30.12.2014 Views

Hardening Soil model with small strain stiffness - Zace Services Ltd.

Hardening Soil model with small strain stiffness - Zace Services Ltd.

Hardening Soil model with small strain stiffness - Zace Services Ltd.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong><br />

Andrzej Truty<br />

ZACE <strong>Services</strong><br />

1.09.2008<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Introduction<br />

<strong>Hardening</strong> <strong>Soil</strong> (HS) and <strong>Hardening</strong> <strong>Soil</strong>-<strong>small</strong> (HS-<strong>small</strong>)<br />

<strong>model</strong>s are designed to reproduce basic phenomena exhibited<br />

by soils:<br />

densification<br />

<strong>stiffness</strong> stress dependency<br />

plastic yielding<br />

dilatancy<br />

strong <strong>stiffness</strong> variation <strong>with</strong> growing shear <strong>strain</strong> amplitude<br />

in the regime of <strong>small</strong> <strong>strain</strong>s (γ = 10 −6 to γ = 10 −3 )<br />

this phenomenon plays a crucial role for <strong>model</strong>ing deep<br />

excavations and soil-structure interaction problems<br />

NB. This <strong>model</strong> is limited to monotonic loads<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Introduction<br />

HS <strong>model</strong> was initially formulated by Schanz, Vermeer and<br />

Bonnier (1998, 1999) and then enhanced by Benz (2006)<br />

Current implementation is slightly modified <strong>with</strong> respect to<br />

the theory given by Benz:<br />

simplified treatment of dilatancy for the <strong>small</strong> <strong>strain</strong> version<br />

(HS-<strong>small</strong>)<br />

modified hardening law for preconsolidation pressure<br />

This <strong>model</strong> seems to be one of the simplest in the class of<br />

<strong>model</strong>s designed to handle <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong><br />

It consists of the two plastic mechanisms, shear and volumetric<br />

Small <strong>strain</strong> <strong>stiffness</strong> is incorporated by means of nonlinear<br />

elasticity which includes hysteretic effects<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Triaxial test: illustration<br />

Undrained triaxial test:<br />

Drained triaxial test :<br />

video<br />

video<br />

Annimations by P.Baran (University of Agriculture, Kraków,<br />

Poland)<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Notion of tangent and secant <strong>stiffness</strong> moduli<br />

Initial <strong>stiffness</strong> modulus E o<br />

Unloading-reloading modulus E ur<br />

Secant <strong>stiffness</strong> modulus at 50 % of the ultimate deviatoric<br />

stress q f<br />

0<br />

250<br />

q [kpa]<br />

200<br />

150<br />

100<br />

50<br />

1<br />

E o<br />

1 E 50<br />

q 50<br />

E ur<br />

1<br />

q f<br />

0.5 q f<br />

σ 3 =const<br />

q un<br />

0 0.05 0.1 0.15 0.2 0.25<br />

EPS-1 [-]<br />

Remark: All classical soil <strong>model</strong>s require specification of E ur<br />

modulus (Cam-Clay, Cap etc..)<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Stiffness-<strong>strain</strong> relation for soils (G/G o (γ))<br />

G - current secant shear modulus<br />

G o - shear modulus for very <strong>small</strong> <strong>strain</strong>s<br />

Atkinson 1991<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Notion of treshold shear <strong>strain</strong> γ 07<br />

G<br />

To describe the shape of (γ) curve an additional<br />

G o<br />

characteristic point is needed<br />

It is common to specify the shear <strong>strain</strong> γ 0.7 at which ratio<br />

G<br />

G o<br />

= 0.7<br />

0.7<br />

γ 07<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Dynamic vs static modulus<br />

Relation between ”static” Young modulus E s , obtained from<br />

standard triaxial test at axial <strong>strain</strong> ε 1 ≈ 10 −3 , and ”dynamic”<br />

Young modulus (the one at very <strong>small</strong> <strong>strain</strong>s) E d = E o is<br />

shown in diagram published by Alpan (1970) (after Benz)<br />

100<br />

E<br />

E<br />

d<br />

s<br />

Rocks<br />

10<br />

cohesive soils<br />

granular soils<br />

E s<br />

[kPa]<br />

1<br />

1000 10000 100000 1000000<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


HS <strong>model</strong>: general concept<br />

Double hardening elasto-plastic <strong>model</strong> (Schanz, Vermeer,<br />

Benz)<br />

Nonlinear elasticity for stress paths penetrating the interior of<br />

the elastic domain<br />

600<br />

q [kPa]<br />

500<br />

400<br />

300<br />

200<br />

Cap surface<br />

100<br />

0<br />

0 100 200 300 400 500<br />

p [kPa]<br />

Graphical representation of shear mechanism and cap surface<br />

Andrzej Truty ZACE <strong>Services</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


HS <strong>model</strong>: shear mechanism<br />

Duncan-Chang <strong>model</strong> as the origin for shear mechanism<br />

250<br />

q f<br />

q [kPa]<br />

200<br />

150<br />

100<br />

50<br />

0<br />

E 50<br />

½ q f<br />

1<br />

1<br />

M-C limit<br />

0 0.01 0.02 0.03 0.04 0.05<br />

eps-1<br />

E ur<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Stiffness stress dependency<br />

Remarks<br />

E ur = E ref<br />

ur<br />

E 50 = E ref<br />

50<br />

( σ<br />

∗<br />

3 + c cotφ<br />

σ ref + c cotφ<br />

( σ<br />

∗<br />

3 + c cotφ<br />

σ ref + c cotφ<br />

) m<br />

) m<br />

1 Stiffness degrades <strong>with</strong> decreasing σ 3 up to σ 3 = σ L (by<br />

default we assume σ L =10 kPa)<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Extension to <strong>small</strong> <strong>strain</strong>: new ingredients<br />

To extend standard HS <strong>model</strong> to the range of <strong>small</strong> <strong>strain</strong> Benz<br />

introduced few modifications:<br />

1 Strain dependency is added to the stress-<strong>strain</strong> relation, for<br />

stress paths penetrating the elastic domain<br />

2 The modified Hardin-Drnevich relationship is used to relate<br />

current secant shear modulus G and equivalent monotonic<br />

shear <strong>strain</strong> γ hist<br />

3 Reversal points are detected <strong>with</strong> aid of deviatoric <strong>strain</strong><br />

history second order tensor H ij ; in addition the current<br />

equivalent shear <strong>strain</strong> γ hist is computed by using this tensor<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


How does it work <br />

N-1<br />

N<br />

N+1<br />

plot from paper by Ishihara 1986<br />

At step N : γ histN−1 = 8 × 10 −5 γ histN = 10 −4<br />

At step N + 1 : γ histN = 0 γ histN+1 = 2 × 10 −5<br />

Primary loading: γ histN+1 > γhist<br />

max<br />

Unloading/reloading: γ histN+1 ≤ γ max<br />

Hardin-Drnevich law: G =<br />

hist<br />

G o<br />

1 + a γ hist<br />

γ 0.7<br />

(secant modulus)<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Shear tangent modulus cut-off<br />

G<br />

G ur<br />

γ c<br />

γ c = γ 0.7<br />

a<br />

Andrzej Truty ZACE <strong>Services</strong><br />

(√ )<br />

Go<br />

− 1<br />

G ur<br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong><br />

γ


Setting initial state variables: γ PS<br />

o<br />

Given: σ o , OCR<br />

Find: γ PS<br />

and p co<br />

o and p co<br />

0<br />

600<br />

q [kPa]<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Shear mechanism<br />

Cap surface<br />

σ ο<br />

σ SR<br />

0 100 200 300 400 500<br />

p [kPa]<br />

Procedure:<br />

Set effective stress state at the SR point<br />

σy<br />

SR = σ yo OCR<br />

σx<br />

SR = σz<br />

SR = σ y Ko<br />

SR<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Setting initial state variables: γ PS<br />

o<br />

and p co<br />

600<br />

q [kPa]<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Shear mechanism<br />

Cap surface<br />

σ ο<br />

σ SR<br />

0<br />

0 100 200 300 400 500<br />

p [kPa]<br />

Procedure:<br />

For given σ SR state compute γo<br />

PS<br />

f 1 = 0<br />

from plastic condition<br />

For given σ SR state compute p co from plastic condition f 2 = 0<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Setting initial state variables: γ PS<br />

o<br />

and p co<br />

Remarks<br />

= Ko<br />

NC<br />

(approximate Jaky’s formula)<br />

1 K SR<br />

o<br />

2 K SR<br />

o<br />

≈ 1 − sin(φ) in the standard applications<br />

= 1 for case of isotropic consolidation (used in triaxial<br />

testing for instance)<br />

3 For sands notion of preconsolidation pressure is not as<br />

meaningful as for cohesive soils hence one may assume<br />

OCR=1 and effect of density will be embedded in H and M<br />

parameters<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Setting M and H parameters based on oedometric test<br />

600<br />

500<br />

σ<br />

q [kPa]<br />

400<br />

q*<br />

300<br />

200<br />

100<br />

p*<br />

0<br />

0 100 200 300 400 500<br />

p [kPa]<br />

σ ref 1<br />

oed<br />

E oed<br />

ε<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Material properties<br />

Parameter Unit HS-standard HS-<strong>small</strong><br />

Eur ref [kPa] yes yes<br />

E50 ref [kPa] yes yes<br />

σ ref [kPa] yes yes<br />

m [—] yes yes<br />

ν ur [—] yes yes<br />

R f [—] yes yes<br />

c [kPa] yes yes<br />

φ [ o ] yes yes<br />

ψ [ o ] yes yes<br />

e max [—] yes yes<br />

f t [kPa] yes yes<br />

D [—] yes yes<br />

M [—] yes yes<br />

H [kPa] yes yes<br />

OCR/q POP [—/kPa] yes yes<br />

Eo ref [kPa] no yes<br />

γ 0.7 [—] no yes<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Converting MC to HS <strong>model</strong>: indentation problem<br />

Assumption: q = 0.5 q ult<br />

Given: E for MC <strong>model</strong> and E ur<br />

E 50<br />

= ...,<br />

E 50<br />

E oed<br />

= ...<br />

1m<br />

A<br />

q = 0.5 q ult<br />

10m<br />

10m<br />

Find: E ref<br />

ur , M and H for standard HS <strong>model</strong><br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Example: triaxial test on dense Hostun sand<br />

6<br />

5.5<br />

5<br />

120000<br />

SIG-1 / SIG-3 [kPa]<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

HS-std<br />

HS-<strong>small</strong><br />

G [kPa]<br />

100000<br />

80000<br />

60000<br />

40000<br />

HS-std<br />

HS-<strong>small</strong><br />

2<br />

1.5<br />

20000<br />

1<br />

0<br />

0 0.02 0.04 0.06 0.08 0.1<br />

0.00001 0.0001 0.001 0.01 0.1 1<br />

-EPS-Y [-]<br />

EPS-X - EPS-Y [-]<br />

(a) σ 1<br />

σ 3<br />

(ε 1 ) (Z <strong>Soil</strong>)<br />

(b) G(γ) (Z <strong>Soil</strong>)<br />

4<br />

3.5<br />

0 0.02 0.04 0.06 0.08 0.1<br />

0.08<br />

SIG-1 / SIG-3 [kPa]<br />

3<br />

2.5<br />

2<br />

HS-std<br />

HS-<strong>small</strong><br />

-EPS-V [-]<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

HS-std<br />

HS-<strong>small</strong><br />

1.5<br />

0.01<br />

0<br />

1<br />

-0.01<br />

0 0.002 0.004 0.006 0.008 0.01<br />

-EPS-Y [-]<br />

-0.02<br />

-EPS-Y [-]<br />

(c) σ 1<br />

σ 3<br />

(ε 1 ) (zoom) (Z <strong>Soil</strong>)<br />

(d) ε v (ε 1 ) (Z <strong>Soil</strong>)<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Example: triaxial test on dense Hostun sand<br />

SIG-1 / SIG-3 [kPa]<br />

6<br />

5.5<br />

5<br />

4.5<br />

4<br />

HS-std<br />

3.5<br />

HS-<strong>small</strong><br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0 0.02 0.04 0.06 0.08 0.1<br />

EPS-1 [-]<br />

G [kPa]<br />

200000<br />

180000<br />

160000<br />

140000<br />

120000<br />

100000<br />

80000<br />

60000<br />

40000<br />

20000<br />

0<br />

0.00001 0.0001 0.001 0.01 0.1 1<br />

EPS-1 - EPS-3 [-]<br />

HS-std<br />

HS-<strong>small</strong><br />

(a) σ 1<br />

σ 3<br />

(ε 1 ) (Z <strong>Soil</strong>)<br />

(b) G(γ) (Z <strong>Soil</strong>)<br />

4<br />

3.5<br />

0 0.02 0.04 0.06 0.08 0.1<br />

0.08<br />

SIG-1 / SIG-3 [kPa]<br />

3<br />

2.5<br />

2<br />

HS-std<br />

HS-<strong>small</strong><br />

EPS-V [-]<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

HS-std<br />

HS-<strong>small</strong><br />

1.5<br />

0.01<br />

0<br />

1<br />

-0.01<br />

0 0.002 0.004 0.006 0.008 0.01<br />

-0.02<br />

EPS-1 [-]<br />

EPS-1 [-]<br />

(c) σ 1<br />

σ 3<br />

(ε 1 ) (zoom) (Z <strong>Soil</strong>)<br />

(d) ε v (ε 1 ) (Z <strong>Soil</strong>)<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Example: triaxial test on dense Hostun sand<br />

6<br />

5.5<br />

300000<br />

5<br />

250000<br />

SIG-1 / SIG-3 [kPa]<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

HS-std<br />

HS-<strong>small</strong><br />

G [kPa]<br />

200000<br />

150000<br />

100000<br />

HS-std<br />

HS-<strong>small</strong><br />

2<br />

1.5<br />

50000<br />

1<br />

0<br />

0 0.02 0.04 0.06 0.08 0.1<br />

0.00001 0.0001 0.001 0.01 0.1 1<br />

EPS-1 [-]<br />

EPS-1-EPS-3 [-]<br />

(a) σ 1<br />

σ 3<br />

(ε 1 ) (Z <strong>Soil</strong>)<br />

(b) G(γ) (Z <strong>Soil</strong>)<br />

4<br />

0 0.02 0.04 0.06 0.08 0.1<br />

3.5<br />

0.08<br />

SIG-1 / SIG-3 [kPa]<br />

3<br />

2.5<br />

2<br />

HS-std<br />

HS-<strong>small</strong><br />

EPS-V [-]<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

HS-std<br />

HS-<strong>small</strong><br />

1.5<br />

0.01<br />

0<br />

1<br />

-0.01<br />

0 0.002 0.004 0.006 0.008 0.01<br />

-0.02<br />

EPS-1 [-]<br />

EPS-1 [-]<br />

(c) σ 1<br />

σ 3<br />

(ε 1 ) (zoom) (Z <strong>Soil</strong>)<br />

(d) ε v (ε 1 ) (Z <strong>Soil</strong>)<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Estimation of material properties: input data<br />

Given 3 drained triaxial test results for 3 confining pressures:<br />

σ 3 = 100 kPa<br />

σ 3 = 300 kPa<br />

σ 3 = 600 kPa<br />

Shear characteristics q − ε 1<br />

Dilatancy characteristics ε v − ε 1<br />

Stress paths in p − q plane<br />

Measurements of <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong> moduli E o (σ 3 ) for the<br />

assumed confining pressures (through direct measurement of<br />

shear wave velocity in the sample)<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Estimation of material properties: stress paths in p-q plane<br />

Estimation of friction angle φ = φ cs and cohesion c<br />

q<br />

Residual M-C envelope<br />

1<br />

6sinφ<br />

M*<br />

=<br />

3 − sinφ<br />

6 cosφ<br />

c*<br />

= c<br />

3 − sinφ<br />

p<br />

If we know M ∗ and c ∗ then we can compute φ and c:<br />

φ = arcsin 3 M∗<br />

6 + M ∗ c = c ∗ 3 − sin φ<br />

6 cos φ<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Estimation of material properties: stress paths in p-q plane<br />

Estimation of friction angle φ = φ cs and cohesion c<br />

3000<br />

q [kPa]<br />

2500<br />

2000<br />

1500<br />

1000<br />

2358 1<br />

2358/1386=1.7<br />

500<br />

1386<br />

0<br />

0 300 600 900 1200 1500 1800<br />

p [kPa]<br />

Here: φ = arcsin 3 ∗ 1.7<br />

6 + 1.7 ≈ 42o c = 0<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Estimation of material properties: dilatancy angle<br />

0.06<br />

0.05<br />

EPS-V [-]<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

d<br />

1<br />

Dilatancy cut-off<br />

0<br />

-0.01<br />

-0.02<br />

0 0.02 0.04 0.06 0.08 0.1<br />

ψ = arcsin<br />

EPS-1 = - EPS-3 [-]<br />

( d<br />

2 + d<br />

)<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Estimation of material properties: dilatancy angle<br />

0.06<br />

0.05<br />

0.04<br />

ε 0.03 V<br />

0.02<br />

0.01<br />

0<br />

-0.01<br />

d=0.75<br />

-0.02<br />

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1<br />

ε 1<br />

( ) 0.75<br />

ψ = arcsin<br />

≈ 16 o<br />

2 + 0.75<br />

1<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Estimation of material properties: E ref<br />

o<br />

and m<br />

Analytical formula: E o = E ref<br />

o<br />

( σ<br />

∗<br />

3 + c cotφ<br />

σ ref + c cotφ<br />

) m<br />

Measured: shear wave velocity v s at ε 1 = 10 −6 and at given<br />

confining stress σ 3<br />

Compute : shear modulus G o = ρv 2 s<br />

Compute : Young modulus E o = 2 (1 + ν) G o<br />

σ 3 [kPa] E o [kPa]<br />

100 250000<br />

300 460000<br />

600 675000<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Estimation of material properties: E ref<br />

o<br />

and m<br />

Analytical formula: E o = E ref<br />

o<br />

( σ<br />

∗<br />

3 + c cotφ<br />

σ ref + c cotφ<br />

) m<br />

Measured: shear wave velocity v s at ε 1 = 10 −6 and at given<br />

confining stress σ 3<br />

Compute : shear modulus G o = ρv 2 s<br />

Compute : Young modulus E o = 2 (1 + ν) G o<br />

σ 3 [kPa] E o [kPa]<br />

100 250000<br />

300 460000<br />

600 675000<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Estimation of material properties: E ref<br />

o<br />

and m<br />

Reanalyze E o vs σ 3 in logarithmic scales<br />

13.1 − 12.55<br />

Averaged slope yields m; here m =<br />

1.0<br />

Find<br />

(<br />

intersection of the line <strong>with</strong> axis ln E o at<br />

σ<br />

∗ )<br />

3 + c cotφ<br />

ln<br />

σ ref = 0<br />

+ c cotφ<br />

Here the intersection is at 12.43 hence<br />

= e 12.43 ≈ 2.718 12.43 = 250000 kPa<br />

E ref<br />

o<br />

= 0.55<br />

13.6<br />

ln E o<br />

13.4<br />

13.2<br />

13<br />

m<br />

12.8<br />

12.6<br />

⎛ σ<br />

3<br />

+ c cotφ<br />

⎞<br />

1<br />

ln⎜<br />

⎟<br />

12.4 12.43<br />

ref<br />

⎝ σ + c cotφ<br />

⎠<br />

12.2<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Estimation of E ref<br />

o<br />

from CPT testing<br />

To estimate <strong>small</strong> <strong>strain</strong> modulus G o at a certain depth one<br />

may use empirical formula by Mayne and Rix:<br />

G o = 49.4 q0.695 t<br />

e 1.13<br />

[MPa]<br />

q t is a corrected tip resistance expressed in MPa<br />

e is the void ratio<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Estimation of material properties: E ref<br />

50<br />

Lets us find E 50 for each confining stress<br />

f<br />

50<br />

( σ<br />

3<br />

=<br />

q<br />

2500<br />

2000<br />

1500<br />

100)<br />

1000<br />

1<br />

E<br />

50( σ<br />

3<br />

= 300kPa)<br />

1<br />

E<br />

50( σ<br />

3<br />

= 600kPa)<br />

E<br />

50( σ<br />

3<br />

= 100kPa)<br />

1<br />

q<br />

f<br />

50<br />

( σ<br />

3<br />

=<br />

q<br />

f<br />

50<br />

( σ<br />

3<br />

=<br />

100)<br />

500<br />

100)<br />

0<br />

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Estimation of material properties: E ref<br />

50<br />

Reanalyze E 50 vs σ 3 in logarithmic scales<br />

Here we can fix m to the one obtained for <strong>small</strong> <strong>strain</strong> moduli<br />

Find<br />

(<br />

intersection of the line <strong>with</strong> axis ln E 50 at<br />

σ<br />

∗ )<br />

3 + c cotφ<br />

ln<br />

σ ref = 0<br />

+ c cotφ<br />

Here the intersection is at ≈ 10.30 hence<br />

E50 ref ≈ e10.30 ≈ 2.718 10.30 ≈ 30000 kPa<br />

ln E 50<br />

11.4<br />

11.2<br />

11<br />

10.8<br />

10.6<br />

⎛ σ<br />

3<br />

+ c cotφ<br />

⎞<br />

ln⎜<br />

⎟<br />

σ + c cotφ<br />

ref<br />

10.4<br />

10.30<br />

⎝<br />

⎠<br />

10.2<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Estimation of material properties: E ref<br />

ur<br />

The unloading reloading modulus as well as oedometric<br />

moduli are usually not accessible<br />

We can use Alpans diagram to deduce E ref<br />

ur<br />

E ref<br />

o<br />

(default is E ur<br />

ref<br />

Eo<br />

ref<br />

this value is larger<br />

once we know<br />

= 3); for cohesive soils like tertiary clays<br />

For oedometric modulus at the reference stress σ ref = 100<br />

kPa we can assume Eoed ref = E 50<br />

ref<br />

γ 0.7 = 0.0001...0.0002 for sands and γ 0.7 = 0.00005...0.0001<br />

for clays<br />

Smaller γ 0.7 values yield softer soil behavior<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Excavation in Berlin Sand: engineering draft<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Excavation in Berlin Sand: FE discretization<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Excavation in Berlin Sand: Bending moments<br />

-500 -400 -300 -200 -100 0 100 200 300 400 500<br />

0<br />

-5<br />

-10<br />

Y [m[]<br />

-15<br />

-20<br />

-25<br />

-30<br />

HS<br />

HS-<strong>small</strong><br />

MC<br />

M [kNm/m]<br />

-35<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Excavation in Berlin Sand: Wall deflections<br />

-0.015 -0.01 -0.005 0 0.005 0.01<br />

0<br />

-5<br />

-10<br />

Y [m]<br />

-15<br />

-20<br />

-25<br />

-30<br />

HS-<strong>small</strong><br />

HS<br />

MC<br />

Ux [m]<br />

-35<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Excavation in Berlin Sand: <strong>Soil</strong> deformation in cross<br />

section x =20m<br />

Y [m]<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

-70<br />

-80<br />

-90<br />

-100<br />

0 0.01 0.02 0.03 0.04<br />

0<br />

Uy [m]<br />

HS<br />

HS-<strong>small</strong><br />

MC<br />

Vertical heaving of subsoil at last stage of excavation, relative to<br />

the step when dewatering was finished (t = 2)<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Excavation in Berlin Sand: <strong>Soil</strong> deformation in cross<br />

section x =20m<br />

Y [m]<br />

-0.004 -0.003 -0.002 -0.001 0<br />

0<br />

Ux [m]<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

-70<br />

-80<br />

-90<br />

-100<br />

HS<br />

HS-<strong>small</strong><br />

MC<br />

Horizontal movement in cross section x=20m at last stage of<br />

excavation, relative to the step when dewatering was finished<br />

(t = 2)<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>


Conclusions<br />

Model properly reproduces strong <strong>stiffness</strong> variation <strong>with</strong> shear<br />

<strong>strain</strong><br />

It can be used in simulations of soil-structure interaction<br />

problems<br />

Implementation is ”rather heavy”<br />

It should properly predict deformations near the excavations<br />

Model reduces excessive heavings at the bottom of the<br />

excavation<br />

Andrzej Truty ZACE <strong>Services</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!