29.12.2014 Views

Download PDF - Visual Optics Institute

Download PDF - Visual Optics Institute

Download PDF - Visual Optics Institute

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CALCULATION OF RETINAL<br />

IMAGE QUALITY FOR<br />

POLYCHROMATIC LIGHT<br />

SOWMYA RAVIKUMAR, LARRY N. THIBOS, ARTHUR BRADLEY<br />

Wavefront Congress 2008, San Francisco


The human eye is subject<br />

to substantial chromatic<br />

aberration<br />

Objective and subjective<br />

measurements of LCA agree well.<br />

2.2 D<br />

Most natural scenes have broadspectral<br />

content and thus their<br />

retinal images are subject to<br />

chromatic aberrations


Campbell & Gubisch 1967<br />

Contrast sensitivity<br />

2.5 mm pupil<br />

Spatial Frequency in cycled per degree<br />

Open circles: 578 nm;<br />

Filled circles: Tungsten Lamp white light


CHALLENGE #1:<br />

How to calculate ocular optics at<br />

all wavelengths while only<br />

measuring the optics at perhaps<br />

one wavelength


STEP 1<br />

TCA can be included in model: TCA = d x LCA


STEP 2<br />

n=1<br />

n′(λ)<br />

OPD ≈ QS* (1 - n′ λ cos θ)


Combining monochromatic PSF to create polychromatic<br />

images.<br />

Monochromatic<br />

Wavefronts (LCA<br />

defocus + HOA)<br />

Monochromatic<br />

PSF<br />

| IFT | 2<br />

Polychromatic PSF<br />

Σ PSF λ<br />

Not all wavelengths have the<br />

same diffraction -<br />

Should we assume a common<br />

diffraction limit


STEP 3<br />

2.5 mm EP<br />

Log M T F<br />

Diffraction-limited MTF<br />

MTF in an eye with LCA<br />

MTF in an eye with HOAs MTF in an eye with LCA +<br />

monochromatic aberrations<br />

5 mm EP<br />

SF Cycles per degree


Combining monochromatic PSF to create polychromatic<br />

images.<br />

Monochromatic<br />

Wavefronts (LCA<br />

defocus + HOA)<br />

Monochromatic<br />

PSF<br />

D65 White<br />

Spectrum<br />

V-Lambda<br />

| IFT | 2<br />

Polychromatic PSF<br />

Σ PSF λ


STEP 4<br />

Blue TV<br />

phosphor<br />

Font et al, Journal of Modern <strong>Optics</strong>, 1994.<br />

Polychromatic Point Spread Function: Calculation Accuracy


• Under-sampling the visible spectrum as well as the source spectrum<br />

creates large changes in poly PSF<br />

• The effect is more enhanced when visually important wavelengths are not<br />

sampled<br />

• For systems with larger LCA, this effect is more Obvious (Font et al, J.<br />

Modern <strong>Optics</strong>, 94)


Methods<br />

Computational Fourier <strong>Optics</strong> are used to<br />

calculate polychromatic image quality.<br />

Monochromatic<br />

Wavefronts (LCA<br />

defocus + HOA)<br />

Monochromatic<br />

PSF<br />

D65 White<br />

Spectrum<br />

V-Lambda<br />

| IFT | 2<br />

Polychromatic PSF<br />

Σ PSF λ<br />

IQ<br />

FT<br />

Polychromatic OTF<br />

IQ


Challenge #2:<br />

Limitations on the general utility<br />

of a Polychromatic PSF.


Constraints on convolving a Polychromatic Object and PSF<br />

Monochromatic PSF Monochromatic Object Monochromatic Image<br />

*<br />

Convolution Extrapolated to polychromatic domain<br />

*


An Example of spectrally in-homogenous convolution<br />

Colored Object<br />

Grayscale homogenous<br />

• 7 mm pupil diameter<br />

• Model eye with LCA<br />

• 600 nm in focus<br />

• Target: 1.5 deg * 3.75 degrees<br />

• Blur circle width ~ 10 arc min<br />

*<br />

Single polychromatic<br />

convolution<br />

Blurred Image


*10^-4<br />

4.50<br />

RGB spectra for Macintosh LCD<br />

Radiance (W/sr*m*m per nm)<br />

4.00<br />

3.50<br />

3.00<br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

5.00<br />

Green<br />

Red<br />

Blue<br />

0<br />

300 400 500 600 700 800<br />

Wavelength (nm)


Red-Green-Blue<br />

decomposition and<br />

individual convolution<br />

RED<br />

*<br />

=<br />

GREEN<br />

+<br />

*<br />

=<br />

BLUE<br />

+<br />

*<br />

=


Red-Green-Blue<br />

Composite Blurred<br />

Image<br />

≠<br />

Homogenous<br />

convolution


Thank You<br />

“Calculation of retinal image quality for polychromatic light”<br />

In Review - JOSA, 2007<br />

Email me for copy at sravikum@indiana.edu


Reflectance of flower petal and leaf<br />

Red layer<br />

Wavelength in nm<br />

Green layer<br />

Blue layer


~700 nm<br />

Diffraction-limited<br />

Only LCA<br />

Monochromatic<br />

aberrations<br />

alone<br />

Monochromatic<br />

aberrations +<br />

LCA<br />

~470 nm<br />

Typical Eye data from IAS dataset<br />

6 mm pupil from Thibos et al 2002


Impact of chromatic aberrations (TCA + LCA) in<br />

eyes with monochromatic aberrations<br />

The aberrated eyes were chosen from a population database (Thibos et al). All the eyes<br />

had total rms < mean magnitude of the population and individual modes did not differ<br />

significantly from the population.


The influence of chromatic aberration is also dependent on the<br />

interaction between monochromatic aberrations<br />

Contrast Sensitivity<br />

Campbell and Gubisch, 1967<br />

30<br />

10<br />

1<br />

3<br />

2.5 mm<br />

Mono<br />

Poly<br />

10 20 30 40 50<br />

SF c/deg<br />

4.0 mm<br />

30 40 50<br />

“SA, which increases with pupil diameter,<br />

could account for the smaller differences.”<br />

Contrast Sensitivity<br />

Yoon and Williams, 2002<br />

100<br />

10<br />

1<br />

1<br />

6mm<br />

w/ HOA<br />

Mono<br />

Poly<br />

3<br />

SF c/deg<br />

10<br />

w/o HOA<br />

“The presence of monochromatic aberrations<br />

greatly reduces the benefit of avoiding chromatic<br />

aberration.”<br />

30


Fixed sampling resolution<br />

Normalised PSF intensity<br />

To add with accuracy, we need corresponding samples


Small, uniform sampling resolution corresponds to<br />

short wavelength


Polychromatic Image Quality<br />

Results for an un-aberrated eye<br />

Wavelength in focus 550 nm; Sampling resolution of 10nm


Pupil Function<br />

λ<br />

| IFT | 2<br />

Point<br />

Spread<br />

Function<br />

*<br />

=<br />

FT<br />

FT<br />

Inverse FT<br />

Optical 1<br />

Transfer<br />

Function o<br />

π<br />

0<br />

× Letter Spectrum = Defocused letter<br />

spectrum

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!