30.12.2014 Views

research on small turbojet engines at the royal military academy of ...

research on small turbojet engines at the royal military academy of ...

research on small turbojet engines at the royal military academy of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

RESEARCH ON SMALL TURBOJET ENGINES AT THE ROYAL<br />

MILITARY ACADEMY OF BELGIUM<br />

P<strong>at</strong>rick Hendrick - Frank Buysschaert<br />

Royal Military Academy <strong>of</strong> Belgium, Dept. <strong>of</strong> Applied Mechanics<br />

Renaissance Avenue 30, Brussels 1000, Belgium<br />

Hendrick@mapp.rma.ac.be<br />

ABSTRACT<br />

High speed and high altitude UAV and MAV flight<br />

requires certain qualities <strong>of</strong> <strong>the</strong> installed engine(s).<br />

The use <strong>of</strong> <strong>turbojet</strong>s for this purpose is justified,<br />

though, <strong>the</strong> <strong>engines</strong> can lack performance, which<br />

might be countered with inlet precooling. This<br />

paper describes <strong>the</strong> <str<strong>on</strong>g>research</str<strong>on</strong>g> d<strong>on</strong>e <strong>at</strong> <strong>the</strong> RMA <strong>on</strong><br />

inlet precooling. Mainly <strong>the</strong> influence <strong>of</strong> <strong>the</strong><br />

precooling <strong>on</strong> <strong>the</strong> thrust and <strong>the</strong> TSFC <strong>of</strong> <strong>the</strong> SR-30<br />

mini <strong>turbojet</strong> are covered. Here, <strong>the</strong> precooling is<br />

obtained through injecti<strong>on</strong> <strong>of</strong> liquid nitrogen in <strong>the</strong><br />

engine inlet. Theory and experiments are<br />

compared and <strong>the</strong> influence <strong>of</strong> icing <strong>on</strong> <strong>the</strong><br />

performance <strong>of</strong> <strong>the</strong> engine is discussed.<br />

BIOGRAPHY<br />

F. Buysschaert gradu<strong>at</strong>ed <strong>at</strong> <strong>the</strong> K.H.B.O. <strong>academy</strong><br />

in Ostend as an engineer. Now he is a <str<strong>on</strong>g>research</str<strong>on</strong>g><br />

engineer <strong>at</strong> RMA in <strong>the</strong> field <strong>of</strong> UAV propulsi<strong>on</strong>.<br />

USED SYMBOLS<br />

indices<br />

' : with precooling<br />

1 : in fr<strong>on</strong>t <strong>of</strong> engine compressor<br />

2 : aft compressor st<strong>at</strong>i<strong>on</strong><br />

3 : in fr<strong>on</strong>t <strong>of</strong> engine turbine<br />

5 : exhaust nozzle st<strong>at</strong>i<strong>on</strong><br />

a : ambient<br />

g : combusti<strong>on</strong> gas<br />

j : jet ; corresp<strong>on</strong>ding with 5<br />

t : stagn<strong>at</strong>i<strong>on</strong><br />

cc : combusti<strong>on</strong> chamber<br />

id : ideal<br />

is : isentropic<br />

C : compressor<br />

T : turbine<br />

N2 : nitrogen<br />

abbrevi<strong>at</strong>i<strong>on</strong>s<br />

g : adiab<strong>at</strong>ic exp<strong>on</strong>ent<br />

h : cooling efficiency [ 1 ]<br />

h cc : combusti<strong>on</strong> chamber efficiency [ 1 ]<br />

h is,C : compressor isentropic efficiency [ 1 ]<br />

h is,T : turbine isentropic efficiency [ 1 ]<br />

q : he<strong>at</strong>ing r<strong>at</strong>io [ 1 ]<br />

l cc : pressure drop in combusti<strong>on</strong> chamber [ 1 ]<br />

p c : compressor pressure r<strong>at</strong>io = p t2 / p t1 [ 1 ]<br />

c p : specific he<strong>at</strong> capacity [ J/kgK ]<br />

d : fuel to air r<strong>at</strong>io<br />

m&: mass flow inlet air [ kg/s ]<br />

m& ' : mass flow inlet air with precooling [ kg/s ]<br />

m& : fuel flow [ kg/s ]<br />

f<br />

p : pressure [ Pa ]<br />

p t : stagn<strong>at</strong>i<strong>on</strong> pressure [ Pa ]<br />

v : gas velocity [ m/s ]<br />

qci : fuel lower he<strong>at</strong>ing value [ J/kg ]<br />

A i : cross-secti<strong>on</strong> i<br />

EGT : exhaust gas temper<strong>at</strong>ure [ K ]<br />

LN2 : liquid nitrogen<br />

L v : l<strong>at</strong>ent he<strong>at</strong> [ J/kg ]<br />

M : Mach number [ 1 ]<br />

MAV : mini air vehicle<br />

N2 : nitrogen<br />

RMA : Royal Military Academy <strong>of</strong> Belgium<br />

RPM : rot<strong>at</strong>i<strong>on</strong> speed [ 1/min ]<br />

RR : ram recovery [ 1 ]<br />

T : temper<strong>at</strong>ure [ K ]<br />

TIT : turbine inlet temper<strong>at</strong>ure [ K ]<br />

T N : thrust [ N ]<br />

TSFC : thrust specific fuel c<strong>on</strong>sumpti<strong>on</strong><br />

[kg/(daN.h)]<br />

TSFC N2 : LN2 thrust specific fuel c<strong>on</strong>sumpti<strong>on</strong><br />

[kg/(daN.h)]<br />

UAV : unmanned air vehicle<br />

UCAV : unmanned comb<strong>at</strong> air vehicle


1. PURPOSE OF THE STUDY<br />

Not all <strong>small</strong> sized unmanned aerial vehicles, so<br />

called UAV's, are intended to be used <strong>at</strong> low speed<br />

and low altitude. Some <strong>of</strong> <strong>the</strong>m, as <strong>the</strong> Sperwer<br />

HV <strong>of</strong> Sagem, are designed to fly <strong>at</strong> high speed<br />

( M 0.6 ) and high altitude ( more <strong>the</strong>n 30.000 ft ).<br />

Those requirements can cause trouble finding an<br />

appropri<strong>at</strong>e engine for <strong>the</strong> aircraft, especially for<br />

hot days or hot clim<strong>at</strong>es, since <strong>the</strong>re are not much<br />

<strong>small</strong> scaled <strong>engines</strong> <strong>on</strong> <strong>the</strong> market and<br />

c<strong>on</strong>structing a tailor-made <strong>on</strong>e would boost<br />

development costs. When we are dealing with high<br />

altitudes and speeds, a <strong>turbojet</strong> will pop up as a<br />

favourite because <strong>of</strong> its low weight, dimensi<strong>on</strong>s<br />

and high exhaust velocity, allowing high-speed<br />

flight. When <strong>the</strong>re is a lack <strong>of</strong> thrust or efficiency,<br />

inlet precooling could be a soluti<strong>on</strong> to th<strong>at</strong><br />

problem. At <strong>the</strong> RMA, extensive <str<strong>on</strong>g>research</str<strong>on</strong>g> is d<strong>on</strong>e<br />

<strong>on</strong> finding out wh<strong>at</strong> influences inlet precooling has<br />

<strong>on</strong> <strong>the</strong> performance <strong>of</strong> a mini-<strong>turbojet</strong>. The<br />

purpose <strong>of</strong> this study is to evalu<strong>at</strong>e <strong>the</strong> impact <strong>of</strong><br />

inlet precooling <strong>on</strong> <strong>the</strong> performance <strong>of</strong> a mini<strong>turbojet</strong><br />

and to get familiar with <strong>the</strong> problems who<br />

will raise such as icing. The results are given in<br />

this paper.<br />

2. THE SR-30 MINI-TURBOJET<br />

To investig<strong>at</strong>e <strong>the</strong> impact <strong>of</strong> inlet precooling <strong>on</strong> a<br />

<strong>turbojet</strong>, <strong>the</strong> Royal Military Academy <strong>of</strong> Belgium<br />

uses a SR-30 mini-<strong>turbojet</strong>, made by Turbine<br />

Technologies Ltd., Wisc<strong>on</strong>sin, USA ( fig. 1 and 3 ).<br />

This <strong>turbojet</strong> is a 171 mm by 273 mm engine and it<br />

produces <strong>at</strong> its maximum r<strong>at</strong>ing 100 N <strong>of</strong> thrust,<br />

when <strong>the</strong> standard exhaust nozzle is installed. The<br />

engine has <strong>the</strong> ability to run <strong>on</strong> different fuels,<br />

though, all tests are d<strong>on</strong>e with JP-8. It c<strong>on</strong>sists <strong>of</strong> a<br />

bellmouth inlet, a centrifugal compressor, a<br />

reversed combusti<strong>on</strong> chamber, an axial turbine and<br />

a fixed c<strong>on</strong>vergent nozzle.<br />

This engine is installed <strong>on</strong> a Minilab testbench<br />

( fig.2 ). The testbench allows engine-c<strong>on</strong>trol and<br />

fig. 2 : <strong>the</strong> RMA MiniLab test bench<br />

provides fuel, oil and air to <strong>the</strong> engine. The d<strong>at</strong>a<br />

acquisiti<strong>on</strong> is obtained with a N<strong>at</strong>i<strong>on</strong>al Instruments<br />

SCXI chassis and displayed with LabView.<br />

fig. 1 : <strong>the</strong> SR-30 <strong>turbojet</strong><br />

3. THERMODYNAMICAL IMPACT OF<br />

INLET PRECOOLING ON ENGINE<br />

PERFORMANCE<br />

This part will discuss <strong>the</strong> <strong>the</strong>rmodynamical impact<br />

inlet precooling has <strong>on</strong> <strong>the</strong> thrust and <strong>the</strong>rmal<br />

efficiency <strong>of</strong> a <strong>turbojet</strong>. The reader is advised to<br />

notice <strong>the</strong> annot<strong>at</strong>i<strong>on</strong>s used in fig. 3 to determine<br />

<strong>the</strong> different st<strong>at</strong>i<strong>on</strong>s in <strong>the</strong> engine. This is<br />

necessary to have a better understanding <strong>of</strong> <strong>the</strong>


perturbed air in fr<strong>on</strong>t <strong>of</strong> <strong>the</strong> inlet, 1 is <strong>the</strong> st<strong>at</strong>i<strong>on</strong><br />

just in fr<strong>on</strong>t <strong>of</strong> <strong>the</strong> compressor, 2 is <strong>the</strong> st<strong>at</strong>i<strong>on</strong> after<br />

<strong>the</strong> compressor, 3 is <strong>the</strong> st<strong>at</strong>i<strong>on</strong> in fr<strong>on</strong>t <strong>of</strong> <strong>the</strong><br />

turbine, 4 is <strong>the</strong> st<strong>at</strong>i<strong>on</strong> just behind <strong>the</strong> turbine and<br />

5 ( also annot<strong>at</strong>ed by j ) is near <strong>the</strong> engine outlet.<br />

pressure r<strong>at</strong>io, an increase in W red can be obtained<br />

by increasing <strong>the</strong> he<strong>at</strong>ing r<strong>at</strong>io θ .<br />

fig. 4<br />

a 1 2 3 4 5<br />

fig. 3 : <strong>the</strong> st<strong>at</strong>i<strong>on</strong> design<strong>at</strong>i<strong>on</strong><br />

A very helpful tool to calcul<strong>at</strong>e <strong>the</strong> thrust<br />

<strong>the</strong>oretically, is <strong>the</strong> reduced net power W red .<br />

Buysschaert ( 1 ) derived <strong>the</strong> following equ<strong>at</strong>i<strong>on</strong> :<br />

W<br />

red<br />

= η<br />

⎧<br />

⎪ ⎡<br />

⎨1<br />

− ⎢<br />

⎪ ⎣ RR<br />

⎩<br />

γ −1<br />

γ<br />

1 ⎤ ⎪<br />

{ η [ θ −ψ]<br />

+ ψ}<br />

− −<br />

is, T cc<br />

( 1−<br />

λ )<br />

cc<br />

⎥<br />

π<br />

c ⎦<br />

⎫<br />

⎬<br />

⎪<br />

⎭<br />

{ ψ 1}<br />

[1]<br />

fig. 5<br />

with<br />

The efficiencies are based <strong>on</strong> real d<strong>at</strong>a <strong>of</strong> <strong>the</strong> SR-30<br />

engine, obtained <strong>at</strong> RMA. They are given in table<br />

γ −1<br />

γ<br />

c<br />

π<br />

ψ =<br />

η<br />

is,<br />

C<br />

−1<br />

+ 1<br />

[2] and<br />

T<br />

t3,<br />

id<br />

θ = [3]<br />

T<br />

t1<br />

1. We assume th<strong>at</strong> all efficiencies remain c<strong>on</strong>stant<br />

in functi<strong>on</strong> <strong>of</strong> engine r<strong>at</strong>ings and precooling level.<br />

Also, a rel<strong>at</strong>i<strong>on</strong> to find a value for <strong>the</strong> <strong>the</strong>rmal<br />

efficiency was found :<br />

RR<br />

η<br />

is, C<br />

η<br />

is, T<br />

η<br />

cc<br />

λcc<br />

1 0.7 0.95 0.99 0.05<br />

Wred<br />

η =<br />

th<br />

θ −ψ<br />

[4]<br />

table 1<br />

Equ<strong>at</strong>i<strong>on</strong>s [1] and [4] are plotted in figures 4 and 5<br />

respectively. It can be seen clearly th<strong>at</strong> for a given<br />

The first method to increase <strong>the</strong> net power is to<br />

inject more fuel, resulting in a higher TIT and θ .<br />

Though <strong>the</strong>re are temper<strong>at</strong>ure limits imposed by


<strong>the</strong> combusti<strong>on</strong> chamber, <strong>the</strong> turbine m<strong>at</strong>erials and<br />

lifetime c<strong>on</strong>sider<strong>at</strong>i<strong>on</strong>s. Still, we can boost θ by<br />

decreasing <strong>the</strong> compressor inlet temper<strong>at</strong>ure T t1 .<br />

C<strong>on</strong>sequently, higher thrust and <strong>the</strong>rmal efficiency<br />

can be obtained.<br />

It is obvious th<strong>at</strong> an increase <strong>of</strong> <strong>the</strong> he<strong>at</strong>ing r<strong>at</strong>io θ<br />

is beneficial for <strong>the</strong> thrust. One can ask wh<strong>at</strong> will<br />

happen with θ presuming 4 different scenarios :<br />

a) decrease <strong>of</strong> T t1 without changing <strong>the</strong> fuel flow<br />

b) decrease <strong>of</strong> T t1 , keeping <strong>the</strong> fuel to air r<strong>at</strong>io d<br />

c<strong>on</strong>stant<br />

c) decrease <strong>of</strong> T t1 , keeping TIT c<strong>on</strong>stant<br />

d) decrease <strong>of</strong> T t1 , keeping EGT c<strong>on</strong>stant<br />

The first term <strong>of</strong> equ<strong>at</strong>i<strong>on</strong> 6 characterizes <strong>the</strong><br />

temper<strong>at</strong>ure increment due to <strong>the</strong> adiab<strong>at</strong>ic<br />

compressi<strong>on</strong> <strong>of</strong> <strong>the</strong> air, <strong>the</strong> sec<strong>on</strong>d term tells us<br />

how much <strong>the</strong> temper<strong>at</strong>ure will increase because <strong>of</strong><br />

<strong>the</strong> he<strong>at</strong> gener<strong>at</strong>ed by <strong>the</strong> combusti<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

injected fuel. Figure 6 visualizes equ<strong>at</strong>i<strong>on</strong> 6. The<br />

parameters A and B were calcul<strong>at</strong>ed with <strong>the</strong><br />

following values, derived from RMA experimental<br />

d<strong>at</strong>a :<br />

Only cases a & b were c<strong>on</strong>sidered <strong>the</strong>oretically, c<br />

& d followed from a & b.<br />

a) c<strong>on</strong>stant fuel flow with decreasing T t1<br />

The main purpose is to find an equ<strong>at</strong>i<strong>on</strong> th<strong>at</strong> shows<br />

us whe<strong>the</strong>r an increase <strong>of</strong> θ can be obtained or not.<br />

Therefore we have to find a rel<strong>at</strong>i<strong>on</strong> between TIT<br />

and T t1 .<br />

When we c<strong>on</strong>sider a c<strong>on</strong>stant RPM, <strong>the</strong> assumpti<strong>on</strong><br />

th<strong>at</strong> <strong>the</strong> airspeed in fr<strong>on</strong>t <strong>of</strong> <strong>the</strong> compressor v 1<br />

remains c<strong>on</strong>stant, is plausible. Starting from <strong>the</strong><br />

following combustor equ<strong>at</strong>i<strong>on</strong> :<br />

q c .d = c pg T t3id - c p .T t2 [5]<br />

and applying <strong>the</strong> definiti<strong>on</strong>s <strong>of</strong> c p , d and Castelli's<br />

law, <strong>the</strong> following rel<strong>at</strong>i<strong>on</strong> can be derived :<br />

1<br />

( T − ) − γ<br />

Tt 3<br />

. B<br />

[6]<br />

with<br />

γ<br />

= ψ + γ −1<br />

1<br />

id<br />

Tt1<br />

ATt<br />

1 t1<br />

q c<br />

m&<br />

f<br />

fig. 6<br />

43,2 MJ/kg fuel<br />

0.00441 kg/s<br />

γ 1.4<br />

A 1<br />

v 1<br />

p t1<br />

c p<br />

7390 mm_<br />

30 m/s<br />

100900 Pa<br />

1004 J/kgK<br />

ψ 1.671<br />

Figure 6 shows an apparently linear curve <strong>of</strong> T t3id<br />

as a functi<strong>on</strong> <strong>of</strong> T t1 . Notify th<strong>at</strong> <strong>the</strong> curve goes<br />

through <strong>the</strong> origin <strong>of</strong> <strong>the</strong> plot, which means th<strong>at</strong><br />

T t3id = f(T t1 ) can be written in <strong>the</strong> following<br />

simplified form :<br />

qc.<br />

m&<br />

A =<br />

γ . A<br />

.( γ −1)<br />

f<br />

1<br />

. v1.<br />

p<br />

t1<br />

[7] and<br />

v<br />

B = [8]<br />

2.<br />

2<br />

1<br />

c p<br />

T t3id = K 1 .T t1 or<br />

θ =K 1 [ 9 ]


This equ<strong>at</strong>i<strong>on</strong> is very useful, since it tells us th<strong>at</strong> <strong>the</strong><br />

he<strong>at</strong>ing r<strong>at</strong>io θ is a c<strong>on</strong>stant when we cool down<br />

<strong>the</strong> inlet air without additi<strong>on</strong> <strong>of</strong> fuel. Applying <strong>the</strong><br />

definiti<strong>on</strong> <strong>of</strong> <strong>the</strong> reduced net power :<br />

W red =<br />

net<br />

available<br />

m&<br />

c<br />

. . T<br />

p t1<br />

power<br />

W&<br />

n<br />

[10]<br />

With mediocre chilling, <strong>the</strong> denomin<strong>at</strong>or <strong>of</strong><br />

equ<strong>at</strong>i<strong>on</strong> 10 remains more or less c<strong>on</strong>stant.<br />

Examining rel<strong>at</strong>i<strong>on</strong>s 1 and 10, <strong>on</strong>e can see th<strong>at</strong> W red<br />

will c<strong>on</strong>sequently remain c<strong>on</strong>stant and<br />

W & n too.<br />

As a result <strong>of</strong> this discussi<strong>on</strong>, <strong>the</strong> c<strong>on</strong>clusi<strong>on</strong> is th<strong>at</strong><br />

precooling with a c<strong>on</strong>stant fuel flow is useless.<br />

b) decrease <strong>of</strong> T t1 with a c<strong>on</strong>stant d<br />

When inlet precooling is applied, <strong>the</strong> mass flow <strong>of</strong><br />

air will increase. In order to keep d c<strong>on</strong>stant, <strong>on</strong>e<br />

has to increase <strong>the</strong> fuel flow. Again, departing<br />

from rel<strong>at</strong>i<strong>on</strong> 5, <strong>the</strong> following equ<strong>at</strong>i<strong>on</strong> for<br />

T t3id = f(T t1 ) can be derived :<br />

qc.<br />

d<br />

θ = +ψ<br />

c . T<br />

p<br />

t1<br />

[11]<br />

The use <strong>of</strong> precooling with a c<strong>on</strong>stant d seems very<br />

interesting, since a reducti<strong>on</strong> <strong>of</strong> T t1 results in a rise<br />

<strong>of</strong> <strong>the</strong> he<strong>at</strong>ing r<strong>at</strong>io and c<strong>on</strong>sequently <strong>the</strong> thrust and<br />

<strong>the</strong>rmal efficiency.<br />

Since a c<strong>on</strong>stant fuel to air r<strong>at</strong>io involves a lower<br />

TIT with a lower inlet temper<strong>at</strong>ure, which can also<br />

be derived from equ<strong>at</strong>i<strong>on</strong> 11, keeping TIT and EGT<br />

c<strong>on</strong>stant will boost <strong>the</strong> thrust and <strong>the</strong>rmal<br />

efficiency as well, if <strong>the</strong> proposed efficiencies<br />

remain c<strong>on</strong>stant ( or improve ).<br />

4. EXPERIMENTAL VALIDATION OF THE<br />

DERIVED EQUATIONS<br />

There are many ways <strong>of</strong> cooling air, though <strong>on</strong>ly a<br />

few <strong>of</strong> <strong>the</strong>m are ec<strong>on</strong>omically justified and suitable<br />

to fit <strong>on</strong> an aircraft or UAV. The RMA chooses<br />

liquid nitrogen LN2 because <strong>of</strong> its ease <strong>of</strong> use, its<br />

chemical inertness, its low influence <strong>on</strong> air<br />

compositi<strong>on</strong> and last but not least its low<br />

temper<strong>at</strong>ure. It is also an interesting coolant when<br />

put <strong>on</strong> an aircraft. This because it is stand-al<strong>on</strong>e.<br />

With a few valves and a dip, <strong>the</strong> nitrogen can keep<br />

itself cool, though with a <strong>small</strong> and c<strong>on</strong>tinuous loss<br />

<strong>of</strong> its mass, since l<strong>at</strong>ent he<strong>at</strong> is necessary to<br />

maintain <strong>the</strong> liquid st<strong>at</strong>e.<br />

One can cool air with LN2 in two ways : chilling<br />

<strong>the</strong> air actively by injecting LN2 directly in <strong>the</strong><br />

airflow or passively by using a tube or pl<strong>at</strong>e he<strong>at</strong><br />

exchanger. Research work is d<strong>on</strong>e using both<br />

methods, though passive cooling is still in <strong>the</strong><br />

making. Thus, this paper will present <strong>the</strong> results <strong>of</strong><br />

<strong>the</strong> active cooling <strong>on</strong>ly. The large advantage <strong>of</strong><br />

this direct injecti<strong>on</strong> method is th<strong>at</strong> <strong>the</strong> air pressure<br />

drop is very limited when precooling is used and<br />

zero in flight sequences without precooling.<br />

4.1 Descripti<strong>on</strong> <strong>of</strong> <strong>the</strong> cooling device<br />

A low pressure 180L Ranger <strong>of</strong> Air Liquide<br />

supplied <strong>the</strong> liquid nitrogen ( <strong>at</strong> 77 K ). A 3m l<strong>on</strong>g<br />

flexible inox tube c<strong>on</strong>nected <strong>the</strong> ranger with <strong>the</strong><br />

sintered br<strong>on</strong>ze spray nozzle ( fig.7 ). First tests<br />

showed th<strong>at</strong> <strong>the</strong> injector had to be fixed above <strong>the</strong><br />

centerline <strong>of</strong> <strong>the</strong> bellmouth inlet ( fig.8 ).<br />

C<strong>on</strong>sequently <strong>the</strong> engine sucked in all LN2. This<br />

was necessary since an approxim<strong>at</strong>i<strong>on</strong> <strong>of</strong> <strong>the</strong> mass<br />

flow <strong>of</strong> nitrogen m& had to be measured. The<br />

N 2<br />

<strong>on</strong>ly way <strong>of</strong> measuring m& is by gauging <strong>the</strong> mass<br />

N 2<br />

<strong>of</strong> <strong>the</strong> ranger before and after <strong>the</strong> test. The<br />

explan<strong>at</strong>i<strong>on</strong> is th<strong>at</strong> LN2 leaves <strong>the</strong> reservoir <strong>at</strong> 1.7<br />

bar absolute pressure in <strong>the</strong> s<strong>at</strong>ur<strong>at</strong>ed st<strong>at</strong>e. Near<br />

<strong>the</strong> flexible tube <strong>the</strong> N2 finds itself in <strong>the</strong> st<strong>at</strong>e <strong>of</strong>


evapor<strong>at</strong>ed before entering <strong>the</strong> compressor and th<strong>at</strong><br />

<strong>on</strong>ly a <strong>small</strong> amount <strong>of</strong> nitrogen is injected, leaving<br />

<strong>the</strong> airspeed unaffected, <strong>the</strong> following equ<strong>at</strong>i<strong>on</strong><br />

may be used :<br />

m&.c pa .(T a - T 1' ) =<br />

fig. 7<br />

fig. 8<br />

coexistence. C<strong>on</strong>sequently, we cannot define <strong>the</strong><br />

present amount <strong>of</strong> gas or liquid, excluding any type<br />

<strong>of</strong> flow meter.<br />

4.2 Temper<strong>at</strong>ure T t1 measurement<br />

The temper<strong>at</strong>ure T t1 was planned to be measured<br />

with a <strong>the</strong>rmocouple type N. Unfortun<strong>at</strong>ely, <strong>the</strong><br />

cooling <strong>of</strong> <strong>the</strong> air wasn't homogeneous. The<br />

nitrogen cooled just a <strong>small</strong> amount <strong>of</strong> air, which<br />

went as good as straight into <strong>the</strong> engine, without<br />

any vortical speed wh<strong>at</strong> was hoped for. Install<strong>at</strong>i<strong>on</strong><br />

<strong>of</strong> an extra two <strong>the</strong>rmocouples did not bring solace.<br />

It became evident th<strong>at</strong> with this type <strong>of</strong> injector, no<br />

direct gauging <strong>of</strong> T t1 was possible.<br />

Though, with <strong>the</strong> knowledge <strong>of</strong> m& ,<br />

N 2 m& and<br />

m& ' ,<br />

which is <strong>the</strong> inlet air mass flow with precooling,<br />

and <strong>the</strong> air temper<strong>at</strong>ure T t1 without cooling, <strong>on</strong>e can<br />

derive <strong>the</strong> temper<strong>at</strong>ure drop ( T ta - T t1' ) = ∆ T t1<br />

quite trustworthy. Three different calcul<strong>at</strong>i<strong>on</strong><br />

methods were examined. The first method uses<br />

enthalpies to derive <strong>the</strong> temper<strong>at</strong>ure drop. If we<br />

assume th<strong>at</strong> <strong>the</strong> inlet air is dry, th<strong>at</strong> <strong>on</strong>ly LN2<br />

leaves <strong>the</strong> injector, th<strong>at</strong> all <strong>the</strong> nitrogen is<br />

η .( m&<br />

N 2<br />

.L v,N2 + m&<br />

N 2<br />

.c p,N2 .(T 1' - T N2 ) ) [12]<br />

T 1' can be calcul<strong>at</strong>ed from rel<strong>at</strong>i<strong>on</strong> 12. Since <strong>the</strong><br />

st<strong>at</strong>ic and <strong>the</strong> stagn<strong>at</strong>i<strong>on</strong> pressures are measured <strong>at</strong><br />

<strong>the</strong> inlet, <strong>on</strong>e can derive <strong>the</strong> gas velocity. Thereby<br />

T t1' can be obtained and c<strong>on</strong>sequently <strong>the</strong><br />

temper<strong>at</strong>ure drop.<br />

There was <strong>on</strong>e objecti<strong>on</strong> against <strong>the</strong> use <strong>of</strong> this<br />

formula : m&<br />

N 2<br />

was not gauged with high accuracy.<br />

Therefore a better calcul<strong>at</strong>i<strong>on</strong> method had to be<br />

found. The new method is based <strong>on</strong> <strong>the</strong><br />

assumpti<strong>on</strong> th<strong>at</strong> <strong>the</strong> inlet airspeed, for a c<strong>on</strong>stant<br />

RPM, is independent <strong>of</strong> <strong>the</strong> inlet temper<strong>at</strong>ure.<br />

Additi<strong>on</strong>ally, <strong>on</strong>e physical parameter has to be<br />

c<strong>on</strong>stant, regardless <strong>of</strong> <strong>the</strong> fact th<strong>at</strong> precooling was<br />

applied. Examining <strong>the</strong> stagn<strong>at</strong>i<strong>on</strong> inlet pressure<br />

p t1 and <strong>the</strong> st<strong>at</strong>ic inlet pressure p 1 , <strong>the</strong> following<br />

phenomen<strong>on</strong> can be found ( fig. 9 ). The<br />

stagn<strong>at</strong>i<strong>on</strong> pressure with and without precooling is<br />

more or less <strong>the</strong> same ( very low fricti<strong>on</strong> losses due<br />

to N2-injecti<strong>on</strong> ). Thus, <strong>the</strong> assumpti<strong>on</strong> th<strong>at</strong> <strong>the</strong><br />

stagn<strong>at</strong>i<strong>on</strong> pressure remains invariant may be<br />

justified. On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> difference<br />

between <strong>the</strong> st<strong>at</strong>ic pressures is not significant,<br />

which leaves <strong>the</strong> method <strong>of</strong> calcul<strong>at</strong>ing T t1 with a<br />

c<strong>on</strong>stant st<strong>at</strong>ic pressure more or less acceptable.<br />

Fur<strong>the</strong>rmore, <strong>the</strong> l<strong>at</strong>ter <strong>the</strong>ory is much easier to use,<br />

which will be proven here after.


St<strong>at</strong>ic and Stagn<strong>at</strong>i<strong>on</strong> Inlet Pressures = f(RPM)<br />

105000<br />

104000<br />

103000<br />

102000<br />

Pressure ( Pa )<br />

101000<br />

100000<br />

99000<br />

98000<br />

p1 air <strong>on</strong>ly<br />

pt1 air <strong>on</strong>ly<br />

p1 LN2<br />

pt1 LN2<br />

97000<br />

50000 55000 60000 65000 70000 75000 80000 85000<br />

RPM<br />

fig.9<br />

Using Castelli's law, <strong>on</strong>e can derive <strong>the</strong> next<br />

rel<strong>at</strong>i<strong>on</strong> between <strong>the</strong> mass flows m&' and m& :<br />

20<br />

18<br />

Devi<strong>at</strong>i<strong>on</strong> <strong>of</strong> <strong>the</strong> different calcul<strong>at</strong>i<strong>on</strong> methods to <strong>the</strong>ir corresp<strong>on</strong>ding DT1<br />

% dev. Stagn<strong>at</strong>i<strong>on</strong> - St<strong>at</strong>ic<br />

% dev. Stagn<strong>at</strong>i<strong>on</strong> -<br />

Enthalpy<br />

m&<br />

ρ<br />

=<br />

m&<br />

' ρ'<br />

[13]<br />

With a c<strong>on</strong>stant total pressure, <strong>the</strong> density r<strong>at</strong>io<br />

becomes quite complex. The following equ<strong>at</strong>i<strong>on</strong>,<br />

origin<strong>at</strong>ing from formula 13 is obtained, using <strong>the</strong><br />

ideal gas law :<br />

2/ 7<br />

2 ⎛ m ⎞<br />

7<br />

2 5/ 7<br />

( 1 0.2 ) 2/<br />

−<br />

+ M ⎜ T ⎟ = T + 0. M TT<br />

&<br />

⎝ m & '<br />

1 1<br />

1'<br />

2<br />

⎠<br />

1 1 1'<br />

[14]<br />

From equ<strong>at</strong>i<strong>on</strong> 14, T 1' and T t1' can be calcul<strong>at</strong>ed.<br />

The determin<strong>at</strong>i<strong>on</strong> <strong>of</strong> T 1' with <strong>the</strong> method <strong>of</strong><br />

c<strong>on</strong>stant st<strong>at</strong>ic pressure p 1 is easily obtained using<br />

rel<strong>at</strong>i<strong>on</strong> 13 and <strong>the</strong> ideal gas law :<br />

m & T =<br />

1'<br />

m&<br />

' T<br />

1<br />

[15]<br />

One can assume th<strong>at</strong> T 1' determined by <strong>the</strong> method<br />

<strong>of</strong> c<strong>on</strong>stant stagn<strong>at</strong>i<strong>on</strong> pressure approxim<strong>at</strong>es <strong>the</strong><br />

Devi<strong>at</strong>i<strong>on</strong> ( % )<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

40000 45000 50000 55000 60000 65000 70000 75000 80000 85000<br />

RPM<br />

fig. 10<br />

real value <strong>of</strong> T 1' best, because its hypo<strong>the</strong>sis is<br />

based <strong>on</strong> measured d<strong>at</strong>a. It should be menti<strong>on</strong>ed<br />

th<strong>at</strong> <strong>the</strong> stagn<strong>at</strong>i<strong>on</strong> temper<strong>at</strong>ure drop equals <strong>the</strong><br />

st<strong>at</strong>ic temper<strong>at</strong>ure drop, since <strong>the</strong> inlet airspeed is<br />

c<strong>on</strong>sidered to be c<strong>on</strong>stant. Now we can obtain an<br />

idea <strong>of</strong> <strong>the</strong> devi<strong>at</strong>i<strong>on</strong> between <strong>the</strong> calcul<strong>at</strong>ed<br />

temper<strong>at</strong>ure drop ∆ T t1 origin<strong>at</strong>ing from <strong>the</strong><br />

different methods ( fig. 10 ), using measurement<br />

d<strong>at</strong>a. It is obvious th<strong>at</strong> <strong>the</strong> devi<strong>at</strong>i<strong>on</strong> between<br />

equ<strong>at</strong>i<strong>on</strong> 14 and 15 is minor : about 3.5%. As a<br />

c<strong>on</strong>sequence, <strong>the</strong> use <strong>of</strong> formula 15 is justified to


calcul<strong>at</strong>e <strong>the</strong> stagn<strong>at</strong>i<strong>on</strong> temper<strong>at</strong>ure drop caused by<br />

LN2 injecti<strong>on</strong>.<br />

4.3 Experiments<br />

In this paragraph, we will discuss <strong>the</strong> RMA<br />

measurement d<strong>at</strong>a. This paper will emphasize <strong>the</strong><br />

influence precooling has <strong>on</strong> <strong>the</strong> net thrust T N and<br />

<strong>the</strong> TSFC. In additi<strong>on</strong>, a new parameter will be<br />

cre<strong>at</strong>ed th<strong>at</strong> completes <strong>the</strong> TSFC : <strong>the</strong> TSFC N2 .<br />

Also a few words will be said about <strong>the</strong> icing we<br />

had <strong>on</strong> <strong>the</strong> compressor blades.<br />

If we c<strong>on</strong>sider <strong>the</strong> impact precooling has <strong>on</strong> <strong>the</strong><br />

TSFC, <strong>on</strong>e can see again its positive influence<br />

( fig. 16 ). The TSFC drop peaks <strong>at</strong> 35.6% with a<br />

c<strong>on</strong>stant TIT setting and 49.4% with a c<strong>on</strong>stant<br />

EGT tuning. Still, comparing TSFC's <strong>on</strong> <strong>the</strong> basis<br />

<strong>of</strong> precooling is just not <strong>the</strong> right thing to do <strong>at</strong><br />

system ( aircraft ) level. One has to bear in mind<br />

th<strong>at</strong> an additi<strong>on</strong>al fluid is injected in <strong>the</strong> engine,<br />

coming from <strong>the</strong> airplane. C<strong>on</strong>sequently, <strong>the</strong>re is a<br />

fluid c<strong>on</strong>sumpti<strong>on</strong>. This asks for a redefiniti<strong>on</strong> <strong>of</strong><br />

<strong>the</strong> TSFC :<br />

In this paper, most <strong>of</strong> <strong>the</strong> d<strong>at</strong>a will be used from<br />

different run-ups performed <strong>at</strong> <strong>the</strong> RMA. This is<br />

deliber<strong>at</strong>ely d<strong>on</strong>e in order to be able to stress some<br />

phenomena.<br />

Figure 11 shows <strong>the</strong> impact <strong>of</strong> precooling <strong>on</strong> <strong>the</strong><br />

inlet temper<strong>at</strong>ure <strong>at</strong> different engine settings. Note<br />

th<strong>at</strong> m& remains always c<strong>on</strong>stant for each test,<br />

N 2<br />

being in this case 0.0105 kg/s. The dotted lines<br />

mean extrapol<strong>at</strong>i<strong>on</strong>. Figure 12 gives an overview<br />

<strong>of</strong> <strong>the</strong> rel<strong>at</strong>ive increase <strong>of</strong> nitrogen mass in <strong>the</strong> inlet<br />

air during <strong>the</strong> same test. One can c<strong>on</strong>clude th<strong>at</strong> no<br />

significant changes are made to <strong>the</strong> compositi<strong>on</strong> <strong>of</strong><br />

<strong>the</strong> inlet air.<br />

In paragraph 3, <strong>the</strong>re were 4 scenarios introduced.<br />

Thanks to <strong>the</strong> acquired d<strong>at</strong>a, <strong>the</strong>y could be verified.<br />

They corresp<strong>on</strong>ded quite well with reality.<br />

Precooling without fuel additi<strong>on</strong> shows no<br />

noticeable increase or decrease in thrust.<br />

Figures 13 and 14 show <strong>the</strong> impact <strong>of</strong> precooling<br />

with c<strong>on</strong>stant TIT and EGT <strong>on</strong> <strong>the</strong> thrust T N . One<br />

can see clearly th<strong>at</strong> a decreasing T t1 boosts <strong>the</strong><br />

thrust. In <strong>the</strong> case <strong>of</strong> <strong>the</strong> SR-30, <strong>the</strong> thrust<br />

increased with more than 140% ( fig. 15 ). Note<br />

th<strong>at</strong> precooling with c<strong>on</strong>stant EGT causes a larger<br />

rise in thrust <strong>the</strong>n a c<strong>on</strong>stant TIT tuning.<br />

TSFC<br />

m& + m&<br />

f N 2<br />

= [16]<br />

N 2<br />

T<br />

N<br />

Using <strong>the</strong> same d<strong>at</strong>a, <strong>the</strong> increase <strong>of</strong> TSFC N2 peaks<br />

<strong>at</strong> 223.5% with a c<strong>on</strong>stant TIT and <strong>at</strong> 205,3% with<br />

a c<strong>on</strong>stant EGT. The values <strong>of</strong> TSFC N2 are given<br />

in figure 17. It is obvious th<strong>at</strong> <strong>the</strong> TSFC N2 will<br />

play a tremendous role in determining <strong>the</strong><br />

dimensi<strong>on</strong>s and weight <strong>of</strong> <strong>the</strong> airplane. Using<br />

precooling to reduce fuel c<strong>on</strong>sumpti<strong>on</strong> seems to be<br />

useless, especially <strong>on</strong> <strong>the</strong> SR-30, since we have to<br />

inject much more nitrogen than wh<strong>at</strong> we gain in<br />

fuel.<br />

But, inlet precooling <strong>of</strong>fers also <strong>the</strong> advantage th<strong>at</strong><br />

to obtain <strong>the</strong> same thrust, a lower engine regime is<br />

required. This means lower centrifugal forces<br />

working <strong>on</strong> <strong>the</strong> blades, <strong>small</strong>er loads <strong>on</strong> <strong>the</strong><br />

bearings and less high temper<strong>at</strong>ures ruling in <strong>the</strong><br />

engine. All <strong>of</strong> <strong>the</strong>m improve engine life and<br />

overhaul time. Additi<strong>on</strong>ally, precooling allows <strong>the</strong><br />

<strong>turbojet</strong> to fly <strong>at</strong> higher Mach numbers (2), since it<br />

decreases <strong>the</strong> inlet stagn<strong>at</strong>i<strong>on</strong> temper<strong>at</strong>ure, which is<br />

favourable for <strong>the</strong> compressor. Moreover, inlet<br />

precooling <strong>of</strong>fers <strong>the</strong> advantage <strong>of</strong> delivering a<br />

higher thrust with a c<strong>on</strong>stant size and volume<br />

engine, thus a c<strong>on</strong>stant engine mass, allowing to


use <strong>the</strong> same engine in a larger UAV or with a<br />

much higher payload.<br />

Vanderlinden (3) compared <strong>the</strong> <strong>the</strong>oretical derived<br />

thrust and <strong>the</strong>rmal efficiency with <strong>the</strong> <strong>on</strong>es<br />

obtained during <strong>the</strong> tests. C<strong>on</strong>cerning thrust, a<br />

devi<strong>at</strong>i<strong>on</strong> <strong>of</strong> -55% and 15% was determined <strong>at</strong> idle<br />

and maximum regime respectively. Regarding <strong>the</strong><br />

<strong>the</strong>rmal efficiency, an aberr<strong>at</strong>i<strong>on</strong> <strong>of</strong> -60% and -5%<br />

<strong>at</strong> idle and <strong>at</strong> maximum regime respectively, was<br />

found. The reas<strong>on</strong> <strong>of</strong> <strong>the</strong> large fluctu<strong>at</strong>i<strong>on</strong>s is<br />

mainly caused by <strong>the</strong> losses in <strong>the</strong> exhaust pipe,<br />

which are not taken into account in equ<strong>at</strong>i<strong>on</strong> 1 and<br />

additi<strong>on</strong>al losses due to <strong>the</strong> compactness <strong>of</strong> <strong>the</strong><br />

engine, which are not taken into account ei<strong>the</strong>r.<br />

Th<strong>at</strong> will be <strong>the</strong> subject <strong>of</strong> fur<strong>the</strong>r modeling work <strong>at</strong><br />

RMA.<br />

4.4 Icing<br />

During some tests with precooling, heavy icing <strong>on</strong><br />

<strong>the</strong> blades <strong>of</strong> <strong>the</strong> compressor was noticed, turning<br />

<strong>the</strong>m white ( fig.18 ). The icing, caused by <strong>the</strong><br />

c<strong>on</strong>dens<strong>at</strong>i<strong>on</strong> and freezing <strong>of</strong> <strong>the</strong> w<strong>at</strong>er vapour in<br />

<strong>the</strong> inlet air, <strong>on</strong> <strong>the</strong> compressor blades deformed<br />

<strong>the</strong>ir shape, causing <strong>the</strong> efficiency to drop<br />

tremendously ( fig. 19 ). Since m& was kept<br />

N 2<br />

c<strong>on</strong>stant, an increase in RPM caused a <strong>small</strong>er<br />

temper<strong>at</strong>ure drop and a higher rel<strong>at</strong>ive stagn<strong>at</strong>i<strong>on</strong><br />

temper<strong>at</strong>ure, causing <strong>the</strong> ice depositi<strong>on</strong> to decrease.<br />

A very important c<strong>on</strong>clusi<strong>on</strong> regarding <strong>the</strong> icing<br />

problem is <strong>the</strong> following : if we could avoid icing<br />

<strong>on</strong> <strong>the</strong> compressor blades ( and inlet, but this was<br />

not <strong>the</strong> case during <strong>the</strong> SR-30 tests ), higher engine<br />

performance could have been obtained and thus a<br />

lower TSFC.<br />

thrust is required, for instance if an engine with<br />

insufficient thrust has to be installed, which can be<br />

<strong>the</strong> case <strong>on</strong> large UAV or <strong>on</strong> UAV with high<br />

external drag.<br />

If <strong>on</strong>e c<strong>on</strong>siders to increase <strong>the</strong> range <strong>of</strong> an airplane<br />

using this cooling method, <strong>the</strong>re should be taken<br />

into account th<strong>at</strong> additi<strong>on</strong>al space has to be<br />

foreseen <strong>on</strong> board <strong>of</strong> <strong>the</strong> aircraft, which could have<br />

been used for fuel storage. Moreover, <strong>the</strong> TSFC N2<br />

rises with precooling, inclining to <strong>the</strong> idea th<strong>at</strong><br />

direct liquid nitrogen injecti<strong>on</strong> is useless for this<br />

purpose. Though, when thrust is <strong>the</strong> <strong>on</strong>ly<br />

requirement and not range or endurance, precooling<br />

can <strong>of</strong>fer a low cost soluti<strong>on</strong>.<br />

At high speeds, precooling can also be used to<br />

decrease <strong>the</strong> inlet stagn<strong>at</strong>i<strong>on</strong> temper<strong>at</strong>ure, allowing<br />

<strong>the</strong> <strong>turbojet</strong> to fly <strong>at</strong> higher Mach numbers, wh<strong>at</strong><br />

could be <strong>of</strong> interest for UCAV applic<strong>at</strong>i<strong>on</strong>s.<br />

REFERENCES<br />

1. BUYSSCHAERT, F., Experimentele studie<br />

van de voorkoeling op een mini-<strong>turbojet</strong>.<br />

K.M.S.-K.H.B.O., August 2001.<br />

2. WALL, R., New Launcher eyed for <strong>small</strong><br />

s<strong>at</strong>ellites, AW&ST, November 5, 2001.<br />

3. VANDERLINDEN, J., Studie van voorkoeling<br />

op straalmotoren. K.M.S.-V.U.B., January<br />

2002.<br />

CONCLUSIONS<br />

One can c<strong>on</strong>clude th<strong>at</strong> precooling with direct LN2<br />

injecti<strong>on</strong> is favourable when a large increase in


Stagn<strong>at</strong>i<strong>on</strong> and St<strong>at</strong>ic Inlet Temper<strong>at</strong>ure with and without Precooling<br />

285<br />

280<br />

275<br />

mass flow <strong>of</strong> nitrogen = 0,0105 kg/s<br />

Tt1<br />

T1<br />

270<br />

Tt1'<br />

T ( K )<br />

265<br />

T1'<br />

260<br />

255<br />

250<br />

245<br />

45000 50000 55000 60000 65000 70000 75000 80000 85000<br />

RPM ( 1/min )<br />

fig. 11<br />

Influence <strong>of</strong> LN2 Injecti<strong>on</strong> <strong>on</strong> Air Compositi<strong>on</strong><br />

8<br />

increase mass N2 / unit mass <strong>of</strong> air ( % )<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

45000 50000 55000 60000 65000 70000 75000 80000 85000<br />

RPM ( 1/min )<br />

fig. 12


TN = f(EGT,Tt1)<br />

100<br />

90<br />

Ta = 280K<br />

with precooling<br />

80<br />

70<br />

without precooling<br />

60<br />

TN ( N )<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

600 620 640 660 680 700 720 740 760 780<br />

EGT ( K )<br />

fig.13<br />

TN = f(TIT,Tt1)<br />

100<br />

90<br />

80<br />

70<br />

Ta = 280 K<br />

with precooling<br />

without precooling<br />

60<br />

TN ( N )<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

700 720 740 760 780 800 820 840 860 880 900 920<br />

TIT ( K )<br />

fig. 14


Increase <strong>of</strong> Thrust due to Precooling<br />

160<br />

140<br />

Increase <strong>of</strong> thrust TN ( % )<br />

120<br />

100<br />

80<br />

60<br />

C<strong>on</strong>stant EGT<br />

40<br />

C<strong>on</strong>stant TIT<br />

20<br />

0<br />

640 650 660 670 680 690 700 710 720 730 740 750 760 770 780 790 800 810 820 830 840 850 860 870 880<br />

T ( K )<br />

fig. 15<br />

TSFC = f(EGT,TIT,Tt1)<br />

4<br />

C<strong>on</strong>stant EGT<br />

C<strong>on</strong>stant TIT<br />

3.5<br />

without precooling<br />

without precooling<br />

TSFC ( kg fuel/daN.h )<br />

3<br />

2.5<br />

2<br />

with precooling<br />

1.5<br />

with precooling<br />

600 620 640 660 680 700 720 740 760 780 800 820 840 860 880 900 920<br />

T ( K )<br />

fig. 16


TSFCN2 = f(EGT,TIT,Tt1)<br />

14<br />

13<br />

12<br />

TSFCN2 ( kg fuel/daN.h )<br />

11<br />

10<br />

9<br />

8<br />

7<br />

C<strong>on</strong>stant EGT<br />

C<strong>on</strong>stant TIT<br />

6<br />

5<br />

4<br />

600 620 640 660 680 700 720 740 760 780 800 820 840 860 880 900 920<br />

T ( K )<br />

fig. 17<br />

fig. 18


Influence <strong>of</strong> Icing <strong>on</strong> <strong>the</strong> Compressor Isentropic Efficiency<br />

Compressor Isentropic Efficiency ( % )<br />

65<br />

64<br />

without precooling<br />

63<br />

62<br />

61<br />

60<br />

59<br />

58<br />

57<br />

with precooling<br />

56<br />

55<br />

54<br />

53<br />

52<br />

51<br />

50<br />

50000 55000 60000 65000 70000 75000<br />

RPM ( 1/min )<br />

fig. 19

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!