29.12.2014 Views

Thermal and Dissipative effects in Casimir Physics

Thermal and Dissipative effects in Casimir Physics

Thermal and Dissipative effects in Casimir Physics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Thermal</strong> <strong>and</strong> <strong>Dissipative</strong> <strong>effects</strong><br />

<strong>in</strong> <strong>Casimir</strong> <strong>Physics</strong><br />

Roberto Onofrio<br />

Department of <strong>Physics</strong> <strong>and</strong> Astronomy, Dartmouth College<br />

Department of <strong>Physics</strong> “G. Galilei”, University of Padova<br />

Motivations<br />

<strong>Casimir</strong> force <strong>in</strong> a cyl<strong>in</strong>drical-plane geometry<br />

Electrostatic calibrations <strong>and</strong> parallelism<br />

Detection of the dynamical <strong>Casimir</strong> effect<br />

Conclusions<br />

Les Houches, 6/6/2005


Motivations<br />

– <strong>Casimir</strong> physics is a macroscopic manifestation of<br />

quantum vacuum<br />

• Many macroscopic manifestations of quantum mechanics<br />

(black-body, body, specific heats, superfluidity <strong>and</strong><br />

superconductivity), very few of quantum vacuum<br />

• Open w<strong>in</strong>dow on renormalization issues <strong>in</strong> QED<br />

– <strong>Casimir</strong> forces are a background to other<br />

(hypothetical) forces <strong>in</strong> the micrometer range<br />

– We need to underst<strong>and</strong> the role of quantum<br />

fluctuations <strong>in</strong> the acceleration of the universe<br />

2


Parallel plates<br />

Experimental configurations<br />

Plane-sphere<br />

Orig<strong>in</strong>al configuration<br />

proposed by <strong>Casimir</strong>,<br />

“textbook” geometry,<br />

clean theoretical<br />

predictions based on<br />

sum of modes<br />

No sum of modes<br />

approach, theoretical<br />

<strong>in</strong>terpretation relies on the<br />

proximity force<br />

approximation, under<br />

control at the


Tests of <strong>Casimir</strong> force after the last decade are solid, but…<br />

• For constra<strong>in</strong><strong>in</strong>g extra-dimensional forces, we need to<br />

master all the corrections to the “pla<strong>in</strong>” <strong>Casimir</strong> force<br />

• To underst<strong>and</strong> the <strong>in</strong>terplay between quantum<br />

fluctuations <strong>and</strong> boundary conditions, we need<br />

to study other geometries<br />

In between a plane-plane <strong>and</strong> a plane-sphere there is<br />

a plane-cyl<strong>in</strong>der geometry<br />

4


Predictably, the plane-cyl<strong>in</strong>der configuration<br />

has <strong>in</strong>termediate advantages <strong>and</strong> drawbacks<br />

• With respect to the parallel plane configuration, it has<br />

less parallelism <strong>and</strong> dust issues, but less signal<br />

• With respect to the plane-sphere configuration, it has an<br />

1D issue of parallelism, but more signal, <strong>and</strong> shares the<br />

proximity force approximation issue<br />

The start<strong>in</strong>g po<strong>in</strong>t for the analysis is a configuration<br />

with eccentric cyl<strong>in</strong>ders [Dalvit[<br />

et al., EPL 67, 51 (2004) ]<br />

5


Plane-cyl<strong>in</strong>drical configuration: predictions<br />

If we <strong>in</strong>troduce the equivalent <strong>Casimir</strong><br />

force F 0 as twice the <strong>Casimir</strong> force<br />

between parallel plates with the same<br />

surface area as the cyl<strong>in</strong>ders we get,<br />

<strong>in</strong> the two opposite limits, <strong>and</strong> us<strong>in</strong>g<br />

the proximity force approximation:<br />

F<br />

≈<br />

ε<br />

b −<br />

a<br />

F<br />

y 0<br />

Small eccentricity<br />

F<br />

≈<br />

5<br />

32<br />

2<br />

⎛ b−a<br />

⎜<br />

⎝<br />

d<br />

⎞<br />

⎟<br />

⎠<br />

7/ 2<br />

F<br />

y 0<br />

Large eccentricity<br />

6


→ ∞<br />

In the limit of one gets the expression for<br />

the <strong>Casimir</strong> force <strong>in</strong> a cyl<strong>in</strong>drical-plane configuration<br />

1/2<br />

π 3 hc<br />

La<br />

F ≈<br />

cp<br />

384 2 7/ 2<br />

The <strong>Casimir</strong> force scales as<br />

, which is<br />

<strong>in</strong>termediate between the slower scal<strong>in</strong>g<br />

d −3<br />

−4<br />

the plane-sphere <strong>and</strong><br />

of the plane-plane<br />

d<br />

d<br />

d<br />

−3.5<br />

of<br />

It looks more promis<strong>in</strong>g with respect to the other<br />

geometries to study the thermal contribution to<br />

the <strong>Casimir</strong> force<br />

7


The comb<strong>in</strong>ed conductivity-temperature corrections are larger<br />

than <strong>in</strong> the parallel-plane situation for at least two different<br />

models, the plasma model (a) <strong>and</strong> a model without the TE0<br />

mode (b). Moreover, the predictions of the two models differ<br />

by a factor of almost 2 around 3-4 micrometers for all<br />

geometries.<br />

Feasibility study for a measurement of the <strong>Casimir</strong> force <strong>in</strong><br />

the cyl<strong>in</strong>drical-plane configuration around 4 micrometers<br />

8


The prototype<br />

Vacuum chamber<br />

System of micropositioners<br />

Pump<strong>in</strong>g system<br />

Optical digital microscope<br />

Diode laser at 671 nm<br />

Telescope <strong>and</strong> fiber launcher<br />

Directional coupler<br />

Fiber fed through chamber<br />

9


Vacuum chamber close up<br />

• Top micrometer (coarse) <strong>and</strong> PZT (f<strong>in</strong>e) for optical fiber-resonator distance<br />

• Bottom micrometer (coarse) <strong>and</strong> 2 x PZTs (f<strong>in</strong>e) for distance control<br />

(common mode) <strong>and</strong> for 1D parallelization (differential mode)<br />

• Sta<strong>in</strong>less steel,<br />

5mm diameter<br />

cyl<strong>in</strong>der<br />

• Sta<strong>in</strong>less steel,<br />

1cm x 2 cm x<br />

0.11 mm resonator<br />

(247 Hz)<br />

• Lateral rotary<br />

micrometer +<br />

goniometer for<br />

coarse parallelization<br />

10


Electrostatic calibrations<br />

The exact expression for the electrostatic force can be reduced, <strong>in</strong> the PFA limit, to:<br />

1/2<br />

F La<br />

El<br />

≅ π ε 0 2<br />

3/ 2 V<br />

4 2 d<br />

The correspond<strong>in</strong>g frequency-shift for an harmonic oscillator is:<br />

∆ν<br />

1/ 2<br />

La V<br />

2<br />

2 3ε<br />

0<br />

= −<br />

El 5/ 2<br />

64π<br />

2 mν<br />

0 0<br />

d<br />

Signal from the photodiode<br />

sent to a FFT analyzer<br />

11


Parallelism procedure<br />

Deviations from parallelism can be detected by study<strong>in</strong>g<br />

the dependence of the forces upon the “degree of parallelism”<br />

F<br />

F<br />

np<br />

np<br />

5<br />

≅ F 1+<br />

α 2+<br />

O(<br />

α 4)<br />

8<br />

⎡<br />

p ⎢<br />

⎣<br />

21<br />

≅ F 1+<br />

α 2 + O(<br />

α 4)<br />

8<br />

⎡<br />

p ⎢<br />

⎣<br />

⎤<br />

⎥<br />

⎦<br />

⎤<br />

⎥<br />

⎦<br />

Electrostatic<br />

<strong>Casimir</strong><br />

M<strong>in</strong>imization of the force for a constant distance allows to f<strong>in</strong>d<br />

the parallel configuration (very hard <strong>in</strong> the parallel case as a<br />

2D optimization is necessary)<br />

12


• Voltage on the 2 PZTs supplied<br />

<strong>in</strong> differential mode, to leave<br />

the central distance constant<br />

(Vleft+Vright=const)<br />

• Plot of squared frequency shift<br />

versus bias voltage (above)<br />

• Plot of the curvature of the<br />

parabola versus the asymmetry<br />

Vleft-Vright, <strong>and</strong> search for the<br />

m<strong>in</strong>imum<br />

• <strong>Thermal</strong> drifts <strong>in</strong> resonator<br />

frequency are important,<br />

consider<strong>in</strong>g the duration of<br />

the procedure<br />

13


Currently we are tak<strong>in</strong>g data after <strong>in</strong>stall<strong>in</strong>g a Peltier cooler<br />

on the resonator support<br />

Expected frequency shift due to the <strong>Casimir</strong> force:<br />

∆ν<br />

2<br />

= −<br />

7π<br />

hc<br />

mν<br />

La<br />

d 0<br />

1/ 2<br />

Cas 9/ 2<br />

3072 2<br />

0<br />

To give a feel<strong>in</strong>g, this is equivalent to the detection of a bias voltage:<br />

V eq<br />

=<br />

⎛<br />

⎜<br />

⎝<br />

πhc<br />

96ε<br />

0<br />

⎞<br />

⎟<br />

⎠<br />

1/2<br />

1<br />

d<br />

=<br />

11.05mV<br />

d<br />

A 1% accuracy measurement at 4 micrometers requires control of the<br />

electrostatics at the level of about 0.03 mV<br />

14


Dynamical <strong>Casimir</strong> effect<br />

Very difficult task<br />

– Lozovik et al., Yablonovitch,<br />

Braggio et al., see talk by G. Ruoso<br />

on INFN MIR proposal)<br />

– Proposal us<strong>in</strong>g Rydberg atoms <strong>in</strong><br />

cavities (Dodonov(<br />

et al., Lambrecht<br />

et al)<br />

– Use of nanoresonators <strong>and</strong><br />

hyperf<strong>in</strong>e states (R.O., 2003):<br />

6Li has a small hyperf<strong>in</strong>e splitt<strong>in</strong>g<br />

<strong>in</strong> the ground state, <strong>in</strong> a frequency<br />

range where nanoresonators are<br />

already available<br />

15


Lithium Doppler-free spectroscopy<br />

•Lithium vapor cells require temperatures<br />

of the vapor of order 400 C<br />

•Buffer gas (Ar) for mitigat<strong>in</strong>g diffusion on<br />

the end w<strong>in</strong>dows<br />

• Pump <strong>and</strong> probe beams scanned around<br />

the D2 l<strong>in</strong>e of the transition<br />

• Lockable signal for stabiliz<strong>in</strong>g diode lasers<br />

16


Doppler-free absorption signal with the hyperf<strong>in</strong>e<br />

spectrum of the 2S1/2 (F=1/2) -> 2P3/2 <strong>and</strong><br />

2S1/2 (F=3/2) -> 2P3/2 (<strong>and</strong> their crossover)<br />

Absorption signal + laser scann<strong>in</strong>g<br />

Absorption signal + Fabry-Perot signal<br />

17


Differential absorption scheme<br />

In assembly stage, a Lithium atomic<br />

beam, two resonant laser beams +<br />

a region for the “<strong>Casimir</strong> photons”<br />

One possibility is to apply optical<br />

pump<strong>in</strong>g schemes to send all atoms<br />

<strong>in</strong>to the 2S1/2 (F=3/2) level <strong>and</strong><br />

to look to the presence <strong>in</strong> the other<br />

hyperf<strong>in</strong>e level after travel<strong>in</strong>g<br />

through the “<strong>Casimir</strong> region”<br />

Development of nanoresonator<br />

arrays as mechanical antennae<br />

Development of a suitable<br />

electromagnetic cavity to enhance<br />

the signal<br />

18


What is on the horizon…<br />

<strong>Thermal</strong> contribution to the <strong>Casimir</strong> force<br />

• Temperature stabilization of the setup<br />

• Calibrations at smaller distances<br />

• Novel micromechanical resonators (micromechanical<br />

lab at the Thayer Eng<strong>in</strong>eer<strong>in</strong>g School at Dartmouth)<br />

<strong>Dissipative</strong> contribution to the <strong>Casimir</strong> force<br />

• Pump<strong>in</strong>g scheme for Lithium<br />

• Differential absorption with rf source<br />

• Nanomechanical resonator arrays<br />

Micro <strong>and</strong> nanomechanics + Atomic <strong>Physics</strong><br />

19


The people<br />

<strong>Thermal</strong> effect<br />

<strong>Dissipative</strong> effect<br />

Scott Middleman (UG)<br />

Jonathan Huang (UG)<br />

Michael Brown-Hayes (G)<br />

Nathan Monnig (UG)<br />

Woo-Joong<br />

Kim (G)<br />

James Hayden-Brownell (RS)<br />

Theory<br />

Diego Dalvit (Los Alamos)<br />

Fern<strong>and</strong>o Lombardo (Buenos Aires)<br />

Francisco Mazzitelli (Buenos Aires)<br />

20

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!