19.07.2012 Views

Charged particle multiplicity in Pb-Pb collisions from NA50 experiment

Charged particle multiplicity in Pb-Pb collisions from NA50 experiment

Charged particle multiplicity in Pb-Pb collisions from NA50 experiment

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Charged</strong> <strong>particle</strong> <strong>multiplicity</strong> <strong>in</strong><br />

<strong>Pb</strong>-<strong>Pb</strong> <strong>Pb</strong> <strong>Pb</strong> <strong>collisions</strong> <strong>from</strong> <strong>NA50</strong><br />

<strong>experiment</strong><br />

F. Pr<strong>in</strong>o for the <strong>NA50</strong> collaboration<br />

International Workshop on<br />

Particle Multiplicity <strong>in</strong> Relativistic Heavy Ion Collisions<br />

Bari, 17-19 June 2004


Particle production <strong>in</strong> nuclear <strong>collisions</strong><br />

Multiplicity = number of <strong>particle</strong>s produced <strong>in</strong> the collision<br />

80-90% of the produced charged <strong>particle</strong>s are pions<br />

Related to the centrality of the collision<br />

Related to the entropy of the system created <strong>in</strong> the collision<br />

Multicollision models:<br />

Nucleus-nucleus collis.= superposition of nucleon-nucleon collis.<br />

Hard processes<br />

Large momentum transfer<br />

Small distance<br />

� Interactions at partonic level<br />

� Scale like the number of<br />

elementary <strong>collisions</strong> (N coll )<br />

Soft processes<br />

Small momentum transfer<br />

Large distance<br />

� Interactions at the baryon level<br />

� Scale like the number of<br />

participant nucleons (N part )


Particle momenta distributions<br />

Particle momenta decomposed<br />

Transverse momentum (p ) T<br />

Longitud<strong>in</strong>al momentum (p ) L<br />

Rapidity variable<br />

1 ⎛ E<br />

y = ⋅ln⎜<br />

2 ⎝ E<br />

Pseudorapidity variable<br />

η≈y for large momenta<br />

dN/dy (dN/dη) distributions carry <strong>in</strong>formation about energy density,<br />

longitud<strong>in</strong>al expansion and "stopp<strong>in</strong>g power"<br />

+<br />

−<br />

p<br />

p<br />

⎡ ⎛ϑ<br />

⎞⎤<br />

1 ⎛ p + p<br />

η<br />

= −ln<br />

⎢<br />

tan⎜<br />

⎟⎥<br />

= ⋅ln<br />

⎜<br />

⎣ ⎝ 2 ⎠⎦<br />

2 ⎝ p − p<br />

L<br />

L<br />

⎞<br />

⎟<br />

⎠<br />

L<br />

L<br />

⎞<br />

⎟<br />


<strong>NA50</strong>: <strong>experiment</strong>al setup<br />

Study of muon pair production <strong>in</strong> <strong>Pb</strong>-<strong>Pb</strong> <strong>Pb</strong> <strong>Pb</strong> <strong>collisions</strong><br />

<strong>Pb</strong> beam<br />

1998: 158 GeV/nucleon<br />

1999: 40 GeV/nucleon<br />

Beam detectors<br />

Active target<br />

Up to 7 <strong>Pb</strong> subtargets +<br />

Cherenkov counters<br />

Centrality detectors<br />

Trigger<br />

EM Calorimeter (1.1


The Multiplicity Detector (MD)<br />

2 Planes (MD1, MD2)<br />

each plane made of 2 layers (up/down)<br />

36 azimuthal sectors (∆φ=10 o )<br />

192 radial strips (∆η=0.02)<br />

6912 strips <strong>in</strong> each plane<br />

Only 128 <strong>in</strong>nermost strips used <strong>in</strong> this analysis<br />

Silicon microstrip detector measur<strong>in</strong>g<br />

the number and the angular distribution<br />

of charged <strong>particle</strong>s produced <strong>in</strong> the collision


dN/dη distributions vs. centrality (I)<br />

Data <strong>from</strong> special low-<strong>in</strong>tensity runs<br />

<strong>Pb</strong> beam<br />

energy<br />

(GeV/nucleon<br />

)<br />

158<br />

158<br />

40<br />

Analysis method<br />

Data selection:<br />

Target<br />

<strong>Pb</strong><br />

<strong>Pb</strong><br />

<strong>Pb</strong><br />

� Interaction trigger<br />

� Pile-up rejection<br />

� Upstream <strong>in</strong>teraction rejection<br />

� Diagonal cut on the E T -E ZDC correlation<br />

� MD based target identification<br />

Distance target-MD1<br />

(cm)<br />

11.65<br />

9.15<br />

12.55<br />

� Statistical method based on match<strong>in</strong>g pairs<br />

of hits on MD1 and MD2<br />

Target<br />

thickness<br />

3 mm<br />

1 mm<br />

3 mm<br />

# of events<br />

analyzed<br />

48000<br />

18000<br />

35000


dN/dη distributions vs. centrality (II)<br />

Centrality <strong>in</strong>terval def<strong>in</strong>ition at 158 GeV/c:<br />

� 2 <strong>in</strong>dependent centrality variables (E T and E ZDC )<br />

� Intervals expressed <strong>in</strong> terms of fraction of total <strong>in</strong>elastic cross section<br />

N<strong>in</strong>t<br />

= N <strong>Pb</strong> ⋅ P<strong>in</strong>t<br />

−L<br />

N <strong>Pb</strong> e T / λ<br />

= ⋅ 1−<br />

INT with λINT<br />

=<br />

ATARG<br />

N<br />

= 3.<br />

98<br />

( ) + 0.<br />

21<br />

cm<br />

ρ<br />

<strong>Pb</strong><br />

A<br />

σ<br />

<strong>in</strong>el<br />

−0.<br />

27


dN/dη distributions vs. centrality (III)<br />

Calculation of raw dN ch /dη<br />

� Cluster (group of contiguous strips fir<strong>in</strong>g together) correction<br />

� Cluster size distribution not reproduced by a VENUS+GEANT simulation<br />

� Dedicated MC, aimed at reproduc<strong>in</strong>g cluster size distribution observed <strong>in</strong> data<br />

� Performed separately <strong>in</strong> each η b<strong>in</strong> (∆η=0.15) and <strong>in</strong> each centrality class


dN/dη distributions vs. centrality (III)<br />

Calculation of primary dN ch /dη .<br />

� Subtraction of the delta electron contribution (<strong>from</strong> GEANT).<br />

� Max. 5% of the occupancy <strong>in</strong> the most peripheral b<strong>in</strong>.<br />

� Correction with secondary/primary ratio <strong>from</strong> VENUS+GEANT simulation.<br />

� VENUS+GEANT data reconstructed<br />

with same method as <strong>experiment</strong>al data.<br />

� 1.2 –1.8 correction factor.<br />

�Do not depend on centrality.<br />

�Depend on target thickness, target<br />

position, particular MD plane.<br />

� Unstable <strong>particle</strong>s (K 0, Λ and hyperons)<br />

decays are already considered <strong>in</strong> VENUS,<br />

and therefore their decay products are<br />

def<strong>in</strong>ed as primary <strong>particle</strong>s.<br />

Systematic error estimation<br />

�8% systematic error on primary charged <strong>multiplicity</strong>


dN/dη distributions vs. centrality (III)<br />

Agreement between MD1 and MD2<br />

Average between detector planes<br />

Wide η coverage<br />

Excellent agreement between primary<br />

dN ch /dη with 2 different target<br />

thicknesses and positions<br />

Average between different thicknesses<br />

Wider η coverage


dN ch /dη distributions at 158 GeV<br />

E T centrality selection E ZDC centrality selection<br />

Distributions fitted with Gaussians to extract{<br />

Midrapidity value<br />

Gaussian width<br />

dN /dη at the peak


Midrapidity value at 158 GeV /c<br />

E T centrality selection E ZDC centrality selection<br />

Midrapidity visible <strong>in</strong> the dN/dη distributions:<br />

� No reflection around midrapididty needed<br />

� η peak extracted <strong>from</strong> fit compatible with VENUS predicion (η peak =3.1)


Gaussian width at 158 GeV /c<br />

E T centrality selection E ZDC centrality selection<br />

Gaussian width decreses with centrality:<br />

� stopp<strong>in</strong>g power effect<br />

� decreas<strong>in</strong>g contribution of protons <strong>from</strong> target and projectile fragmentation


dN ch /dη max at 158 GeV /c<br />

E T centrality selection E ZDC centrality selection<br />

dN/dη at the peak scales l<strong>in</strong>early with E T and E ZDC<br />

� no saturation or enhancement observed


dN ch /dη distributions at 40 GeV /c (I)<br />

ZDC worse performance<br />

at such a low energy<br />

•ZDC based quality cuts not performed<br />

� larger E T tail beyond the knee<br />

� E T resolution not well def<strong>in</strong>ed<br />

Only ET based centrality selection<br />

Larger (10%) systematic error


dN ch /dη distributions at 40 GeV /c (II)<br />

Peak position<br />

(VENUS prediction):<br />

η max ≈2.47<br />

Gaussian width smaller<br />

than at 158 GeV,<br />

decreas<strong>in</strong>g with <strong>in</strong>creas<strong>in</strong>g<br />

centrality<br />

Number of charged<br />

<strong>particle</strong>s <strong>in</strong> the<br />

more central b<strong>in</strong><br />

≈ 2 times smaller<br />

than at 158 GeV


Gaussian width vs. energy<br />

E877<br />

central<br />

Au-Au<br />

<strong>NA50</strong> most central <strong>Pb</strong>-<strong>Pb</strong><br />

ση<br />

= 0. 58 + 0.<br />

32⋅<br />

ln<br />

• Available phase space <strong>in</strong> rapidity <strong>in</strong>creases with √s<br />

• Fit with the simple scal<strong>in</strong>g law: σ η = a + b · ln √s<br />

• Same √s dependence for all data<br />

s


Evaluation of N part and N coll (I)<br />

Glauber model calculations<br />

Physical <strong>in</strong>puts:<br />

� Woods-Saxon density for <strong>Pb</strong> nucleus (2pF)<br />

� σ <strong>in</strong> = 30 mb<br />

Numerical calculation of:<br />

ρ<br />

ρ =<br />

1+<br />

e<br />

� Interaction probability, N part , N coll ... vs. impact parameter b<br />

0<br />

( r−r0<br />

) / C<br />

r0 = 6.624 fm<br />

ρ 0 = 0.16 fm -3<br />

C= 0.549 fm


Evaluation of N part and N coll (II)<br />

E T and E ZDC parametrization<br />

� E T ∝ number of participants<br />

� E ZDC ∝ number of projectile spectators<br />

part<br />

2<br />

⋅ N part<br />

2<br />

2<br />

q, w, α and δ form fit to MB spectra σ EZDC<br />

= ( β EZDC<br />

+ γ EZDC<br />

) + δ<br />

E<br />

ZDC<br />

=<br />

σ<br />

E<br />

E = q ⋅ N<br />

= w⋅<br />

q<br />

⎛ N<br />

⎜ A<strong>Pb</strong><br />

−<br />

⎝ 2<br />

T<br />

2<br />

ET<br />

beam<br />

part<br />

⎞<br />

⎟ + α N<br />

⎠<br />

2<br />

part


Evaluation of N part and N coll (III)<br />

Calculation of and <strong>in</strong> each centrality class<br />

From distributions of N part and N coll <strong>in</strong> the E T and E ZDC <strong>in</strong>tervals<br />

Smear<strong>in</strong>g effects due to calorimeter resolution <strong>in</strong>cluded


<strong>Charged</strong> <strong>particle</strong> scal<strong>in</strong>g<br />

at 158 GeV<br />

Fit with the power law:<br />

α=1.00±0.01±0.04<br />

� α = 1.05-1.08 us<strong>in</strong>g a VENUS calculation of N part<br />

� α = 1.02 with N part = 2·208 ·(1-E ZDC/E BEAM)<br />

Fit with the power law:<br />

β=0.75±0.02<br />

dN<br />

B compatible with zero d<br />

Fit with the law:<br />

Conclusions:<br />

dN<br />

dη<br />

dN<br />

dη<br />

η<br />

max<br />

max<br />

max<br />

α<br />

part<br />

N part describes the centrality dependence of <strong>particle</strong> production<br />

Hard processes play a negligible role at this energy<br />

∝<br />

∝<br />

N<br />

N<br />

β<br />

coll<br />

∝ A⋅<br />

N<br />

part<br />

+ B ⋅ N<br />

coll


<strong>Charged</strong> <strong>particle</strong> scal<strong>in</strong>g at 40 GeV<br />

Fit with the power law:<br />

α=1.02±0.02±0.06<br />

Conclusions:<br />

As expected, no important hard process<br />

contribution at this energy<br />

Same N part dependence at 158 and 40 GeV<br />

Soft processes account well for <strong>particle</strong><br />

production at SPS energies


Yield per participant pair vs. centrality<br />

Yield per participant pair:<br />

dNch<br />

dη<br />

0.<br />

5 N<br />

part<br />

max<br />

� Only statistical error on dN/dη +<br />

error on N part shown <strong>in</strong> plot<br />

� Flat behaviour reflects the l<strong>in</strong>ear<br />

dependence of dN/dη max on N part<br />

Beam energy<br />

(A·GeV/c)<br />

40<br />

158<br />

√s<br />

(GeV)<br />

8.77<br />

17.3<br />

dNch<br />

dη<br />

0.<br />

5 N<br />

part<br />

max<br />

1.18±0.03±0.15<br />

2.49±0.03±0.20


Comparison with other <strong>experiment</strong>s<br />

Conversion <strong>from</strong> dN/dη| lab to dN/dy and subsequently to dN/dη| cm done assum<strong>in</strong>g:<br />

At 158 GeV/c (√s=17.3 GeV): pions, protons and kaons relative yields <strong>from</strong> NA49<br />

At 40 GeV/c (√s=8.77 GeV): pions, protons and kaons relative yields <strong>from</strong> VENUS 4.12<br />

√s dNch<br />

dNch<br />

(GeV)<br />

dη<br />

max dη<br />

( LAB)<br />

max ( CMS)<br />

0.<br />

5 N<br />

0.<br />

5 N<br />

8.77<br />

17.3<br />

dNch<br />

=<br />

dp<br />

dη<br />

T<br />

1−<br />

m<br />

2<br />

T<br />

most central b<strong>in</strong><br />

part<br />

m<br />

2<br />

cosh<br />

1.18±0.03±0.15<br />

2.49±0.03±0.20<br />

2<br />

y<br />

dNch<br />

dp<br />

dy<br />

T<br />

part<br />

0.97±0.03±0.14<br />

2.14±0.03±0.17


40 GeV/c result:<br />

<strong>in</strong> agreement with<br />

fit to pp <strong>in</strong>elastic<br />

Yield per participant pair vs. √s<br />

158 GeV/c result:<br />

50% higher than fit to pp <strong>in</strong>elastic<br />

20% higher than fit to pp NSD<br />

1


Integrated yield per participant pair<br />

Heavy ion data does not follow the e + e - trend over the whole energy range:<br />

� below pp and e + e - data at AGS energy<br />

� cross through pp data at SPS energy<br />

� jo<strong>in</strong>s e + e - data above top SPS energy<br />

1


Conclusions<br />

Particle pseudorapidity distribution vs. centrality measured by <strong>NA50</strong> <strong>experiment</strong>.<br />

At 158 GeV/c with 2 <strong>in</strong>dependent centrality estimators (E T, E ZDC).<br />

At 40 GeV/c with 1 centrality estimator (E T).<br />

Use of 4 detector planes + 2 different target positions.<br />

Cross check of analysis procedure.<br />

Wide η coverage (� no reflection around midrapidity needed).<br />

Gaussian width:<br />

Decreases with centrality (stopp<strong>in</strong>g power effect).<br />

Increases logarythmically with √s (phase space effect).<br />

Glauber calculation of N part and N coll :<br />

L<strong>in</strong>ear dependence of dN/dη| max on N part.<br />

No important role of hard <strong>in</strong>teractions (N coll) at both energies.<br />

Yield per participant pair.<br />

� At 40 GeV/c (√s=8.77 GeV) compatible with fit to nucleon-nucleon <strong>in</strong>teractions.<br />

� At 158 GeV/c (√s=17.3 GeV) not compatible with fit to nucleon-nucleon <strong>in</strong>teractions.<br />

Steep <strong>in</strong>crease of <strong>particle</strong> yield <strong>in</strong> central <strong>Pb</strong>-<strong>Pb</strong> <strong>collisions</strong> between 40 and 158 GeV/c not<br />

described by the simple energy scal<strong>in</strong>g observed <strong>in</strong> nucleon nucleon <strong>collisions</strong>.<br />

1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!