strong>and</strong> effector gene expression dur<strong>in</strong>g <strong>in</strong>fection <strong>of</strong> L. sativa<br />

cv. Ol<strong>of</strong>. Growth is <strong>in</strong>ferred by the <strong>in</strong>crease <strong>of</strong> Bremia Act<strong>in</strong> relative to lettuce Act<strong>in</strong> throughout the<br />

time course calculated as (ΔC T<br />

). Effector gene expression is determ<strong>in</strong>ed relative to Bremia Act<strong>in</strong>. The<br />

difference <strong>in</strong> C T<br />

required to reach threshold is given: as lower values <strong>in</strong>dicate higher expression, the<br />

Y-axis has been reversed to ease <strong>in</strong>terpretation.


Bremia GKLR prote<strong>in</strong>s <strong>in</strong>duce ETI<br />

143<br />

Allelic diversity <strong>of</strong> the three G K / R<br />

LR <strong>effectors</strong> <strong>in</strong> a selection <strong>of</strong> Bremia<br />

isolates was <strong>in</strong>vestigated to test if the prote<strong>in</strong>s show signs <strong>of</strong> selection. A set <strong>of</strong><br />

eight Bremia isolates was chosen as a group with high diversity based on their<br />

R‐gene-specificities. As Bremia is not haploid isolates can be heterozygous result<strong>in</strong>g<br />

<strong>in</strong> mixed peaks when sequenc<strong>in</strong>g PCR products. Therefore PCR products were<br />

cloned <strong>and</strong> from each isolate a m<strong>in</strong>imum <strong>of</strong> eight clones per gene were sequenced.<br />

Seven different alleles were found for BLG01 <strong>and</strong> BLG03, <strong>and</strong> six alleles for<br />

BLG02. The distribution <strong>of</strong> alleles is represented <strong>in</strong> Table 2, the prote<strong>in</strong> translations<br />

<strong>of</strong> the different alleles can be found <strong>in</strong> Supplemental Information 1. Two strik<strong>in</strong>g<br />

observations can be made regard<strong>in</strong>g BLG01. First, as can be seen from the allele<br />

distribution, isolate Bl:5 appears to possess 4 alleles <strong>of</strong> this effector. Rather than<br />

alleles, these may represent duplicated genes. Secondly, the allele sequences reveal<br />

that no <strong>functional</strong> BLG01 prote<strong>in</strong>s are encoded <strong>in</strong> isolates NL519 <strong>and</strong> F703 due to<br />

a nonsense mutation <strong>in</strong> the fifth codon (TAC→TAA, Y→stop). The same stop is<br />

found <strong>in</strong> one <strong>of</strong> the alleles <strong>of</strong> Bl:5, whereas two other Bl:5 alleles have premature<br />

stops at other positions. In one <strong>of</strong> these alleles the stop (CAG→TAG, Q→stop) is<br />

at am<strong>in</strong>o acid position 24, the third residue after the predicted signal peptide cleavage<br />

site (SA|TL), <strong>in</strong> the other case a two nucleotide deletion <strong>in</strong> the effector doma<strong>in</strong><br />

(am<strong>in</strong>o acid position 286) <strong>in</strong>duces a frame shift that reads <strong>in</strong>to a stop after two<br />

am<strong>in</strong>o acids. In contrast to NL519 <strong>and</strong> F703, a full-length copy <strong>of</strong> the effector is<br />

present <strong>in</strong> Bl:5. For most isolates two different alleles <strong>of</strong> BLG02 <strong>and</strong> BLG03 were<br />

found. BLG02 A <strong>and</strong> BLG02 B encode the same prote<strong>in</strong> sequence <strong>and</strong> only have synonymous<br />

nucleotide variants. All am<strong>in</strong>o acid differences encoded <strong>in</strong> BLG02 alleles<br />

were found <strong>in</strong> the effector doma<strong>in</strong>. This is <strong>in</strong> contrast to BLG03, <strong>in</strong> which am<strong>in</strong>o<br />

acid polymorphisms are also found <strong>in</strong> the signal peptide <strong>and</strong> translocation doma<strong>in</strong>.<br />

Table 2: Distribution <strong>of</strong> alleles <strong>of</strong> BLG01, BLG02 <strong>and</strong> BLG03 over eight Bremia isolates. na: not<br />

amplified.<br />

Race BLG01 BLG02 BLG03<br />

Bl:5 C,D 1 ,F 1 ,G 2 A,E B,G<br />

Bl:16 A,B A,B 3 A<br />

Bl:17 na A,C D,F 2<br />

Bl:24 A A,B 3 A,C<br />

NL519 E 1 B 3 ,C A,D<br />

F703 E 1 C,D na<br />

CA3 C A,F A<br />

CA6 C A A,E<br />

1<br />

Premature stop codon before translocation doma<strong>in</strong><br />

2<br />

Premature stop codon after translocation doma<strong>in</strong><br />

3<br />

Encodes same prote<strong>in</strong> sequence as A.


144 Chapter 5<br />

Although one allele has an <strong>in</strong>sertion <strong>of</strong> two am<strong>in</strong>o acids <strong>in</strong> the signal peptide, all<br />

BLG03 alleles are predicted to encode a signal peptide. BLG03 F , only present <strong>in</strong><br />

Bl:17, has a premature stop codon <strong>in</strong> the effector doma<strong>in</strong>. Furthermore, BLG03 G ,<br />

found <strong>in</strong> Bl:5, is more sequence divergent from the Bl:24 reference sequence than<br />

all other BLG03 alleles. None <strong>of</strong> our <strong>effectors</strong> are predicted to be under positive<br />

selection to ma<strong>in</strong>ta<strong>in</strong> am<strong>in</strong>o acid diversity based on the ratio <strong>of</strong> synonymous to<br />

non-synonymous substitutions (codon-based test <strong>of</strong> positive selection averag<strong>in</strong>g<br />

over all sequence pairs; BLG01: Z-score = 0.05790, p = 0.47696; BLG02: Z-score<br />

= 0.15217, p = 0.43965; BLG03: Z-score = -1.31461, p = 1.0). However, the many<br />

different alleles <strong>and</strong> <strong>in</strong> particular the nonsense alleles suggest that BLG01 <strong>and</strong><br />

BLG03 have been under selective pressure.<br />

The different BLG01 alleles were next used to make constructs <strong>of</strong> the effector<br />

without signal peptide for <strong>in</strong> planta expression. Constructs with BGL01 alleles A,<br />

B, C <strong>and</strong> E (see Supplemental Information 1) were tested <strong>in</strong> L. saligna CGN5271<br />

to determ<strong>in</strong>e their potential to trigger cell death. As shown <strong>in</strong> Figure 6, the visible<br />

symptoms differ <strong>in</strong> response to the alleles <strong>of</strong> the various isolates. Responses to<br />

BLG01 A <strong>and</strong> BLG01 C appear comparable, whilst the response to BLG01 B appears<br />

to be slightly stronger. Strik<strong>in</strong>gly, BLG01 E triggered the strongest responses when<br />

expressed <strong>in</strong> L. saligna CGN05271. However, as there is a premature stop <strong>in</strong> the<br />

signal peptide <strong>of</strong> BLG01 E this prote<strong>in</strong> will not be produced by the Bremia isolates<br />

F703 <strong>and</strong> NL519.<br />

Figure 6: Response to transient expression <strong>of</strong> <strong>in</strong>dicated alleles <strong>of</strong> BLG01 (see also Table 2 <strong>and</strong><br />

Supplemental Figure 2) <strong>in</strong> four separate leaves <strong>of</strong> L. saligna CGN05271 at 6 dpi.


Bremia GKLR prote<strong>in</strong>s <strong>in</strong>duce ETI<br />

145<br />

Lactuca loci confer BLG recognition but not Bremia resistance<br />

To genetically map the locus responsible for the response to BLG01, Backcross<br />

Inbred L<strong>in</strong>es (BILs), which cover 96% <strong>of</strong> the L. saligna CGN05271 genome <strong>in</strong> a<br />

L. sativa Ol<strong>of</strong> background [41] , were tested by transient Agrobacterium-mediated<br />

expression <strong>of</strong> the BLG01 alleles A <strong>and</strong> E. Unexpectedly, none <strong>of</strong> the BILs showed a<br />

cell death response to BLG01 (Table 3). As 4% <strong>of</strong> the L. saligna genome is absent<br />

<strong>in</strong> the set <strong>of</strong> 28 BILs the locus could be located <strong>in</strong> one <strong>of</strong> the four chromosomal<br />

regions (bottom chr 3, top chr 5, top chr 7, bottom chr 9) that are not represented<br />

<strong>in</strong> the BILs [41,42] . From the orig<strong>in</strong>al L. saligna CGN05271 x L. sativa cv. Ol<strong>of</strong><br />

mapp<strong>in</strong>g population [34] viable F3, F4 <strong>and</strong> BC1S1 families were obta<strong>in</strong>ed from<br />

selfed parental l<strong>in</strong>es that were heterozygous or homozygous L. saligna at one <strong>of</strong> the<br />

four regions that were not represented <strong>in</strong> the BILs. Several families were found to<br />

segregate for cell death <strong>in</strong> response to both allele BLG01 A <strong>and</strong> allele BLG01 E (Table<br />

3). Most F3 plants that were responsive to the stronger BLG01 E allele were also<br />

responsive to the BLG01 A allele. Only six plants responsive to BLG01 E were not<br />

visually scored as responsive to BLG01 A probably because <strong>of</strong> the weaker response<br />

to BLG01 A . This segregation was also observed <strong>in</strong> F3 plants from a cross between<br />

the responsive L. saligna parent CGN11341 <strong>and</strong> the non-responsive L. sativa<br />

parent cv. Norden (Table 3). Compar<strong>in</strong>g the parental genotypes from the families<br />

that showed cell-death, revealed that the response to BLG01 was l<strong>in</strong>ked to a region<br />

at the bottom <strong>of</strong> Chromosome 9 that was always homozygous or heterozygous L.<br />

saligna, <strong>in</strong>dicat<strong>in</strong>g that the trait is dom<strong>in</strong>ant. This was confirmed <strong>in</strong> four F1 plants<br />

obta<strong>in</strong>ed from a cross between CGN05271 <strong>and</strong> Ol<strong>of</strong> that were all responsive to the<br />

effector (Table 3). The position <strong>of</strong> the locus on chromosome 9 was further con-<br />

Table 3: Response to BLG01 transient expression <strong>in</strong> L. saligna <strong>and</strong> L. sativa parental l<strong>in</strong>es <strong>and</strong> progeny.<br />

Numbers between brackets <strong>in</strong>dicate the number <strong>of</strong> families.<br />

Assay 1 <strong>and</strong> 2 Assay 3<br />

L<strong>in</strong>es/Populations<br />

# plants BLG01 E BLG01 A # plants BLG01 E<br />

tested # cell death # cell death tested # cell death remark *<br />

L. sativa cv. Ol<strong>of</strong> 6 0 0 3 0 NRP<br />

L. saligna CGN05271 6 6 6 3 3 RP<br />

Set <strong>of</strong> 28 BILs 84 0 0<br />

BC1S1 5 2 (1) 1 (1)<br />

F3 48 15 (11) 13 (9) 74 19 (8)<br />

F4 3 3 (1) 2 (1)<br />

F1 4 4<br />

L. sativa cv. Norden 4 0 0 2 0 NRP<br />

L. saligna CGN11341 7 7 7 3 3 RP<br />

F3 14 7 (4) 5 (4) 3 3 (2)<br />

*<br />

NRP: Non-responsive parent, RP: Responsive parent


146 Chapter 5<br />

CLSM5902<br />

cM<br />

98.2<br />

QGC18F20<br />

CLS4696<br />

CLSX3110<br />

CLS4656<br />

CLSX3880<br />

CLS3349<br />

QGF21K05<br />

LE9038<br />

LE0456<br />

LE3016<br />

F3 Plant Cell death<br />

10_2 NO<br />

30_3 YES<br />

130_2 YES<br />

91_3 YES<br />

103.2<br />

104.3<br />

106.0<br />

110.4<br />

112.1<br />

113.2<br />

113.8<br />

114.3<br />

115.1<br />

115.4<br />

Figure 7: Locus <strong>of</strong> the BLG01 cell-death<br />

response <strong>in</strong> L. saligna CGN05271 at the bottom<br />

<strong>of</strong> Chromosome 9. Genotype graphs for four F3<br />

plants with the closest recomb<strong>in</strong>ation are shown.<br />

Blue is homozygous L. sativa cv. Ol<strong>of</strong>, yellow<br />

is heterozygous, grey represent <strong>in</strong>tervals with a<br />

recomb<strong>in</strong>ation event, <strong>and</strong> white means unknown<br />

genotype. Green <strong>in</strong>dicates the smallest region <strong>in</strong><br />

which the cell-death response to BLG01 is f<strong>in</strong>e<br />

mapped.<br />

Table 4: Detached leaf assay at adult plant stage, ADTG with B. lactucae Bl:24 on genotyped BC1S2<br />

populations from two BC1S1 plants that showed a cell-death response to BLG01 E .<br />

Plant genotype bottom C9 # plants tested # leaf segments Race Bl:24 ISL<br />

BC1S2 90_2<br />

Hom L. sativa 3 18 84<br />

Heterozygous 6 36 75<br />

BC1S2 90_6<br />

Hom L. sativa 3 18 75<br />

Heterozygous 6 36 92<br />

L. sativa cv. Ol<strong>of</strong> Hom L. sativa 3 27 84<br />

Figure 8: Response to BLG03 <strong>in</strong> Dm2-<br />

conta<strong>in</strong><strong>in</strong>g lettuce cultivars. GUS <strong>and</strong> PsojNIP<br />

(NIP) serve as controls for responses to<br />

Agrobacterium <strong>and</strong> successful T-DNA transfer,<br />

respectively.


Bremia GKLR prote<strong>in</strong>s <strong>in</strong>duce ETI<br />

147<br />

firmed <strong>and</strong> more precisely positioned us<strong>in</strong>g F3 families <strong>of</strong> which the F2 parent had<br />

a recomb<strong>in</strong>ation event near the c<strong>and</strong>idate region. The locus could thus be mapped<br />

to a region <strong>of</strong> 4.4 cM between markers CLSX3110 <strong>and</strong> CLSX4656 as shown by the<br />

genotype <strong>of</strong> four <strong>in</strong>formative F3 plants (Figure 7).<br />

The BLG01-triggered response resembles ETI <strong>and</strong> was therefore expected to be<br />

causally l<strong>in</strong>ked to Bremia resistance. As the responsive L. saligna l<strong>in</strong>e CGN05271<br />

is a non-host for Bremia, because <strong>of</strong> multiple quantitative resistance loci [30,43] , we<br />

tested segregat<strong>in</strong>g families for l<strong>in</strong>kage <strong>of</strong> the response to BLG01 <strong>and</strong> the Bremia<br />

resistance phenotype. Surpris<strong>in</strong>gly, both BC1S2 families obta<strong>in</strong>ed from BC1S1<br />

plants 90_2 <strong>and</strong> 90_6 that were responsive to BLG01 were as susceptible to<br />

isolate Bl:24 as the L. sativa cv. Ol<strong>of</strong> parent (Table 4) <strong>in</strong>dicat<strong>in</strong>g that the locus on<br />

chromosome 9 does not confer disease resistance. We conclude that the locus for<br />

responsiveness to BLG01 does not confer resistance to Bremia isolate Bl:24 that<br />

expresses the recognized effector prote<strong>in</strong>.<br />

BLG03 is recognised by lettuce l<strong>in</strong>es Amplus <strong>and</strong> UCDM2 (Supplemental Table<br />

2 <strong>and</strong> Figure 1), which carry known resistance loci to Bremia. Amplus conta<strong>in</strong>s<br />

two R‐genes, Dm2 <strong>and</strong> Dm4, whereas UCDM2 conta<strong>in</strong>s a s<strong>in</strong>gle locus, Dm2. These<br />

two l<strong>in</strong>es therefore have the Dm2 locus <strong>in</strong> common, which is absent from the other<br />

tested l<strong>in</strong>es. This raises the possibility that BLG03 recognition is mediated by the<br />

Dm2-encoded R-prote<strong>in</strong>. We <strong>in</strong>vestigated whether resistance to Bremia isolate Bl:5,<br />

to which the lettuce Dm2 confers resistance, co-segregates with the ability to recognise<br />

BLG03 <strong>in</strong> an F2 population <strong>of</strong> a UCDM2 x Cobham Green cross, <strong>in</strong> which the<br />

Dm2 resistance locus segregates. The response to BLG03 was determ<strong>in</strong>ed by Agrobacterium<br />

<strong>in</strong>filtration <strong>in</strong> leaves, <strong>and</strong> resistance to Bremia Bl:5 was determ<strong>in</strong>ed <strong>in</strong><br />

a leaf disc assay. Of 143 tested F2 plants all but 28 recognised BLG03, <strong>in</strong>dicat<strong>in</strong>g<br />

that the ability to recognise BLG03 is a dom<strong>in</strong>ant trait. All plants that recognised<br />

BLG03 were resistant to Bl:5. Conversely, all plants that did not recognise BLG03<br />

were susceptible to Bl:5. This <strong>in</strong>dicates that Dm2 or a closely l<strong>in</strong>ked gene from<br />

the Dm2 background is required for recognition <strong>of</strong> BLG03. To <strong>in</strong>vestigate this<br />

further we tested BLG03 on additional Dm2-conta<strong>in</strong><strong>in</strong>g l<strong>in</strong>es; Claret (Dm2+3+11),<br />

Maurice (Dm2+16), Mir<strong>and</strong>a (Dm2+7), <strong>and</strong> Parker (Dm2+11). Expression <strong>of</strong><br />

BLG03 triggered a cell death response <strong>in</strong> both Mir<strong>and</strong>a <strong>and</strong> Parker, but only a very<br />

weak response <strong>in</strong> Claret <strong>and</strong> no response <strong>in</strong> Maurice (Figure 8).<br />

As Amplus <strong>and</strong> UCDM2 are susceptible to Bremia isolate Bl:24, from which<br />

we cloned BLG03, we set out to <strong>in</strong>vestigate whether any <strong>of</strong> the other <strong>effectors</strong><br />

cloned from Bl:24 could suppress the cell death-response <strong>in</strong>duced by BLG03. We<br />

<strong>in</strong>oculated a mixture (total OD600 = 0.8) <strong>of</strong> BLG03 <strong>and</strong> <strong>in</strong>dividual other effector<br />

genes at ratios <strong>of</strong> 1:2 (UCDM2) or 1:3 (Amplus). These ratios were determ<strong>in</strong>ed as<br />

the lowest Agrobacterium-BLG03:Agrobacterium-GUS ratio at which a consistent<br />

cell death response could be seen. Us<strong>in</strong>g this setup we did not f<strong>in</strong>d any reduction <strong>of</strong>


148 Chapter 5<br />

the cell death responses <strong>in</strong>duced by BLG03 <strong>in</strong> comb<strong>in</strong>ation with any <strong>of</strong> the 33 other<br />

<strong>effectors</strong> compared to the comb<strong>in</strong>ation <strong>of</strong> BLG03 <strong>and</strong> GUS (not shown). A similar<br />

setup us<strong>in</strong>g BLG01 <strong>in</strong> L. saligna CGN05271 also did not reveal any reduction <strong>of</strong><br />

BLG01-<strong>in</strong>duced cell death responses by other <strong>effectors</strong> (not shown).<br />

Discussion<br />

In planta effector recognition<br />

Two Bremia RXLR-like <strong>effectors</strong> were found to be specifically recognised <strong>in</strong><br />

Lactuca breed<strong>in</strong>g material. A large set <strong>of</strong> wild lettuce species were capable <strong>of</strong><br />

recognis<strong>in</strong>g BLG01 <strong>and</strong> mount<strong>in</strong>g a cell death response. BLG03, <strong>in</strong> contrast, is<br />

recognised specifically <strong>in</strong> two cultivated lettuce l<strong>in</strong>es that share the Dm2 resistance<br />

specificity. Our Bremia effector screen <strong>of</strong> <strong>effectors</strong> for <strong>in</strong> planta recognition has<br />

uncovered potential gene-for-gene <strong>in</strong>teractions. The screen<strong>in</strong>g <strong>of</strong> 54 <strong>effectors</strong> <strong>of</strong> the<br />

oomycete P. <strong>in</strong>festans <strong>in</strong> 10 wild Solanum genotypes by transformation with potato<br />

virus X (PVX) uncovered 36 specific <strong>in</strong>teractions [44] . In contrast, screen<strong>in</strong>g <strong>of</strong> 60<br />

<strong>effectors</strong> <strong>of</strong> the <strong>downy</strong> <strong>mildew</strong> H. arabidopsidis <strong>in</strong> 12 A. thaliana accessions us<strong>in</strong>g<br />

Pseudomonas syr<strong>in</strong>gae pv. DC3000 for delivery did not uncover any hypersensitive<br />

response (cell death) upon effector delivery [25] .<br />

Wild Lactuca species that are Bremia non-hosts can be used to <strong>in</strong>trogress resistance<br />

genes or QTLs <strong>in</strong>to lettuce cultivars. For example, the Dm3 resistance gene<br />

orig<strong>in</strong>ates from a L. serriola accession, but is very rare <strong>in</strong> natural populations, with<br />

only a s<strong>in</strong>gle accession <strong>of</strong> 1033 tested from 49 natural populations hav<strong>in</strong>g an <strong>in</strong>tact<br />

Dm3 gene [45] . Dm3 is a fast evolv<strong>in</strong>g resistance gene from the RGC2 locus. This<br />

locus encodes two types <strong>of</strong> resistance gene c<strong>and</strong>idates, a fast evolv<strong>in</strong>g type <strong>and</strong><br />

a type that evolves at a much slower rate <strong>and</strong> is more conserved among different<br />

accessions [28] . Recognition <strong>of</strong> the Bremia effector BLG01 appears to be relatively<br />

common <strong>in</strong> L. saligna species <strong>and</strong> to only occur sporadically <strong>in</strong> other species. The<br />

wide recognition <strong>of</strong> BLG01 may <strong>in</strong>dicate recognition by a slowly evolv<strong>in</strong>g or more<br />

ancient resistance gene. The exact nature <strong>of</strong> the recognition <strong>of</strong> BLG01 <strong>in</strong> L. saligna<br />

<strong>and</strong> whether this recognition is dependent on the same gene <strong>in</strong> all l<strong>in</strong>es rema<strong>in</strong>s to<br />

be determ<strong>in</strong>ed.<br />

The recognition <strong>of</strong> BLG01 <strong>in</strong> L. saligna CGN05271 was mapped at the bottom<br />

<strong>of</strong> chromosome 9, where no R‐gene clusters to Bremia <strong>in</strong> L. serriola <strong>and</strong> L. sativa<br />

are known so far [37,46] . None <strong>of</strong> the 23 lettuce EST sequences from the Lettuce<br />

SFP Chip Project (http://chiplett.ucdavis.edu) that are mapped with<strong>in</strong> the 4.4 cM<br />

region between our flank<strong>in</strong>g markers (CLSX3110 & CLS4656) show homology<br />

to NB-LRR-like resistance prote<strong>in</strong>s. We are aware <strong>of</strong> only three R‐genes from L.<br />

saligna that have been <strong>in</strong>trogressed <strong>in</strong>to L. sativa, none <strong>of</strong> which are located on


Bremia GKLR prote<strong>in</strong>s <strong>in</strong>duce ETI<br />

149<br />

chromosome 9 [47, 57, 58] . Interest<strong>in</strong>gly, the cell death response to the P. syr<strong>in</strong>gae<br />

effector AvrPto did map <strong>in</strong> the same region on chromosome 9 <strong>in</strong> a L. sativa x L.<br />

serriola RIL population [48] .<br />

BLG03 is recognised <strong>in</strong> only two lettuce breed<strong>in</strong>g l<strong>in</strong>es <strong>of</strong> the <strong>in</strong>itial screen.<br />

These l<strong>in</strong>es share the Dm2 resistance locus, which maps <strong>in</strong> or near the RGC2<br />

locus [27] . The Dm2 locus provides resistance to Bl:5, <strong>and</strong> recognition <strong>of</strong> BLG03<br />

correlated with resistance to Bl:5 <strong>in</strong> 143 F2 plants <strong>of</strong> a UCDM2 x Cobham Green<br />

cross, <strong>in</strong> which Dm2 segregates. This <strong>in</strong>dicates that the response to BLG03 maps<br />

to the RGC2 locus <strong>in</strong> UCDM2. Of four additional l<strong>in</strong>es that are reported to conta<strong>in</strong><br />

Dm2, two also showed a response towards BLG03. The two l<strong>in</strong>es that did not show<br />

a response to BLG03, Claret <strong>and</strong> Maurice, also have other resistance specificities<br />

that map to the RGC2 locus. As we have not yet tested the response to BLG03<br />

from Bl:5, it is too early to conclude that the effector is not recognised by the<br />

Dm2-encoded prote<strong>in</strong>.<br />

Sequenc<strong>in</strong>g <strong>of</strong> BLG03 <strong>in</strong> eight different isolates revealed 7 different alleles.<br />

Of the sequenced Bremia isolates, Bl:5 <strong>and</strong> F703 are unable to successfully <strong>in</strong>fect<br />

Dm2-conta<strong>in</strong><strong>in</strong>g hosts. Both Bl:5 BLG03 alleles were not found <strong>in</strong> other sequenced<br />

Bremia isolates. We were not able to amplify BLG03 from Bremia isolate F703,<br />

although the quality <strong>of</strong> DNA was not a problem as we could amplify BLG01 <strong>and</strong><br />

BLG02. The two Bl:5 BLG03 alleles rema<strong>in</strong> to be cloned <strong>and</strong> tested <strong>in</strong> the different<br />

Dm2-conta<strong>in</strong><strong>in</strong>g l<strong>in</strong>es to determ<strong>in</strong>e whether responses to these alleles differ from<br />

those to the Bl:24 reference allele.<br />

Effector recognition versus resistance<br />

In most reported cases effector recognition is l<strong>in</strong>ked to resistance. Recognition <strong>of</strong><br />

BLG01, however, was not l<strong>in</strong>ked to resistance to Bl:24 <strong>in</strong> laboratory assays, <strong>and</strong><br />

BLG03 was cloned from a Bremia isolate that can successfully <strong>in</strong>fect the lettuce<br />

l<strong>in</strong>es <strong>in</strong> which BLG03 is recognised. Examples <strong>of</strong> a lack <strong>of</strong> correlation between<br />

recognition <strong>of</strong> an effector <strong>and</strong> resistance to pathogen isolates that express the<br />

effector have previously been reported. Screen<strong>in</strong>g <strong>of</strong> 54 P. <strong>in</strong>festans <strong>effectors</strong> <strong>in</strong><br />

Solanum species by Potato Virus X (PVX) expression uncovered two <strong>in</strong>teractions<br />

that were not correlated to resistance. In an F2 population <strong>of</strong> a cross between a<br />

resistant <strong>and</strong> susceptible Solanum species no correlation between the ability to<br />

recognise certa<strong>in</strong> P. <strong>in</strong>festans <strong>effectors</strong> <strong>and</strong> resistance to P. <strong>in</strong>festans was found,<br />

despite perfect correlation between recognition <strong>of</strong> other P. <strong>in</strong>festans <strong>effectors</strong> <strong>and</strong><br />

resistance [44] . Likewise, not all A. thaliana accessions that recognise ATR39-1 or<br />

ATR1Emco5 are resistant to isolates that encode these alleles [49–51] .<br />

An explanation for the lack <strong>of</strong> resistance <strong>in</strong> plants that can recognise <strong>in</strong>dividual<br />

Bremia <strong>effectors</strong> is that Bremia uses additional <strong>effectors</strong> to suppress ETI. A study


150 Chapter 5<br />

that <strong>in</strong>vestigated crosses <strong>of</strong> virulent <strong>and</strong> avirulent Bremia isolates revealed a<br />

possible locus that <strong>in</strong>hibits avirulence triggered by Avr5/8, but no evidence for<br />

other <strong>in</strong>hibitors <strong>of</strong> avirulence <strong>in</strong> Bremia [52] . The study highlights that <strong>in</strong>hibitor<br />

loci exist, but that they are polymorphic. S<strong>in</strong>ce this study was performed over 20<br />

years <strong>of</strong> selective pressure on Bremia has given rise to new isolates that break<br />

various resistances. However, none <strong>of</strong> our 34 tested <strong>effectors</strong> were able to suppress<br />

BLG01- or BLG03-<strong>in</strong>duced cell death. We cannot rule out the existence <strong>of</strong> suppressors<br />

<strong>of</strong> cell death as our selection <strong>of</strong> <strong>effectors</strong> is non-exhaustive <strong>and</strong> suppressors<br />

may even be non-RXLR <strong>effectors</strong>, which we did not <strong>in</strong>vestigate.<br />

F<strong>in</strong>d<strong>in</strong>gs described for the P. <strong>in</strong>festans effector AvrSmira2 [53] provide an alternative<br />

explanation for an apparent lack <strong>of</strong> correlation between effector recognition<br />

<strong>and</strong> resistance. Agrobacterium-mediated transient transformation <strong>of</strong> potato cultivar<br />

‘Sarpo Mira’ with AvrSmira2 <strong>in</strong>duced a cell death response <strong>and</strong> <strong>in</strong>dicates the presence<br />

<strong>of</strong> a resistance factor named Rpi-Smira2. Cell death responses to AvrSmira2<br />

were found to segregate <strong>in</strong> <strong>of</strong>fspr<strong>in</strong>g <strong>of</strong> a cross between an Rpi-Smira2-conta<strong>in</strong><strong>in</strong>g<br />

parent <strong>and</strong> a universally susceptible parent. As with our Bremia effector BLG03,<br />

no resistance to P. <strong>in</strong>festans stra<strong>in</strong>s conta<strong>in</strong><strong>in</strong>g AvrSmira2 could be scored <strong>in</strong> plants<br />

that show a cell death response towards AvrSmira2 <strong>in</strong> laboratory assays. Field<br />

trials, however, revealed a partial resistance phenotype correlated with the ability<br />

to recognise AvrSmira2. Therefore, field trials <strong>in</strong> plants conta<strong>in</strong><strong>in</strong>g the L. saligna<br />

locus for recognition <strong>of</strong> BLG01 are important to determ<strong>in</strong>e whether the locus<br />

confers a partial resistance phenotype <strong>and</strong> if the locus is <strong>of</strong> value for breed<strong>in</strong>g<br />

Bremia-resistant lettuce.


Bremia GKLR prote<strong>in</strong>s <strong>in</strong>duce ETI<br />

151<br />

Materials <strong>and</strong> Methods<br />

Clon<strong>in</strong>g, sequenc<strong>in</strong>g <strong>and</strong> qPCR experiments<br />

Effectors were TOPO-cloned as described <strong>in</strong> Chapter 4. The PsojNIP <strong>and</strong> YFP<br />

constructs were k<strong>in</strong>dly provided by A. Cabral [54] . Clones were electro-transformed<br />

<strong>in</strong>to Agrobacterium tumefaciens stra<strong>in</strong> C58C1_pGV2260. For sequenc<strong>in</strong>g <strong>of</strong> effector<br />

alleles, DNA was PCR amplified us<strong>in</strong>g primers flank<strong>in</strong>g the cod<strong>in</strong>g sequence,<br />

blunt-end ligated <strong>in</strong>to pJET1.2 (Fermentas), <strong>and</strong> transformed <strong>in</strong>to E. coli DH5α<br />

by heat-shock. Plasmid isolation <strong>and</strong> sequenc<strong>in</strong>g was carried out by Macrogen<br />

Inc. Time-course sampl<strong>in</strong>g <strong>and</strong> qPCR <strong>analysis</strong> were performed as described <strong>in</strong><br />

chapter 4. All primers used are listed <strong>in</strong> Supplementary Table 3.<br />

Agrobacterium-mediated transient transformation assay<br />

Agrobacterium stra<strong>in</strong>s were prepared for <strong>in</strong>filtration as described <strong>in</strong> chapter 4.<br />

Stra<strong>in</strong>s were then pressure <strong>in</strong>filtrated <strong>in</strong>to leaves us<strong>in</strong>g a needleless syr<strong>in</strong>ge.<br />

Responses <strong>in</strong> lettuce l<strong>in</strong>es were scored 8 dpi, unless otherwise <strong>in</strong>dicated.<br />

Codon-based test for positive selection<br />

Insertions <strong>and</strong> deletions were removed from sequences <strong>and</strong> sequences with <strong>in</strong>ternal<br />

stop codons were removed. Substitution rates were calculated us<strong>in</strong>g Nei <strong>and</strong><br />

Gojobori’s method [55] , us<strong>in</strong>g MEGA4 [56] . St<strong>and</strong>ard error was determ<strong>in</strong>ed by 500<br />

bootstrap replications. The null hypothesis <strong>of</strong> no selection (dN = dS) versus the<br />

positive selection hypothesis (dN > dS) were determ<strong>in</strong>ed us<strong>in</strong>g the Z-test: Z = (dNdS)/<br />

√(Var(dS)+Var(dN)).<br />

Materials for mapp<strong>in</strong>g the BLG01 response<br />

Two crosses <strong>of</strong> L. saligna <strong>and</strong> L. sativa were previously made: Cross 1: L. saligna<br />

CGN05271 x L. sativa cv. Ol<strong>of</strong> <strong>and</strong> Cross 2: L. saligna CGN11341 x L. sativa cv.<br />

Norden [34] . Materials for Assays 1, 2, <strong>and</strong> 3 were as follows. Assay 1: three replicates<br />

<strong>of</strong> 28 BILs derived from Cross 1 that together cover 96% <strong>of</strong> the L. saligna<br />

CGN5271 genome [41] , <strong>and</strong> the parental l<strong>in</strong>es <strong>of</strong> Cross 1 <strong>and</strong> Cross 2. Assay 2: F3,<br />

F4 <strong>and</strong> BC1S1 plants derived from Cross 1 <strong>and</strong> Cross 2. Assay 3: parental l<strong>in</strong>es <strong>of</strong><br />

Cross 1 <strong>and</strong> Cross 2, F1 <strong>of</strong>fspr<strong>in</strong>g <strong>of</strong> Cross 1, <strong>and</strong> F3 <strong>of</strong>fspr<strong>in</strong>g <strong>of</strong> F2 plants <strong>of</strong> both<br />

Cross 1 <strong>and</strong> Cross 2 with a recomb<strong>in</strong>ation near the C9 locus.


152 Chapter 5<br />

Marker development <strong>and</strong> genotyp<strong>in</strong>g<br />

For f<strong>in</strong>e mapp<strong>in</strong>g new markers were developed <strong>and</strong> selected to saturate the region.<br />

Based on alignment <strong>of</strong> our F2 map (improved version <strong>of</strong> Jeuken 2001) with the<br />

L. sativa x L. serriola RIL map by the Lettuce SFP Chip Project (http://chiplett.<br />

ucdavis.edu) <strong>and</strong> the Compositae Genome Project Database (CGPDB) (http://<br />

compgenomics.ucdavis.edu) we selected c<strong>and</strong>idate EST sequences <strong>and</strong> markers.<br />

Primers were developed, tested <strong>and</strong> <strong>in</strong> case <strong>of</strong> polymorphism run on the segregat<strong>in</strong>g<br />

populations for mapp<strong>in</strong>g. Polymorphisms between L. sativa <strong>and</strong> L. saligna PCR<br />

products <strong>of</strong> the EST markers were visualized by high-resolution melt<strong>in</strong>g curve<br />

differences on a LightScanner System (Idaho Technology). All plants with a cell<br />

death response <strong>in</strong> transient assay 2 <strong>and</strong> all the plants from assay 3 were genotyped<br />

us<strong>in</strong>g the new markers.<br />

Disease test on adult plants<br />

A detached leaf assay was conducted on adult plants accord<strong>in</strong>g the protocol <strong>of</strong><br />

ADTG as previously described [42] . Two genotyped BC1S2 populations from<br />

BC1S1 plant that showed a cell death response towards BLG01 were tested with<br />

Bremia Bl:24. From each plant at least six leaf squares were collected (2.5 x 2.5<br />

cm). Leaf squares were <strong>in</strong>oculated with <strong>in</strong>oculum from Bremia isolate Bl:24 at<br />

37 days post sow<strong>in</strong>g conta<strong>in</strong><strong>in</strong>g 4 x 10 5 spores per ml. At 9 dpi the percentage <strong>of</strong><br />

the area <strong>of</strong> each leaf square that showed Bremia sporulation was determ<strong>in</strong>ed. One<br />

way Analysis <strong>of</strong> Variances was used to analyse the data (with as fixed factor: l<strong>in</strong>e<br />

(<strong>of</strong>fspr<strong>in</strong>g from one parent with genotype at C9 locus) <strong>and</strong> as block factor: each<br />

different plant). For comparison between the heterozygous <strong>and</strong> homozygous L.<br />

sativa genotypes from each BC1S1 parent with each other, a Duncan’s multiple<br />

range test (α = 0.05) was performed with GenStat (14 th Edition) s<strong>of</strong>tware.


Bremia GKLR prote<strong>in</strong>s <strong>in</strong>duce ETI<br />

153<br />

References<br />

1 McDonald BA & L<strong>in</strong>de C (2002) Pathogen population genetics, evolutionary potential, <strong>and</strong><br />

durable resistance. Annual Review <strong>of</strong> Phytopathology 40, 349-79.<br />

2 Brown S, Koike ST, Ochoa OE, Laemmlen F & Michelmore RW (2004) Insensitivity to the<br />

fungicide fosetyl-alum<strong>in</strong>um <strong>in</strong> California isolates <strong>of</strong> the lettuce <strong>downy</strong> <strong>mildew</strong> pathogen, Bremia<br />

lactucae. Plant Disease 88, 502-508.<br />

3 Kemen E & Jones JDG (2012) Obligate biotroph parasitism: can we l<strong>in</strong>k genomes to lifestyles<br />

Trends <strong>in</strong> Plant Science, In press, doi: 10.1016/j.tplants.2012.04.005.<br />

4 Boller T & He SY (2009) Innate immunity <strong>in</strong> plants: an arms race between pattern recognition<br />

receptors <strong>in</strong> plants <strong>and</strong> <strong>effectors</strong> <strong>in</strong> microbial pathogens. Science 324, 742-4.<br />

5 Jones JDG & Dangl JL (2006) The plant immune system. Nature 444, 323-9.<br />

6 Thomma BPHJ, Nürnberger T & Joosten MHAJ (2011) Of PAMPs <strong>and</strong> <strong>effectors</strong>: the blurred<br />

PTI-ETI dichotomy. The Plant Cell 23, 4-15.<br />

7 O’Connell RJ & Panstruga R (2006) Tête à tête <strong>in</strong>side a plant cell: establish<strong>in</strong>g compatibility<br />

between plants <strong>and</strong> biotrophic fungi <strong>and</strong> oomycetes. The New Phytologist 171, 699-718.<br />

8 Büttner D & He SY (2009) Type III prote<strong>in</strong> secretion <strong>in</strong> plant pathogenic bacteria. Plant<br />

Physiology 150, 1656-64.<br />

9 Avrova AO, Boev<strong>in</strong>k PC, Young V, Grenville-Briggs LJ, Van West P, Birch PRJ & Whisson SC<br />

(2008) A novel Phytophthora <strong>in</strong>festans haustorium-specific membrane prote<strong>in</strong> is required for<br />

<strong>in</strong>fection <strong>of</strong> potato. Cellular Microbiology 10, 2271-84.<br />

10 Whisson SC, Boev<strong>in</strong>k PC, Moleleki L, Avrova AO, Morales JG, Gilroy EM, Armstrong MR,<br />

Grouffaud S, Van West P, Chapman S, He<strong>in</strong> I, Toth IK, Pritchard L & Birch PRJ (2007) A<br />

translocation signal for delivery <strong>of</strong> oomycete effector prote<strong>in</strong>s <strong>in</strong>to host plant cells. Nature 450,<br />

115-8.<br />

11 Stassen JHM & Van den Ackerveken G (2011) How do oomycete <strong>effectors</strong> <strong>in</strong>terfere with plant<br />

life Current Op<strong>in</strong>ion <strong>in</strong> Plant Biology 14, 407-14.<br />

12 Tian M, W<strong>in</strong> J, Savory E, Burkhardt A, Held M, Br<strong>and</strong>izzi F & Day B (2011) 454 Genome<br />

sequenc<strong>in</strong>g <strong>of</strong> Pseudoperonospora cubensis reveals effector prote<strong>in</strong>s with a QXLR translocation<br />

motif. Molecular Plant-Microbe Interactions 24, 543-53.<br />

13 Bailey K, Cevik V, Holton N, Byrne-Richardson J, Sohn K-H, Coates M, Woods-Tör A,<br />

Aksoy HM, Hughes L, Baxter L, Jones JDG, Beynon J, Holub EB & Tör M (2011) Molecular<br />

clon<strong>in</strong>g <strong>of</strong> ATR5(Emoy2) from Hyaloperonospora arabidopsidis, an avirulence determ<strong>in</strong>ant<br />

that triggers RPP5-mediated defense <strong>in</strong> Arabidopsis. Molecular Plant-Microbe Interactions 24,<br />

827-38.<br />

14 Dangl JL & Jones JDG (2001) Plant pathogens <strong>and</strong> <strong>in</strong>tegrated defence responses to <strong>in</strong>fection.<br />

Nature 411, 826-33.<br />

15 Takken FL & Goverse A (2012) How to build a pathogen detector: structural basis <strong>of</strong> NB-LRR<br />

function. Current Op<strong>in</strong>ion <strong>in</strong> Plant Biology, In press, doi: 10.1016/j.pbi.2012.05.001.


154 Chapter 5<br />

16 Wang Q, Han C, Ferreira AO, Yu X, Ye W, Tripathy S, Kale SD, Gu B, Sheng Y, Sui Y,<br />

Wang X, Zhang Z, Cheng B, Dong S, Shan W, Zheng X, Dou D, Tyler BM & Wang Y (2011)<br />

Transcriptional programm<strong>in</strong>g <strong>and</strong> <strong>functional</strong> <strong>in</strong>teractions with<strong>in</strong> the Phytophthora sojae RXLR<br />

effector repertoire. The Plant Cell 23, 2064-86.<br />

17 Baxter L, Tripathy S, Ishaque N, Boot N, Cabral A, Kemen E, Th<strong>in</strong>es M, Ah-Fong AMV,<br />

Anderson R, Badejoko W, Bittner-Eddy P, Boore JL, Chibucos MC, Coates ME, Dehal P,<br />

Delehaunty K, Dong S, Downton P, Dumas B, Fabro G, Fronick C, Fuerstenberg SI, Fulton L,<br />

Gaul<strong>in</strong> E, Govers F, Hughes L, Humphray S, Jiang RHY, Judelson HS, Kamoun S, Kyung K,<br />

Meijer HJG, M<strong>in</strong>x P, Morris PF, Nelson J, Phuntumart V, Qutob D, Rehmany AP, Rougon-<br />

Cardoso A, Ryden P, Torto-Alalibo T, Studholme DJ, Wang Y, W<strong>in</strong> J, Wood J, Clifton SW,<br />

Rogers J, Van den Ackerveken G, Jones JDG, McDowell JM, Beynon JL & Tyler BM (2010)<br />

Signatures <strong>of</strong> adaptation to obligate biotrophy <strong>in</strong> the Hyaloperonospora arabidopsidis genome.<br />

Science 330, 1549-51.<br />

18 Haas BJ, Kamoun S, Zody MC, Jiang RHY, H<strong>and</strong>saker RE, Cano LM, Grabherr M, Kodira CD,<br />

Raffaele S, Torto-Alalibo T, Bozkurt TO, Ah-Fong AMV, Alvarado L, Anderson VL,<br />

Armstrong MR, Avrova AO, Baxter L, Beynon JL, Boev<strong>in</strong>k PC, Bollmann SR, Bos JIB,<br />

Bulone V, Cai G, Cakir C, Carr<strong>in</strong>gton JC, Chawner M, Conti L, Costanzo S, Ewan R, Fahlgren N,<br />

Fischbach MA, Fugelstad J, Gilroy EM, Gnerre S, Green PJ, Grenville-Briggs LJ, Griffith J,<br />

Grünwald NJ, Horn K, Horner NR, Hu C-H, Huitema E, Jeong D-H, Jones AME, Jones JDG,<br />

Jones RW, Karlsson EK, Kunjeti SG, Lamour K, Liu Z, Ma L, Maclean D, Chibucos MC,<br />

McDonald H, McWalters J, Meijer HJG, Morgan W, Morris PF, Munro CA, O’Neill K, Osp<strong>in</strong>a-<br />

Giraldo M, P<strong>in</strong>zón A, Pritchard L, Ramsahoye B, Ren Q, Restrepo S, Roy S, Sadan<strong>and</strong>om A,<br />

Savidor A, Schornack S, Schwartz DC, Schumann UD, Schwess<strong>in</strong>ger B, Seyer L, Sharpe T,<br />

Silvar C, Song J, Studholme DJ, Sykes S, Th<strong>in</strong>es M, Van de Vondervoort PJI, Phuntumart V,<br />

Wawra S, Weide R, W<strong>in</strong> J, Young C, Zhou S, Fry W, Meyers BC, Van West P, Rista<strong>in</strong>o J,<br />

Govers F, Birch PRJ, Whisson SC, Judelson HS & Nusbaum C (2009) Genome sequence <strong>and</strong><br />

<strong>analysis</strong> <strong>of</strong> the Irish potato fam<strong>in</strong>e pathogen Phytophthora <strong>in</strong>festans. Nature 461, 393-8.<br />

19 Jiang RHY, Tripathy S, Govers F & Tyler BM (2008) RXLR effector reservoir <strong>in</strong> two<br />

Phytophthora species is dom<strong>in</strong>ated by a s<strong>in</strong>gle rapidly evolv<strong>in</strong>g superfamily with more than 700<br />

members. Proceed<strong>in</strong>gs <strong>of</strong> the National Academy <strong>of</strong> Sciences <strong>of</strong> the United States <strong>of</strong> America 105,<br />

4874-9.<br />

20 Cabral A, Stassen JHM, Seidl MF, Bautor J, Parker JE & Van den Ackerveken G (2011)<br />

<strong>Identification</strong> <strong>of</strong> Hyaloperonospora arabidopsidis transcript sequences expressed dur<strong>in</strong>g <strong>in</strong>fection<br />

reveals isolate-specific <strong>effectors</strong>. PLoS ONE 6, e19328.<br />

21 Armstrong MR, Whisson SC, Pritchard L, Bos JIB, Venter E, Avrova AO, Rehmany AP,<br />

Böhme U, Brooks K, Cherevach I, Haml<strong>in</strong> N, White B, Fraser A, Lord A, Quail MA, Churcher C,<br />

Hall N, Berriman M, Huang S, Kamoun S, Beynon JL & Birch PRJ (2005) An ancestral oomycete<br />

locus conta<strong>in</strong>s late blight avirulence gene Avr3a, encod<strong>in</strong>g a prote<strong>in</strong> that is recognized <strong>in</strong> the host<br />

cytoplasm. Proceed<strong>in</strong>gs <strong>of</strong> the National Academy <strong>of</strong> Sciences <strong>of</strong> the United States <strong>of</strong> America 102,<br />

7766-71.<br />

22 Gilroy EM, Breen S, Whisson SC, Squires J, He<strong>in</strong> I, Kaczmarek M, Turnbull D, Boev<strong>in</strong>k PC,<br />

Lokossou A, Cano LM, Morales JG, Avrova AO, Pritchard L, R<strong>and</strong>all E, Lees A, Govers F, Van<br />

West P, Kamoun S, Vleeshouwers VGAA, Cooke DEL & Birch PRJ (2011) Presence/absence,<br />

differential expression <strong>and</strong> sequence polymorphisms between PiAVR2 <strong>and</strong> PiAVR2-like <strong>in</strong><br />

Phytophthora <strong>in</strong>festans determ<strong>in</strong>e virulence on R2 plants. The New Phytologist 191, 763-76.<br />

23 Qutob D, Tedman-Jones J, Dong S, Kuflu K, Pham H, Wang Y, Dou D, Kale SD, Arredondo FD,<br />

Tyler BM & Gijzen M (2009) Copy number variation <strong>and</strong> transcriptional polymorphisms <strong>of</strong><br />

Phytophthora sojae RXLR effector genes Avr1a <strong>and</strong> Avr3a. PLoS ONE 4, e5066.


Bremia GKLR prote<strong>in</strong>s <strong>in</strong>duce ETI<br />

155<br />

24 Guo M, Tian F, Wamboldt Y & Alfano JR (2009) The majority <strong>of</strong> the type III effector <strong>in</strong>ventory<br />

<strong>of</strong> Pseudomonas syr<strong>in</strong>gae pv. tomato DC3000 can suppress plant immunity. Molecular Plant-<br />

Microbe Interactions 22, 1069-80.<br />

25 Fabro G, Ste<strong>in</strong>brenner J, Coates ME, Ishaque N, Baxter L, Studholme DJ, Körner E, Allen RL,<br />

Piquerez SJM, Rougon-Cardoso A, Greenshields D, Lei R, Badel JL, Caillaud M-C, Sohn K-H,<br />

Van den Ackerveken G, Parker JE, Beynon JL & Jones JDG (2011) Multiple c<strong>and</strong>idate <strong>effectors</strong><br />

from the oomycete pathogen Hyaloperonospora arabidopsidis suppress host plant immunity. PLoS<br />

Pathogens 7, e1002348.<br />

26 Michelmore RW & Wong J (2008) Classical <strong>and</strong> molecular genetics <strong>of</strong> Bremia lactucae, cause <strong>of</strong><br />

lettuce <strong>downy</strong> <strong>mildew</strong>. European Journal <strong>of</strong> Plant Pathology 122, 19-30.<br />

27 Meyers BC, Ch<strong>in</strong> DB, Shen KA, Sivaramakrishnan S, Lavelle DO, Zhang Z & Michelmore RW<br />

(1998) The major resistance gene cluster <strong>in</strong> lettuce is highly duplicated <strong>and</strong> spans several<br />

megabases. The Plant Cell 10, 1817-32.<br />

28 Kuang H, Woo S-S, Meyers BC, Nevo E & Michelmore RW (2004) Multiple genetic processes<br />

result <strong>in</strong> heterogeneous rates <strong>of</strong> evolution with<strong>in</strong> the major cluster disease resistance genes <strong>in</strong><br />

lettuce. The Plant Cell 16, 2870-94.<br />

29 Jeuken MJW & L<strong>in</strong>dhout P (2002) Lactuca saligna, a non-host for lettuce <strong>downy</strong> <strong>mildew</strong> (Bremia<br />

lactucae), harbors a new race-specific Dm gene <strong>and</strong> three QTLs for resistance. Theoretical <strong>and</strong><br />

applied genetics 105, 384-91.<br />

30 Zhang NW, L<strong>in</strong>dhout P, Niks RE & Jeuken MJW (2009) Genetic dissection <strong>of</strong> Lactuca saligna<br />

nonhost resistance to <strong>downy</strong> <strong>mildew</strong> at various lettuce developmental stages. Plant Pathology 58,<br />

923-32.<br />

31 Van Treuren R, Van der Arend AJM & Schut JW (2011) Distribution <strong>of</strong> <strong>downy</strong> <strong>mildew</strong> (Bremia<br />

lactucae Regel) resistances <strong>in</strong> a genebank collection <strong>of</strong> lettuce <strong>and</strong> its wild relatives. Plant Genetic<br />

Resources, In press, doi: 10.1017/S1479262111000761.<br />

32 Stassen JHM, Seidl MF, Vergeer PWJ, Nijman IJ, Snel B, Cuppen E & Van den Ackerveken G<br />

(2012) Effector identification <strong>in</strong> the lettuce <strong>downy</strong> <strong>mildew</strong> Bremia lactucae by massively<br />

parallel transcriptome sequenc<strong>in</strong>g. Molecular Plant Pathology, In press, doi: 10.1111/j.1364-<br />

3703.2011.00780.x.<br />

33 Michelmore RW & Ochoa OE (1994) Lettuce breed<strong>in</strong>g. In Iceberg Lettuce Advisory Board<br />

Annual Report 1993-1994 pp. 34-44.<br />

34 Jeuken MJW, Van Wijk R, Peleman J & L<strong>in</strong>dhout P (2001) An <strong>in</strong>tegrated <strong>in</strong>terspecific AFLP map<br />

<strong>of</strong> lettuce (Lactuca) based on two L. sativa × L. saligna F 2 populations. Theoretical <strong>and</strong> Applied<br />

Genetics 103, 638-47.<br />

35 H<strong>and</strong> P, Kift N, McClement S, Lynn JR, Grube RC, Schut JW, Arend AJM & P<strong>in</strong>k DAC (2003)<br />

Progress towards mapp<strong>in</strong>g QTLs for pest <strong>and</strong> disease resistance <strong>in</strong> lettuce. In Eucarpia Leafy<br />

Vegetables 2003 (van H<strong>in</strong>tum TJL, Lebeda A, P<strong>in</strong>k D, & Schut JW, eds), pp. 31-35.<br />

36 Grube RC & Ochoa OE (2005) Comparative genetic <strong>analysis</strong> <strong>of</strong> field resistance to <strong>downy</strong> <strong>mildew</strong><br />

<strong>in</strong> the lettuce cultivars “Gr<strong>and</strong> Rapids” <strong>and</strong> “Iceberg.”Euphytica 142, 205-215.<br />

37 Truco MJ, Antonise R, Lavelle DO, Ochoa O, Kozik A, Witsenboer H, Fort SB, Jeuken MJW,<br />

Kesseli RV, L<strong>in</strong>dhout P, Michelmore RW & Peleman J (2007) A high-density, <strong>in</strong>tegrated genetic<br />

l<strong>in</strong>kage map <strong>of</strong> lettuce (Lactuca spp.). Theoretical <strong>and</strong> Applied Genetics 115, 735-46.


156 Chapter 5<br />

38 Hägnefelt A & Olsson K (1999) Breed<strong>in</strong>g <strong>of</strong> iceberg lettuce. Sveriges Utsädesfören<strong>in</strong>gs Tidskrift<br />

109, 28-34.<br />

39 Lambalk JJM, Faber NM, Bruijnis AB, Conijn PCJ, den Witte IA, Nieuwenhuis J & De Jong CJ<br />

(2000) Method for obta<strong>in</strong><strong>in</strong>g a plant with a last<strong>in</strong>g resistance to a pathogen. Patent PCT/<br />

NL2000/000241.<br />

40 F<strong>in</strong>n RD, Mistry J, Tate J, Coggill P, Heger A, Poll<strong>in</strong>gton JE, Gav<strong>in</strong> OL, Gunasekaran P, Ceric G,<br />

Forslund K, Holm L, Sonnhammer ELL, Eddy SR & Bateman A (2010) The Pfam prote<strong>in</strong><br />

families database. Nucleic Acids Research 38, D211-22.<br />

41 Jeuken MJW & L<strong>in</strong>dhout P (2004) The development <strong>of</strong> lettuce backcross <strong>in</strong>bred l<strong>in</strong>es (BILs) for<br />

exploitation <strong>of</strong> the Lactuca saligna (wild lettuce) germplasm. Theoretical <strong>and</strong> Applied Genetics<br />

109, 394-401.<br />

42 Jeuken MJW, Pelgrom K, Stam P & L<strong>in</strong>dhout P (2008) Efficient QTL detection for nonhost<br />

resistance <strong>in</strong> wild lettuce: backcross <strong>in</strong>bred l<strong>in</strong>es versus F(2) population. Theoretical <strong>and</strong> Applied<br />

Genetics 116, 845-57.<br />

43 Zhang NW, Pelgrom K, Niks RE, Visser RGF & Jeuken MJW (2009) Three comb<strong>in</strong>ed<br />

quantitative trait loci from nonhost Lactuca saligna are sufficient to provide complete resistance<br />

<strong>of</strong> lettuce aga<strong>in</strong>st Bremia lactucae. Molecular Plant-Microbe Interactions 22, 1160-8.<br />

44 Vleeshouwers VGAA, Rietman H, Krenek P, Champouret N, Young C, Oh S-K, Wang M,<br />

Bouwmeester K, Vosman B, Visser RGF, Jacobsen E, Govers F, Kamoun S & Van der<br />

Vossen EAG (2008) Effector genomics accelerates discovery <strong>and</strong> <strong>functional</strong> pr<strong>of</strong>il<strong>in</strong>g <strong>of</strong> potato<br />

disease resistance <strong>and</strong> phytophthora <strong>in</strong>festans avirulence genes. PLoS ONE 3, e2875.<br />

45 Kuang H, Ochoa OE, Nevo E & Michelmore RW (2006) The disease resistance gene Dm3<br />

is <strong>in</strong>frequent <strong>in</strong> natural populations <strong>of</strong> Lactuca serriola due to deletions <strong>and</strong> frequent gene<br />

conversions at the RGC2 locus. The Plant Journal 47, 38-48.<br />

46 Kesseli RV, Paran I & Michelmore RW (1994) Analysis <strong>of</strong> a detailed genetic l<strong>in</strong>kage map <strong>of</strong><br />

Lactuca sativa (lettuce) constructed from RFLP <strong>and</strong> RAPD markers. Genetics 136, 1435-46.<br />

47 Segura V, Briggs W, Zonneveld O & De Lange M (2011) Plant resistant to a pathogen. Patent<br />

09164649.7.<br />

48 McHale LK, Truco MJ, Kozik A, Wroblewski T, Ochoa OE, Lahre KA, Knapp SJ &<br />

Michelmore RW (2009) The genomic architecture <strong>of</strong> disease resistance <strong>in</strong> lettuce. Theoretical <strong>and</strong><br />

Applied Genetics 118, 565-80.<br />

49 Goritschnig S, Krasileva KV, Dahlbeck D & Staskawicz BJ (2012) Computational prediction <strong>and</strong><br />

molecular characterization <strong>of</strong> an oomycete effector <strong>and</strong> the cognate Arabidopsis resistance gene.<br />

PLoS Genetics 8, e1002502.<br />

50 Krasileva KV, Zheng C, Leonelli L, Goritschnig S, Dahlbeck D & Staskawicz BJ (2011) Global<br />

<strong>analysis</strong> <strong>of</strong> Arabidopsis/<strong>downy</strong> <strong>mildew</strong> <strong>in</strong>teractions reveals prevalence <strong>of</strong> <strong>in</strong>complete resistance<br />

<strong>and</strong> rapid evolution <strong>of</strong> pathogen recognition. PLoS ONE 6, e28765.<br />

51 Rehmany AP, Gordon A, Rose LE, Allen RL, Armstrong MR, Whisson SC, Kamoun S, Tyler BM,<br />

Birch PRJ & Beynon JL (2005) Differential recognition <strong>of</strong> highly divergent <strong>downy</strong> <strong>mildew</strong><br />

avirulence gene alleles by RPP1 resistance genes from two Arabidopsis l<strong>in</strong>es. The Plant Cell 17,<br />

1839-50.


Bremia GKLR prote<strong>in</strong>s <strong>in</strong>duce ETI<br />

157<br />

52 Ilott T, Hulbert S & Michelmore RW (1989) Genetic Analysis <strong>of</strong> the Gene-for-Gene Interaction<br />

Between Lettuce (Lactuca sativa) <strong>and</strong> Bremia lactucae. Phytopathology 79, 888-97.<br />

53 Rietman H, Bijsterbosch G, Cano LM, Lee H-R, Vossen JH, Jacobsen E, Visser RGF, Kamoun S<br />

& Vleeshouwers VGAA (2012) Qualitative <strong>and</strong> quantitative late blight resistance <strong>in</strong> the potato<br />

cultivar Sarpo Mira is determ<strong>in</strong>ed by the perception <strong>of</strong> five dist<strong>in</strong>ct RXLR <strong>effectors</strong>. Molecular<br />

Plant-Microbe Interactions 25, 910-9.<br />

54 Cabral A, Oome S, S<strong>and</strong>er N, Küfner I, Nürnberger T & Van den Ackerveken G (2012) Nontoxic<br />

Nep1-like prote<strong>in</strong>s <strong>of</strong> the <strong>downy</strong> <strong>mildew</strong> pathogen Hyaloperonospora arabidopsidis: repression <strong>of</strong><br />

necrosis-<strong>in</strong>duc<strong>in</strong>g activity by a surface-exposed region. Molecular Plant-Microbe Interactions 25,<br />

697-708.<br />

55 Nei M & Gojobori T (1986) Simple methods for estimat<strong>in</strong>g the numbers <strong>of</strong> synonymous <strong>and</strong><br />

nonsynonymous nucleotide substitutions. Molecular Biology <strong>and</strong> Evolution 3, 418-26.<br />

56 Tamura K, Dudley J, Nei M & Kumar S (2007) MEGA4: Molecular Evolutionary Genetics<br />

Analysis (MEGA) s<strong>of</strong>tware version 4.0. Molecular Biology <strong>and</strong> Evolution 24, 1596-9.<br />

57 Moreau BMD (1994) Fungus resistant plants. European patent application EP94810296<br />

58 Van Ettekoven K <strong>and</strong> Van der Arend AJM (1999) <strong>Identification</strong> <strong>and</strong> denom<strong>in</strong>ation <strong>of</strong> “new” races<br />

<strong>of</strong> Bremia lactucae. In Eucarpia Leafy Vegetables ‘99 (Lebeda A, Křístkova É, eds), pp. 171-5.


158 Chapter 5<br />

Supplemental Information<br />

Supplemental Table 1: List <strong>of</strong> Lactuca l<strong>in</strong>es used for screen<strong>in</strong>g Bremia <strong>effectors</strong>.<br />

The universal name, as well as known synonyms are <strong>in</strong>dicated. The species <strong>of</strong> Lactuca to which each<br />

l<strong>in</strong>e belongs is <strong>in</strong>dicated (Lactuca sp.). The ‘Gene(s)’ column <strong>in</strong>dicates current knowledge <strong>of</strong> resistance<br />

genes, if any, for each l<strong>in</strong>e. The use <strong>of</strong> the l<strong>in</strong>e as a parent for BIL crosses, or as a part <strong>of</strong> a differential<br />

set is <strong>in</strong>dicated under comments. Additional references (Ref.) are as follows:<br />

A - http://calgreens.org/control/uploads/Michelmore_<strong>and</strong>_Ochoa_-_Breed<strong>in</strong>g_Crisphead_Lettuce.pdf,<br />

B - http://compgenomics.ucdavis.edu/morphodb/<strong>analysis</strong>/viewTrait.php,<br />

C - http://www.worldseed.org/isf/ibeb.html,<br />

D - http://documents.plant.wur.nl/cgn/website/downloads/download/Cnr06Trait406.zip,<br />

Universal Name Synonym Lactuca sp. Gene(s) Comment Ref.<br />

CGN15692 aculeata<br />

[31]<br />

CGN04664 altaica<br />

[31]<br />

CGN15711 altaica<br />

[31]<br />

CGN04662 saligna<br />

[33]<br />

CGN05147 saligna<br />

[33]<br />

CGN05157 saligna<br />

[33]<br />

CGN05265 saligna<br />

[33]<br />

CGN05267 saligna<br />

[33]<br />

CGN05271 saligna BIL-parent<br />

[33,34]<br />

CGN05282 saligna<br />

[33]<br />

CGN05301 saligna<br />

[33]<br />

CGN05304 saligna<br />

[33]<br />

CGN05306 saligna<br />

[33]<br />

CGN05308 PIVT1267 saligna<br />

[33]<br />

CGN05309 saligna<br />

[33]<br />

CGN05310 saligna<br />

[33]<br />

CGN05311 saligna<br />

[33]<br />

CGN05313 saligna<br />

[33]<br />

CGN05314 saligna<br />

[33]<br />

CGN05315 saligna<br />

[33]<br />

CGN05317 saligna<br />

[33]<br />

CGN05318 saligna<br />

[33]<br />

CGN05320 saligna<br />

[33]<br />

CGN05321 PIVT1346 saligna<br />

[33]<br />

CGN05322 saligna<br />

[33]<br />

CGN05323 saligna<br />

[33]<br />

CGN05324 saligna<br />

[33]<br />

CGN05325 saligna<br />

[33]<br />

CGN05327 saligna<br />

[33]<br />

CGN05329 saligna<br />

[33]<br />

CGN05330 saligna<br />

[33]<br />

CGN05796 saligna<br />

[33]<br />

CGN05882 saligna<br />

[33]<br />

CGN05895 saligna<br />

[33]<br />

CGN05947 saligna<br />

[33]<br />

CGN09311 saligna<br />

[33]<br />

CGN09313 saligna<br />

[33]


Bremia GKLR prote<strong>in</strong>s <strong>in</strong>duce ETI<br />

159<br />

Universal Name Synonym Lactuca sp. Gene(s) Comment Ref.<br />

CGN09314 saligna<br />

[33]<br />

CGN10888 saligna<br />

[33]<br />

CGN11341 UC83US1 saligna BIL-parent<br />

[34]<br />

CGN13326 PI491206 saligna<br />

[33]<br />

CGN13327 PI491204 saligna<br />

[33]<br />

CGN13330 saligna<br />

[33]<br />

CGN14263 saligna<br />

[33]<br />

HRI11140 saligna<br />

[33]<br />

LJ85314 saligna R33<br />

[33],A<br />

PI491000 saligna<br />

[33],B<br />

PI491207 saligna<br />

[33]<br />

PI491208 saligna<br />

[33]<br />

PI491226 saligna<br />

[33],B<br />

PI503623 saligna<br />

[33]<br />

PI509523 saligna<br />

[33],B<br />

PI509524 saligna<br />

[33],B<br />

UC94ISR1 saligna<br />

[33]<br />

UC94US104 saligna<br />

[33]<br />

AMPLUS sativa Dm2,Dm4 new DM-resistance<br />

ARGELES sativa Dm24/38 EU-A/B differential set<br />

C<br />

BALESTA sativa R EU-B differential set<br />

C<br />

BEDFORD sativa R EU-B differential set<br />

C<br />

BELLISSIMO sativa R EU-B differential set<br />

C<br />

CAPITAN sativa Dm11 EU-A/B differential set<br />

C<br />

CG DM16 sativa Dm16 EU-B differential set<br />

C<br />

COBHAM<br />

no<br />

sativa<br />

GREEN<br />

Dm genes<br />

EU-A differential set<br />

C<br />

COLORADO sativa Dm18 EU-A/B differential set<br />

C<br />

DANDIE sativa Dm3 EU-A/B differential set<br />

C<br />

DESIGN sativa R c<strong>and</strong>idate differential set IBEB C<br />

DISCOVERY<br />

sativa<br />

Dm7,<br />

Dm36/37<br />

EU-A/B differential set<br />

C<br />

GRAND RAPIDS sativa<br />

[36]<br />

GREEN TOWERS<br />

sativa<br />

no<br />

Dm genes<br />

EU-B differential set<br />

C<br />

HILDE sativa Dm12 EU-A/B differential set<br />

C<br />

ICEBERG sativa<br />

[36,35]<br />

KIGALIE sativa R c<strong>and</strong>idate differential set IBEB C<br />

LEDNICKY sativa Dm1 EU-A/B differential set<br />

C<br />

LJ85289<br />

NINJA<br />

sativa<br />

(virosa)<br />

sativa<br />

R35<br />

Dm3,<br />

Dm11,<br />

Dm36/37<br />

R-gene orig<strong>in</strong>ally from L. virosa [33],A<br />

EU-A/B differential set<br />

NORDEN sativa BIL-parent<br />

[34]<br />

NUN Dm15 sativa Dm15 EU-B differential set<br />

C<br />

NUN DM17 sativa Dm17 EU-B differential set<br />

C<br />

OLOF sativa BIL-parent<br />

[34]<br />

PENNLAKE sativa Dm13 EU-A/B differential set<br />

C<br />

PRIMUS sativa<br />

[38]<br />

R4T57D sativa Dm4 EU-A/B differential set<br />

C<br />

C


160 Chapter 5<br />

Universal Name Synonym Lactuca sp. Gene(s) Comment Ref.<br />

RYZ2164 sativa Dm25 EU-B differential set<br />

C<br />

RYZ910457 sativa R EU-B differential set<br />

C<br />

SABINE sativa Dm6 EU-A/B differential set<br />

C<br />

SALADIN sativa<br />

[35]<br />

UC2202 sativa R33<br />

A<br />

UC2203 sativa R34<br />

A<br />

UC2204 sativa R35<br />

A<br />

UC2205 sativa R28<br />

A<br />

UC2206 sativa R29<br />

A<br />

UCDM 10 sativa Dm10 EU-A/B differential set<br />

C<br />

UCDM 14 sativa Dm14 EU-A/B differential set<br />

C<br />

UCDM 2 sativa Dm2 EU-A/B differential set<br />

C<br />

VALMAINE sativa Dm5/8 EU-A/B differential set<br />

C<br />

CGN05913 serriola<br />

[39]<br />

CGN05916 serriola<br />

[33]<br />

CGN10887 serriola<br />

D<br />

CGN14255 serriola<br />

[33]<br />

CGN14271 serriola<br />

[33]<br />

CGN14278 serriola<br />

[33]<br />

LJ85292 serriola R34<br />

[33],A<br />

LS 102 serriola Dm17/25 EU-A differential set<br />

C<br />

LSE 57/15 serriola Dm7 EU-A differential set<br />

C<br />

LSE/18 serriola Dm16 EU-A differential set<br />

C<br />

PI491108 serriola<br />

[33]<br />

PIVT 1309 serriola Dm15 EU-A/B differential set<br />

C<br />

UC96US23 serriola<br />

[37]<br />

W66331A serriola R29<br />

[33]<br />

W66336A serriola R28<br />

[33]<br />

CGN04683 PIVT280 virosa<br />

[33]<br />

CGN05148 virosa<br />

[33]<br />

CGN05332 virosa<br />

[33]<br />

CGN05333 virosa<br />

[33]<br />

CGN05816 virosa<br />

[31]<br />

CGN05941 virosa<br />

[31]<br />

CGN05978 virosa<br />

[31]<br />

CGN09364 virosa<br />

[31]<br />

CGN09365 PIVT1398 virosa<br />

[39]<br />

CGN13302 virosa<br />

[31]<br />

CGN13339 virosa<br />

[31]<br />

CGN13356 virosa<br />

[31]<br />

CGN13357 virosa<br />

[31]<br />

CGN17436 virosa<br />

[31]<br />

CGN18635 virosa<br />

[31]<br />

CGN19040 virosa<br />

[31]<br />

CGN22690 virosa<br />

[31]<br />

CGN23887 virosa<br />

[31]


Bremia GKLR prote<strong>in</strong>s <strong>in</strong>duce ETI<br />

161<br />

Supplemental Table 2 (next page <strong>and</strong> page thereafter): Recognition <strong>of</strong> <strong>effectors</strong> <strong>in</strong> lettuce breed<strong>in</strong>g<br />

l<strong>in</strong>es.<br />

The Lactuca species <strong>of</strong> each l<strong>in</strong>e is <strong>in</strong>dicated under ‘Sp.’, acu: aculeata, alt: altaica, sal: saligna, sat:<br />

sativa, ser: serriola, vir: virosa. More details <strong>of</strong> the Lactuca l<strong>in</strong>es can be found <strong>in</strong> Supplemental Table 1.<br />

Colours represent three scor<strong>in</strong>g levels, green for a low average score (no effects observed, score ≤0.7),<br />

yellow for an <strong>in</strong>termediate score (mild/<strong>in</strong>consistent effects observed) <strong>and</strong> red for a high average score<br />

(strong response observed, score ≥1.3). The number <strong>of</strong> biological replicates for each lettuce/effector<br />

comb<strong>in</strong>ation is <strong>in</strong>dicated by the <strong>in</strong>tensity <strong>of</strong> the colour. Lettuce/effector comb<strong>in</strong>ations for which no data<br />

is available are <strong>in</strong>dicated <strong>in</strong> grey.<br />

Supplemental Table 3: Primers <strong>and</strong> markers used <strong>in</strong> this study<br />

Gene Type Forward primer Reverse primer<br />

BLG01 Flank<strong>in</strong>g AAACGCGATAAGGTCTCAAAA TGACTTCGGTCCTCATTAAAC<br />

BLG01 Clon<strong>in</strong>g ED CACCATGGCTTTCAGTAATTTACTTGAACATCT TCAATTTCGTTTGGCGTTGGG<br />

BLG01 qPCR GTGCTTGCGATCTCGATGTA GGCTTCTTGGTCGATCTGTC<br />

BLG02 Flank<strong>in</strong>g AATTTCTATTGCGAGCACAGC GTTCGCATGACTCACACCTC<br />

BLG02 qPCR GACGAAGCAAGCGTGTACTG TCGGTTACGTCGAACGTTTT<br />

BLG03 Flank<strong>in</strong>g AAGATGTCGCAACGCAGAG TCCACTTGGCAAAGAGCAC<br />

BLG03 Clon<strong>in</strong>g ED CACCATGTTTCTAGACGGATTAAAAGCTCTTG TCACATCTCAACGTCGCTAGGTG<br />

BLG03 qPCR AAAAGGCTAGCGAGGAACAA CACATCTCAACGTCGCTAGG<br />

Lettuce<br />

Act<strong>in</strong>2<br />

qPCR CTATCCAGGCTGTGCTTTCC ACCCTTCGTAGATCGGGACT<br />

Bremia<br />

Act<strong>in</strong>2<br />

qPCR AGGCCGTGCTGTCTCTCTAC GCGCATAGCCTTCGTAGATT<br />

Marker name A Forward primer Reverse primer<br />

CLSM5902 AGGTACGCGAATTTGACCAC CACAACGGAAGAAACCGAAT<br />

QGC18F20 AGGTGACAGATGGGACCAAG GTATTCCGCCCACAGTTGAT<br />

CLS4696 AATCTCCAGCTTCGGGTTTT ACTACGAAACGACCCATTGC<br />

CLSX3110 CCACGGCTAGGGTCAGATTA TGAAGACATGGGAGACGACA<br />

CLS4656 CCGTATGCCGTTCATCTTCT GCACTCCAATTGAATGATCG<br />

CLSX3880 TTGCGAGATCCGTATCAGTG CTCCCACAGTTCCGCTAATC<br />

CLS3349 CTTTTTGGAAGGCAATCTGG TCCAGGGAAAACCATCTTTG<br />

QGF21K05 CAAAATGTTGCAGCGTCTGT GGGGGAGGGTCATAACAGTAA<br />

LE9038 GATGGAGCGTCCGATCAGTGTCTG GGATCACCATCATAGTCAGCTTGT<br />

LE0456 TTTGCTTGCTTGTTGGTTCA TCTGTGAAATCACCCTTGCC<br />

LE3016 ACCACCGCTTTCTCACAGTT TGGCCATTCGACCTTTACTC<br />

A<br />

Markers that start their name with LE were derived from the Compositae Genome Project Database<br />

(CGPDB)(http://compgenomics.ucdavis.edu). The orig<strong>in</strong>al EST contigs from which those markers<br />

were designed were QGD7H11.yd.ab1 for LE9038, QGG19L12.yg.ab1 for LE0456, <strong>and</strong> QG_CA_<br />

Contig2163 for LE3016. Markers that start with C or Q were designed based on EST contigs <strong>in</strong> the<br />

Lettuce SFP Chip Project (http://chiplett.ucdavis.edu).


162 Chapter 5


Bremia GKLR prote<strong>in</strong>s <strong>in</strong>duce ETI<br />

163


164 Chapter 5<br />

BLG01 E<br />

Strong<br />

10 0<br />

23<br />

BLG01 A<br />

Strong<br />

11<br />

1<br />

BLG01 A<br />

Weak<br />

4<br />

1<br />

6<br />

BLG01 E<br />

Weak<br />

Supplemental Figure 1: Overlap <strong>in</strong> responses <strong>of</strong> Lactuca l<strong>in</strong>es to BLG01 A <strong>and</strong> BLG01 E .<br />

Based on data <strong>in</strong> Supplemental Table 2. Strong responses are those with a score > 1.3 (red colours <strong>in</strong><br />

Supplemental Table 2), <strong>and</strong> weak responses those > 0.7 but ≤ 1.3 (yellow colours <strong>in</strong> Supplemental<br />

Table 2). For determ<strong>in</strong><strong>in</strong>g the overlap <strong>in</strong> responses to the effector alleles all scores were taken <strong>in</strong>to<br />

account, irrespective <strong>of</strong> the number <strong>of</strong> replicates on which the score is based (<strong>in</strong> contrast to the data <strong>in</strong><br />

Table 1, which only <strong>in</strong>cludes positive scores based on at least two replicates). Weak scores are more<br />

likely to be the result <strong>of</strong> falsely scor<strong>in</strong>g <strong>of</strong> <strong>in</strong>filtration damage as a response towards the effector, e.g.<br />

all four l<strong>in</strong>es that were scored as show<strong>in</strong>g a weak response only to BLG01 A each have an average<br />

score <strong>of</strong> 1 based on two replicates <strong>of</strong> which one was scored as 2 (strong <strong>in</strong>teraction), but the other as 0<br />

(no <strong>in</strong>teraction).<br />

Supplemental Information 2: Alignment <strong>of</strong> prote<strong>in</strong> translations <strong>of</strong> different alleles <strong>of</strong> BLG01, BLG02<br />

<strong>and</strong> BLG03.<br />

BLG01<br />

A MVRVYVAALTGFLALSASASATLQLTSVNESLADAYDSTAPARGKLRAYAATNVESDERA<br />

B ...--.......................................................<br />

C ............................................................<br />

D .......................*....................................<br />

E ....*.......................................................<br />

F ....*...............................A.......................<br />

G ............................................................<br />

A FSNLLEHLKTLNVLFSPLSKERMEAAISKSDSSVVKHLSEDGAVNEKKLGIGRDGVKAFE<br />

B ............................................................<br />

C ............................................................<br />

D ............................................................<br />

E ........................................................E...<br />

F ............................................................<br />

G ............................................................<br />

A PAKVSKVKMILEDIFRKPYNKILLKVLSKANGGERNLVRNLAQAEMLGYKVFFLKSTLAS<br />

B .............................................I..F...........<br />

C ............................................................<br />

D ................................................F...........<br />

E ............................................................<br />

F ................................................F...........<br />

G ................................................F...........


Bremia GKLR prote<strong>in</strong>s <strong>in</strong>duce ETI<br />

165<br />

A KWERDGVSLMDVWSYICKDVKAPTEEEMKIFSHWCGYAFVLSAKGKFSAEETVIEKTLLK<br />

B ....................N.......................................<br />

C ....................N.........................L.............<br />

D ....................N.......................................<br />

E ....................N.......................................<br />

F ....................N.......................................<br />

G ....................N.......................................<br />

A VHNDNKNKKGKLAINMLAQIHLSRKFKVDANFFELYDPSPSSLKKLLLELEKSPRACDLD<br />

B .........D..............................................Y...<br />

C ............................................................<br />

D ........................................................Y...<br />

E .........D..............................F.T.............Y...<br />

F ........................................................Y...<br />

G .............................................IA*------------<br />

A VELYRLLKQAVTDDKFMKGIWDRSTKKPEQPNAKRN<br />

B ....................................<br />

C ....................................<br />

D ....................................<br />

E ..........................T-........<br />

F ......................SRPRSLNSPTPNEIX<br />

G ------------------------------------<br />

BLG02<br />

A MVRIYVAALTVVLAFSASCSATSPLTLAKATPVTANGSGGRAQGRLRAHTTTNVEIDERS<br />

B ............................................................<br />

C ............................................................<br />

D ............................................................<br />

E ............................................................<br />

F ............................................................<br />

A ISDVIYAIARQVADHRSNLVQAPKRTYTTYLATLDLSLDKVLEQNWSELRLLYVKQTKRK<br />

B ............................................................<br />

C ............................................................<br />

D ............................................................<br />

E ..........................C.................................<br />

F .L..V............G..........................................<br />

A RPKDFVSMYELLVKKYGLLKLTDMMKKPDYISLSETDNFKYLYDEASVYWRKNSVLKQYA<br />

B ............................................................<br />

C ............................................................<br />

D ............................................................<br />

E ............................................................<br />

F ............................................................<br />

A SELYDSKGNSKTFDVTDFESLQPFFERIGRRGDYLEITAAEHEKWKTNKLRPT<br />

B .....................................................<br />

C .........G.K.........K....C..........................<br />

D .........G.K.........K..............N................<br />

E .....................................................<br />

F .....................................................<br />

BLG03<br />

A MVRVYVAALAAIFALS--ASATLHLTLANASSVTTEEGDGRPQGKLRVNAATNVESDERF<br />

B ................--..........................................<br />

C ................--..........................................<br />

D ................--..........................................<br />

E ..............F.AS..........................................<br />

F ..............F.--............P...A........................S<br />

G ..............F.--............P...A.......H.................<br />

A LDGLKALVRGFYDLTPFAPRFQKDTYSNLLLKLNLSFEQFSGKDTLQLRRFYDAARRHNK<br />

B ............................................................<br />

C ............................................................<br />

D ............................................................<br />

E .................................................Q..........<br />

F ............................*....................Q..........<br />

G ......F..............K....P......D..........................


166 Chapter 5<br />

A VNPTNPVSVYTGLVEKYGEFEIVNMVYSLKHAQSSKSRDVLKRLGKEEKWYWKDKKDAGK<br />

B ..............................D.............................<br />

C ............................................................<br />

D ............................................................<br />

E ............................................................<br />

F ............................................................<br />

G L..RT....D.........................E........................<br />

A MYAEALDLGNEFTVKNMVSKLSKLEQFLNRIDQKASEEQLKALVVADIERVKTKKESVSP<br />

B ............................................................<br />

C .....I......................................................<br />

D ....................................................M.......<br />

E .................I..................................M.......<br />

F ....................................................M.......<br />

G R...........................................................<br />

A SDVEM<br />

B .....<br />

C .....<br />

D ...A.<br />

E ...A.<br />

F ...A.<br />

G .....<br />

Supplemental Information 1: Best BLAST hit <strong>of</strong> BLG01, BLG02, <strong>and</strong> BLG03 to an oomycete prote<strong>in</strong>.<br />

BLG01<br />

>PITG_15128T0 | PITG_15128 | Phytophthora <strong>in</strong>festans T30-4 RXLR effector family,<br />

putative (332 aa)<br />

Length = 331<br />

Score = 37.4 bits (85), Expect = 0.037, Method: Compositional matrix adjust<br />

Identities = 31/96 (32%), Positives = 46/96 (47%), Gaps = 12/96 (12%)<br />

Query: 109 LGIGRDGVKAFEPAKVSKVKMILEDIFRK-----PYNKILLKVLSKANGGERNLVRNLAQ 163<br />

L + DG+ K +LED K ++ L+KVL+K GE NLVR L Q<br />

Sbjct: 34 LKLNDDGLNVLRSRKFE----VLEDYVTKLNHGQSVDETLVKVLTKHMDGEDNLVRLLDQ 89<br />

Query: 164 AEMLGY---KVFFLKSTLASKWERDGVSLMDVWSYI 196<br />

A+ K L++ L +KW+ + + M VWS +<br />

Sbjct: 90 AKWSTRSLDKANHLETALLTKWQNEKLLPMSVWSRL 125<br />

BLG02<br />

>Pr_97351T0 | Pr_97351 | Phytophthora ramorum RxLR effector (533 aa)<br />

Length = 532<br />

Score = 37.0 bits (84), Expect = 0.032, Method: Compositional matrix adjust.<br />

Identities = 50/171 (29%), Positives = 74/171 (43%), Gaps = 18/171 (10%)<br />

Query: 1 MVRIYVAALTVVLAFSASCSATSPLTLAKA---TPVTANGSGGRAQGRLRAHTTTNVEID 57<br />

M YV L +++A + + + TSP T+A A T A G G A+GR+ +T D<br />

Sbjct: 1 MRYCYVMMLVLIVALAINAAQTSPATIANARVPTRWVAAGLNG-ARGRVLTSDSTAETTD 59<br />

Query: 58 ERSISDVIYAIARQVADHRSNLVQAPKRTYTTYL---ATLD-----LSL----DKVLEQN 105<br />

E I A A + A V+AP +T +L ++D LSL DK+L+<br />

Sbjct: 60 EERAG--ISASAVEKAKALFTPVKAPTKTLQRWLNNGISVDDIFTHLSLAKAGDKLLDDT 117<br />

Query: 106 WSELRLLYVKQTKRKRPKDFVSMYELLVKKYGLLKLTDMMKKPDYISLSET 156<br />

L YV+ K P S L YG L M++ +S +E+<br />

Sbjct: 118 QFMTWLQYVELFNFKNPAQTKSTITTLTAHYGDKGLFQMLEAAKRVSSTES 168<br />

BLG03<br />

>Ps_133875T0 | Ps_133875 | Phytophthora sojae RxLR effector (225 aa)<br />

Length = 224<br />

Score = 32.3 bits (72), Expect = 0.81, Method: Compositional matrix adjust.<br />

Identities = 15/57 (26%), Positives = 31/57 (54%), Gaps = 2/57 (3%)<br />

Query: 88 LLKLNLSFEQFSGKDTLQLRRLYDAARRHNKVNPTNPVSVYTGLVEKYGEFEIVNMV 144<br />

LL+L+ E+ + L + + + N+ NP N V++ + ++ KYGE ++ M+<br />

Sbjct: 98 LLQLDDGLEKLLSRKNLDTWKTF--VNKLNQQNPENQVTMMSAIINKYGEEQVARMI 152


167<br />

Chapter 6:<br />

Discussion


168 Chapter 6


Discussion<br />

169<br />

Identify<strong>in</strong>g <strong>effectors</strong><br />

Microbial pathogens <strong>of</strong> plants <strong>and</strong> animals have evolved sophisticated ways to<br />

<strong>in</strong>terfere with host cell processes. To render the host susceptible to <strong>in</strong>fection pathogens<br />

deploy small molecules <strong>and</strong> prote<strong>in</strong>s, also called <strong>effectors</strong>, which <strong>in</strong>terfere<br />

with host processes [1,2] . An important process to perturb is detection by the host<br />

through recognition <strong>of</strong> molecular patterns that are present on the microbe’s surface<br />

or are part <strong>of</strong> other exposed molecules (microbe-associated molecular patterns,<br />

MAMPs) [3] . Successful pathogens use their <strong>effectors</strong> to suppress immune responses<br />

that are triggered after recognition or avoid detection altogether [1,2,4] . The <strong>in</strong>itial<br />

<strong>in</strong>teraction occurs mostly outside <strong>of</strong> host cells <strong>and</strong> pathogens deploy extracellular<br />

<strong>effectors</strong> to <strong>in</strong>terfere with MAMP recognition or other extracellular defences,<br />

e.g. <strong>in</strong>hibition <strong>of</strong> hydrolytic host enzymes [5,6] . Interest<strong>in</strong>gly, pathogens have also<br />

evolved different ways to get <strong>effectors</strong> <strong>in</strong>to the host cell. A well-studied mechanism<br />

by which <strong>effectors</strong> are translocated from pathogens <strong>in</strong>to host cells is the Type Three<br />

Secretion System used by various Gram-negative bacterial pathogens (reviewed by<br />

Büttner <strong>and</strong> He [7] ). Effectors conta<strong>in</strong><strong>in</strong>g a specific signal are targeted <strong>in</strong>to the host<br />

cell via a pilus-like structure that penetrates the host cell. Once <strong>in</strong>side, <strong>effectors</strong> act<br />

on the host cellular mach<strong>in</strong>ery to suppress immunity <strong>and</strong> to establish a successful<br />

<strong>in</strong>fection. Eukaryotic pathogens such as the oomycetes do not appear to use a direct<br />

<strong>in</strong>jection-like mechanism, but rather secrete prote<strong>in</strong>s that are then taken up by the<br />

host.<br />

Oomycetes are a remarkable <strong>and</strong> diverse group <strong>of</strong> fungal-like pathogens. Their<br />

hyphal growth <strong>and</strong> spore production give them the appearance <strong>of</strong> fungi, though<br />

they belong to the k<strong>in</strong>gdom Stramenopila <strong>and</strong> are more closely related to brown<br />

algae. Oomycete pathogens affect both animals <strong>and</strong> plants <strong>and</strong> <strong>in</strong>clude a number<br />

<strong>of</strong> notorious pathogens <strong>of</strong> crops, such as Phytophthora <strong>in</strong>festans, the potato late<br />

blight pathogen that is best known as the cause <strong>of</strong> the Irish potato fam<strong>in</strong>e. Like<br />

other successful pathogens, oomycetes use an arsenal <strong>of</strong> <strong>effectors</strong> to establish<br />

<strong>in</strong>fection [8,9] . Bio<strong>in</strong>formatics <strong>analysis</strong> showed that oomycetes have evolved many<br />

novel prote<strong>in</strong> doma<strong>in</strong> comb<strong>in</strong>ations compared to other species with a similar s<strong>in</strong>gle<br />

doma<strong>in</strong> repertoire [10] . These novel comb<strong>in</strong>ations are enriched <strong>in</strong> secreted prote<strong>in</strong>s,<br />

suggest<strong>in</strong>g they contribute to a diverse <strong>and</strong> unique effector repertoire. Analysis <strong>of</strong><br />

gene content has been <strong>in</strong>strumental <strong>in</strong> identify<strong>in</strong>g the vast repertoire <strong>of</strong> <strong>effectors</strong><br />

<strong>and</strong> has revealed extensive effector diversity between oomycete species [8,9] .


170 Chapter 6<br />

Genomes <strong>and</strong> transcriptomes<br />

The genomes <strong>of</strong> Albugo c<strong>and</strong>ida, Pythium ultimum, the Phytophthora species<br />

<strong>in</strong>festans, ramorum, sojae <strong>and</strong> capsici, <strong>and</strong> the <strong>downy</strong> <strong>mildew</strong> species Hyaloperonospora<br />

arabidopsidis <strong>and</strong> Pseudoperonospora cubensis have been sequenced<br />

<strong>and</strong> annotated [11–17] . Whilst these genome sequences have had great use <strong>in</strong> the<br />

identification <strong>of</strong> potential <strong>effectors</strong> <strong>in</strong> these species, obta<strong>in</strong><strong>in</strong>g <strong>and</strong> analys<strong>in</strong>g the<br />

genome sequences has been a large comb<strong>in</strong>ed effort, <strong>of</strong>ten <strong>in</strong>volv<strong>in</strong>g many collaborators<br />

with an <strong>in</strong>terest <strong>in</strong> these particular pathogens. At the moment technologies<br />

are still not sufficiently advanced <strong>and</strong> automated to <strong>in</strong>vestigate the genomes <strong>of</strong> all<br />

possible pathogens <strong>in</strong> an efficient <strong>and</strong> rapid way. However, the gene content <strong>of</strong><br />

organisms can also be obta<strong>in</strong>ed by transcriptomics from which <strong>effectors</strong> can then<br />

be discovered.<br />

In this thesis the identification <strong>and</strong> <strong>functional</strong> <strong>analysis</strong> <strong>of</strong> Bremia lactucae<br />

<strong>effectors</strong> from transcriptome-sequenc<strong>in</strong>g data is described. Sequenc<strong>in</strong>g the<br />

transcriptome rather than the entire genome <strong>of</strong> Bremia has several advantages. The<br />

result<strong>in</strong>g dataset consists <strong>of</strong> transcripts <strong>of</strong> genes that are expressed dur<strong>in</strong>g <strong>in</strong>fection,<br />

whereas a genome-derived set <strong>of</strong> predicted genes is more likely to also conta<strong>in</strong><br />

genes that are not expressed dur<strong>in</strong>g <strong>in</strong>fection or are even not expressed at all<br />

(be<strong>in</strong>g pseudogenes). Careful plann<strong>in</strong>g <strong>of</strong> the sampl<strong>in</strong>g strategy is, however, more<br />

important when sequenc<strong>in</strong>g a transcriptome, as sequenc<strong>in</strong>g will yield a snapshot <strong>of</strong><br />

the mRNA molecules present at the time <strong>of</strong> sampl<strong>in</strong>g. By <strong>in</strong>oculat<strong>in</strong>g leaf-material<br />

twice, <strong>in</strong>terspaced by three days, both earlier <strong>and</strong> later stages <strong>of</strong> pathogen growth<br />

are <strong>in</strong>cluded <strong>in</strong> the sample. This allows for a broad sampl<strong>in</strong>g <strong>of</strong> <strong>in</strong>fection-related<br />

transcripts, <strong>and</strong> enables identification <strong>of</strong> both effector c<strong>and</strong>idates that are expressed<br />

early (e.g. BLR03 <strong>and</strong> BLR22, Chapter 4) <strong>and</strong> those that are expressed late dur<strong>in</strong>g<br />

<strong>in</strong>fection (e.g. BLR23, Chapter 4). Prediction <strong>of</strong> prote<strong>in</strong> cod<strong>in</strong>g sequences from<br />

transcripts is more straight-forward as <strong>in</strong>trons do not disrupt the read<strong>in</strong>g frames <strong>and</strong><br />

the largest open read<strong>in</strong>g frame <strong>in</strong> each transcript is therefore most likely encod<strong>in</strong>g<br />

the correctly predicted prote<strong>in</strong>. Furthermore, the transcriptome conta<strong>in</strong>s fewer<br />

sequence repeats than a genome, which simplifies the assembly process. Another<br />

issue that has less impact on the assembly <strong>of</strong> transcriptome sequenc<strong>in</strong>g data than<br />

it has on the assembly <strong>of</strong> an entire genome is heterozygosity <strong>of</strong> the genome,<br />

e.g. that <strong>of</strong> Bremia. Overall, less sequenc<strong>in</strong>g data is required to provide good<br />

coverage <strong>of</strong> the transcriptome to allow robust assembly <strong>of</strong> full-length transcripts.<br />

The advantages <strong>of</strong> sequenc<strong>in</strong>g the transcriptome also mean that computational<br />

requirements to store, h<strong>and</strong>le, <strong>and</strong> analyse data are lower, allow<strong>in</strong>g such a project to<br />

be performed with modest comput<strong>in</strong>g hardware.


Discussion<br />

171<br />

Host-translocated <strong>effectors</strong><br />

The focus <strong>of</strong> the research described <strong>in</strong> this thesis was on RXLR <strong>and</strong> RXLR-like<br />

<strong>effectors</strong>. The RXLR motif was found to be common to all cloned avirulence<br />

prote<strong>in</strong>s <strong>of</strong> oomycetes known <strong>in</strong> 2005 [18] . Avirulence prote<strong>in</strong>s, or their effects on<br />

host prote<strong>in</strong>s, are recognised by <strong>in</strong>tracellular Resistance prote<strong>in</strong>s belong<strong>in</strong>g to the<br />

NB-LRR class <strong>and</strong> were therefore suspected to be present <strong>in</strong> the host cytoplasm.<br />

The fact that these prote<strong>in</strong>s shared the RXLR motif suggested the motif was<br />

<strong>in</strong>volved <strong>in</strong> translocation <strong>of</strong> the effector <strong>in</strong>to the host cell. Experiments us<strong>in</strong>g<br />

<strong>effectors</strong> with mutated RXLR motifs <strong>in</strong>deed revealed the motif to be required for<br />

translocation [19] . Translocation was shown to be <strong>in</strong>dependent <strong>of</strong> pathogen-encoded<br />

mach<strong>in</strong>ery as <strong>effectors</strong> are taken up <strong>in</strong>to host cells <strong>in</strong> the absence <strong>of</strong> the pathogen<br />

[20,21]<br />

. The mechanism by which translocation occurs, however, is still under debate.<br />

One study suggests that the RXLR motif b<strong>in</strong>ds PIP3 <strong>and</strong> that <strong>effectors</strong> are subsequently<br />

translocated <strong>in</strong> a lipid-raft-dependent manner [22] . This was also shown for<br />

fungal <strong>effectors</strong>, <strong>and</strong> allowed entry <strong>in</strong>to plant <strong>and</strong> human cells [22] . The lipid b<strong>in</strong>d<strong>in</strong>g<br />

properties <strong>of</strong> one <strong>of</strong> the fungal <strong>effectors</strong> could, however, not be confirmed <strong>in</strong> a<br />

second study, which was also able to separate lipid b<strong>in</strong>d<strong>in</strong>g properties <strong>of</strong> another<br />

fungal effector from the sequence required for translocation [23] . Likewise, <strong>in</strong>vestigation<br />

<strong>of</strong> P. <strong>in</strong>festans effector Avr3a revealed that lipid b<strong>in</strong>d<strong>in</strong>g properties could be<br />

separated from translocation, <strong>and</strong> that lipid b<strong>in</strong>d<strong>in</strong>g was required for stabilisation<br />

<strong>of</strong> Avr3a, but not for translocation [24] . Translocation <strong>of</strong> RXLR-motif-conta<strong>in</strong><strong>in</strong>g<br />

SpHtp1 <strong>of</strong> the oomycete fish pathogen Saprolegnia parasitica has been reported<br />

to be dependent on tyros<strong>in</strong>e-O-sulphate [21] . SpHtp1 did not, however, translocate<br />

<strong>in</strong>to plant <strong>and</strong> human cells, <strong>and</strong> <strong>in</strong> contrast to the secretomes <strong>of</strong> Peronosporales<br />

there is no enrichment <strong>of</strong> the RXLR motif <strong>in</strong> the S. parasitica secretome. The exact<br />

mechanism <strong>of</strong> RXLR-effector translocation thus rema<strong>in</strong>s to be determ<strong>in</strong>ed.<br />

The RXLR motif was <strong>in</strong>strumental <strong>in</strong> the identification <strong>of</strong> several hundreds <strong>of</strong><br />

potential <strong>effectors</strong> <strong>in</strong> the genomes <strong>of</strong> <strong>in</strong>dividual Phytophthora species. In <strong>downy</strong><br />

<strong>mildew</strong>s the numbers <strong>of</strong> identified RXLR <strong>effectors</strong> <strong>and</strong> other pathogenicity genes<br />

appeared to be lower [14,25] . Though am<strong>in</strong>o acid motifs provide a useful tool to<br />

identify oomycete <strong>effectors</strong>, the def<strong>in</strong>ition <strong>of</strong> the motifs may be too strict to detect<br />

all related <strong>effectors</strong>. Recently the host-translocated effector ATR5 <strong>of</strong> H. arabidopsidis<br />

was identified <strong>and</strong> found to lack a RXLR motif, though an RXLR-associated<br />

EER doma<strong>in</strong> was present. In Pseudoperonospora cubensis a variant <strong>of</strong> the RXLR<br />

motif, QXLR is common <strong>and</strong> enables translocation <strong>in</strong>to the host cell [25] . This<br />

QXLR motif was previously thought to be <strong>in</strong>capable <strong>of</strong> enabl<strong>in</strong>g translocation, as<br />

the am<strong>in</strong>o acid substitution RXLR → QXLR <strong>in</strong> the P. sojae RXLR effector Avr1b<br />

abolished the effector’s capability to re-enter soybean root cells <strong>in</strong> the absence <strong>of</strong><br />

a pathogen [22] . Mutated forms <strong>of</strong> Avr1b were expressed <strong>in</strong> <strong>and</strong> then secreted from


172 Chapter 6<br />

soybean root cells after delivery <strong>of</strong> constructs by particle bombardment. The ability<br />

to re-enter the cells was abolished <strong>in</strong> some <strong>of</strong> the tested mutants, but a wide range<br />

<strong>of</strong> mutations did not appear to impact re-entry <strong>and</strong> suggested a highly redundant<br />

motif ([RHK]X[LMIFYW]). In addition, mutations <strong>in</strong> EER-like motifs also had a<br />

negative effect on effector re-entry. The ability <strong>of</strong> RXLR <strong>effectors</strong> to translocate<br />

<strong>in</strong>to host cells is therefore more likely to be dependent on the context <strong>in</strong> which the<br />

motif occurs than the exact motif itself. Such f<strong>in</strong>d<strong>in</strong>gs warrant the <strong>in</strong>vestigation <strong>of</strong><br />

potential <strong>effectors</strong> that do not conform to the canonical RXLR effector with strict<br />

RXLR- <strong>and</strong> EER motifs. In this regard the presence <strong>of</strong> the RXLR motif can be<br />

seen as an <strong>in</strong>dication <strong>of</strong> whether a prote<strong>in</strong> may be a host-translocated effector, but<br />

its absence should not be taken as a sign that the prote<strong>in</strong> is not translocated. In this<br />

thesis GKLR <strong>effectors</strong> are described that are recognised <strong>in</strong> specific Lactuca hosts<br />

(Chapter 5). These <strong>effectors</strong> were identified based on similarity to other oomycete<br />

<strong>effectors</strong> <strong>and</strong> were selected for further <strong>in</strong>vestigation despite the variant RXLR<br />

motif. Effector c<strong>and</strong>idates without a clear variant <strong>of</strong> the RXLR motif that do have<br />

an EER motif (Chapter 3) were also identified, but these are yet to be <strong>in</strong>vestigated.<br />

Other classes <strong>of</strong> non-RXLR host-translocated oomycete effector have been<br />

identified, e.g. the Cr<strong>in</strong>klers, which are thought to have a more ancient orig<strong>in</strong><br />

based on their occurrence <strong>in</strong> phylogenetically more distant oomycete species such<br />

as Albugo <strong>and</strong> Aphanomyces [26] . Downy <strong>mildew</strong>s express relatively few Cr<strong>in</strong>kler<br />

prote<strong>in</strong>s (Chapter 3, [27–29] ). RXLR <strong>and</strong> Cr<strong>in</strong>kler effector sequences can be m<strong>in</strong>ed<br />

from sequence databases by search<strong>in</strong>g for the occurrence <strong>of</strong> the motifs that characterise<br />

these <strong>effectors</strong>. Additional classes <strong>of</strong> <strong>effectors</strong> can be identified as clusters<br />

<strong>of</strong> related sequences that are specific for the pathogen species. For example, <strong>in</strong><br />

the predicted secretome <strong>of</strong> the white rust Albugo laibachii an additional group<br />

<strong>of</strong> 31 <strong>effectors</strong> that share a CHXC motif was identified [30] . The N-term<strong>in</strong>us <strong>of</strong><br />

one such effector, CHXC9, was shown to be as efficient as the N-term<strong>in</strong>us <strong>of</strong> a<br />

Cr<strong>in</strong>kler effector <strong>in</strong> translocat<strong>in</strong>g the AVR3a effector doma<strong>in</strong> from Phytophthora<br />

capsici <strong>in</strong>to N. benthamiana cells, <strong>in</strong>dicat<strong>in</strong>g that these CHXC prote<strong>in</strong>s are genu<strong>in</strong>e<br />

host-translocated <strong>effectors</strong>. Search<strong>in</strong>g the Bremia secretome for clusters <strong>of</strong> related<br />

sequences identified additional RXLR-like effector c<strong>and</strong>idates. It did not, however,<br />

uncover novel types <strong>of</strong> <strong>effectors</strong> such as the Albugo CHXC <strong>effectors</strong>.<br />

Targets <strong>and</strong> effector variation<br />

A next challenge for effector research is the identification <strong>of</strong> the targets <strong>of</strong> <strong>effectors</strong>.<br />

The network <strong>of</strong> <strong>in</strong>teractions between H. arabidopsidis <strong>and</strong> P. syr<strong>in</strong>gae <strong>effectors</strong><br />

<strong>and</strong> Arabidopsis prote<strong>in</strong>s based on a recent high-throughput yeast-two-hybrid study<br />

<strong>in</strong>dicate that different pathogens target a limited number <strong>of</strong> highly connected cellular<br />

hubs [31] . The shared host targets are <strong>of</strong>ten <strong>in</strong>volved <strong>in</strong> immunity <strong>and</strong> are highly


Discussion<br />

173<br />

<strong>in</strong>terconnected. Some <strong>of</strong> the host targets are targeted by more than 20 different<br />

<strong>effectors</strong>.<br />

If a relatively small set <strong>of</strong> defence hubs are the ma<strong>in</strong> target <strong>of</strong> <strong>effectors</strong>, the<br />

question rema<strong>in</strong>s why some pathogens encode many hundreds <strong>of</strong> <strong>effectors</strong>. A<br />

study on <strong>downy</strong> <strong>mildew</strong>s <strong>effectors</strong> <strong>in</strong> Arabidopsis revealed that many <strong>effectors</strong><br />

enhance disease susceptibility, although many with subtle effects <strong>and</strong> not on all <strong>of</strong><br />

the 12 accessions tested [32] . These accession dependent effects reflect the variation<br />

<strong>in</strong> <strong>effectors</strong> <strong>and</strong> host targets. Variation <strong>in</strong> <strong>effectors</strong> between different isolates <strong>of</strong> a<br />

species has been shown to <strong>in</strong>clude mutations result<strong>in</strong>g <strong>in</strong> am<strong>in</strong>o acid substitutions,<br />

but also loss or ga<strong>in</strong> <strong>of</strong> entire <strong>effectors</strong>, differences <strong>in</strong> copy number <strong>and</strong> transcriptional<br />

polymorphism [28,33–35] . The complete arsenal <strong>of</strong> <strong>effectors</strong> encoded by a s<strong>in</strong>gle<br />

species is therefore likely to be much larger than the reference sequence <strong>of</strong> the<br />

species suggests. These different <strong>effectors</strong> may target subtly different variants <strong>of</strong><br />

the host target prote<strong>in</strong>s, or provide <strong>functional</strong> redundancy <strong>and</strong> <strong>in</strong>creased flexibility<br />

<strong>in</strong> adapt<strong>in</strong>g to hostile environments.<br />

Us<strong>in</strong>g <strong>effectors</strong> <strong>in</strong> resistance breed<strong>in</strong>g<br />

Identify<strong>in</strong>g effector c<strong>and</strong>idates by genome or transcriptome sequenc<strong>in</strong>g is becom<strong>in</strong>g<br />

<strong>in</strong>creas<strong>in</strong>gly affordable <strong>and</strong> achievable. The total number <strong>of</strong> c<strong>and</strong>idate <strong>effectors</strong><br />

identified from genome sequences has already surpassed 1000 <strong>in</strong> Phytophthora<br />

species alone. More pathogen species are be<strong>in</strong>g sequenced to learn more about<br />

the basis <strong>of</strong> their pathogenicity. The ultimate goal is to apply knowledge about the<br />

factors <strong>in</strong>volved <strong>in</strong> pathogenicity to breed pathogen-resistant crop plants. Effectors<br />

<strong>of</strong> pathogens can be used as tools to breed for novel resistances aga<strong>in</strong>st pathogens,<br />

an approach also referred to as effector-assisted breed<strong>in</strong>g. Knowledge <strong>of</strong> the P.<br />

<strong>in</strong>festans genome <strong>and</strong> the <strong>effectors</strong> encoded there<strong>in</strong>, has already provided useful<br />

<strong>in</strong>sights for breed<strong>in</strong>g <strong>of</strong> late blight resistance <strong>in</strong> potato (reviewed by Vleeshouwers<br />

et al. [36] )<br />

Detect<strong>in</strong>g R‐genes<br />

The most direct way <strong>in</strong> which <strong>effectors</strong> can currently aid resistance breed<strong>in</strong>g is by<br />

us<strong>in</strong>g them to identify <strong>and</strong> genetically follow resistance (R) genes. As has been<br />

done <strong>in</strong> the research described <strong>in</strong> this thesis <strong>and</strong> elsewhere [37–39] , <strong>effectors</strong> can be<br />

used to screen for the presence <strong>of</strong> R-prote<strong>in</strong>s that mediate their recognition. In<br />

this thesis <strong>effectors</strong> BLG01 <strong>and</strong> BLG03 are examples <strong>of</strong> such <strong>effectors</strong>. Effector<br />

BLG03 is recognised by either Dm2 or a gene closely l<strong>in</strong>ked to Dm2. In a<br />

segregat<strong>in</strong>g population the response to BLG03 can be used as a marker for Dm2<br />

without the need for DNA isolation <strong>and</strong> <strong>analysis</strong>. Effectors can therefore also act


174 Chapter 6<br />

as useful markers to identify <strong>and</strong> track resistance genes <strong>in</strong> breed<strong>in</strong>g l<strong>in</strong>es. Recently,<br />

the genetic basis <strong>of</strong> resistance <strong>of</strong> potato cultivar ‘Sarpo Mira’ to P. <strong>in</strong>festans was<br />

dissected us<strong>in</strong>g <strong>effectors</strong> <strong>of</strong> P. <strong>in</strong>festans to screen <strong>of</strong>fspr<strong>in</strong>g <strong>of</strong> a cross between<br />

‘Sarpo Mira’ <strong>and</strong> a universally susceptible cultivar [40] . Resistance was found to be<br />

based on recognition <strong>of</strong> at least five <strong>effectors</strong>. Recognition <strong>of</strong> one <strong>of</strong> these <strong>effectors</strong>,<br />

AvrSmira2, correlated with field resistance, but not with resistance <strong>in</strong> laboratory<br />

assays. The dissection <strong>of</strong> the basis <strong>of</strong> resistance <strong>in</strong> ‘Sarpo Mira’ would be too<br />

complex us<strong>in</strong>g only different isolates <strong>of</strong> P. <strong>in</strong>festans <strong>and</strong> would likely have missed<br />

the field resistance. Us<strong>in</strong>g <strong>effectors</strong> this resistance was uncovered, <strong>and</strong> a marker for<br />

the presence <strong>of</strong> the trait, namely the effector itself, is immediately available. Furthermore,<br />

R‐genes that are detected by effector screens can potentially be rapidly<br />

identified, if the genome sequence <strong>of</strong> the host plant species that carries the R‐gene<br />

is available. A library <strong>of</strong> NB-LRR resistance genes can be cloned <strong>and</strong> transiently<br />

co-expressed with the effector. Co-expression sites that show a cell death response<br />

express the R‐gene correspond<strong>in</strong>g to the effector. The cloned R‐gene can then be<br />

used for transgenic approaches, or its sequence can be used <strong>in</strong> marker-assisted<br />

breed<strong>in</strong>g.<br />

Work<strong>in</strong>g with host targets<br />

There is a relatively small number <strong>of</strong> pathogens whose effector arsenal is be<strong>in</strong>g<br />

extensively studied, <strong>in</strong> the case <strong>of</strong> the oomycetes these are predom<strong>in</strong>antly Phytophthora<br />

species <strong>and</strong> H. arabidopsidis. Sequenc<strong>in</strong>g <strong>of</strong> multiple oomycete species has<br />

revealed there is very little conservation <strong>of</strong> effector sequences between species.<br />

This makes extrapolat<strong>in</strong>g knowledge <strong>of</strong> effector-target <strong>in</strong>teractions uncovered <strong>in</strong>,<br />

e.g., P. <strong>in</strong>festans to other pathogens difficult. Effectors identified <strong>in</strong> one model<br />

system will <strong>of</strong>ten be unrecognisable <strong>in</strong> other related pathogen species. This is<br />

also shown <strong>in</strong> chapter 3, where very little overlap is found between the predicted<br />

<strong>effectors</strong> <strong>of</strong> the three <strong>downy</strong> <strong>mildew</strong> species, H. arabidopsidis, Bremia, <strong>and</strong> P.<br />

cubensis. The strength <strong>of</strong> us<strong>in</strong>g the more extensively studied <strong>in</strong>teraction between<br />

H. arabidopsidis <strong>and</strong> its host Arabidopsis thaliana as a model pathosystem for the<br />

Bremia-lettuce <strong>in</strong>teraction lies not <strong>in</strong> the identification <strong>of</strong> the sequences <strong>of</strong> <strong>effectors</strong>,<br />

but more <strong>in</strong> their utility <strong>in</strong> identify<strong>in</strong>g host targets. H. arabidopsidis <strong>effectors</strong><br />

have been used to identify <strong>in</strong> planta <strong>in</strong>teractors, which are likely the targets <strong>of</strong> these<br />

<strong>effectors</strong> [31] . These <strong>in</strong>teractors are highly <strong>in</strong>terconnected <strong>and</strong> can be seen as hubs <strong>in</strong><br />

the plant immune mach<strong>in</strong>ery. Comparison <strong>of</strong> the non-receptor immune <strong>in</strong>teractors<br />

<strong>of</strong> pathogen <strong>effectors</strong> <strong>in</strong> A. thaliana <strong>and</strong> Papaya revealed a slow overall rate <strong>of</strong><br />

evolution, <strong>in</strong>dicat<strong>in</strong>g that, <strong>in</strong> contrast to <strong>effectors</strong> <strong>of</strong> different species, host targets<br />

are likely conserved between species. Indeed, H. arabidopsidis effector HaRxL96<br />

was found to be able to suppress immunity <strong>in</strong> soybean, whilst a homologous P.


Discussion<br />

175<br />

sojae effector was found to suppress immunity <strong>in</strong> Arabidopsis, suggest<strong>in</strong>g the<br />

<strong>effectors</strong> are effective aga<strong>in</strong>st conserved targets <strong>in</strong> divergent hosts, despite limited<br />

homology between both <strong>effectors</strong> (26% identity, 43% similarity) [41] . When the<br />

genome sequence <strong>of</strong> the host plant is available (expected <strong>in</strong> 2012/2013 for lettuce)<br />

effector-target <strong>in</strong>teractions can be <strong>in</strong>vestigated start<strong>in</strong>g from the conserved host<br />

targets <strong>and</strong> effector arsenal <strong>of</strong> the pathogen. Effectors modulate host targets to<br />

enhance susceptibility or suppress defence. Changes <strong>in</strong> the host target may break<br />

down the <strong>in</strong>teraction between effector <strong>and</strong> target, lead<strong>in</strong>g to <strong>in</strong>sensitivity to the<br />

effector. Further underst<strong>and</strong><strong>in</strong>g <strong>of</strong> the modifications <strong>of</strong> host targets by <strong>effectors</strong><br />

will allow for <strong>functional</strong> screen<strong>in</strong>g for effector-<strong>in</strong>sensitive host-targets <strong>in</strong> breed<strong>in</strong>g<br />

material. Effector-<strong>in</strong>sensitive host targets may provide a novel source <strong>of</strong> resistance<br />

that can be used <strong>in</strong> addition to dom<strong>in</strong>ant R‐genes.<br />

Gene-for-gene <strong>in</strong>teractions <strong>and</strong> resistance<br />

Pathogen species are <strong>of</strong>ten capable <strong>of</strong> rapidly adapt<strong>in</strong>g to new resistance traits<br />

<strong>in</strong>troduced by breeders. Given sufficient knowledge <strong>of</strong> the effector arsenal <strong>of</strong><br />

a pathogen species, screen<strong>in</strong>g <strong>of</strong> the <strong>effectors</strong> <strong>of</strong> resistance-break<strong>in</strong>g isolates<br />

will allow for better underst<strong>and</strong><strong>in</strong>g <strong>of</strong> the mechanisms that underlie this rapid<br />

adaptation. In this thesis it is shown that plants from a Dm2 background are able<br />

to recognise an allele <strong>of</strong> Bremia effector BLG03 <strong>of</strong> an isolate to which these plants<br />

are not resistant. This suggests that host defence does not fail because <strong>of</strong> changes<br />

to the effector that abolish recognition by Dm2 or a gene <strong>in</strong> proximity, but by other<br />

changes <strong>in</strong> the effector complement that either block recognition <strong>of</strong> the effector<br />

or signall<strong>in</strong>g downstream <strong>of</strong> recognition. Similarly, <strong>in</strong>troduction <strong>of</strong> the L. saligna<br />

locus required for recognition <strong>of</strong> the Bremia effector BLG01 <strong>in</strong> L. sativa does not<br />

appear to confer resistance. These observations are not unique to Bremia. In the<br />

<strong>downy</strong> <strong>mildew</strong> H. arabidopsidis both ATR39-1 <strong>and</strong> ATR1Emco5 are recognised <strong>in</strong><br />

hosts that are susceptible to isolates that carry these <strong>effectors</strong> [18,39,42] . Observations<br />

also <strong>in</strong>dicate that <strong>in</strong>termediate resistance to H. arabidopsidis is relatively common<br />

<strong>and</strong> plays an important role <strong>in</strong> the H. arabidopsidis - A. thaliana <strong>in</strong>teraction. The<br />

aforementioned field resistance towards AvrSmira2‐conta<strong>in</strong><strong>in</strong>g P. <strong>in</strong>festans isolates<br />

<strong>in</strong> potato cultivar ‘Sarpo Mira’ is an illustration that such <strong>in</strong>termediate resistance<br />

can also be relevant for resistance breed<strong>in</strong>g. Krasileva et al. [42] po<strong>in</strong>t out that the<br />

outcome <strong>of</strong> the <strong>in</strong>teraction between host <strong>and</strong> pathogen cannot always be expla<strong>in</strong>ed<br />

by s<strong>in</strong>gle gene-for-gene <strong>in</strong>teractions, but is rather the result <strong>of</strong> genome-for-genome<br />

<strong>in</strong>teractions. Screen<strong>in</strong>g <strong>of</strong> resistance-break<strong>in</strong>g pathogens can assist <strong>in</strong> p<strong>in</strong>po<strong>in</strong>t<strong>in</strong>g<br />

the components that allow the break<strong>in</strong>g <strong>of</strong> resistance. It also will allow assessment<br />

<strong>of</strong> the level <strong>of</strong> allelic diversity <strong>of</strong> a recognised effector, which can provide an<br />

<strong>in</strong>dication <strong>of</strong> how durable a correspond<strong>in</strong>g R‐gene will be.


176 Chapter 6<br />

The zigzag model that describes the plant immune system [1,43] provides a model<br />

for the lack <strong>of</strong> correlation between the outcome <strong>of</strong> a gene-for-gene <strong>in</strong>teraction<br />

<strong>and</strong> resistance to an <strong>in</strong>vad<strong>in</strong>g pathogen. The model dist<strong>in</strong>guishes different layers<br />

<strong>of</strong> pathogen <strong>of</strong>fence <strong>and</strong> plant defence. Hosts are normally resistant to potential<br />

pathogens as they recognise MAMPs. Pathogens then use <strong>effectors</strong> to <strong>in</strong>duce<br />

susceptibility <strong>in</strong> hosts, so called effector-triggered susceptibility. Host species, <strong>in</strong><br />

return, evolved means <strong>of</strong> directly or <strong>in</strong>directly recognis<strong>in</strong>g these <strong>effectors</strong>, restor<strong>in</strong>g<br />

an effective defence response, termed effector-triggered-immunity. The plant-pathogen<br />

prote<strong>in</strong>-prote<strong>in</strong>-<strong>in</strong>teractome network <strong>of</strong> Mukhtar et al. [31] <strong>in</strong>dicates that many<br />

<strong>in</strong>teractors <strong>of</strong> the resistance prote<strong>in</strong>s that recognise <strong>effectors</strong> are targeted by <strong>effectors</strong>,<br />

rather than the resistance prote<strong>in</strong>s themselves. In other words, pathogens use<br />

<strong>effectors</strong> to suppress the defence responses triggered by other <strong>effectors</strong> to restore<br />

effector-triggered susceptibility. Screen<strong>in</strong>g <strong>of</strong> <strong>effectors</strong> <strong>in</strong> soybean has <strong>in</strong>deed<br />

revealed that many are capable <strong>of</strong> suppress<strong>in</strong>g effector-<strong>in</strong>duced cell death [34] .<br />

Unravell<strong>in</strong>g this web <strong>of</strong> <strong>in</strong>teract<strong>in</strong>g prote<strong>in</strong>s is required to make predictions on how<br />

to use the available pool <strong>of</strong> defence strategies most effectively for each different<br />

crop species.<br />

Future prospects: Break<strong>in</strong>g the cycle<br />

Bremia is among the plant pathogens with the highest risk <strong>of</strong> evolv<strong>in</strong>g adaptations<br />

to measures <strong>in</strong>troduced to control disease [44] . Factors that contribute to this risk<br />

<strong>in</strong>clude the large effective population size <strong>and</strong> mixed reproductive system. This risk<br />

is not only dependent on the biology <strong>of</strong> the pathogen, as breed<strong>in</strong>g efforts <strong>in</strong> lettuce<br />

impose a strong directional selection on Bremia, which contributes to this risk.<br />

Resistant cultivars <strong>of</strong>ten conta<strong>in</strong> dom<strong>in</strong>ant resistant genes <strong>and</strong> are grown <strong>in</strong> large<br />

monocultures <strong>in</strong> relatively large regions. With sequenc<strong>in</strong>g costs decreas<strong>in</strong>g <strong>and</strong><br />

knowledge <strong>of</strong> pathogen <strong>effectors</strong> <strong>in</strong>creas<strong>in</strong>g, genetic screen<strong>in</strong>g <strong>of</strong> field isolates will<br />

become a useful tool to more accurately type isolates <strong>and</strong> underst<strong>and</strong> why resistance<br />

breaks. Such screen<strong>in</strong>g is also <strong>in</strong>valuable for a localised rather than global<br />

approach to deployment <strong>of</strong> resistant cultivars. By comb<strong>in</strong><strong>in</strong>g novel, broad range<br />

resistance genes <strong>and</strong> alleles that are <strong>in</strong>sensitive to specific effector action, more<br />

durable forms <strong>of</strong> resistance can potentially be bred. This reduces the directional<br />

selection on Bremia, <strong>and</strong> together with a more localised approach to resistance<br />

can serve to reduce the evolutionary risk so that resistance is not easily broken or<br />

rendered <strong>in</strong>effective.


Discussion<br />

177<br />

References<br />

1 Jones JDG & Dangl JL (2006) The plant immune system. Nature 444, 323-9.<br />

2 Chisholm ST, Coaker G, Day B & Staskawicz BJ (2006) Host-microbe <strong>in</strong>teractions: shap<strong>in</strong>g the<br />

evolution <strong>of</strong> the plant immune response. Cell 124, 803-14.<br />

3 Nürnberger T, Brunner F, Kemmerl<strong>in</strong>g B & Piater L (2004) Innate immunity <strong>in</strong> plants <strong>and</strong><br />

animals: strik<strong>in</strong>g similarities <strong>and</strong> obvious differences. Immunological Reviews 198, 249-66.<br />

4 Nicaise V, Roux M & Zipfel C (2009) Recent advances <strong>in</strong> PAMP-triggered immunity aga<strong>in</strong>st<br />

bacteria: pattern recognition receptors watch over <strong>and</strong> raise the alarm. Plant Physiology 150,<br />

1638-47.<br />

5 Misas-Villamil JC & Van der Hoorn RAL (2008) Enzyme-<strong>in</strong>hibitor <strong>in</strong>teractions at the plantpathogen<br />

<strong>in</strong>terface. Current Op<strong>in</strong>ion <strong>in</strong> Plant Biology 11, 380-8.<br />

6 Thomma BPHJ, Nürnberger T & Joosten MHAJ (2011) Of PAMPs <strong>and</strong> <strong>effectors</strong>: the blurred<br />

PTI-ETI dichotomy. The Plant Cell 23, 4-15.<br />

7 Büttner D & He SY (2009) Type III prote<strong>in</strong> secretion <strong>in</strong> plant pathogenic bacteria. Plant<br />

Physiology 150, 1656-64.<br />

8 Stassen JHM & Van den Ackerveken G (2011) How do oomycete <strong>effectors</strong> <strong>in</strong>terfere with plant<br />

life Current Op<strong>in</strong>ion <strong>in</strong> Plant Biology 14, 407-14.<br />

9 Kamoun S (2006) A catalogue <strong>of</strong> the effector secretome <strong>of</strong> plant pathogenic oomycetes. Annual<br />

Review Phytopathology 44, 41-60.<br />

10 Seidl MF, Van den Ackerveken G, Govers F & Snel B (2010) A doma<strong>in</strong>-centric <strong>analysis</strong> <strong>of</strong><br />

oomycete plant pathogen genomes reveals unique prote<strong>in</strong> organization. Plant Physiology 155,<br />

628-44.<br />

11 L<strong>in</strong>ks MG, Holub E, Jiang RHY, Sharpe AG, Hegedus D, Beynon E, Sillito D, Clarke WE,<br />

Uzuhashi S & Borhan MH (2011) De novo sequence assembly <strong>of</strong> Albugo c<strong>and</strong>ida reveals a small<br />

genome relative to other biotrophic oomycetes. BMC Genomics 12, 503.<br />

12 Lévesque CA, Brouwer H, Cano L, Hamilton JP, Holt C, Huitema E, Raffaele S, Robideau GP,<br />

Th<strong>in</strong>es M, W<strong>in</strong> J, Zerillo MM, Beakes GW, Boore JL, Busam D, Dumas B, Ferriera S,<br />

Fuerstenberg SI, Gachon CMM, Gaul<strong>in</strong> E, Govers F, Grenville-Briggs LJ, Horner NR, Hostetler J,<br />

Jiang RHY, Johnson J, Krajaejun T, L<strong>in</strong> H, Meijer HJG, Moore B, Morris PF, Phuntumart V,<br />

Puiu D, Shetty J, Stajich JE, Tripathy S, Wawra S, Van West P, Whitty BR, Cout<strong>in</strong>ho PM,<br />

Henrissat B, Mart<strong>in</strong> F, Thomas PD, Tyler BM, De Vries RP, Kamoun S, Y<strong>and</strong>ell M, Tisserat N &<br />

Buell CR (2010) Genome sequence <strong>of</strong> the necrotrophic plant pathogen Pythium ultimum reveals<br />

orig<strong>in</strong>al pathogenicity mechanisms <strong>and</strong> effector repertoire. Genome Biology 11, R73.


178 Chapter 6<br />

13 Haas BJ, Kamoun S, Zody MC, Jiang RHY, H<strong>and</strong>saker RE, Cano LM, Grabherr M, Kodira CD,<br />

Raffaele S, Torto-Alalibo TA, Bozkurt TO, Ah-Fong AMV, Alvarado L, Anderson VL,<br />

Armstrong MR, Avrova A, Baxter L, Beynon JL, Boev<strong>in</strong>k PC, Bollmann SR, Bos JIB, Bulone V,<br />

Cai G, Cakir C, Carr<strong>in</strong>gton JC, Chawner M, Conti L, Costanzo S, Ewan R, Fahlgren N,<br />

Fischbach MA, Fugelstad J, Gilroy EM, Gnerre S, Green PJ, Grenville-Briggs LJ, Griffith J,<br />

Grünwald NJ, Horn K, Horner NR, Hu C-H, Huitema E, Jeong D-H, Jones AME, Jones JDG,<br />

Jones RW, Karlsson EK, Kunjeti SG, Lamour KH, Liu Z, Ma L, Maclean D, Chibucos MC,<br />

McDonald H, McWalters J, Meijer HJG, Morgan W, Morris PF, Munro CA, O’Neill K, Osp<strong>in</strong>a-<br />

Giraldo MD, P<strong>in</strong>zón A, Pritchard L, Ramsahoye B, Ren Q, Restrepo S, Roy S, Sadan<strong>and</strong>om A,<br />

Savidor A, Schornack S, Schwartz DC, Schumann UD, Schwess<strong>in</strong>ger B, Seyer L, Sharpe T,<br />

Silvar C, Song J, Studholme DJ, Sykes S, Th<strong>in</strong>es M, Van de Vondervoort PJI, Phuntumart V,<br />

Wawra S, Weide R, W<strong>in</strong> J, Young C, Zhou S, Fry W, Meyers BC, Van West P, Rista<strong>in</strong>o J,<br />

Govers F, Birch PRJ, Whisson SC, Judelson HS & Nusbaum C (2009) Genome sequence <strong>and</strong><br />

<strong>analysis</strong> <strong>of</strong> the Irish potato fam<strong>in</strong>e pathogen Phytophthora <strong>in</strong>festans. Nature 461, 393-8.<br />

14 Baxter L, Tripathy S, Ishaque N, Boot N, Cabral A, Kemen E, Th<strong>in</strong>es M, Ah-Fong AMV,<br />

Anderson R, Badejoko W, Bittner-Eddy P, Boore JL, Chibucos MC, Coates M, Dehal P,<br />

Delehaunty K, Dong S, Downton P, Dumas B, Fabro G, Fronick C, Fuerstenberg SI, Fulton L,<br />

Gaul<strong>in</strong> E, Govers F, Hughes L, Humphray S, Jiang RHY, Judelson HS, Kamoun S, Kyung K,<br />

Meijer HJG, M<strong>in</strong>x P, Morris PF, Nelson J, Phuntumart V, Qutob D, Rehmany AP, Rougon-<br />

Cardoso A, Ryden P, Torto-Alalibo TA, Studholme DJ, Wang Y, W<strong>in</strong> J, Wood J, Clifton SW,<br />

Rogers J, Van den Ackerveken G, Jones JDG, McDowell JM, Beynon JL & Tyler BM (2010)<br />

Signatures <strong>of</strong> adaptation to obligate biotrophy <strong>in</strong> the Hyaloperonospora arabidopsidis genome.<br />

Science 330, 1549-51.<br />

15 Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RHY, Aerts A, Arredondo FD, Baxter L,<br />

Bensasson D, Beynon JL, Chapman J, Damasceno CMB, Dorrance AE, Dou D, Dickerman AW,<br />

Dubchak IL, Garbelotto M, Gijzen M, Gordon SG, Govers F, Grünwald NJ, Huang W, Ivors KL,<br />

Jones RW, Kamoun S, Krampis K, Lamour KH, Lee M-K, McDonald WH, Med<strong>in</strong>a M,<br />

Meijer HJG, Nordberg EK, Maclean DJ, Osp<strong>in</strong>a-Giraldo MD, Morris PF, Phuntumart V,<br />

Putnam NH, Rash S, Rose JKC, Sakihama Y, Salamov AA, Savidor A, Scheur<strong>in</strong>g CF, Smith BM,<br />

Sobral BWS, Terry A, Torto-Alalibo TA, W<strong>in</strong> J, Xu Z, Zhang H, Grigoriev IV, Rokhsar DS &<br />

Boore JL (2006) Phytophthora genome sequences uncover evolutionary orig<strong>in</strong>s <strong>and</strong> mechanisms<br />

<strong>of</strong> pathogenesis. Science 313, 1261-6.<br />

16 Lamour KH, Mudge J, Gobena D, Hurtado-Gonzales OP, Schmutz J, Kuo A, Miller NA,<br />

Rice BJ, Raffaele S, Cano L, Bharti AK, Donahoo RS, F<strong>in</strong>ley SL, Huitema E, Hulvey J,<br />

Platt D, Salamov AA, Savidor A, Sharma R, Stam R, Storey D, Th<strong>in</strong>es M, W<strong>in</strong> J, Haas B,<br />

D<strong>in</strong>widdie D, Jenk<strong>in</strong>s J, Knight J, Affourtit J, Han CS, Chertkov O, L<strong>in</strong>dquist EA, Detter C,<br />

Grigoriev IV, Kamoun S & K<strong>in</strong>gsmore SF (2012) Genome sequenc<strong>in</strong>g <strong>and</strong> mapp<strong>in</strong>g reveal loss<br />

<strong>of</strong> heterozygosity as a mechanism for rapid adaptation <strong>in</strong> the vegetable pathogen Phytophthora<br />

capsici. Molecular Plant-Microbe Interactions, In press, doi: 10.1094/MPMI-02-12-0028-R.<br />

17 Savory EA, Zou C, Adhikari BN, Hamilton JP, Buell CR, Shiu S-H & Day B (2012) Alternative<br />

Splic<strong>in</strong>g <strong>of</strong> a Multi-Drug Transporter from Pseudoperonospora cubensis Generates an RXLR<br />

Effector Prote<strong>in</strong> That Elicits a Rapid Cell Death. PLoS ONE 7, e34701.<br />

18 Rehmany AP, Gordon A, Rose LE, Allen RL, Armstrong MR, Whisson SC, Kamoun S, Tyler BM,<br />

Birch PRJ & Beynon JL (2005) Differential recognition <strong>of</strong> highly divergent <strong>downy</strong> <strong>mildew</strong><br />

avirulence gene alleles by RPP1 resistance genes from two Arabidopsis l<strong>in</strong>es. The Plant Cell 17,<br />

1839-50.


Discussion<br />

179<br />

19 Whisson SC, Boev<strong>in</strong>k PC, Moleleki L, Avrova AO, Morales JG, Gilroy EM, Armstrong MR,<br />

Grouffaud S, Van West P, Chapman S, He<strong>in</strong> I, Toth IK, Pritchard L & Birch PRJ (2007) A<br />

translocation signal for delivery <strong>of</strong> oomycete effector prote<strong>in</strong>s <strong>in</strong>to host plant cells. Nature 450,<br />

115-8.<br />

20 Dou D, Kale SD, Wang X, Jiang RHY, Bruce NA, Arredondo FD, Zhang X & Tyler BM (2008)<br />

RXLR-mediated entry <strong>of</strong> Phytophthora sojae effector Avr1b <strong>in</strong>to soybean cells does not require<br />

pathogen-encoded mach<strong>in</strong>ery. The Plant Cell 20, 1930-47.<br />

21 Wawra S, Ba<strong>in</strong> J, Durward E, De Bruijn I, M<strong>in</strong>or KL, Matena A, Löbach L, Whisson SC, Bayer P,<br />

Porter AJ, Birch PRJ, Secombes CJ & Van West P (2012) Host-target<strong>in</strong>g prote<strong>in</strong> 1 (SpHtp1)<br />

from the oomycete Saprolegnia parasitica translocates specifically <strong>in</strong>to fish cells <strong>in</strong> a tyros<strong>in</strong>e-<br />

O-sulphate-dependent manner. Proceed<strong>in</strong>gs <strong>of</strong> the National Academy <strong>of</strong> Sciences <strong>of</strong> the United<br />

States <strong>of</strong> America 109, 2096-101.<br />

22 Kale SD, Gu B, Capelluto DGS, Dou D, Feldman E, Rumore A, Arredondo FD, Hanlon R,<br />

Fudal I & Rouxel T (2010) External lipid PI3P mediates entry <strong>of</strong> eukaryotic pathogen <strong>effectors</strong><br />

<strong>in</strong>to plant <strong>and</strong> animal host cells. Cell 142, 284-295.<br />

23 Gan PHP, Rafiqi M, Ellis JG, Jones DA, Hardham AR & Dodds PN (2010) Lipid b<strong>in</strong>d<strong>in</strong>g<br />

activities <strong>of</strong> flax rust AvrM <strong>and</strong> AvrL567 <strong>effectors</strong>. Plant Signal<strong>in</strong>g & Behavior 5, 1272-75.<br />

24 Yaeno T, Li H, Chaparro-Garcia A, Schornack S, Koshiba S, Watanabe S, Kigawa T, Kamoun S &<br />

Shirasu K (2011) Phosphatidyl<strong>in</strong>ositol monophosphate-b<strong>in</strong>d<strong>in</strong>g <strong>in</strong>terface <strong>in</strong> the oomycete RXLR<br />

effector AVR3a is required for its stability <strong>in</strong> host cells to modulate plant immunity. Proceed<strong>in</strong>gs<br />

<strong>of</strong> the National Academy <strong>of</strong> Sciences <strong>of</strong> the United States <strong>of</strong> America 108, 14682-7.<br />

25 Tian M, W<strong>in</strong> J, Savory EA, Burkhardt A, Held M, Br<strong>and</strong>izzi F & Day B (2011) 454 Genome<br />

sequenc<strong>in</strong>g <strong>of</strong> Pseudoperonospora cubensis reveals effector prote<strong>in</strong>s with a QXLR translocation<br />

motif. Molecular Plant-Microbe Interactions 24, 543-53.<br />

26 Schornack S, Van Damme M, Bozkurt TO, Cano LM, Smoker M, Th<strong>in</strong>es M, Gaul<strong>in</strong> E, Kamoun S<br />

& Huitema E (2010) Ancient class <strong>of</strong> translocated oomycete <strong>effectors</strong> targets the host nucleus.<br />

Proceed<strong>in</strong>gs <strong>of</strong> the National Academy <strong>of</strong> Sciences <strong>of</strong> the United States <strong>of</strong> America 107, 17421-6.<br />

27 Stassen JHM, Seidl MF, Vergeer PWJ, Nijman IJ, Snel B, Cuppen E & Van den Ackerveken G<br />

(2012) Effector identification <strong>in</strong> the lettuce <strong>downy</strong> <strong>mildew</strong> Bremia lactucae by massively<br />

parallel transcriptome sequenc<strong>in</strong>g. Molecular Plant Pathology, In press, doi: 10.1111/j.1364-<br />

3703.2011.00780.x.<br />

28 Cabral A, Stassen JHM, Seidl MF, Bautor J, Parker JE & Van den Ackerveken G (2011)<br />

<strong>Identification</strong> <strong>of</strong> Hyaloperonospora arabidopsidis Transcript Sequences Expressed dur<strong>in</strong>g<br />

Infection Reveals Isolate-Specific Effectors. PLoS ONE 6, e19328.<br />

29 Savory EA, Adhikari BN, Hamilton JP, Vaillancourt B, Buell CR & Day B (2012) mRNA-Seq<br />

Analysis <strong>of</strong> the Pseudoperonospora cubensis Transcriptome Dur<strong>in</strong>g Cucumber (Cucumis sativus<br />

L.) Infection. PLoS ONE 7, e35796.<br />

30 Kemen E, Gard<strong>in</strong>er A, Schultz-Larsen T, Kemen AC, Balmuth AL, Robert-Seilaniantz A,<br />

Bailey K, Holub E, Studholme DJ, Maclean D & Jones JDG (2011) Gene ga<strong>in</strong> <strong>and</strong> loss dur<strong>in</strong>g<br />

evolution <strong>of</strong> obligate parasitism <strong>in</strong> the white rust pathogen <strong>of</strong> Arabidopsis thaliana. PLoS Biology<br />

9, e1001094.


180 Chapter 6<br />

31 Mukhtar MS, Carvunis A-R, Dreze M, Epple P, Ste<strong>in</strong>brenner J, Moore J, Tasan M, Galli M,<br />

Hao T, Nishimura MT, Pevzner SJ, Donovan SE, Ghamsari L, Santhanam B, Romero V,<br />

Poul<strong>in</strong> MM, Gebreab F, Gutierrez BJ, Tam S, Monachello D, Boxem M, Harbort CJ,<br />

McDonald N, Gai L, Chen H, He Y, V<strong>and</strong>enhaute J, Roth FP, Hill DE, Ecker JR, Vidal M,<br />

Beynon JL, Braun P & Dangl JL (2011) Independently evolved virulence <strong>effectors</strong> converge onto<br />

hubs <strong>in</strong> a plant immune system network. Science 333, 596-601.<br />

32 Fabro G, Ste<strong>in</strong>brenner J, Coates M, Ishaque N, Baxter L, Studholme DJ, Körner E, Allen RL,<br />

Piquerez SJM, Rougon-Cardoso A, Greenshields D, Lei R, Badel JL, Caillaud M-C, Sohn K-H,<br />

Van den Ackerveken G, Parker JE, Beynon JL & Jones JDG (2011) Multiple c<strong>and</strong>idate <strong>effectors</strong><br />

from the oomycete pathogen Hyaloperonospora arabidopsidis suppress host plant immunity. PLoS<br />

pathogens 7, e1002348.<br />

33 Gilroy EM, Breen S, Whisson SC, Squires J, He<strong>in</strong> I, Kaczmarek M, Turnbull D, Boev<strong>in</strong>k PC,<br />

Lokossou A, Cano LM, Morales JG, Avrova AO, Pritchard L, R<strong>and</strong>all E, Lees A, Govers F, Van<br />

West P, Kamoun S, Vleeshouwers VGAA, Cooke DEL & Birch PRJ (2011) Presence/absence,<br />

differential expression <strong>and</strong> sequence polymorphisms between PiAVR2 <strong>and</strong> PiAVR2-like <strong>in</strong><br />

Phytophthora <strong>in</strong>festans determ<strong>in</strong>e virulence on R2 plants. The New Phytologist 191, 763-76.<br />

34 Wang Q, Han C, Ferreira AO, Yu X, Ye W, Tripathy S, Kale SD, Gu B, Sheng Y, Sui Y,<br />

Wang X, Zhang Z, Cheng B, Dong S, Shan W, Zheng X, Dou D, Tyler BM & Wang Y (2011)<br />

Transcriptional programm<strong>in</strong>g <strong>and</strong> <strong>functional</strong> <strong>in</strong>teractions with<strong>in</strong> the Phytophthora sojae RXLR<br />

effector repertoire. The Plant Cell 23, 2064-86.<br />

35 Qutob D, Tedman-Jones J, Dong S, Kuflu K, Pham H, Wang Y, Dou D, Kale SD, Arredondo FD,<br />

Tyler BM & Gijzen M (2009) Copy number variation <strong>and</strong> transcriptional polymorphisms <strong>of</strong><br />

Phytophthora sojae RXLR effector genes Avr1a <strong>and</strong> Avr3a. PLoS ONE 4, e5066.<br />

36 Vleeshouwers VGAA, Raffaele S, Vossen JH, Champouret N, Oliva R, Segret<strong>in</strong> ME, Rietman H,<br />

Cano LM, Lokossou A, Kessel G, Pel MA & Kamoun S (2011) Underst<strong>and</strong><strong>in</strong>g <strong>and</strong> exploit<strong>in</strong>g late<br />

blight resistance <strong>in</strong> the age <strong>of</strong> <strong>effectors</strong>. Annual Review <strong>of</strong> Phytopathology 49, 507-31.<br />

37 Vleeshouwers VGAA, Rietman H, Krenek P, Champouret N, Young C, Oh S-K, Wang M,<br />

Bouwmeester K, Vosman B, Visser RGF, Jacobsen E, Govers F, Kamoun S & Van der<br />

Vossen EAG (2008) Effector genomics accelerates discovery <strong>and</strong> <strong>functional</strong> pr<strong>of</strong>il<strong>in</strong>g <strong>of</strong> potato<br />

disease resistance <strong>and</strong> phytophthora <strong>in</strong>festans avirulence genes. PLoS ONE 3, e2875.<br />

38 Oh S-K, Young C, Lee M, Oliva R, Bozkurt TO, Cano LM, W<strong>in</strong> J, Bos JIB, Liu H-Y, Van<br />

Damme M, Morgan W, Choi D, Van der Vossen EAG, Vleeshouwers VGAA & Kamoun S (2009)<br />

In planta expression screens <strong>of</strong> Phytophthora <strong>in</strong>festans RXLR <strong>effectors</strong> reveal diverse phenotypes,<br />

<strong>in</strong>clud<strong>in</strong>g activation <strong>of</strong> the Solanum bulbocastanum disease resistance prote<strong>in</strong> Rpi-blb2. The Plant<br />

Cell 21, 2928-47.<br />

39 Goritschnig S, Krasileva KV, Dahlbeck D & Staskawicz BJ (2012) Computational prediction <strong>and</strong><br />

molecular characterization <strong>of</strong> an oomycete effector <strong>and</strong> the cognate Arabidopsis resistance gene.<br />

PLoS Genetics 8, e1002502.<br />

40 Rietman H, Bijsterbosch G, Cano LM, Lee H-R, Vossen JH, Jacobsen E, Visser RGF, Kamoun S<br />

& Vleeshouwers VGAA (2012) Qualitative <strong>and</strong> quantitative late blight resistance <strong>in</strong> the potato<br />

cultivar Sarpo Mira is determ<strong>in</strong>ed by the perception <strong>of</strong> five dist<strong>in</strong>ct RXLR <strong>effectors</strong>. Molecular<br />

Plant-Microbe Interactions 25, 910-9.


Discussion<br />

181<br />

41 Anderson RG, Casady MS, Fee RA, Vaughan MM, Deb D, Fedkenheuer K, Huffaker A,<br />

Schmelz EA, Tyler BM & McDowell JM (2012) Homologous RXLR <strong>effectors</strong> from<br />

Hyaloperonospora arabidopsidis <strong>and</strong> Phytophthora sojae suppress immunity <strong>in</strong> distantly related<br />

plants. The Plant Journal, In press, doi: 10.1111/j.1365-313X.2012.05079.x<br />

42 Krasileva KV, Zheng C, Leonelli L, Goritschnig S, Dahlbeck D & Staskawicz BJ (2011) Global<br />

<strong>analysis</strong> <strong>of</strong> Arabidopsis/<strong>downy</strong> <strong>mildew</strong> <strong>in</strong>teractions reveals prevalence <strong>of</strong> <strong>in</strong>complete resistance<br />

<strong>and</strong> rapid evolution <strong>of</strong> pathogen recognition. PLoS ONE 6, e28765.<br />

43 He<strong>in</strong> I, Gilroy EM, Armstrong MR & Birch PRJ (2009) The zig-zag-zig <strong>in</strong> oomycete-plant<br />

<strong>in</strong>teractions. Molecular Plant Pathology 10, 547-62.<br />

44 McDonald BA & L<strong>in</strong>de C (2002) Pathogen population genetics, evolutionary potential, <strong>and</strong><br />

durable resistance. Annual Review <strong>of</strong> Phytopathology 40, 349-79.


182


183<br />

Summary<br />

Oomycete pathogens cause large losses <strong>in</strong> many crop plants. Chemical control<br />

measures becom<strong>in</strong>g less effective <strong>and</strong> are be<strong>in</strong>g phased out. Resistance breed<strong>in</strong>g<br />

has traditionally made use <strong>of</strong> dom<strong>in</strong>ant resistance genes to which oomycete pathogens<br />

have <strong>of</strong>ten been quick to adapt. Novel approaches towards resistance breed<strong>in</strong>g<br />

are, therefore, required to <strong>in</strong>troduce new <strong>and</strong> more durable forms <strong>of</strong> resistance <strong>in</strong><br />

crops. A better underst<strong>and</strong><strong>in</strong>g <strong>of</strong> host-pathogen <strong>in</strong>teractions at the molecular level<br />

is required to design new breed<strong>in</strong>g approaches. Important molecular players, that<br />

are the ma<strong>in</strong> subject <strong>of</strong> this study, are the effector prote<strong>in</strong>s that <strong>downy</strong> <strong>mildew</strong>s<br />

use to manipulate their host <strong>and</strong> cause disease. Sequenc<strong>in</strong>g <strong>of</strong> Expressed Sequence<br />

Tags <strong>of</strong> Hyaloperonospora arabidopsidis proved a powerful method <strong>of</strong> identify<strong>in</strong>g<br />

<strong>effectors</strong> that are active dur<strong>in</strong>g <strong>in</strong>fection. This revealed isolate-specific <strong>effectors</strong><br />

that <strong>in</strong>crease susceptibility <strong>of</strong> the host. Scal<strong>in</strong>g up this approach us<strong>in</strong>g massively<br />

parallel transcriptome sequenc<strong>in</strong>g allowed for an extensive overview <strong>of</strong> genes that<br />

are active dur<strong>in</strong>g <strong>downy</strong> <strong>mildew</strong> <strong>in</strong>fection <strong>of</strong> lettuce, caused by Bremia lactucae.<br />

Bremia transcript sequences were identified from the mixed set <strong>of</strong> plant <strong>and</strong> pathogen<br />

transcripts based on mapp<strong>in</strong>g <strong>of</strong> spore-derived short reads <strong>of</strong> Bremia genomic<br />

DNA. Effector c<strong>and</strong>idates were then identified based on sequence characteristics<br />

known from <strong>effectors</strong> <strong>of</strong> other oomycetes. A set <strong>of</strong> 34 potential host-translocated<br />

<strong>effectors</strong> with an RXLR or RXLR-like motif was cloned for further <strong>analysis</strong>. The<br />

role <strong>of</strong> these <strong>effectors</strong> <strong>in</strong> promot<strong>in</strong>g disease susceptibility on the lettuce host was<br />

<strong>in</strong>vestigated, reveal<strong>in</strong>g two <strong>effectors</strong>, BLR16 <strong>and</strong> BLR27 that show a strong <strong>and</strong><br />

robust susceptibility-enhanc<strong>in</strong>g effect when transiently expressed. Many other<br />

tested <strong>effectors</strong> showed a trend towards enhanc<strong>in</strong>g susceptibility, though a s<strong>in</strong>gle<br />

effector, BLR03, consistently reduced susceptibility. BLR16 <strong>and</strong> BLR27 were found<br />

to be expressed throughout Bremia <strong>in</strong>fection <strong>of</strong> lettuce, whilst a strong reduction <strong>in</strong><br />

the expression <strong>of</strong> BLR03 was observed already at one day post <strong>in</strong>oculation. Lettuce<br />

markers <strong>of</strong> biotic stress-responses were developed based on high abundance <strong>and</strong><br />

homology to Arabidopsis biotic stress-<strong>in</strong>duced genes. However, no evidence<br />

was found that susceptibility is enhanced by a general repression <strong>of</strong> biotic-stress<br />

responses <strong>of</strong> the host. F<strong>in</strong>ally, 129 lettuce breed<strong>in</strong>g l<strong>in</strong>es were tested for their<br />

response to the set <strong>of</strong> cloned <strong>effectors</strong> by Agrobacterium-mediated transient transformation<br />

assays to reveal new resistance specificities. Two <strong>effectors</strong> conta<strong>in</strong><strong>in</strong>g<br />

a GKLR-variant <strong>of</strong> the RXLR motif were found to be recognised result<strong>in</strong>g <strong>in</strong> the


184<br />

<strong>in</strong>duction <strong>of</strong> cell death; BLG01 <strong>in</strong> wild lettuce l<strong>in</strong>es, <strong>and</strong> BLG03 <strong>in</strong> cultivated<br />

lettuce l<strong>in</strong>es that conta<strong>in</strong> the known resistance locus Dm2. Recognition <strong>of</strong> BLG01<br />

is dependent on a region on the short arm <strong>of</strong> chromosome 9 <strong>in</strong> L. saligna, <strong>and</strong><br />

recognition <strong>of</strong> BLG03 is l<strong>in</strong>ked to the Dm2 resistance locus. Bremia isolates carry<strong>in</strong>g<br />

these <strong>effectors</strong> were still able to cause disease, suggest<strong>in</strong>g that recognition or<br />

subsequent defence is suppressed by other <strong>effectors</strong>. The generation <strong>of</strong> an overview<br />

<strong>of</strong> the Bremia effector arsenal, identification <strong>of</strong> susceptibility-enhanc<strong>in</strong>g activities<br />

<strong>of</strong> Bremia <strong>effectors</strong>, <strong>and</strong> uncover<strong>in</strong>g <strong>of</strong> recognition specificities are important steps<br />

forward towards underst<strong>and</strong><strong>in</strong>g the molecular mechanisms underly<strong>in</strong>g disease<br />

outcome.


185<br />

Samenvatt<strong>in</strong>g<br />

Ziekteverwekkers behorende tot de oömyceten veroorzaken grote schade <strong>in</strong><br />

vele gewassen. Chemische gewasbescherm<strong>in</strong>gsmethoden zijn <strong>in</strong> afnemende<br />

mate effectief en worden steeds meer <strong>in</strong>geperkt. Bij de veredel<strong>in</strong>g van gewassen<br />

op ziekteresistentie wordt traditionelerwijze gebruik gemaakt van dom<strong>in</strong>ante<br />

resistentiegenen. Die worden echter snel door oomyceetpathogenen omzeild.<br />

Nieuwe methoden voor resistentieveredel<strong>in</strong>g zijn dan ook gewenst om nieuwe,<br />

duurzame vormen van resistentie <strong>in</strong> gewassen te verkrijgen. Een beter begrip<br />

van waard-plantpathogeen<strong>in</strong>teracties op moleculair niveau is nodig voor nieuwe<br />

strategieën <strong>in</strong> de resistentieveredel<strong>in</strong>g. Belangrijke moleculaire spelers en het<br />

ho<strong>of</strong>donderwerp van dit proefschrift zijn de effectoreiwitten, die valse meeldauwsoorten<br />

gebruiken om hun waardplanten te manipuleren en ziek te maken. Het<br />

bepalen van de nucleotidesequenties van de valse meeldauw Hyaloperonospora<br />

arabidopsidis ‘expressed sequence tags’ bleek een krachtige methode om<br />

effectoreiwitten die actief zijn tijdens het <strong>in</strong>fectieproces te voorspellen. Deze<br />

aanpak onthulde isolaat-specifieke effectoreiwitten die de vatbaarheid van de<br />

waardplant verhoogden. Door schaalvergrot<strong>in</strong>g door middel van ‘massively parallel<br />

transcriptome sequenc<strong>in</strong>g’ kon een breed overzicht van de genen van de valse<br />

meeldauw Bremia lactucae die actief zijn bij de <strong>in</strong>fectie van sla worden verkregen.<br />

Gebaseerd op vergelijk<strong>in</strong>gen met korte genomische DNA-sequenties afkomstig uit<br />

Bremia-sporen zijn de Bremia-eiwitten voorspeld. Effectork<strong>and</strong>idaten zijn vervolgens<br />

geïdentificeerd gebaseerd op de sequentiekenmerken die bekend zijn van<br />

effectoreiwitten van <strong>and</strong>ere oömyceten. Een set van 34 effectork<strong>and</strong>idaten met een<br />

RXLR- <strong>of</strong> RXLR-achtig am<strong>in</strong>ozuurmotief is vervolgens gekloneerd voor verdere<br />

analyse. De rol van deze k<strong>and</strong>idaten <strong>in</strong> het bevorderen van de vatbaarheid van sla<br />

is onderzocht, wat onthulde dat twee effectoreiwitten, BLR16 en BLR27, een sterk<br />

robuust vatbaarheidverhogende activiteit <strong>in</strong> de waardplant hebben. Veel van de<br />

<strong>and</strong>ere k<strong>and</strong>idaten bleken de vatbaarheid <strong>in</strong> m<strong>in</strong>dere mate te verhogen, terwijl één<br />

effector, BLR03, stelselmatig de vatbaarheid verlaagde. BLR16 en BLR27 bleken<br />

gedurende de hele <strong>in</strong>fectiecyclus tot expressie te komen, terwijl de expressie van<br />

BLR03 al na één dag sterk verm<strong>in</strong>derd was. Er werden merkers voor biotische<br />

stress <strong>in</strong> sla ontwikkeld, gebaseerd op hoge relatieve aanwezigheid van transcripten<br />

en gelijkenis met biotische stress-geïnduceerde Arabidopsisgenen. Deze genen<br />

werden echter niet sterk onderdrukt door de geteste Bremia-effectoren, wat er


186<br />

op duidt dat de vatbaarheidverhogende activiteit niet het gevolg is van een brede<br />

onderdrukk<strong>in</strong>g van de biotische stress-respons. In een tweede groot experiment<br />

werden 129 slalijnen getest op herkenn<strong>in</strong>g van de set gekloneerde effectoreiwitk<strong>and</strong>idaten<br />

met behulp van Agrobacterium-gemedieerde transiënte expressie, om<br />

nieuwe herkenn<strong>in</strong>gsspecificiteiten te onthullen. Twee effectoreiwitten met een<br />

GKLR-variant van het RXLR-am<strong>in</strong>ozuurmotief bleken herkend te worden, met<br />

<strong>in</strong>ductie van celdood tot gevolg. BLG01 en BLG03 werden herkend, <strong>in</strong> een aantal<br />

wilde slalijnen, respectievelijk gecultiveerde slalijnen die de gekarakteriseerde<br />

resistentielocus Dm2 bevatten. Een locus op de korte arm van chromosoom 9 van<br />

L. saligna bleek verantwoordelijk voor herkenn<strong>in</strong>g van BLG01, terwijl herkenn<strong>in</strong>g<br />

van BLG03 gekoppeld bleek te zijn aan de Dm2-locus. Bremia-isolaten die deze<br />

effectoreiwitten gebruiken, bleken echter <strong>in</strong> staat ziekte te veroorzaken. Dit duidt<br />

erop dat de herkenn<strong>in</strong>g van de effectoreiwitten <strong>of</strong> de daaropvolgende <strong>in</strong>ductie<br />

van de afweer mogelijk wordt onderdrukt door <strong>and</strong>ere effectoreiwitten van deze<br />

isolaten. Het <strong>in</strong> kaart brengen van het arsenaal van Bremia-effectoreiwitten, het<br />

identificeren van hun vatbaarheidverhogende activiteiten en het onthullen van<br />

nieuwe herkenn<strong>in</strong>gsspecificiteiten zijn belangrijke stappen <strong>in</strong> het begrijpen van de<br />

moleculaire mechanismen die bepalend zijn voor de <strong>in</strong>fectie van sla door Bremia.


187<br />

Acknowledgements<br />

I would like to use this place to thank everyone who contributed pr<strong>of</strong>essionally to<br />

my doctoral studies. Most importantly, I would like to thank the follow<strong>in</strong>g people<br />

who were especially closely <strong>in</strong>volved:<br />

First <strong>of</strong> all, thank you to all those <strong>in</strong>volved <strong>in</strong> the project at the seed companies<br />

<strong>and</strong> Wagen<strong>in</strong>gen University for the stimulat<strong>in</strong>g discussions dur<strong>in</strong>g the project meet<strong>in</strong>gs<br />

<strong>and</strong> the contribution <strong>of</strong> the lettuce l<strong>in</strong>es <strong>and</strong> Bremia isolates used throughout<br />

the project. I’m especially grateful for the screen<strong>in</strong>g <strong>of</strong> the <strong>effectors</strong> <strong>in</strong> the lettuce<br />

l<strong>in</strong>es. Com<strong>in</strong>g from a molecular background it was <strong>in</strong>terest<strong>in</strong>g for me to get an<br />

<strong>in</strong>sight <strong>in</strong>to the world <strong>of</strong> plant breed<strong>in</strong>g. I wish you the best <strong>of</strong> luck <strong>in</strong> your efforts<br />

to breed pest- <strong>and</strong> disease-resistant, easy to grow, nice-look<strong>in</strong>g, tasty lettuce with a<br />

long shelf life <strong>and</strong> all other required traits.<br />

Guido van den Ackerveken <strong>and</strong> Marieke Jeuken, thanks for sett<strong>in</strong>g up this <strong>in</strong>terest<strong>in</strong>g<br />

project with all those <strong>in</strong>volved. I hope the proposal for additional Bremia<br />

research will be funded. Guido, thanks for your supervision, first dur<strong>in</strong>g my f<strong>in</strong>al<br />

<strong>in</strong>ternship <strong>and</strong> later on as co-promoter. I hope your near-limitless optimism will<br />

prove to have had its effect on me. Thanks for the opportunity to dig deeper <strong>in</strong>to<br />

the life <strong>of</strong> an oomycete, as well as for all the patience you have shown <strong>in</strong> deal<strong>in</strong>g<br />

with my occasional scepticism.<br />

I am also grateful for the supervision by the rest <strong>of</strong> the Plant-Microbe Interactions<br />

group: my promoter Corné Pieterse (for tell<strong>in</strong>g me to be more worried), ‘role<br />

model’ Saskia van Wees (for tell<strong>in</strong>g me to be less worried) <strong>and</strong> Peter Bakker (for<br />

the nuance).<br />

Thanks Miek Andel, for the supervision dur<strong>in</strong>g my <strong>in</strong>ternship, the clones for the<br />

project <strong>and</strong> for be<strong>in</strong>g a paranymph. Pim Vergeer, my other paranymph <strong>and</strong> lettuce<br />

tra<strong>in</strong>er, I thank you for grow<strong>in</strong>g all the lettuce, tam<strong>in</strong>g the Agrobacterium stra<strong>in</strong>s,<br />

<strong>and</strong> not gett<strong>in</strong>g too fed up with spore count<strong>in</strong>g. Thank you Michael Seidl for all the<br />

discussions <strong>and</strong> the use <strong>of</strong> your bio<strong>in</strong>formatics expertise. Hans van Pelt, thanks for<br />

the excellent photographic support.<br />

S<strong>in</strong>ce this is also my goodbye from PMI, I would like to thank all PMI-people<br />

past <strong>and</strong> present for mak<strong>in</strong>g my time at PMI all the more fun <strong>and</strong> <strong>in</strong>terest<strong>in</strong>g.<br />

Keep up the good work,<br />

Joost


188


189<br />

Curriculum vitae<br />

Johannes (Joost) H.M. Stassen was born on 1 November, 1984 <strong>in</strong> Woerden, The<br />

Netherl<strong>and</strong>s. He f<strong>in</strong>ished his secondary education at M<strong>in</strong>kema College, Woerden<br />

<strong>in</strong> 2002 <strong>and</strong> cont<strong>in</strong>ued his education at University College Utrecht. In 2005 he<br />

obta<strong>in</strong>ed his BSc degree <strong>and</strong> registered for the Master’s programme Biomolecular<br />

Sciences. As part <strong>of</strong> this programme he performed a research project entitled<br />

‘A Search for the Role <strong>of</strong> BAIAP3’ <strong>in</strong> the group <strong>of</strong> Dr Peter van der Sluis at the<br />

Department <strong>of</strong> Cell Biology at the University Medical Centre, Utrecht. He worked<br />

on a second research project, ‘Genetic Mapp<strong>in</strong>g <strong>of</strong> the Downy Mildew Resistance<br />

Loci dmr4 <strong>and</strong> dmr2 <strong>in</strong> Arabidopsis thaliana’, <strong>in</strong> the group <strong>of</strong> Dr Guido van den<br />

Ackerveken, which was <strong>in</strong>itially part <strong>of</strong> the Molecular Genetics group at Utrecht<br />

University, but fused with the Phytopathology group to form the Plant-Microbe<br />

Interactions group. In 2007, he received his MSc degree <strong>and</strong> started work on the<br />

project described <strong>in</strong> this thesis under supervision <strong>of</strong> Dr Guido van den Ackerveken<br />

<strong>and</strong> Pr<strong>of</strong>essor Corné Pieterse at the Plant-Microbe Interactions group at Utrecht<br />

University.


O<br />

N<br />

NH 2<br />

N<br />

O<br />

N<br />

O<br />

N<br />

N<br />

N<br />

OH<br />

OH<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

P<br />

P<br />

O<br />

-<br />

O<br />

O<br />

-<br />

O

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!