28.12.2014 Views

Trigonometric Functions

Trigonometric Functions

Trigonometric Functions

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1<br />

<strong>Trigonometric</strong><br />

<strong>Functions</strong><br />

Copyright © 2009 Pearson Addison-Wesley<br />

1.1-1


1 <strong>Trigonometric</strong> <strong>Functions</strong><br />

1.1 Angles<br />

1.2 Angle Relationships and Similar<br />

Triangles<br />

1.3 <strong>Trigonometric</strong> <strong>Functions</strong><br />

1.4 Using the Definitions of the<br />

<strong>Trigonometric</strong> <strong>Functions</strong><br />

Copyright © 2009 Pearson Addison-Wesley<br />

1.1-2


1.1<br />

Angles<br />

Basic Terminology Degree Measure Standard Position<br />

Coterminal Angles<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-3<br />

1.1-3


Basic Terminology<br />

Two distinct points determine line AB.<br />

Line segment AB—a portion of the line between A<br />

and B, including points A and B.<br />

Ray AB—portion of line AB that starts at A and<br />

continues through B, and on past B.<br />

Copyright © 2009 Pearson Addison-Wesley<br />

1.1-4


Basic Terminology<br />

An angle consists of two<br />

rays in a plane with a<br />

common endpoint.<br />

The two rays are the<br />

sides of the angle.<br />

The common endpoint is<br />

called the vertex of the<br />

angle.<br />

Copyright © 2009 Pearson Addison-Wesley<br />

1.1-5


An angle’s measure is<br />

generated by a rotation<br />

about the vertex.<br />

The ray in its initial<br />

position is called the<br />

initial side of the angle.<br />

The ray in its location<br />

after the rotation is the<br />

terminal side of the<br />

angle.<br />

Basic Terminology<br />

Copyright © 2009 Pearson Addison-Wesley<br />

1.1-6


Basic Terminology<br />

Positive angle: The<br />

rotation of the terminal<br />

side of an angle is<br />

counterclockwise.<br />

Negative angle: The<br />

rotation of the terminal<br />

side is clockwise.<br />

Copyright © 2009 Pearson Addison-Wesley<br />

1.1-7


Types of Angles<br />

The most common unit for measuring angles is the<br />

degree.<br />

A complete rotation of a<br />

ray gives an angle<br />

whose measure is 360 .<br />

of complete rotation gives an angle<br />

whose measure is 1 .<br />

Copyright © 2009 Pearson Addison-Wesley<br />

1.1-8


Types of Angles<br />

Angles are classified by their measures.<br />

Copyright © 2009 Pearson Addison-Wesley<br />

1.1-9


Example 1<br />

FINDING THE COMPLEMENT AND THE<br />

SUPPLEMENT OF AN ANGLE<br />

For an angle measuring 40 , find the measure of<br />

its (a) complement and (b) supplement.<br />

(a) To find the measure of its complement, subtract<br />

the measure of the angle from 90 .<br />

Complement of 40 .<br />

(b) To find the measure of its supplement, subtract<br />

the measure of the angle from 180 .<br />

Supplement of 40 .<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-10<br />

1.1-10


Example 2<br />

Find the measure of<br />

each marked angle.<br />

Since the two angles form<br />

a right angle, they are<br />

complementary.<br />

FINDING MEASURES OF<br />

COMPLEMENTARY AND<br />

SUPPLEMENTARY ANGLES<br />

Combine terms.<br />

Divide by 9.<br />

Determine the measure of each angle by substituting<br />

10 for x:<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-11<br />

1.1-11


Example 2<br />

Find the measure of<br />

each marked angle.<br />

Since the two angles form<br />

a straight angle, they are<br />

supplementary.<br />

FINDING MEASURES OF<br />

COMPLEMENTARY AND<br />

SUPPLEMENTARY ANGLES (continued)<br />

The angle measures are and .<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-12<br />

1.1-12


Degrees, Minutes, Seconds<br />

One minute is 1/60 of a degree.<br />

One second is 1/60 of a minute.<br />

Copyright © 2009 Pearson Addison-Wesley<br />

1.1-13


Example 3<br />

CALCULATING WITH DEGREES,<br />

MINUTES, AND SECONDS<br />

Perform each calculation.<br />

(a)<br />

(b)<br />

Add degrees<br />

and minutes<br />

separately.<br />

Write 90 as<br />

89 60′.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-14<br />

1.1-14


Example 4<br />

Find the sum or difference.<br />

CONVERTING BETWEEN DECIMAL<br />

DEGREES AND DEGREES, MINUTES,<br />

AND SECONDS<br />

(a)<br />

(b)<br />

Add degrees<br />

and minutes<br />

separately.<br />

Write 90 as<br />

89 60′.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-15<br />

1.1-15


Standard Position<br />

An angle is in standard position if its vertex is at<br />

the origin and its initial side is along the positive<br />

x-axis.<br />

Copyright © 2009 Pearson Addison-Wesley<br />

1.1-16


Quandrantal Angles<br />

Angles in standard position having their<br />

terminal sides along the x-axis or y-axis,<br />

such as angles with measures 90 , 180 ,<br />

270 , and so on, are called quadrantal<br />

angles.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-17<br />

1.1-17


Coterminal Angles<br />

A complete rotation of a ray results in an angle<br />

measuring 360 . By continuing the rotation, angles<br />

of measure larger than 360 can be produced.<br />

Such angles are called coterminal angles.<br />

The measures of coterminal angles differ by 360 .<br />

Copyright © 2009 Pearson Addison-Wesley<br />

1.1-18


Example 5<br />

FINDING MEASURES OF<br />

COTERMINAL ANGLES<br />

Find the angle of least possible positive measure<br />

coterminal with an angle of 908 .<br />

Add or subtract 360 as<br />

many times as needed to<br />

obtain an angle with<br />

measure greater than 0 but<br />

less than 360 .<br />

An angle of 908 is coterminal with an angle of 188 .<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-19<br />

1.1-19


Example 5<br />

FINDING MEASURES OF<br />

COTERMINAL ANGLES (continued)<br />

Find the angle of least possible positive measure<br />

coterminal with an angle of –75 .<br />

Add or subtract 360 as<br />

many times as needed to<br />

obtain an angle with<br />

measure greater than 0 but<br />

less than 360 .<br />

An angle of –75 is coterminal with an angle of 285 .<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-20<br />

1.1-20


Example 5<br />

FINDING MEASURES OF<br />

COTERMINAL ANGLES (continued)<br />

Find the angle of least possible positive measure<br />

coterminal with an angle of –800 .<br />

The least integer multiple of<br />

360 greater than 800 is<br />

An angle of –800 is coterminal with an angle of 280 .<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-21<br />

1.1-21


Coterminal Angles<br />

To find an expression that will generate all angle<br />

coterminal with a given angle, add integer<br />

multiples of 360 to the given angle.<br />

For example, the expression for all angles<br />

coterminal with 60 is<br />

Copyright © 2009 Pearson Addison-Wesley<br />

1.1-22


Coterminal Angles<br />

Copyright © 2009 Pearson Addison-Wesley<br />

1.1-23


Example 6<br />

ANALYZING THE REVOLUTIONS OF A<br />

CD PLAYER<br />

CAV (Constant Angular Velocity) CD players always<br />

spin at the same speed. Suppose a CAV player<br />

makes 480 revolutions per minute. Through how<br />

many degrees will a point on the edge of a CD move<br />

in two seconds.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-24<br />

1.1-24


Example 6<br />

ANALYZING THE REVOLUTIONS OF A<br />

CD PLAYER<br />

Solution<br />

The player revolves 480 times in one minute or<br />

times = 8 times per second.<br />

In two seconds, the player will revolve<br />

times.<br />

Each revolution is 360 , so a point on the edge of the<br />

CD will revolve<br />

in two seconds.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-25<br />

1.1-25


1<br />

<strong>Trigonometric</strong><br />

<strong>Functions</strong><br />

Copyright © 2009 Pearson Addison-Wesley 1.2-1


1 <strong>Trigonometric</strong> <strong>Functions</strong><br />

1.1 Angles<br />

1.2 Angle Relationships and Similar<br />

Triangles<br />

1.3 <strong>Trigonometric</strong> <strong>Functions</strong><br />

1.4 Using the Definitions of the<br />

<strong>Trigonometric</strong> <strong>Functions</strong><br />

Copyright © 2009 Pearson Addison-Wesley 1.2-2


1.2<br />

Angle Relationships and<br />

Similar Triangles<br />

Geometric Properties Triangles<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-3 1.2-3


Vertical Angles<br />

Vertical angles have equal measures.<br />

The pair of angles NMP and<br />

RMQ are vertical angles.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-4 1.2-4


Parallel Lines<br />

Parallel lines are lines that lie in the same plane<br />

and do not intersect.<br />

When a line q intersects<br />

two parallel lines, q, is<br />

called a transversal.<br />

Copyright © 2009 Pearson Addison-Wesley 1.2-5


Angles and Relationships<br />

Name<br />

Alternate interior angles<br />

Alternate exterior angles<br />

Interior angles on the same<br />

side of the transversal<br />

Corresponding angles<br />

Angles<br />

4 and 5<br />

3 and 6<br />

1 and 8<br />

2 and 7<br />

4 and 6<br />

3 and 5<br />

2 & 6, 1 & 5,<br />

3 & 7, 4 & 8<br />

Rule<br />

Angles measures are equal.<br />

Angle measures are equal.<br />

Angle measures add to 180 .<br />

Angle measures are equal.<br />

Copyright © 2009 Pearson Addison-Wesley 1.2-6


Example 1<br />

FINDING ANGLE MEASURES<br />

Find the measure of angles 1, 2, 3, and 4, given<br />

that lines m and n are parallel.<br />

Angles 1 and 4 are<br />

alternate exterior angles,<br />

so they are equal.<br />

Subtract 3x.<br />

Add 40.<br />

Divide by 2.<br />

Angle 1 has measure<br />

Substitute 21<br />

for x.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-7 1.2-7


Example 1<br />

FINDING ANGLE MEASURES (continued)<br />

Angle 4 has measure<br />

Substitute 21<br />

for x.<br />

Angle 2 is the supplement of<br />

a 65 angle, so it has<br />

measure .<br />

Angle 3 is a vertical angle to angle 1, so its measure<br />

is 65 .<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-8 1.2-8


Angle Sum of a Triangle<br />

The sum of the measures of the angles of<br />

any triangle is 180 .<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-9 1.2-9


Example 2<br />

APPLYING THE ANGLE SUM OF A<br />

TRIANGLE PROPERTY<br />

The measures of two of the angles of a<br />

triangle are 48 and 61 . Find the measure<br />

of the third angle, x.<br />

The sum of the<br />

angles is 180 .<br />

Add.<br />

Subtract 109 .<br />

The third angle of the triangle measures 71 .<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-10 1.2-10


Types of Triangles: Angles<br />

Copyright © 2009 Pearson Addison-Wesley 1.2-11


Types of Triangles: Sides<br />

Copyright © 2009 Pearson Addison-Wesley 1.2-12


Conditions for Similar<br />

Triangles<br />

For triangle ABC to be similar to triangle<br />

DEF, the following conditions must hold.<br />

1. Corresponding angles must have the<br />

same measure.<br />

2. Corresponding sides must be<br />

proportional. (That is, the ratios of the<br />

corresponding sides must be equal.)<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-13 1.2-13


Example 3<br />

FINDING ANGLE MEASURES IN SIMILAR<br />

TRIANGLES<br />

In the figure, triangles ABC and NMP are similar.<br />

Find the measures of angles B and C.<br />

Since the triangles are similar, corresponding angles<br />

have the same measure.<br />

B corresponds to M, so angle B measures 31 .<br />

C corresponds to P, so angle C measures 104 .<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-14 1.2-14


Example 4<br />

FINDING SIDE LENGTHS IN SIMILAR<br />

TRIANGLES<br />

In the figure, triangles ABC and NMP are similar.<br />

Find the measures of angles B and C.<br />

Since the triangles are similar, corresponding sides<br />

are proportional.<br />

DF corresponds to AB, and DE corresponds to AC,<br />

so<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-15 1.2-15


Example 4<br />

FINDING SIDE LENGTHS IN SIMILAR<br />

TRIANGLES (continued)<br />

Side DF has length 12.<br />

EF corresponds to CB, so<br />

Side EF has length 16.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-16 1.2-16


Example 5<br />

FINDING THE HEIGHT OF A FLAGPOLE<br />

Firefighters at a station need to measure the height<br />

of the station flagpole. They find that at the instant<br />

when the shadow of the station is 18 m long, the<br />

shadow of the flagpole is 99 ft long. The station is<br />

10 m high. Find the height of the flagpole.<br />

Since the two triangles<br />

are similar, corresponding<br />

sides are proportional.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-17 1.2-17


Example 5<br />

FINDING THE HEIGHT OF A FLAGPOLE<br />

(continued)<br />

Lowest terms<br />

The flagpole is 55 feet high.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-18 1.2-18


1<br />

<strong>Trigonometric</strong><br />

<strong>Functions</strong><br />

Copyright © 2009 Pearson Addison-Wesley 1.3-1


1 <strong>Trigonometric</strong> <strong>Functions</strong><br />

1.1 Angles<br />

1.2 Angle Relationships and Similar<br />

Triangles<br />

1.3 <strong>Trigonometric</strong> <strong>Functions</strong><br />

1.4 Using the Definitions of the<br />

<strong>Trigonometric</strong> <strong>Functions</strong><br />

Copyright © 2009 Pearson Addison-Wesley 1.3-2


1.3<br />

<strong>Trigonometric</strong> <strong>Functions</strong><br />

<strong>Trigonometric</strong> <strong>Functions</strong><br />

Quadrantal Angles<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-3 1.3-3


<strong>Trigonometric</strong> <strong>Functions</strong><br />

Let (x, y) be a point other the origin on the terminal<br />

side of an angle in standard position. The<br />

distance from the point to the origin is<br />

Copyright © 2009 Pearson Addison-Wesley 1.3-4


<strong>Trigonometric</strong> <strong>Functions</strong><br />

The six trigonometric functions of θ are<br />

defined as follows:<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-5 1.3-5


Example 1<br />

FINDING FUNCTION VALUES OF AN<br />

ANGLE<br />

The terminal side of angle in standard position<br />

passes through the point (8, 15). Find the values of<br />

the six trigonometric functions of angle .<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-6 1.3-6


Example 1<br />

FINDING FUNCTION VALUES OF AN<br />

ANGLE (continued)<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-7 1.3-7


Example 2<br />

FINDING FUNCTION VALUES OF AN<br />

ANGLE<br />

The terminal side of angle in standard position<br />

passes through the point (–3, –4). Find the values<br />

of the six trigonometric functions of angle .<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-8 1.3-8


Example 2<br />

FINDING FUNCTION VALUES OF AN<br />

ANGLE (continued)<br />

Use the definitions of the trigonometric functions.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-9 1.3-9


Example 3<br />

FINDING FUNCTION VALUES OF AN<br />

ANGLE<br />

Find the six trigonometric function values of the<br />

angle θ in standard position, if the terminal side of θ<br />

is defined by x + 2y = 0, x ≥ 0.<br />

We can use any point on<br />

the terminal side of to<br />

find the trigonometric<br />

function values.<br />

Choose x = 2.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-10 1.3-10


Example 3<br />

FINDING FUNCTION VALUES OF AN<br />

ANGLE (continued)<br />

The point (2, –1) lies on the terminal side, and the<br />

corresponding value of r is<br />

Multiply by<br />

the denominators.<br />

to rationalize<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-11 1.3-11


Example 4(a)<br />

FINDING FUNCTION VALUES OF<br />

QUADRANTAL ANGLES<br />

Find the values of the six trigonometric functions for<br />

an angle of 90 .<br />

The terminal side passes<br />

through (0, 1). So x = 0, y = 1,<br />

and r = 1.<br />

undefined<br />

undefined<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-12 1.3-12


Example 4(b)<br />

FINDING FUNCTION VALUES OF<br />

QUADRANTAL ANGLES<br />

Find the values of the six<br />

trigonometric functions for an<br />

angle θ in standard position<br />

with terminal side through<br />

(–3, 0).<br />

x = –3, y = 0, and r = 3.<br />

undefined<br />

undefined<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-13 1.3-13


Undefined Function Values<br />

If the terminal side of a quadrantal angle lies along<br />

the y-axis, then the tangent and secant functions<br />

are undefined.<br />

If the terminal side of a quadrantal angle lies along<br />

the x-axis, then the cotangent and cosecant<br />

functions are undefined.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-14 1.3-14


Commonly Used Function<br />

Values<br />

<br />

sin <br />

cos <br />

tan <br />

cot <br />

sec <br />

csc <br />

0<br />

0<br />

1<br />

0<br />

undefined<br />

1<br />

undefined<br />

90<br />

1<br />

0<br />

undefined<br />

0<br />

undefined<br />

1<br />

180<br />

0<br />

1<br />

0<br />

undefined<br />

1<br />

undefined<br />

270<br />

1<br />

0<br />

undefined<br />

0<br />

undefined<br />

1<br />

360<br />

0<br />

1<br />

0<br />

undefined<br />

1<br />

undefined<br />

Copyright © 2009 Pearson Addison-Wesley 1.3-15


Using a Calculator<br />

A calculator is degree mode<br />

returns the correct values<br />

for sin 90 and cos 90 .<br />

The second screen shows<br />

an ERROR message for tan<br />

90 because 90 is not in<br />

the domain of the tangent<br />

function.<br />

Copyright © 2009 Pearson Addison-Wesley 1.3-16


Caution<br />

One of the most common errors<br />

involving calculators in trigonometry<br />

occurs when the calculator is set for<br />

radian measure, rather than degree<br />

measure.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-17 1.3-17


1<br />

<strong>Trigonometric</strong><br />

<strong>Functions</strong><br />

Copyright © 2009 Pearson Addison-Wesley 1.4-1


1 <strong>Trigonometric</strong> <strong>Functions</strong><br />

1.1 Angles<br />

1.2 Angle Relationships and Similar<br />

Triangles<br />

1.3 <strong>Trigonometric</strong> <strong>Functions</strong><br />

1.4 Using the Definitions of the<br />

<strong>Trigonometric</strong> <strong>Functions</strong><br />

Copyright © 2009 Pearson Addison-Wesley 1.4-2


1.4<br />

Using the Definitions of the<br />

<strong>Trigonometric</strong> <strong>Functions</strong><br />

Reciprocal Identities Signs and Ranges of Function Values<br />

Pythagorean Identities Quotient Identities<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-3 1.4-3


Reciprocal Identities<br />

For all angles θ for which both functions are<br />

defined,<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-4 1.4-4


Example 1(a)<br />

USING THE RECIPROCAL IDENTITIES<br />

Since cos θ is the reciprocal of sec θ,<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-5 1.4-5


Example 1(b)<br />

USING THE RECIPROCAL IDENTITIES<br />

Since sin θ is the reciprocal of csc θ,<br />

Rationalize the<br />

denominator.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-6 1.4-6


Signs of Function Values<br />

in<br />

Quadrant<br />

sin <br />

cos <br />

tan <br />

cot <br />

sec <br />

csc <br />

I<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

II<br />

+<br />

<br />

<br />

<br />

<br />

+<br />

III<br />

<br />

<br />

+<br />

+<br />

<br />

<br />

IV<br />

<br />

+<br />

<br />

<br />

+<br />

<br />

Copyright © 2009 Pearson Addison-Wesley 1.4-7


Ranges of Function Values<br />

Copyright © 2009 Pearson Addison-Wesley 1.4-8


Example 2<br />

DETERMINING SIGNS OF FUNCTIONS<br />

OF NONQUADRANTAL ANGLES<br />

Determine the signs of the trigonometric functions of<br />

an angle in standard position with the given measure.<br />

(a) 87<br />

The angle lies in quadrant I, so all of its<br />

trigonometric function values are positive.<br />

(b) 300<br />

The angle lies in quadrant IV, so the cosine and<br />

secant are positive, while the sine, cosecant,<br />

tangent, and cotangent are negative.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-9 1.4-9


Example 2<br />

DETERMINING SIGNS OF FUNCTIONS<br />

OF NONQUADRANTAL ANGLES (cont.)<br />

Determine the signs of the trigonometric functions of<br />

an angle in standard position with the given measure.<br />

(c) –200<br />

The angle lies in quadrant II, so the sine and<br />

cosecant are positive, while the cosine, secant,<br />

tangent, and cotangent are negative.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-10 1.4-10


Example 3<br />

IDENTIFYING THE QUADRANT OF AN<br />

ANGLE<br />

Identify the quadrant (or quadrants) of any angle <br />

that satisfies the given conditions.<br />

(a) sin > 0, tan < 0.<br />

Since sin > 0 in quadrants I and II, and tan < 0 in<br />

quadrants II and IV, both conditions are met only in<br />

quadrant II.<br />

(b) cos > 0, sec < 0<br />

The cosine and secant functions are both negative<br />

in quadrants II and III, so could be in either of<br />

these two quadrants.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-11 1.4-11


Ranges of <strong>Trigonometric</strong><br />

<strong>Functions</strong><br />

Copyright © 2009 Pearson Addison-Wesley 1.1-12 1.4-12


Example 4<br />

DECIDING WHETHER A VALUE IS IN<br />

THE RANGE OF A TRIGONOMETRIC<br />

FUNCTION<br />

Decide whether each statement is possible or<br />

impossible.<br />

(a) sin θ = 2.5<br />

Impossible<br />

(b) tan θ = 110.47<br />

Possible<br />

(c) sec θ = .6<br />

Impossible<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-13 1.4-13


Example 5<br />

FINDING ALL FUNCTION VALUES<br />

GIVEN ONE VALUE AND THE<br />

QUADRANT<br />

Suppose that angle is in quadrant II and<br />

Find the values of the other five trigonometric<br />

functions.<br />

Choose any point on the terminal side of angle .<br />

Let r = 3. Then y = 2.<br />

Since is in quadrant II,<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-14 1.4-14


Example 5<br />

FINDING ALL FUNCTION VALUES<br />

GIVEN ONE VALUE AND THE<br />

QUADRANT (continued)<br />

Remember to<br />

rationalize the<br />

denominator.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-15 1.4-15


Example 5<br />

FINDING ALL FUNCTION VALUES<br />

GIVEN ONE VALUE AND THE<br />

QUADRANT (continued)<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-16 1.4-16


Pythagorean Identities<br />

For all angles θ for which the function values are<br />

defined,<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-17 1.4-17


Quotient Identities<br />

For all angles θ for which the denominators are<br />

not zero,<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-18 1.4-18


Example 6<br />

FINDING OTHER FUNCTION VALUES<br />

GIVEN ONE VALUE AND THE<br />

QUADRANT<br />

Choose the positive<br />

square root since sin θ >0.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-19 1.4-19


Example 6<br />

FINDING OTHER FUNCTION VALUES<br />

GIVEN ONE VALUE AND THE<br />

QUADRANT (continued)<br />

To find tan θ, use the quotient identity<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-20 1.4-20


Caution<br />

In problems like those in Examples 5<br />

and 6, be careful to choose the<br />

correct sign when square roots are<br />

taken.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-21 1.4-21


Example 7<br />

FINDING OTHER FUNCTION VALUES<br />

GIVEN ONE VALUE AND THE<br />

QUADRANT<br />

Find sin θ and cos θ, given that<br />

quadrant III.<br />

and θ is in<br />

Since θ is in quadrant III, both sin θ and cos θ are<br />

negative.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-22 1.4-22


Example 7<br />

FINDING OTHER FUNCTION VALUES<br />

GIVEN ONE VALUE AND THE<br />

QUADRANT (continued)<br />

Caution<br />

It is incorrect to say that sin θ = –4<br />

and cos θ = –3, since both sin θ and<br />

cos θ must be in the interval [–1, 1].<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-23 1.4-23


Example 7<br />

FINDING OTHER FUNCTION VALUES<br />

GIVEN ONE VALUE AND THE<br />

QUADRANT (continued)<br />

Use the identity<br />

to find sec θ. Then<br />

use the reciprocal identity to find cos θ.<br />

Choose the negative<br />

square root since sec θ


Example 7<br />

FINDING OTHER FUNCTION VALUES<br />

GIVEN ONE VALUE AND THE<br />

QUADRANT (continued)<br />

Choose the negative<br />

square root since sin θ


Example 7<br />

FINDING OTHER FUNCTION VALUES<br />

GIVEN ONE VALUE AND THE<br />

QUADRANT (continued)<br />

This example can also be<br />

worked by drawing θ is<br />

standard position in quadrant<br />

III, finding r to be 5, and then<br />

using the definitions of sin θ<br />

and cos θ in terms of x, y,<br />

and r.<br />

Copyright © 2009 Pearson Addison-Wesley 1.1-26 1.4-26

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!