29.12.2014 Views

A Resistive Humidity Sensor Based on Nanostructured WO3-ZnO ...

A Resistive Humidity Sensor Based on Nanostructured WO3-ZnO ...

A Resistive Humidity Sensor Based on Nanostructured WO3-ZnO ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Sensor</str<strong>on</strong>g>s & Transducers<br />

Volume 134 Issue 11<br />

November 2011<br />

www.sensorsportal.com ISSN 1726-5479<br />

Editors-in-Chief: professor Sergey Y. Yurish, tel.: +34 696067716, e-mail: editor@sensorsportal.com<br />

Editors for Western Europe<br />

Meijer, Gerard C.M., Delft University of Technology, The Netherlands<br />

Ferrari, Vittorio, Universitá di Brescia, Italy<br />

Editor for Eastern Europe<br />

Sachenko, Anatoly, Ternopil State Ec<strong>on</strong>omic University, Ukraine<br />

Editors for North America<br />

Datskos, Panos G., Oak Ridge Nati<strong>on</strong>al Laboratory, USA<br />

Fabien, J. Josse, Marquette University, USA<br />

Katz, Evgeny, Clarks<strong>on</strong> University, USA<br />

Editor South America<br />

Costa-Felix, Rodrigo, Inmetro, Brazil<br />

Editor for Africa<br />

Maki K.Habib, American University in Cairo, Egypt<br />

Editor for Asia<br />

Ohyama, Shinji, Tokyo Institute of Technology, Japan<br />

Editor for Asia-Pacific<br />

Mukhopadhyay, Subhas, Massey University, New Zealand<br />

Editorial Advisory Board<br />

Abdul Rahim, Ruzairi, Universiti Teknologi, Malaysia<br />

Ahmad, Mohd Noor, Nothern University of Engineering, Malaysia<br />

Annamalai, Karthigeyan, Nati<strong>on</strong>al Institute of Advanced Industrial Science<br />

and Technology, Japan<br />

Arcega, Francisco, University of Zaragoza, Spain<br />

Arguel, Philippe, CNRS, France<br />

Ahn, Jae-Pyoung, Korea Institute of Science and Technology, Korea<br />

Arndt, Michael, Robert Bosch GmbH, Germany<br />

Ascoli, Giorgio, George Mas<strong>on</strong> University, USA<br />

Atalay, Selcuk, In<strong>on</strong>u University, Turkey<br />

Atghiaee, Ahmad, University of Tehran, Iran<br />

Augutis, Vygantas, Kaunas University of Technology, Lithuania<br />

Avachit, Patil Lalchand, North Maharashtra University, India<br />

Ayesh, Aladdin, De M<strong>on</strong>tfort University, UK<br />

Azamimi, Azian binti Abdullah, Universiti Malaysia Perlis, Malaysia<br />

Bahreyni, Behraad, University of Manitoba, Canada<br />

Baliga, Shankar, B., General M<strong>on</strong>itors Transnati<strong>on</strong>al, USA<br />

Baoxian, Ye, Zhengzhou University, China<br />

Barford, Lee, Agilent Laboratories, USA<br />

Barlingay, Ravindra, RF Arrays Systems, India<br />

Basu, Sukumar, Jadavpur University, India<br />

Beck, Stephen, University of Sheffield, UK<br />

Ben Bouzid, Sihem, Institut Nati<strong>on</strong>al de Recherche Scientifique, Tunisia<br />

Benachaiba, Chellali, Universitaire de Bechar, Algeria<br />

Binnie, T. David, Napier University, UK<br />

Bischoff, Gerlinde, Inst. Analytical Chemistry, Germany<br />

Bodas, Dhananjay, IMTEK, Germany<br />

Borges Carval, Nuno, Universidade de Aveiro, Portugal<br />

Bousbia-Salah, Mounir, University of Annaba, Algeria<br />

Bouvet, Marcel, CNRS – UPMC, France<br />

Brudzewski, Kazimierz, Warsaw University of Technology, Poland<br />

Cai, Chenxin, Nanjing Normal University, China<br />

Cai, Qingyun, Hunan University, China<br />

Campanella, Luigi, University La Sapienza, Italy<br />

Carvalho, Vitor, Minho University, Portugal<br />

Cecelja, Franjo, Brunel University, L<strong>on</strong>d<strong>on</strong>, UK<br />

Cerda Belm<strong>on</strong>te, Judith, Imperial College L<strong>on</strong>d<strong>on</strong>, UK<br />

Chakrabarty, Chandan Kumar, Universiti Tenaga Nasi<strong>on</strong>al, Malaysia<br />

Chakravorty, Dipankar, Associati<strong>on</strong> for the Cultivati<strong>on</strong> of Science, India<br />

Changhai, Ru, Harbin Engineering University, China<br />

Chaudhari, Gajanan, Shri Shivaji Science College, India<br />

Chavali, Murthy, N.I. Center for Higher Educati<strong>on</strong>, (N.I. University), India<br />

Chen, Jiming, Zhejiang University, China<br />

Chen, R<strong>on</strong>gshun, Nati<strong>on</strong>al Tsing Hua University, Taiwan<br />

Cheng, Kuo-Sheng, Nati<strong>on</strong>al Cheng Kung University, Taiwan<br />

Chiang, Jeffrey (Cheng-Ta), Industrial Technol. Research Institute, Taiwan<br />

Chiriac, Horia, Nati<strong>on</strong>al Institute of Research and Development, Romania<br />

Chowdhuri, Arijit, University of Delhi, India<br />

Chung, Wen-Yaw, Chung Yuan Christian University, Taiwan<br />

Corres, Jesus, Universidad Publica de Navarra, Spain<br />

Cortes, Camilo A., Universidad Naci<strong>on</strong>al de Colombia, Colombia<br />

Courtois, Christian, Universite de Valenciennes, France<br />

Cusano, Andrea, University of Sannio, Italy<br />

D'Amico, Arnaldo, Università di Tor Vergata, Italy<br />

De Stefano, Luca, Institute for Microelectr<strong>on</strong>ics and Microsystem, Italy<br />

Deshmukh, Kiran, Shri Shivaji Mahavidyalaya, Barshi, India<br />

Dickert, Franz L., Vienna University, Austria<br />

Dieguez, Angel, University of Barcel<strong>on</strong>a, Spain<br />

Dighavkar, C. G., M.G. Vidyamandir’s L. V.H. College, India<br />

Dimitropoulos, Panos, University of Thessaly, Greece<br />

Ko, Sang Cho<strong>on</strong>, Electr<strong>on</strong>ics. and Telecom. Research Inst., Korea South<br />

Ding, Jianning, Jiangsu Polytechnic University, China<br />

Djordjevich, Alexandar, City University of H<strong>on</strong>g K<strong>on</strong>g, H<strong>on</strong>g K<strong>on</strong>g<br />

D<strong>on</strong>ato, Nicola, University of Messina, Italy<br />

D<strong>on</strong>ato, Patricio, Universidad de Mar del Plata, Argentina<br />

D<strong>on</strong>g, Feng, Tianjin University, China<br />

Drljaca, Predrag, Instersema <str<strong>on</strong>g>Sensor</str<strong>on</strong>g>ic SA, Switzerland<br />

Dubey, Venketesh, Bournemouth University, UK<br />

Enderle, Stefan, Univ.of Ulm and KTB Mechatr<strong>on</strong>ics GmbH, Germany<br />

Erdem, Gursan K. Arzum, Ege University, Turkey<br />

Erkmen, Aydan M., Middle East Technical University, Turkey<br />

Estelle, Patrice, Insa Rennes, France<br />

Estrada, Horacio, University of North Carolina, USA<br />

Faiz, Adil, INSA Ly<strong>on</strong>, France<br />

Fericean, Sorin, Balluff GmbH, Germany<br />

Fernandes, Joana M., University of Porto, Portugal<br />

Francioso, Luca, CNR-IMM Institute for Microelectr<strong>on</strong>ics and Microsystems, Italy<br />

Francis, Laurent, University Catholique de Louvain, Belgium<br />

Fu, Weiling, South-Western Hospital, Ch<strong>on</strong>gqing, China<br />

Gaura, Elena, Coventry University, UK<br />

Geng, Yanfeng, China University of Petroleum, China<br />

Gole, James, Georgia Institute of Technology, USA<br />

G<strong>on</strong>g, Hao, Nati<strong>on</strong>al University of Singapore, Singapore<br />

G<strong>on</strong>zalez de la Rosa, Juan Jose, University of Cadiz, Spain<br />

Granel, Annette, Goteborg University, Sweden<br />

Graff, Mas<strong>on</strong>, The University of Texas at Arlingt<strong>on</strong>, USA<br />

Guan, Shan, Eastman Kodak, USA<br />

Guillet, Bruno, University of Caen, France<br />

Guo, Zhen, New Jersey Institute of Technology, USA<br />

Gupta, Narendra Kumar, Napier University, UK<br />

Hadjiloucas, Sillas, The University of Reading, UK<br />

Haider, Mohammad R., S<strong>on</strong>oma State University, USA<br />

Hashsham, Syed, Michigan State University, USA<br />

Hasni, Abdelhafid, Bechar University, Algeria<br />

Hernandez, Alvaro, University of Alcala, Spain<br />

Hernandez, Wilmar, Universidad Politecnica de Madrid, Spain<br />

Homentcovschi, Dorel, SUNY Binghamt<strong>on</strong>, USA<br />

Horstman, Tom, U.S. Automati<strong>on</strong> Group, LLC, USA<br />

Hsiai, Tzung (John), University of Southern California, USA<br />

Huang, Jeng-Sheng, Chung Yuan Christian University, Taiwan<br />

Huang, Star, Nati<strong>on</strong>al Tsing Hua University, Taiwan<br />

Huang, Wei, PSG Design Center, USA<br />

Hui, David, University of New Orleans, USA<br />

Jaffrezic-Renault, Nicole, Ecole Centrale de Ly<strong>on</strong>, France<br />

Jaime Calvo-Galleg, Jaime, Universidad de Salamanca, Spain<br />

James, Daniel, Griffith University, Australia<br />

Janting, Jakob, DELTA Danish Electr<strong>on</strong>ics, Denmark<br />

Jiang, Liudi, University of Southampt<strong>on</strong>, UK<br />

Jiang, Wei, University of Virginia, USA<br />

Jiao, Zheng, Shanghai University, China<br />

John, Joachim, IMEC, Belgium<br />

Kalach, Andrew, Vor<strong>on</strong>ezh Institute of Ministry of Interior, Russia<br />

Kang, Mo<strong>on</strong>ho, Sunmo<strong>on</strong> University, Korea South<br />

Kaniusas, Eugenijus, Vienna University of Technology, Austria<br />

Katake, Anup, Texas A&M University, USA<br />

Kausel, Wilfried, University of Music, Vienna, Austria<br />

Kavasoglu, Nese, Mugla University, Turkey<br />

Ke, Cathy, Tyndall Nati<strong>on</strong>al Institute, Ireland<br />

Khelfaoui, Rachid, Université de Bechar, Algeria<br />

Khan, Asif, Aligarh Muslim University, Aligarh, India<br />

Kim, Min Young, Kyungpook Nati<strong>on</strong>al University, Korea South<br />

Sandacci, Serghei, <str<strong>on</strong>g>Sensor</str<strong>on</strong>g> Technology Ltd., UK


Kotulska, Malgorzata, Wroclaw University of Technology, Poland<br />

Kockar, Hakan, Balikesir University, Turkey<br />

K<strong>on</strong>g, Ing, RMIT University, Australia<br />

Kratz, Henrik, Uppsala University, Sweden<br />

Krishnamoorthy, Ganesh, University of Texas at Austin, USA<br />

Kumar, Arun, University of South Florida, USA<br />

Kumar, Subodh, Nati<strong>on</strong>al Physical Laboratory, India<br />

Kung, Chih-Hsien, Chang-Jung Christian University, Taiwan<br />

Lacnjevac, Caslav, University of Belgrade, Serbia<br />

Lay-Ekuakille, Aime, University of Lecce, Italy<br />

Lee, Jang Myung, Pusan Nati<strong>on</strong>al University, Korea South<br />

Lee, Jun Su, Amkor Technology, Inc. South Korea<br />

Lei, Hua, Nati<strong>on</strong>al Starch and Chemical Company, USA<br />

Li, Fengyuan (Thomas), Purdue University, USA<br />

Li, Genxi, Nanjing University, China<br />

Li, Hui, Shanghai Jiaot<strong>on</strong>g University, China<br />

Li, Xian-Fang, Central South University, China<br />

Li, Yuefa, Wayne State University, USA<br />

Liang, Yuanchang, University of Washingt<strong>on</strong>, USA<br />

Liawruangrath, Saisunee, Chiang Mai University, Thailand<br />

Liew, Kim Meow, City University of H<strong>on</strong>g K<strong>on</strong>g, H<strong>on</strong>g K<strong>on</strong>g<br />

Lin, Hermann, Nati<strong>on</strong>al Kaohsiung University, Taiwan<br />

Lin, Paul, Cleveland State University, USA<br />

Linderholm, P<strong>on</strong>tus, EPFL - Microsystems Laboratory, Switzerland<br />

Liu, Aihua, University of Oklahoma, USA<br />

Liu Changgeng, Louisiana State University, USA<br />

Liu, Cheng-Hsien, Nati<strong>on</strong>al Tsing Hua University, Taiwan<br />

Liu, S<strong>on</strong>gqin, Southeast University, China<br />

Lodeiro, Carlos, University of Vigo, Spain<br />

Lorenzo, Maria Encarnacio, Universidad Aut<strong>on</strong>oma de Madrid, Spain<br />

Lukaszewicz, Jerzy Pawel, Nicholas Copernicus University, Poland<br />

Ma, Zhanfang, Northeast Normal University, China<br />

Majstorovic, Vidosav, University of Belgrade, Serbia<br />

Malyshev, V.V., Nati<strong>on</strong>al Research Centre ‘Kurchatov Institute’, Russia<br />

Marquez, Alfredo, Centro de Investigaci<strong>on</strong> en Materiales Avanzados, Mexico<br />

Matay, Ladislav, Slovak Academy of Sciences, Slovakia<br />

Mathur, Prafull, Nati<strong>on</strong>al Physical Laboratory, India<br />

Maurya, D.K., Institute of Materials Research and Engineering, Singapore<br />

Mekid, Samir, University of Manchester, UK<br />

Melnyk, Ivan, Phot<strong>on</strong> C<strong>on</strong>trol Inc., Canada<br />

Mendes, Paulo, University of Minho, Portugal<br />

Mennell, Julie, Northumbria University, UK<br />

Mi, Bin, Bost<strong>on</strong> Scientific Corporati<strong>on</strong>, USA<br />

Minas, Graca, University of Minho, Portugal<br />

Moghavvemi, Mahmoud, University of Malaya, Malaysia<br />

Mohammadi, Mohammad-Reza, University of Cambridge, UK<br />

Molina Flores, Esteban, Benemérita Universidad Autónoma de Puebla,<br />

Mexico<br />

Moradi, Majid, University of Kerman, Iran<br />

Morello, Rosario, University "Mediterranea" of Reggio Calabria, Italy<br />

Mounir, Ben Ali, University of Sousse, Tunisia<br />

Mrad, Nezih, Defence R&D, Canada<br />

Mulla, Imtiaz Sirajuddin, Nati<strong>on</strong>al Chemical Laboratory, Pune, India<br />

Nabok, Aleksey, Sheffield Hallam University, UK<br />

Neelamegam, Periasamy, Sastra Deemed University, India<br />

Neshkova, Milka, Bulgarian Academy of Sciences, Bulgaria<br />

Oberhammer, Joachim, Royal Institute of Technology, Sweden<br />

Ould Lahoucine, Cherif, University of Guelma, Algeria<br />

Pamidighanta, Sayanu, Bharat Electr<strong>on</strong>ics Limited (BEL), India<br />

Pan, Jisheng, Institute of Materials Research & Engineering, Singapore<br />

Park, Jo<strong>on</strong>-Shik, Korea Electr<strong>on</strong>ics Technology Institute, Korea South<br />

Penza, Michele, ENEA C.R., Italy<br />

Pereira, Jose Miguel, Instituto Politecnico de Setebal, Portugal<br />

Petsev, Dimiter, University of New Mexico, USA<br />

Pogacnik, Lea, University of Ljubljana, Slovenia<br />

Post, Michael, Nati<strong>on</strong>al Research Council, Canada<br />

Prance, Robert, University of Sussex, UK<br />

Prasad, Ambika, Gulbarga University, India<br />

Prateepasen, Asa, Kingmoungut's University of Technology, Thailand<br />

Pullini, Daniele, Centro Ricerche FIAT, Italy<br />

Pumera, Martin, Nati<strong>on</strong>al Institute for Materials Science, Japan<br />

Radhakrishnan, S. Nati<strong>on</strong>al Chemical Laboratory, Pune, India<br />

Rajanna, K., Indian Institute of Science, India<br />

Ramadan, Qasem, Institute of Microelectr<strong>on</strong>ics, Singapore<br />

Rao, Basuthkar, Tata Inst. of Fundamental Research, India<br />

Raoof, Kosai, Joseph Fourier University of Grenoble, France<br />

Rastogi Shiva, K. University of Idaho, USA<br />

Reig, Candid, University of Valencia, Spain<br />

Restivo, Maria Teresa, University of Porto, Portugal<br />

Robert, Michel, University Henri Poincare, France<br />

Rezazadeh, Ghader, Urmia University, Iran<br />

Royo, Santiago, Universitat Politecnica de Catalunya, Spain<br />

Rodriguez, Angel, Universidad Politecnica de Cataluna, Spain<br />

Rothberg, Steve, Loughborough University, UK<br />

Sadana, Ajit, University of Mississippi, USA<br />

Sadeghian Marnani, Hamed, TU Delft, The Netherlands<br />

Sapozhnikova, Ksenia, D.I.Mendeleyev Institute for Metrology, Russia<br />

Saxena, Vibha, Bhbha Atomic Research Centre, Mumbai, India<br />

Schneider, John K., Ultra-Scan Corporati<strong>on</strong>, USA<br />

Sengupta, Deepak, Advance Bio-Phot<strong>on</strong>ics, India<br />

Seif, Selemani, Alabama A & M University, USA<br />

Seifter, Achim, Los Alamos Nati<strong>on</strong>al Laboratory, USA<br />

Shah, Kriyang, La Trobe University, Australia<br />

Sankarraj, Anand, Detector Electr<strong>on</strong>ics Corp., USA<br />

Silva Girao, Pedro, Technical University of Lisb<strong>on</strong>, Portugal<br />

Singh, V. R., Nati<strong>on</strong>al Physical Laboratory, India<br />

Slomovitz, Daniel, UTE, Uruguay<br />

Smith, Martin, Open University, UK<br />

Soleymanpour, Ahmad, Damghan Basic Science University, Iran<br />

Somani, Prakash R., Centre for Materials for Electr<strong>on</strong>ics Technol., India<br />

Srinivas, Talabattula, Indian Institute of Science, Bangalore, India<br />

Srivastava, Arvind K., NanoS<strong>on</strong>ix Inc., USA<br />

Stefan-van Staden, Raluca-Ioana, University of Pretoria, South Africa<br />

Stefanescu, Dan Mihai, Romanian Measurement Society, Romania<br />

Sumriddetchka, Sarun, Nati<strong>on</strong>al Electr<strong>on</strong>ics and Computer Technology Center,<br />

Thailand<br />

Sun, Chengliang, Polytechnic University, H<strong>on</strong>g-K<strong>on</strong>g<br />

Sun, D<strong>on</strong>gming, Jilin University, China<br />

Sun, Junhua, Beijing University of Aer<strong>on</strong>autics and Astr<strong>on</strong>autics, China<br />

Sun, Zhiqiang, Central South University, China<br />

Suri, C. Raman, Institute of Microbial Technology, India<br />

Sysoev, Victor, Saratov State Technical University, Russia<br />

Szewczyk, Roman, Industrial Research Inst. for Automati<strong>on</strong> and Measurement,<br />

Poland<br />

Tan, Ooi Kiang, Nanyang Technological University, Singapore,<br />

Tang, Dianping, Southwest University, China<br />

Tang, Jaw-Luen, Nati<strong>on</strong>al Chung Cheng University, Taiwan<br />

Teker, Kasif, Frostburg State University, USA<br />

Thirunavukkarasu, I., Manipal University Karnataka, India<br />

Thumbavanam Pad, Kartik, Carnegie Mell<strong>on</strong> University, USA<br />

Tian, Gui Yun, University of Newcastle, UK<br />

Tsiantos, Vassilios, Technological Educati<strong>on</strong>al Institute of Kaval, Greece<br />

Tsigara, Anna, Nati<strong>on</strong>al Hellenic Research Foundati<strong>on</strong>, Greece<br />

Twomey, Karen, University College Cork, Ireland<br />

Valente, Ant<strong>on</strong>io, University, Vila Real, - U.T.A.D., Portugal<br />

Vanga, Raghav Rao, Summit Technology Services, Inc., USA<br />

Vaseashta, Ashok, Marshall University, USA<br />

Vazquez, Carmen, Carlos III University in Madrid, Spain<br />

Vieira, Manuela, Instituto Superior de Engenharia de Lisboa, Portugal<br />

Vigna, Benedetto, STMicroelectr<strong>on</strong>ics, Italy<br />

Vrba, Radimir, Brno University of Technology, Czech Republic<br />

Wandelt, Barbara, Technical University of Lodz, Poland<br />

Wang, Jiangping, Xi'an Shiyou University, China<br />

Wang, Ked<strong>on</strong>g, Beihang University, China<br />

Wang, Liang, Pacific Northwest Nati<strong>on</strong>al Laboratory, USA<br />

Wang, Mi, University of Leeds, UK<br />

Wang, Shinn-Fwu, Ching Yun University, Taiwan<br />

Wang, Wei-Chih, University of Washingt<strong>on</strong>, USA<br />

Wang, Wensheng, University of Pennsylvania, USA<br />

Wats<strong>on</strong>, Steven, Center for NanoSpace Technologies Inc., USA<br />

Weiping, Yan, Dalian University of Technology, China<br />

Wells, Stephen, Southern Company Services, USA<br />

Wolkenberg, Andrzej, Institute of Electr<strong>on</strong> Technology, Poland<br />

Woods, R. Clive, Louisiana State University, USA<br />

Wu, DerHo, Nati<strong>on</strong>al Pingtung Univ. of Science and Technology, Taiwan<br />

Wu, Zhaoyang, Hunan University, China<br />

Xiu Tao, Ge, Chuzhou University, China<br />

Xu, Lisheng, The Chinese University of H<strong>on</strong>g K<strong>on</strong>g, H<strong>on</strong>g K<strong>on</strong>g<br />

Xu, Sen, Drexel University, USA<br />

Xu, Tao, University of California, Irvine, USA<br />

Yang, D<strong>on</strong>gfang, Nati<strong>on</strong>al Research Council, Canada<br />

Yang, Shuang-Hua, Loughborough University, UK<br />

Yang, Wuqiang, The University of Manchester, UK<br />

Yang, Xiaoling, University of Georgia, Athens, GA, USA<br />

Yaping Dan, Harvard University, USA<br />

Ymeti, Aurel, University of Twente, Netherland<br />

Y<strong>on</strong>g Zhao, Northeastern University, China<br />

Yu, Haihu, Wuhan University of Technology, China<br />

Yuan, Y<strong>on</strong>g, Massey University, New Zealand<br />

Yufera Garcia, Alberto, Seville University, Spain<br />

Zakaria, Zulkarnay, University Malaysia Perlis, Malaysia<br />

Zagn<strong>on</strong>i, Michele, University of Southampt<strong>on</strong>, UK<br />

Zamani, Cyrus, Universitat de Barcel<strong>on</strong>a, Spain<br />

Zeni, Luigi, Sec<strong>on</strong>d University of Naples, Italy<br />

Zhang, Mingl<strong>on</strong>g, Shanghai University, China<br />

Zhang, Qintao, University of California at Berkeley, USA<br />

Zhang, Weiping, Shanghai Jiao T<strong>on</strong>g University, China<br />

Zhang, Wenming, Shanghai Jiao T<strong>on</strong>g University, China<br />

Zhang, Xueji, World Precisi<strong>on</strong> Instruments, Inc., USA<br />

Zh<strong>on</strong>g, Haoxiang, Henan Normal University, China<br />

Zhu, Qing, Fujifilm Dimatix, Inc., USA<br />

Zorzano, Luis, Universidad de La Rioja, Spain<br />

Zourob, Mohammed, University of Cambridge, UK<br />

<str<strong>on</strong>g>Sensor</str<strong>on</strong>g>s & Transducers Journal (ISSN 1726-5479) is a peer review internati<strong>on</strong>al journal published m<strong>on</strong>thly <strong>on</strong>line by Internati<strong>on</strong>al Frequency <str<strong>on</strong>g>Sensor</str<strong>on</strong>g> Associati<strong>on</strong> (IFSA).<br />

Available in electr<strong>on</strong>ic and <strong>on</strong> CD. Copyright © 2011 by Internati<strong>on</strong>al Frequency <str<strong>on</strong>g>Sensor</str<strong>on</strong>g> Associati<strong>on</strong>. All rights reserved.


<str<strong>on</strong>g>Sensor</str<strong>on</strong>g>s & Transducers Journal<br />

C<strong>on</strong>tents<br />

Volume 134<br />

Issue 11<br />

November 2011<br />

www.sensorsportal.com ISSN 1726-5479<br />

Research Articles<br />

Nanomaterials and Chemical <str<strong>on</strong>g>Sensor</str<strong>on</strong>g>s<br />

Sukumar Basu and Palash Kumar Basu ............................................................................................ 1<br />

Fabricati<strong>on</strong> of Phenyl-Hydrazine Chemical <str<strong>on</strong>g>Sensor</str<strong>on</strong>g> <str<strong>on</strong>g>Based</str<strong>on</strong>g> <strong>on</strong> Al- doped <strong>ZnO</strong> Nanoparticles<br />

Mohammed M. Rahman, Sher Bahadar Khan, A. Jamal, M. Faisal, Abdullah M. Asiri ..................... 32<br />

<strong>Nanostructured</strong> Ferrite <str<strong>on</strong>g>Based</str<strong>on</strong>g> Electr<strong>on</strong>ic nose Sensitive to Amm<strong>on</strong>ia at room temperature<br />

U. B. Gawas, V. M. S. Verenkar, D. R. Patil....................................................................................... 45<br />

A <str<strong>on</strong>g>Humidity</str<strong>on</strong>g> <str<strong>on</strong>g>Sensor</str<strong>on</strong>g> <str<strong>on</strong>g>Based</str<strong>on</strong>g> <strong>on</strong> Nb-doped Nanoporous TiO 2 Thin Film<br />

Mansoor Anbia, S. E. Moosavi Fard................................................................................................... 56<br />

A <str<strong>on</strong>g>Resistive</str<strong>on</strong>g> <str<strong>on</strong>g>Humidity</str<strong>on</strong>g> <str<strong>on</strong>g>Sensor</str<strong>on</strong>g> <str<strong>on</strong>g>Based</str<strong>on</strong>g> <strong>on</strong> <strong>Nanostructured</strong> WO 3 -<strong>ZnO</strong> Composites<br />

Karunesh Tiwari, Anupam Tripathi, N. K. Pandey.............................................................................. 65<br />

Highly Sensitive Cadmium C<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>Sensor</str<strong>on</strong>g> Using L<strong>on</strong>g Period Grating<br />

A. S. Lalasangi, J. F. Akki, K. G. Manohar, T. Srinivas, Prasad Raikar, Sanjay Kher<br />

and U. S. Raikar ................................................................................................................................. 76<br />

MEMS <str<strong>on</strong>g>Based</str<strong>on</strong>g> Ethanol <str<strong>on</strong>g>Sensor</str<strong>on</strong>g> Using <strong>ZnO</strong> Nanoblocks, Nanocombs and Nanoflakes as<br />

Sensing Layer<br />

H. J. Pandya, Sudhir Chandra and A. L. Vyas ................................................................................... 85<br />

Simple Synthesis of ZnCo 2 O 4 Nanoparticles as Gas-sensing Materials<br />

S. V. Bangale,S. M. Khetre D. R. Patil and S. R. Bamane................................................................. 95<br />

<strong>Nanostructured</strong> Spinel ZnFe 2 O 4 for the Detecti<strong>on</strong> of Chlorine Gas<br />

S. V. Bangale, D. R. Patil and S. R. Bamane..................................................................................... 107<br />

Fabricati<strong>on</strong> of Polyaniline-<strong>ZnO</strong> Nanocomposite Gas <str<strong>on</strong>g>Sensor</str<strong>on</strong>g><br />

S. L. Patil, M. A. Chougule, S. G. Pawar, Shashwati Sen, A. V. Moholkar, J. H. Kim and V. B. Patil 120<br />

Synthesis and Characterizati<strong>on</strong> of Nano-Crystalline Cu and Pb 0.5 -Cu 0.5 - ferrites by<br />

Mechanochemical Method and Their Electrical and Gas Sensing Properties<br />

V. B. Gaikwad ,S. S. Gaikwad, A. V. Borhade and R. D. Nikam........................................................ 132<br />

Surface Modificati<strong>on</strong> of MWCNTs: Preparati<strong>on</strong>, Characterizati<strong>on</strong> and Electrical Percolati<strong>on</strong><br />

Studies of MWCNTs/PVP Composite Films for Realizati<strong>on</strong> of Amm<strong>on</strong>ia Gas <str<strong>on</strong>g>Sensor</str<strong>on</strong>g><br />

Operable at Room Temperature<br />

Sakshi Sharma, K. Sengupta, S. S. Islam.......................................................................................... 143<br />

An Investigati<strong>on</strong> of Structural and Electrical Properties of Nano Crystalline SnO2: Cu Thin<br />

Films Deposited by Spray Pyrolysis<br />

J. Podder and S. S. Roy ..................................................................................................................... 155


Nanocrystalline Cobalt-doped SnO2 Thin Film: A Sensitive Cigarette Smoke <str<strong>on</strong>g>Sensor</str<strong>on</strong>g><br />

Patil Shriram B., More Mahendra A., Patil Arun V.............................................................................. 163<br />

Effect of Annealing <strong>on</strong> the Structural and Optical Properties of Nano Fiber <strong>ZnO</strong> Films<br />

Deposited by Spray Pyrolysis<br />

M. R. Islam, J. Podder, S. F. U. Farhad and D. K. Saha.................................................................... 170<br />

Amperometric Acetylcholinesterase Biosensor <str<strong>on</strong>g>Based</str<strong>on</strong>g> <strong>on</strong> Multilayer Multiwall Carb<strong>on</strong><br />

Nanotubes-chitosan Composite<br />

Xia Sun, Chen Zhai, Xiangyou Wang................................................................................................. 177<br />

Fabricati<strong>on</strong> of Biosensors <str<strong>on</strong>g>Based</str<strong>on</strong>g> <strong>on</strong> <strong>Nanostructured</strong> C<strong>on</strong>ducting Polyaniline (NSPANI)<br />

Deepshikha Saini, Ruchika Chauhan and Tinku Basu....................................................................... 187<br />

Authors are encouraged to submit article in MS Word (doc) and Acrobat (pdf) formats by e-mail: editor@sensorsportal.com<br />

Please visit journal’s webpage with preparati<strong>on</strong> instructi<strong>on</strong>s: http://www.sensorsportal.com/HTML/DIGEST/Submiti<strong>on</strong>.htm<br />

Internati<strong>on</strong>al Frequency <str<strong>on</strong>g>Sensor</str<strong>on</strong>g> Associati<strong>on</strong> (IFSA).


<str<strong>on</strong>g>Sensor</str<strong>on</strong>g>s & Transducers Journal, Vol. 134, Issue 11, November 2011, pp. 65-75<br />

<str<strong>on</strong>g>Sensor</str<strong>on</strong>g>s & Transducers<br />

ISSN 1726-5479<br />

© 2011 by IFSA<br />

http://www.sensorsportal.com<br />

A <str<strong>on</strong>g>Resistive</str<strong>on</strong>g> <str<strong>on</strong>g>Humidity</str<strong>on</strong>g> <str<strong>on</strong>g>Sensor</str<strong>on</strong>g> <str<strong>on</strong>g>Based</str<strong>on</strong>g> <strong>on</strong> <strong>Nanostructured</strong><br />

WO 3 -<strong>ZnO</strong> Composites<br />

Karunesh Tiwari, Anupam Tripathi, N. K. Pandey<br />

<str<strong>on</strong>g>Sensor</str<strong>on</strong>g> & Material Research laboratory, Department of Physics, University of Lucknow<br />

Lucknow, India<br />

Email: Karunesh81@gmail.com, anu_198117@yahoo.co.in<br />

Received: 15 August 2011 /Accepted: 21 November 2011 /Published: 29 November 2011<br />

Abstract: Paper reports morphological and humidity sensing studies of WO 3 and WO 3 -<strong>ZnO</strong> composite<br />

pellets prepared in the weight % ratio of 10:1, 4:1 and 2:1 by solid-state reacti<strong>on</strong> route. The pellets<br />

have been annealed at temperatures of 300-500 °C. XRD pattern shows peaks of ZnWO 4 formed due<br />

to solid state reacti<strong>on</strong> between WO 3 and <strong>ZnO</strong>. SEM micrographs show that the sensing elements<br />

manifest porous structure. Granulati<strong>on</strong> and tendency to agglomerate seen in the SEM micrograph are<br />

due to the presence of zinc i<strong>on</strong>s in ZnWO 4 . Nanoparticles are having their sizes in the range<br />

37-182 nm. The average Kelvin radius at 20˚C room temperature is 27 Ả. <str<strong>on</strong>g>Humidity</str<strong>on</strong>g> sensing<br />

applicati<strong>on</strong> of the pellets has been studied in a humidity c<strong>on</strong>trol cabinet. It is observed that as relative<br />

humidity increases, there is decrease in the resistance of pellets in the range 10-85 % RH. Sensing<br />

element of WO 3 -<strong>ZnO</strong> in 2:1 weight % ratio shows best results in 10-85 % relative humidity range. The<br />

average sensitivity of this sample is 1.25 MΩ/%RH. This sensing element shows good reproducibility,<br />

low hysteresis and less effect of aging. Copyright © 2011 IFSA.<br />

Keywords: <str<strong>on</strong>g>Humidity</str<strong>on</strong>g>, WO 3 , <strong>ZnO</strong>, Nanocomposite, Kelvin radius, Metal oxides, Sem, XRD.<br />

1. Introducti<strong>on</strong><br />

The use of humidity c<strong>on</strong>trol systems has greatly increased in quality c<strong>on</strong>trol of producti<strong>on</strong> processes.<br />

Metal oxides have shown advantages in terms of their resistance to chemical attack and their thermal<br />

and physical stability. These materials possess a unique structure c<strong>on</strong>sisting of grains, grain boundaries<br />

surfaces and pores, which make them suitable for this kind of sensors. The working mechanism of<br />

metal oxide sensors lies in change of the resistance of the sensing element from chemisorpti<strong>on</strong>,<br />

65


<str<strong>on</strong>g>Sensor</str<strong>on</strong>g>s & Transducers Journal, Vol. 134, Issue 11, November 2011, pp. 65-75<br />

physisopti<strong>on</strong> and catalytic reacti<strong>on</strong> <strong>on</strong> exposure to a stimuli like humidity [1-2]. Researchers have<br />

earlier paid much attenti<strong>on</strong> to WO 3 and <strong>ZnO</strong> as gas-sensing materials [3-4]. Yadav et al. have reported<br />

humidity sensor based <strong>on</strong> <strong>ZnO</strong> nanomaterials [5]. D Patil et al. have prepared the organic-inorganic<br />

composite c<strong>on</strong>taining Poly (2, 5- Dimethoxyaniline) as organic material and WO 3 as inorganic material<br />

and examined the possibility of using them as a candidate for humidity sensing applicati<strong>on</strong> [6]. In our<br />

earlier work, we have reported morphological and humidity sensing studies of WO 3 mixed with <strong>ZnO</strong><br />

and TiO 2 powders [7]. We report here the morphological and relative humidity (RH) sensing studies of<br />

pure WO 3 and WO 3 -<strong>ZnO</strong> nanocomposite. Sensitivity is defined as change in resistance of the sensing<br />

element per unit % RH.<br />

2. Sample Preparati<strong>on</strong><br />

Powders with pure WO 3 (sample WZ-0) and WO 3 -<strong>ZnO</strong> (WO 3 and <strong>ZnO</strong> – Loba Chemie, 99.9 % pure)<br />

in % ratio of 10:1, 4:1 and 2:1 by weight (samples WZ-10, WZ-25 and WZ-50 respectively) have been<br />

prepared by solid-state reacti<strong>on</strong> route. 10 weight % of glass powder has been added as binder to<br />

increase the strength of the sample. The powders have been pressed in pellet shape by uniaxially<br />

applying pressure of 260 MPa in hydraulic press machine at room temperature. The pellets are in disc<br />

shape having diameter of 12 mm. The pellets have been sintered in air at temperature of 300-500 °C<br />

for 3 hours in an electric muffle furnace (Ambassador, India).<br />

3. Sample Characterizati<strong>on</strong><br />

XRD of the samples have been d<strong>on</strong>e with the X-Ray Diffractometer X-pert PRO-Analytical<br />

(Netherland) using CuKα radiati<strong>on</strong> (wavelength λ = 1.54060Å). Figs. 1, 2, 3, 4 show XRD patterns of<br />

the sensing elements of pure WO 3 and WO 3 -<strong>ZnO</strong> composite. These XRD patterns shown in<br />

Figs. 2, 3, 4 reveal peaks of ZnWO 4 formed due to solid state reacti<strong>on</strong> between WO 3 and <strong>ZnO</strong>. The<br />

particle size calculated according to Scherer formula is in the range of 37-182 nm.<br />

Surface morphology of sensing elements has been studied using Scanning Electr<strong>on</strong> Microscope Unit<br />

(SEM, LEO-0430, Cambridge). SEM micrographs of all the sensing elements WZ-0, WZ-10, WZ-25<br />

and WZ-50 manifest porous structure. SEM micrograph of pure WO 3 shows molecules of WO 3<br />

particles combining with adhesive glass particles to form beautiful mud particle-like clusters leaving<br />

spaces as pores. SEM micrographs of samples of <strong>WO3</strong>-<strong>ZnO</strong> reveal that the particles are distributed in<br />

the form of granules and agglomerated having bunched-like structure. The particle density is seen to<br />

increase with increase in weight % of <strong>ZnO</strong> in WO 3 . Figs. 5, 6, 7 and 8 show SEM micrographs of<br />

sensing elements WZ-0, WZ-10, WZ-25 and WZ-50 respectively.<br />

The Kelvin radius at 20˚C room temperature has been calculated [8]. The value has been found to be in<br />

the range of 4.6 Ả to 100 Ả for relative humidity from 10 to 85 % RH.<br />

4. Experimental<br />

After sintering, variati<strong>on</strong> in resistance is recorded with change in % RH in a humidity c<strong>on</strong>trol cabinet<br />

at room temperature. The resistance of the pellet has been measured normal to the cross-secti<strong>on</strong> of the<br />

pellet using copper electrode. To see the effect of ageing, the samples have again been exposed to<br />

humidity after six m<strong>on</strong>ths. The stability of the sensing element has been checked by keeping the<br />

sensing element at fixed values of % RH in the chamber and the values of resistance is recorded as a<br />

functi<strong>on</strong> of time [6]. For average sensitivity, the difference in the values of resistance has been taken<br />

66


<str<strong>on</strong>g>Sensor</str<strong>on</strong>g>s & Transducers Journal, Vol. 134, Issue 11, November 2011, pp. 65-75<br />

for each 5 % interval of RH. This difference has been divided by 5. Then the average has been taken<br />

for all these values.<br />

Fig. 1. X-Ray Diffracti<strong>on</strong> of sensing element WZ-O annealed at 500 °C.<br />

Fig. 2. X-Ray Diffracti<strong>on</strong> of sensing element WZ-10 annealed at 500 °C.<br />

67


<str<strong>on</strong>g>Sensor</str<strong>on</strong>g>s & Transducers Journal, Vol. 134, Issue 11, November 2011, pp. 65-75<br />

Fig. 3. X-Ray Diffracti<strong>on</strong> of sensing element WZ-25 annealed at 500 °C.<br />

Fig. 4. X-Ray Diffracti<strong>on</strong> of sensing element WZ-5O annealed at 500 °C.<br />

68


<str<strong>on</strong>g>Sensor</str<strong>on</strong>g>s & Transducers Journal, Vol. 134, Issue 11, November 2011, pp. 65-75<br />

Fig. 5. SEM of sensing element WZ-0 annealed at 500 °C.<br />

Fig. 6. SEM of sensing element WZ-10 annealed at 500 °C.<br />

Fig. 7. SEM of sensing element WZ-25 annealed at 500 °C.<br />

69


<str<strong>on</strong>g>Sensor</str<strong>on</strong>g>s & Transducers Journal, Vol. 134, Issue 11, November 2011, pp. 65-75<br />

Fig. 8. SEM of sensing element WZ-50 annealed at 500 °C.<br />

5. Results and Discussi<strong>on</strong><br />

Fig. 9 is the hysteresis curve showing the variati<strong>on</strong>s of the resistance of the sensing element WZ-0 with<br />

change in the value of relative humidity after the sample has been annealed at 500 ˚C. In increasing<br />

cycle, the resistance is found to decrease by 60 % for increase in relative humidity from 10 to 40 %<br />

RH whereas resistance decreases by 80 % in the range 40 to 85 % RH. Decreasing cycle of the curve<br />

shows almost linear resp<strong>on</strong>se with some hysteresis. The value of sensitivity for sensing element WZ-0<br />

in increasing and decreasing cycle is 1.24 and 1.26 respectively. Fig. 10 is the repeatability graph<br />

showing variati<strong>on</strong>s of resistance of sensing element WZ-0 with change in the value of relative<br />

humidity after six m<strong>on</strong>ths. It is seen that resistance decreases by 82% for increase in relative humidity<br />

from 10 to 85 %RH. As it can be seen from Fig. 10, sensitivity of sample WZ-0 is found to decrease<br />

from 1.24 to 1.09 after six m<strong>on</strong>ths.<br />

120<br />

increasing<br />

decreasing<br />

100<br />

Resistance in Mega ohm<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 10 20 30 40 50 60 70 80 90<br />

RH%<br />

Fig. 9. Variati<strong>on</strong> of resistance with RH % for WZ-0 annealed at 500 ˚C (Hysteresis).<br />

70


<str<strong>on</strong>g>Sensor</str<strong>on</strong>g>s & Transducers Journal, Vol. 134, Issue 11, November 2011, pp. 65-75<br />

Resistancein Mega Ohm<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 10 20 30 40 50 60 70 80 90<br />

RH%<br />

increasing<br />

After six m<strong>on</strong>ths<br />

Fig. 10. Variati<strong>on</strong> of resistance with RH % for WZ- 0 annealed at 500 ˚C after six m<strong>on</strong>ths.<br />

Fig. 11 is the hysteresis curve showing the variati<strong>on</strong>s of the resistance of the sensing element WZ-10<br />

with change in the value of relative humidity after the sample has been annealed at 500 ˚C. In<br />

increasing cycle, the resistance is found to decrease by 76 % for increase in relative humidity from<br />

10 to 30 % RH whereas resistance decreases by 88 % in the range 35 to 85 % RH. Decreasing cycle of<br />

the curve shows that resistance decreases sharply from 10 to 50 % RH. The value of sensitivity for<br />

sensing element WZ-10 is nearly same. Fig. 12 is the repeatability graph showing variati<strong>on</strong>s of<br />

resistance of sensing element WZ-10 with change in the value of relative humidity after six m<strong>on</strong>ths. It<br />

is seen that resistance decreases by 82% for increase in relative humidity from 10 to 70 % RH. As it<br />

can be seen from Fig. 12, sensitivity of sample WZ-10 is found to decrease from 1.32 to 1.26 after six<br />

m<strong>on</strong>ths.<br />

120<br />

increasing<br />

decreas ing<br />

Resistance in Mega ohm<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 10 20 30 40 50 60 70 80 90<br />

RH%<br />

Fig. 11. Variati<strong>on</strong> of resistance with RH % for WZ-10 annealed at 500 ˚C (hysteresis).<br />

71


<str<strong>on</strong>g>Sensor</str<strong>on</strong>g>s & Transducers Journal, Vol. 134, Issue 11, November 2011, pp. 65-75<br />

Resistance in Mega ohm<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

increasing<br />

After six m<strong>on</strong>ths<br />

0 10 20 30 40 50 60 70 80 90<br />

RH%<br />

Fig. 12. Variati<strong>on</strong> of resistance with RH % for WZ-10 annealed at 500 ˚C (after six m<strong>on</strong>ths).<br />

Fig. 13 is the hysteresis curve showing the variati<strong>on</strong>s of the resistance of the sensing element WZ-25<br />

with change in the value of relative humidity after the sample has been annealed at 500 ˚C. In<br />

increasing cycle, the resistance is found to decrease linearly by 95 % for increase in relative humidity<br />

from 10 to 85 % RH Decreasing cycle of the curve shows almost linear resp<strong>on</strong>se with some hysteresis.<br />

The value of sensitivity for sensing element WZ-10 is nearly same. Fig. 14 is the repeatability graph<br />

showing variati<strong>on</strong>s of resistance of sensing element WZ-25 with change in the value of relative<br />

humidity after six m<strong>on</strong>ths. It is seen that resistance decreases linearly. As it can be seen from Fig. 14,<br />

sensitivity of sample WZ-25 is found to same even after six m<strong>on</strong>ths.<br />

Fig. 15 is the hysteresis curve showing the variati<strong>on</strong>s of the resistance of the sensing element WZ-50<br />

with change in the value of relative humidity after the sample has been annealed at 500 ˚C. In<br />

increasing cycle, the resistance is found to decrease linearly by 94 % for increase in relative humidity<br />

from 10 to 85 % RH. Decreasing cycle of the curve shows almost linear resp<strong>on</strong>se with some<br />

hysteresis. The value of sensitivity for sensing element WZ-50 in increasing and decreasing cycle is<br />

1.25 and 1.28 respectively. Fig. 16 is the repeatability graph showing variati<strong>on</strong>s of resistance of<br />

sensing element WZ-50 with change in the value of relative humidity after six m<strong>on</strong>ths. It is seen that<br />

resistance decreases linearly by 66 %. As it can be seen from Fig. 16, sensitivity of sample WZ-50 is<br />

found to decrease from 1.25 to 0.88 after six m<strong>on</strong>ths.<br />

Resistance in Mega ohm<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

increasing<br />

decreasing<br />

0 10 20 30 40 50 60 70 80 90<br />

RH%<br />

Fig. 13. Variati<strong>on</strong> of resistance with RH % for WZ-25 annealed at 500 ˚C (Hysteresis).<br />

72


<str<strong>on</strong>g>Sensor</str<strong>on</strong>g>s & Transducers Journal, Vol. 134, Issue 11, November 2011, pp. 65-75<br />

Resistance in mega ohm<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

increasing<br />

After six m<strong>on</strong>ths<br />

0 10 20 30 40 50 60 70 80 90<br />

RH%<br />

Fig. 14. Variati<strong>on</strong> of resistance with RH % for WZ- 25 annealed at 500 ˚C after six m<strong>on</strong>ths.<br />

120<br />

increasing<br />

decreasing<br />

Resistance after six m<strong>on</strong>ths<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 10 20 30 40 50 60 70 80 90<br />

RH%<br />

Fig. 15. Variati<strong>on</strong> of resistance with RH % for WZ-50 annealed at 500 ˚C (hysteresis).<br />

Resistance in Mega ohm<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 10 20 30 40 50 60 70 80 90<br />

RH%<br />

increasing<br />

After six m<strong>on</strong>ths<br />

Fig. 16. Variati<strong>on</strong> of resistance with RH % for WZ-50 annealed at 500 ˚C (after six m<strong>on</strong>ths).<br />

73


<str<strong>on</strong>g>Sensor</str<strong>on</strong>g>s & Transducers Journal, Vol. 134, Issue 11, November 2011, pp. 65-75<br />

As it can be compared from columns ‘a’ and ‘b’ of Table 1, for the annealing temperatures 300 ˚C and<br />

400 ˚C, the change in the value of sensitivity is found to be generally low in the decreasing cycle of<br />

relative humidity over the increasing cycle. How ever the value of sensitivity decreases sharply for the<br />

annealing temperatures 300 ˚C and 400 ˚C for all the sensing elements WZ-0,WZ-10, WZ-25 and<br />

WZ-50 when the sensing element is exposed to humidity after six m<strong>on</strong>ths, as it can be seen from<br />

column ‘c’ of the Table 1. Even at annealing temperature 500 ˚C, the sensitivity falls drastically when<br />

the all sensing elements are exposed to humidity after six m<strong>on</strong>ths. For the sensing element WZ-0, the<br />

sensitivity falls from 1.24 to 1.09, a drop by 12%. For the sensing element WZ-10, the sensitivity falls<br />

from 1.32 to 1.26, a drop by 5 %. For the sensing element WZ-25, the sensitivity remains same i.e. a<br />

drop by 0 %. For the sensing element WZ-50, the sensitivity falls from 1.25 to 0.88, a drop by 30 %.<br />

Annealing<br />

Temperature<br />

Sensitivity<br />

(in MΩ/ % RH)<br />

WZ -0<br />

Sensitivity<br />

(in MΩ/ % RH)<br />

WZ -10<br />

Sensitivity<br />

(in MΩ/ % RH)<br />

WZ -25<br />

Table 1. Value of sensitivity.<br />

Sensitivity<br />

(in MΩ/ % RH)<br />

WZ -50<br />

a b c a b c a b c a b c<br />

300 0 C 1.24 1.26 0.89 1.30 1.37 1.12 1.28 1.08 1.22 1.22 1.16 1.26<br />

400 0 C 1.28 1.29 0.89 1.32 1.32 1.30 1.25 1.32 1.29 1.13 1.13 1.24<br />

500 0 C 1.24 1.26 1.09 1.32 1.33 1.26 1.26 1.22 1.26 1.25 1.28 0.88<br />

a-sensitivity during increasing cycle, b- sensitivity during decreasing cycle, c-sensitivity after six m<strong>on</strong>ths<br />

The entire sensing elements show large decrease in the values of the resistance for initial values of the<br />

relative humidity from 10 to 40 % RH. It is understood that the large decrease in the value of<br />

resistance or increase in the c<strong>on</strong>ductivity of the sample with relative humidity is due to the adsorpti<strong>on</strong><br />

of water molecules <strong>on</strong> the pellet surface with capillary nanopores. Higher porosity increases surface to<br />

volume ratio of the materials and enhances diffusi<strong>on</strong> rate of water into or out off the porous structures<br />

and thus helps in getting good sensitivity. At high relative humidity (>40 %), liquid water c<strong>on</strong>denses in<br />

the capillary like pores, forming a liquid like layer. A further rise in electrical c<strong>on</strong>ductivity occurs due<br />

to electrolytic c<strong>on</strong>ducti<strong>on</strong> in additi<strong>on</strong> to the prot<strong>on</strong>ic transport in the adsorbed layer.<br />

Acknowledgement<br />

Authors would like to thank the University Grants Commissi<strong>on</strong> for providing the Financial Assistance<br />

for carrying out the research work [File No.33-23 (2007). Authors would also like to thank the<br />

Geological Survey of India, Lucknow for providing XRD and SEM facilities.<br />

References<br />

[1]. E. Traversa, Ceramic <str<strong>on</strong>g>Sensor</str<strong>on</strong>g> for <str<strong>on</strong>g>Humidity</str<strong>on</strong>g> Detecti<strong>on</strong>, The State of Art and Future Development, Sens. and<br />

Act. B, 23, 1995, p. 135-156.<br />

[2]. Kulwicki B. M., <str<strong>on</strong>g>Humidity</str<strong>on</strong>g> Sensitive Characteristics of <strong>ZnO</strong> 2 -TiO 2 -Ta 2 O 5 Ceramic, J. Am. Ceram. Soc., 74,<br />

1991, p. 697-708.<br />

[3]. X. Jiaking, C. Yuping, C. Daoy<strong>on</strong>g, S. Jianian, Hydrothermal Synthesis and Gas Sensing Characters of<br />

<strong>ZnO</strong> Nanorods, <str<strong>on</strong>g>Sensor</str<strong>on</strong>g>s and Actuators B, Vol. 113, 2006, p. 526-531.<br />

74


<str<strong>on</strong>g>Sensor</str<strong>on</strong>g>s & Transducers Journal, Vol. 134, Issue 11, November 2011, pp. 65-75<br />

[4]. M. Stankova, X. Vilanova, E. Llobet, J. Calderer, C. Bittencourt, J. J. Pireaux, X. Correig, Influence of the<br />

Annealing and Operating Temperatures <strong>on</strong> the Gas-sensing properties of rf-sputtered WO 3 Thin Film<br />

<str<strong>on</strong>g>Sensor</str<strong>on</strong>g>s, <str<strong>on</strong>g>Sensor</str<strong>on</strong>g>s and Actuators B, Vol. 105, 2005, p. 271-277.<br />

[5]. B. C. Yadav, Richa Srivastava, C. D. Dwivedi, P. Pramanik , Moisture sensor based <strong>on</strong> <strong>ZnO</strong> nanomaterial<br />

synthesized through oxalate route, <str<strong>on</strong>g>Sensor</str<strong>on</strong>g>s and Actuators B, 131, 2008, pp. 216–22.<br />

[6]. Devyani Patil, You-Ky<strong>on</strong>g Seo, Young Kyu Hwang, J<strong>on</strong>g-San Chang, Pradip Patil, <str<strong>on</strong>g>Humidity</str<strong>on</strong>g> Sensitive<br />

Poly (2, 5- Dimethoxyaniline)/WO 3 Composites, Sen. & Act. B, Vol. 132, 2008, p. 116-124.<br />

[7]. Pandey N. K., Tripathi Anupam, Tiwari Karunesh, Roy Akash, Rai Amit, Awasthi Priyanka, Mishra<br />

Aradhana, Kumar Alok , Morphological and <str<strong>on</strong>g>Humidity</str<strong>on</strong>g> Sensing Studies of WO 3 Mixed with <strong>ZnO</strong> and TiO 2<br />

Powders, <str<strong>on</strong>g>Sensor</str<strong>on</strong>g>s and Transducers, Vol. 96, Issue 9, Sept. 2008, p. 42-46.<br />

[8]. Y. Shimizu, H. Arai, T. Seiyama, <str<strong>on</strong>g>Sensor</str<strong>on</strong>g>s & Actuators B, 7, 1985, p. 11-22.<br />

___________________<br />

2011 Copyright ©, Internati<strong>on</strong>al Frequency <str<strong>on</strong>g>Sensor</str<strong>on</strong>g> Associati<strong>on</strong> (IFSA). All rights reserved.<br />

(http://www.sensorsportal.com)<br />

75


<str<strong>on</strong>g>Sensor</str<strong>on</strong>g>s & Transducers Journal<br />

C<strong>on</strong>tents<br />

Volume 134<br />

Issue 11<br />

November 2011<br />

www.sensorsportal.com ISSN 1726-5479<br />

Research Articles<br />

Nanomaterials and Chemical <str<strong>on</strong>g>Sensor</str<strong>on</strong>g>s<br />

Sukumar Basu and Palash Kumar Basu ............................................................................................ 1<br />

Fabricati<strong>on</strong> of Phenyl-Hydrazine Chemical <str<strong>on</strong>g>Sensor</str<strong>on</strong>g> <str<strong>on</strong>g>Based</str<strong>on</strong>g> <strong>on</strong> Al- doped <strong>ZnO</strong> Nanoparticles<br />

Mohammed M. Rahman, Sher Bahadar Khan, A. Jamal, M. Faisal, Abdullah M. Asiri ..................... 32<br />

<strong>Nanostructured</strong> Ferrite <str<strong>on</strong>g>Based</str<strong>on</strong>g> Electr<strong>on</strong>ic nose Sensitive to Amm<strong>on</strong>ia at room temperature<br />

U. B. Gawas, V. M. S. Verenkar, D. R. Patil....................................................................................... 45<br />

A <str<strong>on</strong>g>Humidity</str<strong>on</strong>g> <str<strong>on</strong>g>Sensor</str<strong>on</strong>g> <str<strong>on</strong>g>Based</str<strong>on</strong>g> <strong>on</strong> Nb-doped Nanoporous TiO 2 Thin Film<br />

Mansoor Anbia, S. E. Moosavi Fard................................................................................................... 56<br />

A <str<strong>on</strong>g>Resistive</str<strong>on</strong>g> <str<strong>on</strong>g>Humidity</str<strong>on</strong>g> <str<strong>on</strong>g>Sensor</str<strong>on</strong>g> <str<strong>on</strong>g>Based</str<strong>on</strong>g> <strong>on</strong> <strong>Nanostructured</strong> WO 3 -<strong>ZnO</strong> Composites<br />

Karunesh Tiwari, Anupam Tripathi, N. K. Pandey.............................................................................. 65<br />

Highly Sensitive Cadmium C<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>Sensor</str<strong>on</strong>g> Using L<strong>on</strong>g Period Grating<br />

A. S. Lalasangi, J. F. Akki, K. G. Manohar, T. Srinivas, Prasad Raikar, Sanjay Kher<br />

and U. S. Raikar ................................................................................................................................. 76<br />

MEMS <str<strong>on</strong>g>Based</str<strong>on</strong>g> Ethanol <str<strong>on</strong>g>Sensor</str<strong>on</strong>g> Using <strong>ZnO</strong> Nanoblocks, Nanocombs and Nanoflakes as<br />

Sensing Layer<br />

H. J. Pandya, Sudhir Chandra and A. L. Vyas ................................................................................... 85<br />

Simple Synthesis of ZnCo 2 O 4 Nanoparticles as Gas-sensing Materials<br />

S. V. Bangale,S. M. Khetre D. R. Patil and S. R. Bamane................................................................. 95<br />

<strong>Nanostructured</strong> Spinel ZnFe 2 O 4 for the Detecti<strong>on</strong> of Chlorine Gas<br />

S. V. Bangale, D. R. Patil and S. R. Bamane..................................................................................... 107<br />

Fabricati<strong>on</strong> of Polyaniline-<strong>ZnO</strong> Nanocomposite Gas <str<strong>on</strong>g>Sensor</str<strong>on</strong>g><br />

S. L. Patil, M. A. Chougule, S. G. Pawar, Shashwati Sen, A. V. Moholkar, J. H. Kim and V. B. Patil 120<br />

Synthesis and Characterizati<strong>on</strong> of Nano-Crystalline Cu and Pb 0.5 -Cu 0.5 - ferrites by<br />

Mechanochemical Method and Their Electrical and Gas Sensing Properties<br />

V. B. Gaikwad ,S. S. Gaikwad, A. V. Borhade and R. D. Nikam........................................................ 132<br />

Surface Modificati<strong>on</strong> of MWCNTs: Preparati<strong>on</strong>, Characterizati<strong>on</strong> and Electrical Percolati<strong>on</strong><br />

Studies of MWCNTs/PVP Composite Films for Realizati<strong>on</strong> of Amm<strong>on</strong>ia Gas <str<strong>on</strong>g>Sensor</str<strong>on</strong>g><br />

Operable at Room Temperature<br />

Sakshi Sharma, K. Sengupta, S. S. Islam.......................................................................................... 143<br />

An Investigati<strong>on</strong> of Structural and Electrical Properties of Nano Crystalline SnO2: Cu Thin<br />

Films Deposited by Spray Pyrolysis<br />

J. Podder and S. S. Roy ..................................................................................................................... 155


<str<strong>on</strong>g>Sensor</str<strong>on</strong>g>s & Transducers Journal<br />

Guide for C<strong>on</strong>tributors<br />

Aims and Scope<br />

<str<strong>on</strong>g>Sensor</str<strong>on</strong>g>s & Transducers Journal (ISSN 1726-5479) provides an advanced forum for the science and technology<br />

of physical, chemical sensors and biosensors. It publishes state-of-the-art reviews, regular research and<br />

applicati<strong>on</strong> specific papers, short notes, letters to Editor and sensors related books reviews as well as<br />

academic, practical and commercial informati<strong>on</strong> of interest to its readership. Because of it is a peer reviewed<br />

internati<strong>on</strong>al journal, papers rapidly published in <str<strong>on</strong>g>Sensor</str<strong>on</strong>g>s & Transducers Journal will receive a very high<br />

publicity. The journal is published m<strong>on</strong>thly as twelve issues per year by Internati<strong>on</strong>al Frequency <str<strong>on</strong>g>Sensor</str<strong>on</strong>g><br />

Associati<strong>on</strong> (IFSA). In additi<strong>on</strong>al, some special sp<strong>on</strong>sored and c<strong>on</strong>ference issues published annually. <str<strong>on</strong>g>Sensor</str<strong>on</strong>g>s &<br />

Transducers Journal is indexed and abstracted very quickly by Chemical Abstracts, IndexCopernicus Journals<br />

Master List, Open J-Gate, Google Scholar, etc. Since 2011 the journal is covered and indexed (including a<br />

Scopus, Embase, Engineering Village and Reaxys) in Elsevier products.<br />

Topics Covered<br />

C<strong>on</strong>tributi<strong>on</strong>s are invited <strong>on</strong> all aspects of research, development and applicati<strong>on</strong> of the science and technology<br />

of sensors, transducers and sensor instrumentati<strong>on</strong>s. Topics include, but are not restricted to:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Physical, chemical and biosensors;<br />

Digital, frequency, period, duty-cycle, time interval, PWM, pulse number output sensors and<br />

transducers;<br />

Theory, principles, effects, design, standardizati<strong>on</strong> and modeling;<br />

Smart sensors and systems;<br />

<str<strong>on</strong>g>Sensor</str<strong>on</strong>g> instrumentati<strong>on</strong>;<br />

Virtual instruments;<br />

<str<strong>on</strong>g>Sensor</str<strong>on</strong>g>s interfaces, buses and networks;<br />

Signal processing;<br />

Frequency (period, duty-cycle)-to-digital c<strong>on</strong>verters, ADC;<br />

Technologies and materials;<br />

Nanosensors;<br />

Microsystems;<br />

Applicati<strong>on</strong>s.<br />

Submissi<strong>on</strong> of papers<br />

Articles should be written in English. Authors are invited to submit by e-mail editor@sensorsportal.com 8-14<br />

pages article (including abstract, illustrati<strong>on</strong>s (color or grayscale), photos and references) in both: MS Word<br />

(doc) and Acrobat (pdf) formats. Detailed preparati<strong>on</strong> instructi<strong>on</strong>s, paper example and template of manuscript<br />

are available from the journal’s webpage: http://www.sensorsportal.com/HTML/DIGEST/Submiti<strong>on</strong>.htm Authors<br />

must follow the instructi<strong>on</strong>s strictly when submitting their manuscripts.<br />

Advertising Informati<strong>on</strong><br />

Advertising orders and enquires may be sent to sales@sensorsportal.com Please download also our media kit:<br />

http://www.sensorsportal.com/DOWNLOADS/Media_Kit_2011.pdf

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!