28.12.2014 Views

G.K. Surya Prakash - IASS Potsdam

G.K. Surya Prakash - IASS Potsdam

G.K. Surya Prakash - IASS Potsdam

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The Methanol Economy<br />

G. K. <strong>Surya</strong> <strong>Prakash</strong><br />

Loker Hydrocarbon Research Institute<br />

and<br />

Department of Chemistry<br />

University of Southern California<br />

Los Angeles, CA 90089-1661<br />

USA<br />

Sustainable Methanol: An Alternative Green<br />

Fuel for the Future Workshop<br />

<strong>IASS</strong> <strong>Potsdam</strong>, Germany<br />

November 22-23, 2011


World population<br />

(in millions)<br />

1650 1750 1800 1850 1900 1920 1952 2000<br />

Projection<br />

2050 *<br />

545 728 906 1171 1608 1813 2409 6200 8000 to 11000<br />

* Medium estimate. Source: United Nations, Population Division<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

Petawatt-hours (10 15 watt-hours)<br />

History<br />

91<br />

84<br />

71<br />

61<br />

102<br />

107<br />

121<br />

Projections<br />

148<br />

162<br />

175<br />

189<br />

v 150 petawatt-hours ~ 15 terawatts<br />

(15,000 power plants of 1 gigawatt) <br />

v 21 TW by 2025<br />

v 30 TW by 2050<br />

40<br />

20<br />

0<br />

1970 1975 1980 1985 1990 1995 2002 2010 2015 2020 2025<br />

World Primary Energy Consumption, 1970 to 2025 <br />

Based on data from Energy information Administration (EIA)


More than 80% of our<br />

energy comes from<br />

fossil fuels<br />

Oil<br />

34.4%<br />

Coal<br />

26.0%<br />

Other<br />

0.6%<br />

Combustible<br />

Renewables &<br />

Waste<br />

10.1%<br />

Hydro<br />

2.2%<br />

Nuclear<br />

6.2%<br />

Natural gas<br />

20.5%<br />

Total 11 741 Mtoe<br />

Distribution of the World Total Primary Energy Supply in 2006. <br />

Based on data from the International Energy Agency (IEA)<br />

Key World Energy Statistics 2008


Increasing world population<br />

Increase in standard of living <br />

Increase in fossil fuel use <br />

- Oil, gas, coal (hydrocarbons) <br />

Finite sources – non-renewable <br />

On the human timescale <br />

Increase in carbon dioxide <br />

content of the atmosphere <br />

Greenhouse effect<br />

(Global warming). 390 ppm


Hydrocarbon Sources<br />

17 th -19th Century - industrial revolution coal<br />

19 th Century coal, oil <br />

20 th Century coal, oil, natural gas <br />

(fossil fuels) <br />

21 st Century fossil fuels <br />

carbon dioxide


Petroleum products<br />

In United States, 67% of the<br />

petroleum is currently used<br />

in transportation as gasoline,<br />

diesel, jet fuel, etc.! <br />

Transportation sector is<br />

utterly dependant on<br />

petroleum oil


Proven Oil and Natural Gas Reserves<br />

(in billion tonnes of oil equivalent) from 1960 to 2003<br />

Year Oil Natural Gas<br />

1960 43 15.3<br />

1965 50 22.4<br />

1970 77.7 33.3<br />

1975 87.4 55<br />

1980 90.6 69.8<br />

1986 95.2 86.9<br />

1987 121.2 91.4<br />

1988 123.8 95.2<br />

1989 136.8 96.2<br />

1990 136.5 107.5<br />

1993 139.6 127<br />

2002 156.4 157.6<br />

2003 156.7 158.2


Oil and Natural Gas Reserve to Production<br />

(R/P) Ratio<br />

70<br />

Oil<br />

Natural gas<br />

60<br />

50<br />

R/P Ratio (years)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

1980<br />

1982<br />

1984<br />

1986<br />

1988<br />

1990<br />

1992<br />

1994<br />

1996<br />

1998<br />

2000<br />

2002<br />

2004


Regional Distribution of World Oil Reserves in 2004<br />

Asia, 3.5% Middle East, 61.7%<br />

North America, 5.1%<br />

South and Central America,<br />

8.5%<br />

Africa, 9.4%<br />

Europe and Eurasia, 11.7%<br />

Saudi Arabia, 22.1%<br />

Iran, 11.1%<br />

Iraq, 9.7%<br />

Kuwait, 8.3%<br />

United Arab Emirate, 8.2%<br />

Others, 2.3%<br />

Total: 1189 billion barrels


Distribution of World Natural Gas Proven<br />

Reserves in 2004<br />

Russia<br />

26.7%<br />

Eurasia<br />

5.1%<br />

Europe<br />

3.8%<br />

Asia<br />

7.9%<br />

Africa<br />

7.8%<br />

North America<br />

4.1%<br />

South and Central<br />

America<br />

4.0%<br />

Qatar<br />

14.4%<br />

Rest of Middle East<br />

10.9%<br />

Iran<br />

15.3%<br />

Total: 180 trillion m 3<br />

About 67% of the natural gas reserves<br />

are in Middle East and Russia


Coal<br />

World Proven Coal Reserves Distribution<br />

India, 10%<br />

China, 12%<br />

Australia, 9%<br />

South Africa , 5%<br />

Ukraine, 4%<br />

Russia, 17%<br />

Kazakhstan, 3%<br />

Rest of the World,<br />

12%<br />

United States , 27%<br />

Total Proven Reserves: 909,000 Mt <br />

Enough for more than 160 years at current rate of consumption!<br />

Coal is a dirty fuel. It also emits much more CO 2 per unit of energy<br />

produced than petroleum and natural gas


Non-conventional fossil fuels<br />

Already exploited<br />

To be developed <br />

• Tar sands <br />

Exploited on a large scale in Canada (2 million barrels /day)<br />

• Tight gas sands and shale<br />

Already accounts for 15% of the natural gas production in US<br />

• Coalbed methane <br />

Currently represents about 10% of the natural gas production in US<br />

• Oil shale<br />

• Methane hydrates <br />

Both have large potential but ways to exploit them economically <br />

have to be found


Annual Global CO 2 Emissions- 1750-2005 <br />

Total<br />

Coal<br />

Petroleum<br />

Natural gas<br />

Cement production<br />

Gas flaring<br />

35,000<br />

30,000<br />

25,000<br />

20,000<br />

15,000<br />

10,000<br />

5,000<br />

Million tonnes carbon dioxide / year<br />

1750 1800 1850 1900 1950 2000<br />

-<br />

Source: Carbon Dioxide Information Analysis Center, Oak Ridge national Laboratory


Worldwide contribution of greenhouse gases to the<br />

increased greenhouse effect induced by human activity<br />

Nitrous oxide<br />

6%<br />

Halogenated<br />

compounds<br />

10%<br />

Methane<br />

19%<br />

Carbon dioxide<br />

65%<br />

Global Warming Potentials (GWPs) of greenhouse gases<br />

Global warming potential<br />

Carbon dioxide CO 2<br />

1<br />

a<br />

Atmospheric lifetime<br />

(years)<br />

Methane CH 4 23 12<br />

Nitrous oxide N 2 O 296 114<br />

Hydrofluorocarbons (HFC) 12-12,000 0.3-260<br />

Examples:<br />

HFC-23 CHF 3<br />

12,000 260<br />

HFC-32 CH 2F 2<br />

550 5<br />

HFC-134a CH 2<br />

FCF 3<br />

1,300 14<br />

Fully fluorinated species 5,700-22,200 2,600-50,000<br />

Examples:<br />

Perfluoromethane CF 4<br />

5,700 50,000<br />

Perfluoroethane C 2<br />

F 6<br />

11,900 10,000<br />

Sulfur hexafluoride SF 6<br />

22,200 3,200<br />

a Over a 100 year time horizon<br />

Based on data from IPCC, Third Assessment Report, 2001


Daily usage of fossil fuels<br />

v 85 Million Barrels of Oil is consumed! <br />

v 8 Billion m 3 of Natural Gas<br />

v 16 Million Tonnes of Coal <br />

30 billion tonnes of CO 2 released into the atmosphere per year <br />

Contributing to greenhouse effect – Global Warming<br />

Ethanol economy: in the US, 7 billion gallons of ethanol is<br />

produced per year (~175 million barrels) from corn.<br />

Equivalent to 115 million barrels of oil: 1.3 days supply!<br />

In Brazil, 7 billion gallons of ethanol from sugar cane is <br />

Produced <br />

Biodiesel a lot smaller: requires more land


Biomass<br />

CO 2 fixation by photosynthesis (carbon neutral)<br />

CO 2 Fixation by Photosynthesis (carbon neutral)<br />

nCO 2<br />

+ nH 2 O<br />

Biofuels- Ethanol, butanol, vegetable oils (biodiesel)- a small %<br />

of the energy mix.<br />

* Land availability and use<br />

* Water resources- Irrigation<br />

* Food security vs Energy security<br />

* Fertilzer use (nitrogen fertilizers from NH 3 (N 2 and H 2 (syngas))<br />

* Processing technologies, energy use<br />

* Overall energy balance<br />

Chlorophyll<br />

Sunlight<br />

n(CH 2 O) + nO 2<br />

Sun is the source of most energy on Earth- past, present and future<br />

130,000 TW continuous- A reliable nuclear fusion reactor!


Alternative Energies<br />

Hydropower <br />

Geothermal energy<br />

Wind energy<br />

Solar energy <br />

Biomass <br />

Ocean energy (waves, tides, thermal) <br />

Nuclear energy


Electric Energy Generated in Industrial Countries by Non-Fossil Fuels (%, 2004)<br />

Country<br />

Fossil Fuels Hydroelectric Nuclear<br />

Geothermal, Solar, Wind,<br />

Wood and Waste<br />

Total<br />

Non-Fossil<br />

France<br />

9.4<br />

10.9<br />

78.6<br />

1.1<br />

90.6<br />

Canada<br />

25.7<br />

58.0<br />

14.7<br />

1.6<br />

74.3<br />

Germany<br />

61.9<br />

3.6<br />

27.5<br />

6.9<br />

38.1<br />

Japan<br />

62.2<br />

9.2<br />

26.4<br />

2.2<br />

37.8<br />

South Korea<br />

62.8<br />

1.2<br />

35.9<br />

0.1<br />

37.2<br />

United States<br />

71.0<br />

6.7<br />

19.8<br />

2.4<br />

29.0<br />

United Kingdom<br />

75.5<br />

1.3<br />

20.0<br />

3.2<br />

24.5<br />

Italy<br />

81.1<br />

14.1<br />

0.0<br />

4.8<br />

18.9<br />

Source: Energy Information Administration, International Energy Annual 2007,<br />

World Net Electricity Generation by Type, 2004


Energy Storage<br />

Most of the alternative energies (solar, wind, geothermal,<br />

nuclear) produce electricity ; solar and wind are intermittant<br />

Problem: How to store electricity in a convenient<br />

form and on a large scale<br />

• Batteries: Low capacity<br />

• Fly wheel<br />

• Water<br />

Limited capacity<br />

• Compressed air<br />

• In a liquid or gas: Hydrogen, Methanol, etc.<br />

If it was easy to store electricity, we would all be <br />

driving electric cars!


Hydrogen Economy<br />

Hydrogen economy (clean fuels, fuel cells)<br />

• Hydrogen is not a primary energy carrier, b.p. = -253 °C <br />

• Tied up in water and fossil fuels<br />

• Incompatible with 20% oxygen in the air<br />

• Liquid hydrogen has 1/3 Volumetric energy density of gasoline <br />

• 2 grams occupy 22.4 liters of volume at NTP (high pressurization <br />

is required) <br />

• Infrastructure is very expensive (hydrogen diffuses easily) <br />

• Highly flammable (colorless flame)


Carbon Conundrum<br />

Environmental effect<br />

Essential element for<br />

terrestrial life<br />

Excessive CO 2 production<br />

contributes to global warming<br />

Burning of fossil fuels, living<br />

organisms<br />

Natural and industrial sources (natural<br />

gas production, geothermal wells,<br />

varied industries)<br />

Nature's carbon cycle<br />

Limited fossil fuel resources are<br />

increasingly depleted<br />

Nature's carbon cycle takes a long<br />

time. Technological CO 2 recycling via<br />

Methanol Economy is a possibility


The Methanol Economy


Methanol, fuel and feed-stock: The Methanol Economy<br />

CH 3 OCH 3 , high cetane <br />

clean burning diesel fuel, LNG<br />

and LPG substitute. <br />

In Internal<br />

Combustion<br />

Engines<br />

High octane (ON= 100) <br />

clean burning fuel, <br />

15.8 MJ/liter.<br />

M-85 Fuel <br />

As Dimethyl<br />

Ether (Diesel<br />

Fuel,<br />

Household<br />

Fuel)<br />

CH 3 OH<br />

In Direct<br />

Methanol<br />

Fuel Cells<br />

Conversion<br />

to olefinsgasoline,<br />

diesel, etc.


Methanol properties<br />

v Methanol (methyl alcohol, wood alcohol) is an excellent internal<br />

combustion engine/turbine fuel- It is a liquid (b.p 64.7 o C). <br />

v Methanol has a high octane number (~ 100)- used in Race cars. <br />

v M85- used in Flex-Fuel vehicles (similar to E-85). <br />

v Half the volumetric energy content of gasoline (15.8 MJ/liter),<br />

but more efficient and cleaner burning. <br />

v Methanol can be blended into Biodiesel (Esterification).<br />

Converted to dimethyl ether and dimethyl carbonate. <br />

v Methanol is an excellent hydrogen carrier -easily reformed to H 2<br />

(syngas) at modest temperatures.


Methanol in ICE<br />

v Octane number 100- fuel/air mixture can be<br />

compressed to smaller volume-results in higher<br />

compression ratio <br />

v Methanol has also has higher flame speedhigher<br />

efficiency <br />

v Higher latent heat of vaporization (3.7 times<br />

higher than gasoline)- can absorb heat betterremoves<br />

heat from engine- air cooled engines <br />

v Methanol burns better- cleaner emissions <br />

v Safer fuel in fires than gasoline <br />

v Methanol can be dispensed in regular gas<br />

station requiring only limited modifications <br />

v Compatible with hybrid (fuel/electric) systems


Drawbacks<br />

v Methanol is miscible in water - corrosive for Al, Zn, Mg <br />

Solution: use compatible materials - Flexfuel vehicles <br />

v Methanol has low vapor pressure at low temperatures <br />

Solution: spike it with gasoline- M85 <br />

v Ingestion > 20 mL can be lethal - Dispensing should not be <br />

a problem <br />

v Spillage - very safe to the environment <br />

methanol used in water treatment plants for denitrification


Dimethyl ether (DME)<br />

2CH 3 OH<br />

- H 2 O<br />

CH 3 OCH 3<br />

b.p. -24.8 °C; m.p. -141 °C <br />

v Excellent diesel fuel substitute with <br />

a cetane number of 55-60 (45-55 for<br />

regular diesel) and very clean burning<br />

v Already used in spray dispenser <br />

v Non-toxic, Safe and does not form <br />

peroxides <br />

v Substitute for LNG and LPG<br />

v Easy to produce, ship and dispense<br />

v Sootless flame for glass blowing<br />

DME truck in Japan<br />

DME bus in Denmark


Advanced methanol-powered<br />

fuel cell vehicles<br />

On-board generation of hydrogen through methanol reforming<br />

CH 3 OH <br />

+ H 2 O <br />

Reforming<br />

Catalyst <br />

H 2 + CO 2<br />

Proton Exchange<br />

membrane (PEM) <br />

Fuel cell<br />

H 2 O<br />

Methanol has no C-C bonds: reforming at low<br />

temperatures (250-300 °C)<br />

Avoids the problem of on-board<br />

hydrogen storage under high<br />

pressure or in cryogenic liquid form<br />

(-253 °C)


Direct oxidation methanol fuel cell<br />

Direct Oxidation Methanol Fuel Cell<br />

(DMFC) USC, JPL - Caltech<br />

e -<br />

e -<br />

e - - +<br />

Anodic Reaction: <br />

CH 3 OH + H 2 O Pt-Ru (50:50) CO 2 + 6 H + + 6 e - <br />

CH 3<br />

OH<br />

+ H 2<br />

O<br />

H +<br />

H +<br />

H +<br />

O 2<br />

/ Air<br />

Cathodic Reaction: <br />

E o = 0.006 V <br />

3/2 O 2 + 6 H + + 6 e - Pt <br />

3 H 2 O <br />

CO 2<br />

+ H 2<br />

O<br />

Anode<br />

Pt -Ru<br />

catalyst layer<br />

-<br />

H +<br />

+<br />

Cathode<br />

Pt<br />

catalyst layer<br />

H 2<br />

O<br />

Overall Reaction: <br />

CH 3 OH + 3/2 O 2 <br />

E o = 1.22 V <br />

CO 2 + H 2 O <br />

+ electricity<br />

E cell = 1.214 V <br />

Proton Exchange<br />

membrane<br />

(Nafion-H)<br />

US Patent, 5,599,638, February 4, 1997; Eur. Patent 0755 576 B1, March 5, 2008.


Direct Methanol Fuel Cell<br />

Advantages<br />

v Methanol, 5 kWh/Liter – Theoretical (2 X Hydrogen) <br />

v Absence of Pollutants<br />

H 2 O and CO 2 are the only byproducts <br />

v Direct reaction of methanol eliminates reforming <br />

Reduces stack and system complexity<br />

Silent, no moving parts <br />

v Capable of start-up and operation at 20 °C and below <br />

Thermally silent, good for military applications<br />

v Liquid feed of reactants <br />

Effective heat removal and thermal management<br />

Liquid flow avoids polymer dryout <br />

Convenient fuel storage and logistic fuel


Methanol as a fuel and feedstock<br />

* Electricity production by combustion in existing gas turbines <br />

* Electricity generation through fuel cells<br />

Fuel cells not limited by weight and space: other types of fuel cells can be<br />

used; PAFC, MCFC and SOFC<br />

* Use of methanol as cooking fuel in developing countries <br />

Much cleaner burning and efficient than wood <br />

* Methanol is a feed for single cell proteins- as a feed for animals


METHANOL AS HYDROCARBON SOURCE<br />

-2H 2 O<br />

2CH 3 OH CH 2 CH 2 CH 3 CH CH 2<br />

Zeolites<br />

or bifunctional<br />

catalysts<br />

HYDROCARBON FUELS AND PRODUCTS<br />

(Gasoline, Diesel, etc.)


CH 3 OH Sources<br />

Industrial production<br />

Natural occurance<br />

Syn-gas (from coal or natural gas)<br />

Direct methane conversion<br />

Carbon dioxide reduction<br />

Wood, Biological processes<br />

(microbial or enzymatic<br />

transformations )<br />

Recently discovered enormous<br />

galactical methanol clouds


CH 3 OH from syn-gas<br />

Syn-gas is a mixture of H 2 , CO and CO 2 <br />

CO + 2H 2 CH 3 OH<br />

CO 2<br />

+ 3H 2 CH 3 OH + H 2 O<br />

H 298K = - 21.7 kcal / mol<br />

H 298K = - 11.9 kcal / mol<br />

CO + H 2 O CO 2<br />

+ H 2<br />

H 298K = - 9.8 kcal / mol<br />

S<br />

=<br />

moles H 2<br />

moles CO<br />

S=2 ideal for methanol<br />

Syn-gas can be produced from any source of carbon: natural gas,<br />

petroleum, coal, biomass, etc. <br />

However, not all give an ideal S ratio for methanol synthesis


CH 3 OH from methane<br />

v Syn-gas from natural gas – steam reforming <br />

Ni Cat.<br />

CH 4 + H 2 O CO + 3H 2<br />

H 298K = 49.1 kcal / mol<br />

Excess H 2 generally used for ammonia (NH 3 ) production<br />

S=3 <br />

v Partial oxidation of methane <br />

CH 4 + 1/2 O 2 CO + 2H 2<br />

1/2 O 2<br />

H 298K = - 8.6 kcal / mol<br />

S=2 <br />

CO<br />

+<br />

CO 2<br />

H 298K = - 67.6 kcal / mol<br />

H 2<br />

+ 1/2 O 2<br />

H 2 O<br />

H 298K = - 57.7 kcal / mol<br />

v Dry reforming with CO 2 <br />

CO 2<br />

Ni Cat.<br />

+ CH 4 2CO + 2H 2<br />

H 298K = 59.1 kcal / mol<br />

S=1 <br />

Reactions occur at high temperatures (at least 800-1000 °C)


CH 3 OH through bi-reforming<br />

Combination of steam and dry reforming: bi-reforming<br />

+ 2CO<br />

2CH 4 2H 2 O + 6H 2<br />

CO 2<br />

+ CH 4 2CO + 2H 2<br />

Overall:<br />

3CH 4 + 2H 2 O + CO 2 4CO + 8H 2<br />

4CH 3 OH


CH 3 OH from coal<br />

A proven technology<br />

3C + 3/2 O 2<br />

Catalysts<br />

3CO<br />

2CO + 2H 2 O<br />

2CO 2 + 2H 2<br />

CO +2H 2<br />

CH 3 OH<br />

3C + 2H 2 O + 3/2 O 2<br />

2CO 2 + CH 3 OH<br />

China is currently adopting this approach on a massive scale <br />

based on its large coal reserves<br />

100 plants in construction or planned!<br />

Due to the low H/C ratio of coal: a lot of CO 2 is produced!


CH 3 OH through methane<br />

halogenation<br />

Br 2 + H 2 O<br />

CH 4<br />

Br 2<br />

O 2<br />

Solid or liquid acids<br />

CH 3 Br + HBr<br />

H 2 O<br />

CH 3 OH (or CH 3 OCH 3 ) + HBr<br />

Overall reaction:<br />

CH 4 + 1/2 O 2 CH 3 OH


CH 3 OH through intermediates other<br />

than syn-gas<br />

Homogeneous catalyst<br />

Pt, Hg, Au based<br />

CH 4 + 2H 2 SO 4 CH 3 OSO 3 H + 2H 2 O + SO 2<br />

CH 3 OSO 3 H + H 2 O CH 3 OH + H 2 SO 4<br />

SO 2 + 1/2 O 2 + H 2 O H 2 SO 4<br />

CH 4 + 1/2 O 2 CH 3 OH (Overall reaction)<br />

Advantage: low temperature reaction (180-250 °C),<br />

much lower than syn-gas generation (800-1000 ° C) <br />

Inconvenient: need to recycle concentrated and corrosive H 2 SO 4


CH 3 OH from methane without CO 2<br />

production<br />

Methane decomposition:<br />

Methanol synthesis:<br />

~ 900 o C<br />

CH 4 C + 2H 2<br />

CO 2 + 3H 2<br />

CH 3 OH + H 2 O<br />

Overall reaction:<br />

3CH 4 + 2CO 2<br />

2CH 3 OH + 2H 2 O + 3C<br />

Advantage: all the carbon in methane ends up in carbon, a solid<br />

which is easy to handle and store<br />

We could make extensive use of our natural gas reserves without<br />

CO 2 emissions


Methanol from biomass<br />

• Biomass includes any type of plant or animal material:<br />

Wood, wood wastes, agricultural crops and by-products, municipal waste, animal waste, aquatic<br />

plants and algae, etc.<br />

• Transformed to methanol by gasification through syngas- very efficient<br />

Biomass<br />

Syn-gas<br />

CO + H 2<br />

• Any biomass is fine to make methanol<br />

• Large amount of biomass needed- can convert biomass to<br />

biocrude and it can be shipped.<br />

Methanol<br />

• Methanol from Biogas (mixture of CH 4 , CO 2 )<br />

• Methanol through aquatic biomass- micro-algae<br />

Biocrude <br />

Biomass alone can not fulfill all our increasing energy needs


Biomass to Liquids (Methanol)<br />

Lignocellulose<br />

Fast Pyrolysis, 550 o C<br />

Condensate + Char + Slurry, 90%<br />

Gasification with Oxygen, 1200 o C<br />

CO + H 2 Syngas, 78%<br />

Methanol or other liquids


Efficient Ways to Capture CO 2 and Its Electrochemical Conversion<br />

Why Focus on Carbon Dioxide<br />

• Linear molecule<br />

• Very stable<br />

– Hard to efficiently reduce<br />

• Trace gas<br />

– 0.039% of the atmosphere<br />

– Amount of CO 2 in the atmosphere is increasing<br />

• With declining fossil fuel reserves, CO 2 may become the<br />

best source of carbon<br />

US Patent, 7,605, 293, October, 20, 2009 <br />

US Patent, 7,608, 743, October, 27, 2009


Sour ces of CO 2<br />

Geothermal Vents<br />

Fermentation Processes<br />

Natural Gas Wells<br />

Cement Plants<br />

Fossil Fuel Burning Power Plants<br />

Aluminum Plants<br />

Air Itself


Electrochemical Reduction of CO 2 to Syngas and Formic Acid<br />

Standard Electrochemical Reduction Potentials of CO 2 at pH=7, NHE, NTP Conditions <br />

CO 2 e - + CO 2 E o = -1.96 V (1)<br />

CO 2 + 2H + + 2e - CO + H 2 O E o = -0.53 V (2)<br />

CO 2 + 2H + + 2e - HCOOH E o = -0.61 V (3)<br />

CO 2 + 4H + + 4e - HCHO + H 2 O E o = -0.48 V (4)<br />

CO 2 + 6H + + 6e - CH 3 OH + H E o 2 O = -0.38 V (5)<br />

CO 2 + 8H + + 8e - CH E o 4 + 2H 2 O = -0.24 V (6)<br />

O<br />

H<br />

OCH 3<br />

H 2 O + CO<br />

O<br />

H OH<br />

A Fuel &<br />

Feed-stock<br />

MeOH<br />

H 2 + CO 2<br />

Direct Formic Acid Fuel Cell


Solar Thermal Conversions<br />

CO 2 + 3 FeO CO + Fe 3 O 4<br />

Fe 3 O 4 3 FeO + 1/2 O 2<br />

Overall<br />

CO 2<br />

CO + 1/2 O 2<br />

Sunshine to Petrol: Sandia National Laboratory Project


Methanol from CO 2<br />

imitating nature<br />

Sources of carbon dioxide: <br />

• Industrial flue gases: Fossil fuel burning power plants, steel and cement<br />

factories, etc. <br />

• The atmosphere itself (390 ppm)<br />

Hydrogenation of CO 2<br />

CO 2<br />

+ 3H 2<br />

CH 3 OH + H 2 O<br />

Electrochemical reduction of CO 2<br />

Electrons<br />

CO 2<br />

+ 2H 2 O<br />

Electrode catalyst<br />

CO + 2H 2 +<br />

3/2 O 2<br />

CH 3 OH<br />

Electricity needed to produce hydrogen or for the reduction can come<br />

from any renewable (wind, solar, etc.) or nuclear energy source<br />

US Patent, 7,704,369, April 27, 2010


Chemical Recycling of CO 2<br />

CO 2 Capture:<br />

Solution absorption and membrane technologies,<br />

nanostructured supported amino polymer absorbent systemconvenient<br />

revesible absorption and desorption- USC Technology<br />

Water Electrolysis<br />

H 2 O H 2 + 1/2 O 2<br />

Overall Cu/Zn catalysts<br />

CO 2 + 3H 2<br />

CH 3 OH + H 2 O<br />

Methane Bireforming:<br />

3CH 4 + 2H 2 O + CO 2<br />

3CH 4 + CO 2 2 CH 3 OCH 3<br />

<br />

Hydrogen Generation: Photochemical, thermal or electrochemical means<br />

Overall<br />

Catalyst<br />

endothermic<br />

4 CH 3 OH<br />

CRI in Iceland,<br />

using their cheap<br />

geothermal energy!<br />

2 CH 3 OCH 3 +<br />

2 H 2 O


US Patent, 5,928,806, July 27, 1999


Carbon Capture and Recycling (CCR)<br />

Basis of the Methanol Economy<br />

Renders carbon containing fuels and products environmetally<br />

neutral<br />

Provides sustainable, universally available regenerative<br />

carbon source via carbon dioxide recycling using any energy<br />

source (alternates with emphasis on solar and atomic) and<br />

hydrogen of water<br />

Replaces diminishing fossil fuels freeing humanity from<br />

dependence on coal, oil and natural gas<br />

Offering solution to the costly and potentially dangerous<br />

carbon capture and storage (CCS)


The Methanol Economy


Worldwide Development of the Methanol Economy<br />

USC - Honeywell - UOP: Concepts, new enabling chemistry and<br />

technology, IP and licencing<br />

Iceland: First geothermal CO 2 conversion plant to methanol<br />

(George Olah Renewable Methanol Plant, Carbon Recycling Int.)<br />

Japan: Industrial CO 2 to methanol demonstration plant (Mitsui)<br />

China: Major low carbon technology energy initiative includes<br />

carbon capture, storage or recycling of CO 2 from coal burning<br />

power plants (Government, CAS, Industry)<br />

China, Japan, South Korea: Operating and building 50-100 multimillion<br />

t/yr coal or natural gas based methanol and DME plants<br />

with CO 2 capture, storage or recycling to be added


CRI Carbon Recycling International<br />

George Olah CO 2 to Renewable Methanol Plant Groundbreaking<br />

HS Orka Svartsengi Geothermal Power Plant, Iceland, October 17 th 2009 <br />

Production capacity: 10 t/day, planned expansion to 100 t/day <br />

geothermal CO 2<br />

+ 3H 2<br />

H 2 O<br />

US Patents 7,605,293 and 7,608,743 <br />

Int. Pat. Appl., WO2010011504 A2 January 28, 2010 <br />

CH 3 OH + H 2 O<br />

electrolysis using<br />

geothermal electricity


Acknowledgments<br />

Professor G. A. Olah<br />

Robert Aniszfeld<br />

Patrice Batamack<br />

Carlos Colmenares<br />

Alain Goeppert<br />

Thomas Mathew<br />

Sergio Meth<br />

Suresh Palale<br />

Federico Viva<br />

$$$$<br />

USC-Loker Institute<br />

US Dept. of Energy<br />

Universal Oil Products (UOP)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!