30.12.2014 Views

Chapter 10-Photosynthesis Photosynthesis is the process that ...

Chapter 10-Photosynthesis Photosynthesis is the process that ...

Chapter 10-Photosynthesis Photosynthesis is the process that ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Chapter</strong> <strong>10</strong>-<strong>Photosyn<strong>the</strong>s<strong>is</strong></strong><br />

Goals for today’s lecture:<br />

Review chemical cycling between photosyn<strong>the</strong>s<strong>is</strong> and<br />

cellular respiration<br />

What are <strong>the</strong> character<strong>is</strong>tics of light energy<br />

How <strong>is</strong> light energy absorbed by pigments and<br />

converted to chemical energy<br />

How <strong>is</strong> th<strong>is</strong> energy used to make ATP in photosyn<strong>the</strong>s<strong>is</strong><br />

What are <strong>the</strong> two parts of photosyn<strong>the</strong>s<strong>is</strong><br />

<strong>Photosyn<strong>the</strong>s<strong>is</strong></strong> <strong>is</strong> <strong>the</strong> <strong>process</strong> <strong>that</strong> converts solar<br />

energy into chemical energy<br />

Directly or indirectly, photosyn<strong>the</strong>s<strong>is</strong> nour<strong>is</strong>hes<br />

almost <strong>the</strong> entire living world<br />

Autotrophs are <strong>the</strong> producers of <strong>the</strong> biosphere,<br />

producing organic molecules from CO2 and o<strong>the</strong>r<br />

inorganic molecules<br />

Plants<br />

Almost all plants are photoautotrophs using <strong>the</strong><br />

energy of sunlight to make organic molecules<br />

from water and carbon dioxide<br />

Unicellular prot<strong>is</strong>t<br />

Heterotrophs obtain <strong>the</strong>ir organic material from o<strong>the</strong>r<br />

organ<strong>is</strong>ms<br />

Heterotrophs are <strong>the</strong> consumers of <strong>the</strong> biosphere<br />

Almost all heterotrophs, including humans, depend<br />

on photoautotrophs for food and oxygen<br />

Multicellular algae<br />

Cyanobacteria40 µm<br />

Purple sulfur 1.5 µm<br />

bacteria<br />

•<strong>Photosyn<strong>the</strong>s<strong>is</strong></strong> occurs in plants, algae, certain o<strong>the</strong>r<br />

prot<strong>is</strong>ts, and some prokaryotes<br />

Chloroplasts: The Sites of <strong>Photosyn<strong>the</strong>s<strong>is</strong></strong> in Plants<br />

•Their green color <strong>is</strong> from chlorophyll, <strong>the</strong> green pigment<br />

within chloroplasts<br />

The Overall Equation for <strong>Photosyn<strong>the</strong>s<strong>is</strong></strong><br />

•<strong>Photosyn<strong>the</strong>s<strong>is</strong></strong> can be summarized as <strong>the</strong> following equation:<br />

We use glucose to simplify <strong>the</strong> relationship<br />

between photosyn<strong>the</strong>s<strong>is</strong> and respiration,<br />

6 CO 2<br />

+ 12 H 2<br />

O + Light energy → C 6<br />

H 12<br />

O 6<br />

+ 6 O 2<br />

+ 6 H 2<br />

O


<strong>Photosyn<strong>the</strong>s<strong>is</strong></strong> as a Redox Process<br />

•We can simplify <strong>the</strong> equation by indicating only<br />

<strong>the</strong> <strong>the</strong> net consumption of water.<br />

<strong>Photosyn<strong>the</strong>s<strong>is</strong></strong> <strong>is</strong> not a single <strong>process</strong>, but two<br />

<strong>process</strong>es,each with many steps.<br />

The two stages of photosyn<strong>the</strong>s<strong>is</strong> are called:<br />

The light reactions convert solar energy to chemical energy.<br />

NADPH <strong>is</strong> an electron carrier, similar to NADH.<br />

The Calvin cycle begins with carbon fixation, incorporating CO2 into organic molecules<br />

The light reactions convert solar energy to <strong>the</strong><br />

chemical energy of ATP and NADPH<br />

Chloroplasts are solar-powered chemical factories<br />

Their thylakoids transform light energy into <strong>the</strong> chemical<br />

energy of ATP and NADPH


The Nature of Sunlight<br />

•Light <strong>is</strong> a form of electromagnetic energy, also<br />

called electromagnetic radiation<br />

Photosyn<strong>the</strong>tic Pigments: The Light Receptors<br />

Pigments are substances <strong>that</strong> absorb v<strong>is</strong>ible light<br />

Different pigments absorb different wavelengths<br />

Chloroplast<br />

Light<br />

Reflected<br />

light<br />

Absorbed<br />

light<br />

Granum<br />

spectrophotometer<br />

Transmitted<br />

light<br />

White<br />

light<br />

Refracting<br />

pr<strong>is</strong>m<br />

Chlorophyll<br />

solution<br />

Photoelectric<br />

tube<br />

Galvanometer<br />

•Th<strong>is</strong> machine sends light through pigments and<br />

measures <strong>the</strong> fraction of light transmitted at each<br />

wavelength<br />

Slit moves to<br />

pass light<br />

of selected<br />

wavelength<br />

Green<br />

light<br />

0 <strong>10</strong>0<br />

The high transmittance (low<br />

absorption) reading<br />

indicates <strong>that</strong> chlorophyll<br />

absorbs very little green<br />

light.<br />

Absorption of light by<br />

chloroplast pigments<br />

Chlorophyll a<br />

Chlorophyll b<br />

Carotenoids<br />

400 500 600 700<br />

Wavelength of light (nm)<br />

Absorption spectra<br />

absorption spectrum


Photosyn<strong>the</strong>tic Pigments: The Light Receptors<br />

Energy of electron<br />

Rate of photosyn<strong>the</strong>s<strong>is</strong><br />

(measured<br />

by O 2 release)<br />

•The action spectrum of photosyn<strong>the</strong>s<strong>is</strong> was first<br />

demonstrated in 1883 by Thomas Engelmann<br />

Action spectrum<br />

action spectrum<br />

Filament<br />

of algae<br />

•He used aerobic bacteria clustered along <strong>the</strong> alga<br />

as a measure of O 2<br />

production<br />

400 500 600 700<br />

Engelmann’s experiment<br />

Absorption of light by<br />

chloroplast pigments<br />

Chlorophyll a<br />

Chlorophyll b<br />

Carotenoids<br />

400 500 600 700<br />

Wavelength of light (nm)<br />

Absorption spectra<br />

CH 3 in chlorophyll a<br />

CHOin chlorophyll b<br />

Porphyrin ring:<br />

light-absorbing<br />

“head” of molecule;<br />

note magnesium<br />

atom at center<br />

Hydrocarbon tail:<br />

interacts with<br />

hydrophobic<br />

regions of proteins<br />

inside<br />

thylakoid membranes<br />

of chloroplasts; H<br />

atoms not shown<br />

e –<br />

Excited<br />

state<br />

Heat<br />

Photon<br />

Chlorophyll<br />

molecule<br />

Photon<br />

(fluorescence)<br />

Ground<br />

state<br />

Excitation of <strong>is</strong>olated chlorophyll molecule


A Photosystem: A Reaction Center Associated with Light-Harvesting Complexes<br />

A photosystem cons<strong>is</strong>ts of a reaction center<br />

surrounded by light-harvesting complexes<br />

Thylakoid<br />

Solar-powered transfer of an electron from a chlorophyll a<br />

molecule to <strong>the</strong> primary electron acceptor <strong>is</strong> <strong>the</strong> first step of<br />

<strong>the</strong> light reactions<br />

Thylakoid membrane<br />

Photon<br />

Photosystem<br />

STROMA<br />

Light-harvestingReaction<br />

Primary electron<br />

complexes center<br />

acceptor<br />

e –<br />

Transfer<br />

of energy<br />

Special<br />

chlorophyll a<br />

molecules<br />

Pigment<br />

molecules<br />

THYLAKOID SPACE<br />

(INTERIOR OF THYLAKOID)<br />

How <strong>the</strong> Light Reactions Generate ATP and NADPH<br />

Two types of photosystems cooperate in <strong>the</strong> light<br />

reactions:<br />

1.<br />

2.<br />

An electron transport chain connects <strong>the</strong> two photosystems and releases energy.


Study outline-<strong>Chapter</strong> <strong>10</strong>- <strong>Photosyn<strong>the</strong>s<strong>is</strong></strong><br />

Review – Chemical cycling between photosyn<strong>the</strong>s<strong>is</strong> and cellular respiration<br />

Autotrophs vs. heterotrophs<br />

Producers vs. consumers<br />

Photoautotrophs – plants, algae, certain prot<strong>is</strong>ts, and some prokaryotes<br />

Be able to recognize <strong>the</strong> sites of photosyn<strong>the</strong>s<strong>is</strong> and function- leaf t<strong>is</strong>sue (mesophyll), stomata, stroma, thylakoids<br />

Know <strong>the</strong> equation for photosyn<strong>the</strong>s<strong>is</strong> (understand what <strong>is</strong> oxidized and what <strong>is</strong> reduced).<br />

General overview of photosyn<strong>the</strong>s<strong>is</strong><br />

(What happens in each <strong>process</strong> Where do <strong>the</strong> <strong>process</strong>es take place in <strong>the</strong> chloroplast)<br />

1) Light reactions<br />

2) Calvin cycle<br />

Understand general principles of light energy- wave and particle (photon)<br />

Know and understand <strong>the</strong> following terms: wavelength, absorption spectra, photon, action spectra, pigment,<br />

spectrophotometer, accessory pigment<br />

Be able to recognize chlorophyll a and b<br />

Understand <strong>the</strong> components of a reaction center and how light energy <strong>is</strong> converted to chemical energy<br />

Know <strong>the</strong> two types of photosystems <strong>that</strong> participate in <strong>the</strong> light reactions<br />

(What happens in each photosystem)<br />

1) Photosystem II<br />

2) Photosystem I

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!