27.12.2014 Views

No. 4, 1998 - Tribology in Industry

No. 4, 1998 - Tribology in Industry

No. 4, 1998 - Tribology in Industry

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

YU |SSN 03s4 - 8996<br />

Iff<br />

I<br />

I<br />

voLUME 20<br />

NO4<br />

DECEMBER 1ee8.<br />

tribology <strong>in</strong> <strong>in</strong>dustry<br />

contents<br />

RESEARCH<br />

BOOI(S AND JOURNALS<br />

SCIENTIFIC MEETINGS<br />

S. SEfUltC: Tiibological Processes <strong>in</strong> The Cutt<strong>in</strong>g Zone<br />

.' t27<br />

A. RAC: Contemporary Lubricants: Role and Reqiurements I37<br />

S. TANASIJEVIC: Characteristics of Existence and Development<br />

of Mac<strong>in</strong>e Elements Tiibolory<br />

N{. BABIC: Tiibology and Enerry 748<br />

BLASXOVIC: Tiibological Behaviour of Surfac<strong>in</strong>g Layers for<br />

Cont<strong>in</strong>ual Cast<strong>in</strong>g Roils .<br />

I42<br />

t54<br />

159<br />

160<br />

REVIEW of research and expert papers published<br />

<strong>in</strong> journal<br />

"Tlibologr <strong>in</strong> <strong>in</strong>dustry" for peiiod 1989-<strong>1998</strong>.<br />

761


UDK 52i.821.015.62<br />

S. SEKT]LIC<br />

Tribological proces s es<br />

ira The Cutt<strong>in</strong>g Zone<br />

li[] TT<br />

IJ<br />

tl<br />

lt<br />

L_l<br />

:E<br />

C)<br />

E<br />

u<br />

a<br />

tll<br />

E.<br />

The paper presents the conternporary views ort tibological<br />

that'<br />

phettometta<br />

the physical<br />

<strong>in</strong> the<br />

nature<br />

metal<br />

of<br />

cutt<strong>in</strong>g<br />

thi pheriomt',ro<br />

processes. Besides<br />

iyro*, iitntijpii,ti,u'i, production is po<strong>in</strong>ted out.<br />

Kqwords: Tibologt,curfiilg tool cuttittg<br />

1. GEI{ERAL<br />

Tiibrjlogy has enormous importance <strong>in</strong> production processes,<br />

especially <strong>in</strong> metal mach<strong>in</strong><strong>in</strong>g. In this p."r"nto_<br />

tion we shali primarily deal with triilological processes<br />

that are accompany<strong>in</strong>g metal cutt<strong>in</strong>g.<br />

'iiibolcgical processes <strong>in</strong> cutt<strong>in</strong>g conditions are charac_<br />

terized by contact surfaces, streis and temperature field<br />

distributions, as well as fast appearance of new surf.aces,<br />

rvhat all makes these concJitions specific.<br />

In rlepth knowledge of tribological processes <strong>in</strong> general,<br />

and especiaily <strong>in</strong> the cutt<strong>in</strong>g p.o."rr, enables achievenent<br />

of optimum solutions both <strong>in</strong> technical end econo_<br />

mical sense. Here ii primarily reterred to <strong>in</strong>troduction of<br />

the r:ewpr'cesses, but also the special materials, b'th for<br />

tools and mach<strong>in</strong>ed pieces (e.g. hardly mach<strong>in</strong>ed mate_<br />

rials that are caus<strong>in</strong>g problems dur<strong>in</strong>gtheir mach<strong>in</strong><strong>in</strong>g).<br />

By arraly5l5 of mach<strong>in</strong><strong>in</strong>g costs for one operation U6,we<br />

can state that they consist of Iabor costs R, costs rerated<br />

to tool amortizatioir A and mach<strong>in</strong>e costs M, i.e.,<br />

f,,'hef e:<br />

Uo=R+A+M+SHp<br />

^f,<br />

tv! -<br />

,R = tt.k7.tk<br />

cu'P<br />

F-4.100.60<br />

A=A1+.4r+A,<br />

t<br />

A,=lt'k,.t..4<br />

1 I tT<br />

t<br />

Ar= kr.tr.-l<br />

Fro.t. tlr Siti,a St. Sekulit, rtipt, eng.<br />

!;.ri<br />

ti Lil s far I t : t ! us t n a l,S1,s t i t ns<br />

i:'trt:rllty of Techtzical Sciences Univenity of <strong>No</strong>vi Sart<br />

.L<br />

"=''\r;<br />

,cntr<br />

17.-= "" -"'.'='<br />

r io+1 T<br />

5r,, _ e_$!r.c;rtt.!t<br />

60<br />

lo= tr+ ta+ tp+ tor+ t;<br />

lo<br />

lo= t;i;<br />

Uo=E'B+t,<br />

B = tpr trr* lpr* l,=66nry.<br />

E = tt.k. .--"<br />

1F .11.100.60<br />

G = kr.tr-:i<br />

to- t<br />

/ c)<br />

kr.N,<br />

71= I 4.'.i.-.---1.<br />

kt'N,<br />

l, -':'-u- |<br />

(. r)<br />

ctt !<br />

where:<br />

k1; k2; kj are the gross salaries of the productive worker;<br />

sharpener, expert worker (brigadier), respecti_<br />

vely <strong>in</strong> d<strong>in</strong>/m<strong>in</strong>;<br />

/k - comntand<strong>in</strong>g time,<br />

C,y - mach<strong>in</strong>e price;<br />

p - amortization rate;<br />

F - annual time fund;<br />

ry - efficiency ratio;<br />

A6 A5 A j - costs of replacement, sharpen<strong>in</strong>g and<br />

amortization, respectively;<br />

/, - ma<strong>in</strong> mach<strong>in</strong>e time;<br />

/o- time for tool replacement per mach<strong>in</strong>ed piece;<br />

lr - auxiliary time;<br />

to, = foJz - preparation/f<strong>in</strong>ish<strong>in</strong>g time per mach<strong>in</strong>ed<br />

piece;<br />

'<strong>in</strong>belsgt,<br />

irt iitdusity, Volume 20, <strong>No</strong>. 4,lg9g.<br />

r27


i - number of passes;<br />

i6 - number of sharpenrngs;<br />

n - number of revolutions (rpm);<br />

C7 - mach<strong>in</strong>e price;<br />

Qspu - quantity of cutt<strong>in</strong>g fluids <strong>in</strong> l/h;<br />

Csra - price of 1 i of cutt<strong>in</strong>g fluids.<br />

Thus, under certa<strong>in</strong> conditions, mach<strong>in</strong><strong>in</strong>g costs depend<br />

on tool life. By <strong>in</strong>fluenc<strong>in</strong>g the tool life, i.e., by apply<strong>in</strong>g<br />

the tribological knowledge, we can significantly <strong>in</strong>fluence<br />

on costs. Ti'ibological knowledge is also necessary for the<br />

sake of avoid<strong>in</strong>g unnecessary costs <strong>in</strong> production, for<br />

<strong>in</strong>stance big, expensive mach<strong>in</strong>ed pieceg where the cut<br />

must not be <strong>in</strong>terrupted dur<strong>in</strong>g the pass (if it is <strong>in</strong>terrupled<br />

the product is a waste, so it is necessary to ensure the<br />

sufficientool reliabilitv).<br />

Global figures. that would po<strong>in</strong>t to possible <strong>in</strong>fluences of<br />

tribology <strong>in</strong> mach<strong>in</strong><strong>in</strong>g, are very hard to obta<strong>in</strong>, but certa<strong>in</strong><br />

analyses po<strong>in</strong>t to significant spend<strong>in</strong>g, e.g., energy,<br />

and to possible sav<strong>in</strong>gs.<br />

Research Committee of ASME (American Society of<br />

Mechanical Eng<strong>in</strong>eers) have published data which states<br />

that about 5.57o of total energy <strong>in</strong> USA is consumed <strong>in</strong><br />

primary metal mach<strong>in</strong><strong>in</strong>g and metal work<strong>in</strong>g <strong>in</strong>dustry,<br />

and that with better awareness of already known tribological<br />

knowledge sav<strong>in</strong>gs of l.SVo can be realized. With<br />

otherpossible sav<strong>in</strong>gs this percentage ofsav<strong>in</strong>gs could be<br />

<strong>in</strong>creased to !.5Vo. what <strong>in</strong> 1980. was an amount of 21.5<br />

billions of US$, i.e., 257o of US budget deficit.<br />

Important <strong>in</strong>vestigations, related to sav<strong>in</strong>gs of energy<br />

through tribologry, were conducted by DOE (Department<br />

of Energry) <strong>in</strong> USA. Accord<strong>in</strong>g to those <strong>in</strong>vestigations,<br />

enerry losses due to friction <strong>in</strong> mach<strong>in</strong>e tools<br />

amounto 20'1d2 Btu per annum what is equal to 5.1012<br />

of Kcal per annum, or 2l'1,!5 J per annum. Out of that<br />

9o/o could be saved by application of the exist<strong>in</strong>g surface<br />

modificators. Another data is that total potential sav<strong>in</strong>gs<br />

of energy through tribology <strong>in</strong> USA can reach 237o of<br />

total enerry that is consumed for driv<strong>in</strong>g the mach<strong>in</strong>e<br />

tools, what amounts ta 4.8 millions of barrels of oil<br />

annually, or US$ 144 millions <strong>in</strong> 1980., or US,sB5 millions<br />

annually, accord<strong>in</strong>g to oil prices <strong>in</strong> i989.<br />

British <strong>in</strong>dustry consumes about 27o/o of all national<br />

energy resources, 'xhtle 45'Id kWh is the share of electrical<br />

power for mach<strong>in</strong>e tools drives. It is estimated that<br />

by application of known tribological knowledge sav<strong>in</strong>gs<br />

of up to 25o/o coulcl be achieved.<br />

2. TRIBOLOGICAL CONDITIONS IM<br />

METAL CUTTING<br />

The cutt<strong>in</strong>g process is today considered as the tribomecha,nical<br />

system, that is characterized by <strong>in</strong>put and output<br />

variables. where the <strong>in</strong>put variables are: maclt<strong>in</strong>ed piece<br />

material, energy spent on the process, while the <strong>in</strong>formation<br />

are used for the process control. The first element<br />

of the tribomechanical system is the rnach<strong>in</strong>ed piece, the<br />

second - the cutt<strong>in</strong>g wedge, and the tirird - the cutt<strong>in</strong>g<br />

fluid - SPH (Figure 1).<br />

Material<br />

_><br />

Energy<br />

---}<br />

Information<br />

The cutt<strong>in</strong>g process, or more accurately, the process of<br />

chip fonnation, is very complex. It is characterized by<br />

very difficult conditions - high pressures and variables<br />

temperatures <strong>in</strong> the cutt<strong>in</strong> gzone,that can reachvery high<br />

values. Besides that, the whole transformation is performed<br />

<strong>in</strong> the very limited area (the cutt<strong>in</strong>g zone). From the<br />

aforementioned reasons, the cutt<strong>in</strong>g process model<strong>in</strong>g is<br />

very difficult and <strong>in</strong>sufficiently precise, so it can be generally<br />

concluded that it is approximate. Thus one usually<br />

speaks about average values, e.g., average values ofloads<br />

on the rakc and clear<strong>in</strong>g faces, average cutt<strong>in</strong>g temperatures.<br />

etc.<br />

Tiibological conditions <strong>in</strong> metal cutt<strong>in</strong>g are characterized<br />

by:<br />

. Stress states <strong>in</strong> tire defornration zones (Fig.2 and 3)<br />

. Area and condition of the contact surface on the rake<br />

face<br />

. Chips slid<strong>in</strong>g over the rake face<br />

. Temperature fields of the cutt<strong>in</strong>g rvedge, chips and<br />

cutt<strong>in</strong>g zone on the mach<strong>in</strong>ed piece (Figure 4 a-c)<br />

. Chemical <strong>in</strong>fluences between the tool and the mach<strong>in</strong>ed<br />

piece, nanelv between the cutt<strong>in</strong>g fluid SPH and<br />

the mach<strong>in</strong>ed piece.<br />

-----><br />

Mach<strong>in</strong><strong>in</strong>o<br />

Surface -<br />

____><br />

1 - tool<br />

2 - workpiece<br />

3 - C.F. (Cutt<strong>in</strong>g Fluid)<br />

Figure 1. Tiibonrcclnnical systent <strong>in</strong> tnetal cutt<strong>in</strong>g<br />

,--/<br />

Figurc 2. Cotten4xtrary ntodel of tle metal cuttitry process<br />

1 - clip; 2 - tool; j - uack <strong>in</strong> fiont of tlrc kn{e;<br />

4 - pr<strong>in</strong>ary deprnntion zone: 5 - secondary<br />

dafonnatiott zottc.<br />

1<br />

728<br />

Tibolog <strong>in</strong> irtdtctry, Volume 20, <strong>No</strong>. 4,<strong>1998</strong>.


I<br />

-_l<br />

iiR<br />

-,/<br />

',v<br />

rn<br />

/'4<br />

R<br />

Figure {a. Tbtnperature dbtribution <strong>in</strong> tlrc cutl<strong>in</strong>g zone<br />

for orlhogonal cuttirtg<br />

Figure 3. C.otrtuct surfaces belv'een ilte chip and tlre tool<br />

On- ,"tot'irtcl. slrcsses di-stibutir;ti; T s - sircar shyssu<br />

distibution; R = Fy * Fo - resul;ant force actittg<br />

on tlrc tool (l"r - force on rake ft:ce, and Fo - force<br />

on cleaitrg face), and - tatigenifu! atid nornmlfon:es<br />

tirr tlt rcke faee; Fl - nn<strong>in</strong> resislattce; F2 - penetaiion<br />

rcsistancr llni ilcts ot't !lrc tool; p - f ictiott angle.<br />

U.<br />

0,6<br />

0,5<br />

0,4<br />

U,J<br />

U,Z<br />

0,1<br />

X<br />

x<br />

10<br />

L<br />

XX<br />

ll:e first notions aboilt the chip forrnation rnechanism<br />

.:issrirne,j that the crack appears <strong>in</strong> front of the cutt<strong>in</strong>g<br />

wed;e blade , and then the chip is started to separate frcr<strong>in</strong><br />

the miich<strong>in</strong>ed piece (Figure 5), Contemporary theories<br />

ha,"'c repudiated this si.atement, and now it is generally<br />

accepted that <strong>in</strong> the cutt<strong>in</strong>g process three zones can be<br />

r:'bserved (Figure 2).<br />

Priman deformation zcr\e4 is <strong>in</strong> the chip root,where the<br />

Lrontiruous shear<strong>in</strong>g process is unfold<strong>in</strong>g. This zone can<br />

be cunsidercct as the z()ne of the rnaximum <strong>in</strong>ternal<br />

friciion.<br />

Tire secondary defor<strong>in</strong>ation zone 5, is the zone that is<br />

rnpeadng betr';*en tire lool rake face and the chip.<br />

Figure 4b. Heat dklributiort <strong>in</strong> the slrcarhtg zone between<br />

tlrc chip atrd tlrc ntach<strong>in</strong>ed piece<br />

Onn<br />

tl = --<br />

fr fifl): Iil = p Cp.V' - atnoutil of<br />

Vr<br />

f,Q't<br />

lrcat tlwt arises itr tlrc pritnaty defonnation zone;<br />

Qo - anrcun! of lteat tlnt b trunsferrcd to tlrc nnch<strong>in</strong>ed<br />

piece; Rt - tlre lwat charactcristics (p - speciJic mass,<br />

Co - specific lieat, v - feed rate, d - cutt<strong>in</strong>g dept,<br />

k - specifu conductivity, g - slrcar<strong>in</strong>g angle)<br />

160<br />

on<br />

'fhe tertiary zone lppcars betv/een tire tool clear<strong>in</strong>g face<br />

and 1he machir:ed piece.<br />

r\. rt rvas aiready mentioned earlier, <strong>in</strong> consider<strong>in</strong>g the<br />

pir':r:i;mena drrrir:g the metal cuttiirg, one usually operates<br />

rvitir ;rverage v;llua:>. for <strong>in</strong>stance, the average<br />

'f!rus,<br />

-.':,1:.re<br />

of the friction ccefficientp is determ<strong>in</strong>ed based on<br />

tiie Flercharr"r's static rrodel of the force diagram, dur<strong>in</strong>g<br />

the orti:rrgcniil cutt<strong>in</strong>g (Figure 8).<br />

F'.<br />

l!=tgp= F:<br />

wi:ere the apr)e rir;!rrct friaiiuntu,r the clear<strong>in</strong>g f:.rce is<br />

"f<br />

rteiiiccied.<br />

c,2 0,4 0,6<br />

Figurc 4. c) hfluence of tlre secondary defomntion zone<br />

witltlt ort thc cl iptentperalure6=^f<br />

'<br />

AT"<br />

LTilt - conespotrd<strong>in</strong>g lertperature <strong>in</strong>crease <strong>in</strong> tlrc<br />

secondary defotnntiotr zorie due to clip fi'ictiott<br />

aver lhe rake face; L7'f - avetage letnperulure<br />

<strong>in</strong>crcase tt tlrc clip; ].'<br />

- rutio of the secondary<br />

tlefornntiort zone v,idlh to tltc chip tltickness;<br />

aI - cottfriciettt tlrct detern<strong>in</strong>es tlrc width<br />

of contact between the tool and tlrc chip<br />

'{ibolog' i:t itulLisirt,'/o!ume 20. <strong>No</strong>. 4, <strong>1998</strong>.<br />

t29


o Y<br />

= 10"<br />

o Y<br />

= 10"<br />

oY=1<br />

t Y<br />

= 10"<br />

./q'-16a<br />

v<br />

I - tw<br />

b Y= 10-<br />

A Y<br />

= 10"<br />

Figure 5. Ideal nrodel of the eitt<strong>in</strong>g process<br />

+Y = 2A"<br />

^T = 30"<br />

o<br />

{o<br />

S<strong>in</strong>ce the cutt<strong>in</strong>gprocess is the typical dy.namical process,<br />

Kronenberg had, apply<strong>in</strong>g the D'AJembert's pr<strong>in</strong>ciple,<br />

set the dynamic equilibrium conditions between the <strong>in</strong>ertial<br />

force and the friction force on the rake face, and by<br />

solv<strong>in</strong>g the system of differential equations, he obta<strong>in</strong>ed<br />

the equation for determ<strong>in</strong>ation the average value of the<br />

friction coefficient (Figure 6):<br />

/\<br />

Ini<br />

F = trt).<br />

l,)<br />

- ri<br />

\- j<br />

oY = 50"<br />

100 200 JUU 400 oc MN/m'<br />

Figure 7. InJluence of llrc nonrnl prcssure on lhe vaiatiott<br />

of the friction coefficient p on the rake face<br />

F'' = q"''11''f'<br />

whe.re 4'r, is the normal pressure, p' is the friction coefficient<br />

and/ is the contact area between the clear<strong>in</strong>g face<br />

and the nrach<strong>in</strong>ed surface. (<strong>in</strong> determ<strong>in</strong>ation of F2 and<br />

F3 the. correspond<strong>in</strong>g projections of the contact area are<br />

taken <strong>in</strong>to account).<br />

Tire ratio of the friction energybetween the rake face and<br />

the ship can be determ<strong>in</strong>ed accord<strong>in</strong>g to the energy<br />

necessary for chip formatiol (Figure 8) can be determ<strong>in</strong>ed<br />

accord<strong>in</strong>g to exprcssion:<br />

/,<br />

:'.!. .l!: . lu Ll - f(Lyl<br />

A' ) cos(it-11<br />

where, accord<strong>in</strong>g to Kronenberg;<br />

Figure 6. IYith the K'onenberg dynantical nodcl<br />

As the experimental <strong>in</strong>vestigation show, the average value<br />

of the friction coefficientpr is basically a function of<br />

the average normal pressure on the rake face. The average<br />

value of the friction coefficient is also affected by the<br />

cutt<strong>in</strong>g speed v and the rake angle y (Figure 7).<br />

In Merchant's model, and models similar to it, the phenomena<br />

occurr<strong>in</strong>g at the contact po<strong>in</strong>t between the clear<strong>in</strong>g<br />

face and the mach<strong>in</strong>ed surface are neglected.Zorev<br />

had <strong>in</strong>troduced correction <strong>in</strong> calculations of the forces,<br />

i.e., cutt<strong>in</strong>g resistance, so he represented the <strong>in</strong>dividual<br />

components by the sum:<br />

Fr= R,+ F',<br />

where the additional parts took <strong>in</strong>to account phenomena<br />

of wear on the clear<strong>in</strong>g face. Thus, the correction for the<br />

ma<strong>in</strong> cutt<strong>in</strong>g force (cutt<strong>in</strong>g resistance) is:<br />

I-igure 8. Merclunt's force diagratn <strong>in</strong> orllogonal cutt<strong>in</strong>g<br />

130<br />

fribologt <strong>in</strong> ituliutrl', Volume 20, <strong>No</strong>. 4, <strong>1998</strong>.


lnL<br />

!8p:=lt'--_<br />

-<br />

'"-"r'<br />

2'<br />

or vaiues rcd t if the diagramg ir: Figilres 5 and 7,<br />

'llhe r;r:;.; rii energies sperll on fricricn between<br />

'rhe clearirg,<br />

i-rc; anrl ihe mach<strong>in</strong>ed piece, aud the energy of<br />

irr,rrirrn beiv,':gn ihe rake face anci ihc chip, can be<br />

ir ir:im<strong>in</strong>ed accore',<strong>in</strong>g to expression (Figure 8):<br />

'1": '^-'. =' - | i '"-"'r-- |!.i';Lsq,'.(n!.p:i).:4 '':- .o-.fl.s9!.r<br />

'=-'" -,, =l(trapt,a,tr) -<br />

;;';,8;i<br />

4", fir<br />

-' : ''bi\/'))'6,('t) n<br />

0,5<br />

q<br />

6<br />

1,25<br />

rvhere:<br />

or by' us<strong>in</strong>g ciiagrams <strong>in</strong> Figures 12 ta i5.<br />

As the total energy- A can be represented approximately<br />

as the sum of energies of the <strong>in</strong>ternal and external frictions:<br />

where:<br />

. ) - sirt],<br />

""'<br />

Q=rr,c(:rtl'<br />

cosy<br />

A = Afi+ Ast<br />

Arr=A'tiA"t<br />

thus the ratio is:<br />

t's! a nt A, ( t'tl A,, \<br />

-::- - l,<br />

,r, A, .1, _ A" I<br />

\)<br />

EXAMPLE: For the cLrtt<strong>in</strong>g,Jepth of n:0. 5 mm andthe<br />

tool with the rake angle y=5", the clear<strong>in</strong>g atgle a:6o,<br />

and the round<strong>in</strong>g radius of the bladep 1=0.020 mm, and<br />

for the chip slenderness ratio A=2.5,we have:<br />

^<br />

.a-L 1<br />

V= o'2sszg<br />

*=t,t,'<br />

t=<br />

ZU<br />

!:igure 9- Diagr:ttlr lor detent<strong>in</strong>aiiott o! ilrc ralio betv'een<br />

:!i enrry)' ccnsuttrcd on fricliort bi:Iv,cctl<br />

the chip and tle rake lace and tlrc total<br />

enetyl co,tsutned <strong>in</strong> ti:'e cuttitit pocess<br />

Figure 11. Contact of tlrc hlaCe and tlrc active pan<br />

o.f thc kto! cbar<strong>in</strong>g fuce<br />

A1<br />

-.'.;<br />

I<br />

t--<br />

I<br />

I<br />

.1,2C<br />

I<br />

. .1 q<br />

li"iit<br />

i-! i-:!<br />

I!<br />

L_<br />

!<br />

:<br />

I<br />

i<br />

I<br />

;--<br />

I<br />

'<br />

t--<br />

I<br />

i<br />

!<br />

t_<br />

t<br />

t!<br />

J0<br />

2A<br />

*{.1=t,i)y=const.<br />

I<br />

JU<br />

v-- 'l,/<br />

t/<br />

)" = 0",'<br />

r = lflo<br />

I<br />

40<br />

I<br />

50<br />

j^ ].<br />

OU<br />

0<br />

: 'qt,ta i ii. ):a.grr;stt for dtler:ti<strong>in</strong>atiott of tlrc rctio L>ef,vcur<br />

!!.i: ei!e t-q.,' i't'tnsi;t;ic:i otr fiictiott ltaI*'ectt<br />

t|rc chip and rhr nke face l<strong>in</strong>l the tolal<br />

.Jtet4' coir::!l,rttd ii't tltc cull<strong>in</strong>g prccess<br />

Figure 12. Aaxiliary Juitction gt for detern<strong>in</strong>ation of tlte<br />

ratio befpeen errctgies cortsunteri ott fiictktrt<br />

betvteettlrc clearirg face and ilrc trwclr<strong>in</strong>ed<br />

picce, and bctti'{:ett tlu: chip attd tlre rake face<br />

;.'-r'lri,i ,3r, li; i;ttitistry- !'oiusre 2*, <strong>No</strong>. ,1, <strong>1998</strong>.<br />

131


Figurc 13. Awiliary f,;ttction gt for detern<strong>in</strong>ation of tlrc<br />

ratio beh+'een energia consunted on frictiort<br />

betwcen the clea<strong>in</strong>g fuce and tlrc nnch<strong>in</strong>ed<br />

piece, and betw,een the chip and the rake face<br />

Figure 14. ALatilian, functiort g t for detenn<strong>in</strong>atiorr of tlrc<br />

ratio bet l,een encryics consutncd ott fticliott<br />

betv'een tlte cleat<strong>in</strong>g face and tlrc nnch<strong>in</strong>ed<br />

piece, and bctw,et:n tlre clip and the rake face<br />

Figure 15. Atuilicry functiort gt for detenr<strong>in</strong>ation of the<br />

ralio hetv,een energies cotrswtted on fricliort<br />

betv,eetr the clzar<strong>in</strong>g face and tl;e nuclt<strong>in</strong>ed<br />

piece, and bef,ueen<br />

qilr,7) = {).76327<br />

9z@):1'933'<br />

IJy substitut<strong>in</strong>g thc ubove uumerical values <strong>in</strong>to the equation,<br />

we obt;l<strong>in</strong>:<br />

A"t 0.0:0 ,,-<br />

) )" ='' i..j' . 0.76-127. 1.933 = 0.05901 6<br />

and the expression further gives:<br />

/'<br />

';; = 0.23529 .(1 + 0.05901A = 0.249176<br />

n^.<br />

so we conclude that <strong>in</strong> the above example the energy of<br />

friction over the clear<strong>in</strong>g face is 5.97o of the energy of<br />

friction over the rake face, and that the enerry offriction<br />

on the contact surfaces on lire rake and the clear<strong>in</strong>g faces<br />

rs 24.9Vo, and the energy for overcom<strong>in</strong>g the <strong>in</strong>ternal<br />

friction is 75.1V of the energy needed for chip formation.<br />

Relatively high normal stress on the contact surface between<br />

the chip and the rake face, has as a consequence<br />

lower<strong>in</strong>g of the friction coefficient, and thus the real<br />

contact surface is <strong>in</strong>creased, over which the micro weld<strong>in</strong>g<br />

will occur betlr,een the asperities on the chip surface<br />

that is slid<strong>in</strong>g over the tool rake face.<br />

The friction conditions cu tire ruke face, as it is shown,<br />

are complicated due to appearance of friction on the<br />

clear<strong>in</strong>g face. Earlier, simplified force schematics, enables<br />

determ<strong>in</strong>ation of the averzrge value of the friction<br />

coefficient on the rake face. It is based on the assumption<br />

about equality and coll<strong>in</strong>eariry of the resultant force and<br />

forces <strong>in</strong> the shear<strong>in</strong>gplane and the rake face (Figure 16).<br />

The friction coef-ficient determ<strong>in</strong>ed <strong>in</strong> this way has not<br />

many comrnon po<strong>in</strong>ts with real condition. The more<br />

realistic scheme is that presented <strong>in</strong> Figure 3.<br />

Consider<strong>in</strong>g the complexity of the tribological conditions<br />

<strong>in</strong> metal cutt<strong>in</strong>g, to


- ilittasl\-il<br />

'iii.!il.i!l(iri<br />

" a^.::lsitrit<br />

o lii:siiiLtt-rr.rn<br />

u clirloelition of hai;l pirrricles<br />

. ti:,;SC;C!:iiit)n<br />

* th:rit;ll 1n.: tra::Jhar-iicir! fatigue<br />

G nhi:se,/sirufiural tl ansfornraticits<br />

" rniqrc-chipf,i;ig<br />

. i"',,.t. - ,.<br />

Lroiltii.'l-,.,1 f i:r-'illriii n:r:titl, nui this ec;ri<strong>in</strong>g has no impor-<br />

:,t:ncre !tt rir:r:hiq:ilt ihe tttttr-,iirm aiioys, rvitlt respeci to<br />

h.:r(l tr',';; i r,. il hit,;l a:.)at<strong>in</strong>g.<br />

lir otiic:'st:;;-liss is concluded that at cerfa<strong>in</strong> mach<strong>in</strong><strong>in</strong>g<br />

reg<strong>in</strong>le. tho riorni:ianf <strong>in</strong>fl.rrence has at least one of the<br />

wear nrcchiiuisms. By cliang<strong>in</strong>g the regirne, the dom<strong>in</strong>ant<br />

<strong>in</strong>fiucr';': i:l we;il is also changed, Frgure 18.<br />

o e rtiialn oi tire elri-r.liaior<br />

" i :irlttic.l;l elie ul:,.<br />

iio''vevir iitcrr: :.it: ren;rrks aboui applicaL.tiity ot'sorne<br />

ci ihesc, nrcrhi,rrisnr,,. s<strong>in</strong>se t!re',' Co not belong <strong>in</strong>to the<br />

r!,r;-.ii',it ill ; g11l i- tjtt:n!: fepilitC:..<br />

l jrc .r"'.i,tn,.-r',;D is thc ;rc:cel ni 'j:e ciiffusive wear. th;ii<br />

i5 .;';1;lnilili' ihe ,ippelrrri;ir:e of lie tool rvear, Fiowever,<br />

:i)Rre!'e!r.,.tri<br />

hen po<strong>in</strong>t Out thitt ih..'re are physical foun-<br />

,.1:,.iol,s tbr ercihe.i.,c anci


Vapor Depositron) proce tl ure, t hai req u i res signi tican tiy<br />

lower temperature of the substrate (400'C),<br />

Frcrm the abo.;e rnenlioned, it foiiows th.al if we vianl to<br />

use all the potentials, that are c,ffered by coat<strong>in</strong>gs, it is<br />

necessary to, through further <strong>in</strong>vestigations, better study<br />

tribological characteristics of coat<strong>in</strong>gs, and adhesion between<br />

the coat<strong>in</strong>g anri the substrale.<br />

Several studies po<strong>in</strong>t to ihe differenl mecirailisms<br />

through which an explauatiorr is given how the wear is<br />

slowed down by presence of coat<strong>in</strong>gs. However, until<br />

today the model is not yet devek:ped, that would, <strong>in</strong><br />

satisfactory way, show whirt type of coat<strong>in</strong>g should be<br />

applied for certa<strong>in</strong> type of material, or for the particular<br />

type of mach<strong>in</strong><strong>in</strong>g regime.<br />

4. TOUGH CUT:|ING CERAMICS<br />

Know<strong>in</strong>g the characteristics of the elemcnts of the tribomechanical<br />

system <strong>in</strong> the cutt<strong>in</strong>g process is of the primary<br />

importance. For the rough mach<strong>in</strong><strong>in</strong>g of super-alioys<br />

based on nickel-iron (Ni-Fe) the composite rnaterial was<br />

developed that consists of ah.rm<strong>in</strong>um oxide reilforced l;y<br />

silic


Ac! ion of cuti:ng fl,:iCs <strong>in</strong> :rretai cutti!"lg unlolds <strong>in</strong> conditir.'riis<br />


[20.] I*i'oukov, VA., et al.,llenanie metallov, N{;rigiz,<br />

Mosccvr, 19-{4.<br />

[21.,] Krivoult"'1v, V.A., ei al., Obrabotka mettalov rezaniem,<br />

Obr:rrrngiz, Moscorv, 1958.<br />

[22.j l{ronutbi:rg" M., Grundziige der Zerspanungslelire,<br />

Erster band, Zweite Auflage, Spr<strong>in</strong>ger-Verlag, Ber-<br />

I<strong>in</strong>iGot<strong>in</strong>ge vl-ieidelberg, 1954.<br />

[23.) Kronenbery M., Uber e<strong>in</strong>e neue Banciherung <strong>in</strong> dcr<br />

teoretischen Zerspanungslehre, Werkstatt und Betrieb,<br />

90. Jahrg., 1957.,Heft l.<br />

[24.) Kronenbeig, M., l"Iach<strong>in</strong><strong>in</strong>g Science and Application,<br />

Ferga:non Press, Oxford-l.ondon, 1966.<br />

125.1 L ola dz e, Ll-{, Iznos reiu3dego <strong>in</strong> s trum enta, Maigiz,<br />

N{oscow, 1958.<br />

{26.) Makarov, A.D., trznns i stojkost reiu5Cih <strong>in</strong>stmmentov,<br />

Mai<strong>in</strong>ostroenie, Moscow, 1966.<br />

[27.j Merchant, !v{:E." Mechanics and Metal Cutt<strong>in</strong>g process,<br />

L I. of Applied Physics. Vol. 16, <strong>No</strong>. 5, 1945.<br />

l2S.lMerchant, lvI.E., Zlat<strong>in</strong>, N., New Methods of Analysis<br />

of h{ach<strong>in</strong>iiig Pl:ocesses, Erperimental Stress Ana-<br />

Iysis, Voi. IIi, <strong>No</strong>. 2, Addison-Wesley Press Inc.,<br />

Carnbridge, 1946.<br />

[29.f Moore, D., Pr<strong>in</strong>ciples and..lpplicatious of Tribologz,<br />

Pergamon Press, Oxford, 7975.<br />

[30.) Poletika, iy'. F. , Kcntaktnie nagruski ira reiu5dih poverhnastjah<br />

<strong>in</strong>strumenta, N{ai<strong>in</strong>ostroenie, Moscow,<br />

1969.<br />

137.) Rezt:k, C., Examiriation of Friction Conditiorrs at<br />

Orthogonal Cutt<strong>in</strong>g. Periodica Polytechnica, Budapest,<br />

1970,, Vol. 14,Iio.4.<br />

[32.] Reaikov, A.N., Tepioftzika rezanija, Ma5lnostroenie,<br />

Moscow,1969.<br />

[33,) Sekulit, ,9., tshenon:enon of Concentrated Wear <strong>in</strong><br />

the Wide R.ange of Feed Rates" Proceed<strong>in</strong>gs of Produetioir<br />

Eng<strong>in</strong>eer<strong>in</strong>g Counsel<strong>in</strong>g, Sarajevo, 1968. (<strong>in</strong><br />

Serbian).<br />

[34.) Sekulif, S., Friction l&brlc at Orthogonal Cutt<strong>in</strong>g -<br />

Ratios of Frictiqrn Works on Contact Surfaces of<br />

fc"ol ariri Chrip anci Mact <strong>in</strong>ed Surface, <strong>Tribology</strong> <strong>in</strong><br />

Ildr:stry, Vol.II, <strong>No</strong>. 1, 1979. (<strong>in</strong> Serbian)<br />

135.1Sil<strong>in</strong>, i'.5., h{etod podobija pri rezanii materialov,<br />

MaS<strong>in</strong>ostroenie, Moscow, 1979.<br />

p6.l Sotaja, 14, Contribution to Study of Concentrated<br />

Wean <strong>in</strong> Steei Mach<strong>in</strong><strong>in</strong>g on Lathe, Technics - Mechanical<br />

Eng<strong>in</strong>eer<strong>in</strong>g, 1958, 7. (<strong>in</strong> Serbian).<br />

l3i.l Thomsen, E.G., et al., Mechanics of Plastic Deformation<br />

<strong>in</strong> Metal Process<strong>in</strong>g, The MacMillan Corp.,<br />

New York, 1965.<br />

[38.] Vieregge, G., Temperaturfeld und Wdrmerbilanz<br />

des Schervorgange bei der Zerspanung, Werkstatt<br />

und Betrieb, i955, 88, Heft 5.<br />

{39.1Vtikelja D,, Therrnodynamics of Cutt<strong>in</strong>g, Monograph,<br />

IAMA, 2, IAMA" Belgrade, 1970. (<strong>in</strong> Serbian).<br />

[40.) Zctrev, Ar.N", Voprosi mehaniki processa reazanija<br />

rnetallov, fuiir5giz, Moscosr, 1956.<br />

111 .l Zorev, N.ilI., et nl., Razvitie o rezanii metallov,<br />

MaSiaostroerrie, Moscc\r', 7967 .<br />

t3rl THbologt iit <strong>in</strong>dwtr.y v'ulume 20, <strong>No</strong>. 4,7998.


UDI( 621.1J9262t.9.27<br />

A" TIAC<br />

C*ntemporary Lubricanfs: Rcle and<br />

E{,eqiureme mts<br />

rl<br />

li<br />

.]<br />

T<br />

n<br />

I<br />

O<br />

E.<br />

TU<br />

a tu E.<br />

Sr;i"',<strong>in</strong>g of tibologica! problems <strong>in</strong> mov<strong>in</strong>g parts of nnchhtes and devices <strong>in</strong>evitably <strong>in</strong>cludes tlrc application<br />

cf the apitrcpiate ry*pes o! lubicants. Their clmracteristics are detennilrcd by eEipment marutfactttrerc and<br />

enr:ironme ntal protectiott legislatiott.. The object of this paper i.g to nnal,r,se the state and tendencies of the<br />

rnodcnt. iubicgt:ts developmetil itt the light of tlie reEirements rneriliotrcd.<br />

Key words:.Lubicittts, Basic properlics, Reqttiremenls<br />

I.INTRODUCTION<br />

Lubricirnts are vital components <strong>in</strong> transportation, as<br />

rveil :rs with most of <strong>in</strong>dustnal equipment. A proper<br />

selcciicn of the lulrricant end lubricat<strong>in</strong>g methods <strong>in</strong>creirse<br />

the lifetime of mach<strong>in</strong>ery and decrease operation<br />

anci ma<strong>in</strong>tenance costs, These effects manifest themselves<br />

<strong>in</strong> a decre:rse of energSl consumption, lower work<strong>in</strong>g<br />

iemDeiiitrtres and sliorter clown times.<br />

Histcrically. :ire iirst applicetion of lubricants co<strong>in</strong>cides<br />

ri'ith the beg<strong>in</strong>ni ;rgs of civilization, while the first research<br />

v,'iis canied out dur<strong>in</strong>g the <strong>in</strong>dustrial revolution. Fr'->m<br />

that tir're till today, lubricants have played an important<br />

rolr <strong>in</strong> the developrneni of <strong>in</strong>dustrial society [1].<br />

The gcnera.l technical progress, requirements for high<br />

crnfonniry of all parameters of mach<strong>in</strong>e operations and<br />

cver stricter regulations over environmental protection<br />

ha."'e <strong>in</strong> the last several years resulted <strong>in</strong> a series of<br />

soiutions thai should cnsure highly productive and also<br />

environmcntally friencity iubricants.<br />

2. R{}LE O! I,UBRICAI\ITS IN<br />

TzuR OF'I ECIIINI OlL SYSTENI S<br />

Thousailds of products nowaCays cover all the aspects of<br />

!ubricatiru iechnokrgy. This will undoubtedly rema<strong>in</strong> so<br />

<strong>in</strong> the fl:ture. .Aiarge nunrber of different types of lubricauts<br />

rirrl producis iras been brought about by tlsks ihat<br />

iubnianis have to perforrn iir different constructions,<br />

;<strong>in</strong>tl unricr dilfercrtt rvcrk<strong>in</strong>u and environmental conditioris.<br />

Apciicat<strong>in</strong>n oi'!ubricanis is <strong>in</strong>evitable <strong>in</strong> solv<strong>in</strong>g tribological<br />

oroblems <strong>in</strong> the majority of b:rsic macir<strong>in</strong>elements<br />

(gears, siid<strong>in</strong>g anC ro!i<strong>in</strong>g hear<strong>in</strong>gs. jo<strong>in</strong>ts, ropes, cha<strong>in</strong>s,<br />

P:,t.f. dr,llcksaridar Rac, di;tl. <strong>in</strong>g.<br />

F n c t : !ry c,{ I'f e t' l t a : i t a I Er ryi t t e ei t ry, B eo gra d<br />

etc.), aswell as <strong>in</strong> different mach<strong>in</strong>es (IC eng<strong>in</strong>es, pumps,<br />

turb<strong>in</strong>es, compressors, etc.), and technological processes<br />

of metal mach<strong>in</strong><strong>in</strong>g.<br />

Effectiveness of iLrbricants depends on numerous <strong>in</strong>terrelated<br />

factors that are determ<strong>in</strong><strong>in</strong>g the <strong>in</strong>fluence of a<br />

lubricant on fdction and wear of the vital mach<strong>in</strong>e parts<br />

and equipment. They <strong>in</strong>clude the properties of Iubricants<br />

and changes that occur <strong>in</strong> the properties dur<strong>in</strong>g exploitation,<br />

character!stics of frictional surfaces, character of<br />

<strong>in</strong>teractions of the lubricant components and surface<br />

material, speed, lcad, temperature, and other parameters<br />

of the workjng regime [2].<br />

Tiris po<strong>in</strong>ts to the mutual dependence of the development<br />

of machues, their components and lubricants,<br />

which is one of the characteristic features of modern<br />

mechanical systerus. Thus, for <strong>in</strong>stance, the solutions<br />

realized <strong>in</strong> the area of lubrication theory and lubricant<br />

production technology enabled the design<strong>in</strong>g of hydrodynamic<br />

slid<strong>in</strong>g bear<strong>in</strong>gs of high reliability and efficiency<br />

[3], they helped to achieve high performances and long<br />

life of roll<strong>in</strong>g bear<strong>in</strong>gs and gears [4], they contributed to<br />

the decreas<strong>in</strong>g of fuel consumption and improvement of<br />

the IC eng<strong>in</strong>es pertonnances [5], etc.<br />

As far as thr:ii'history is concerned, lubricants were the<br />

subject of <strong>in</strong>tense develcpment dur<strong>in</strong>g the fifties and the<br />

sixties of thrs century.<br />

'fhe multigrade oils were <strong>in</strong>troduced,<br />

as well as highly ref<strong>in</strong>ed m<strong>in</strong>eral base oils, nerv<br />

additives, synthetic lubricants, etc.<br />

In the mid-seventies, which were witness to crude oil<br />

crises, ihe trend shifted towards the sav<strong>in</strong>g ofenergy and<br />

other resources, and tc the solv<strong>in</strong>g of accumulated pro-<br />

Lrlems related to environrnental prolection. Dur<strong>in</strong>g that<br />

period economic aspects of lubricants application, especially<br />

their irtfluence on energy sav<strong>in</strong>g <strong>in</strong> mach<strong>in</strong>ery,<br />

l'lec;rrng ltrore Drom<strong>in</strong>ent.<br />

7'riLrcicp itt itulrtsiry', i'ciunre 20, <strong>No</strong>. 4, <strong>1998</strong>,<br />

137


The end of this century, i.e., the n<strong>in</strong>eties, is the period of<br />

globalization <strong>in</strong> all the aspects of lubrication technology<br />

(technologry of lubricants manufactur<strong>in</strong>g, t est<strong>in</strong>g, standardization,<br />

aoplication, ecolory), through the activities<br />

of many <strong>in</strong>ternationai organizations founded <strong>in</strong> Europe,<br />

America and Asia. These activities are primarily aimed<br />

at:<br />

. lower<strong>in</strong>g the system costs and<br />

. environmental protection.<br />

Lnwer costs <strong>in</strong> systems where lubricants are applied can<br />

be achieved by:<br />

. extend<strong>in</strong>g the <strong>in</strong>terval of lubrication application<br />

. lower ma<strong>in</strong>tenance costs durlng the whole mach<strong>in</strong>e<br />

lifetime. and<br />

. application of ior-life lubricants.<br />

The use of ecoiogically acceptable lubricants, the so-called<br />

"green" lubricants, is also an imperative. Ecological<br />

problems can be solved by:<br />

. improv<strong>in</strong>g the applied lubricants efficiency<br />

. decreas<strong>in</strong>g and/or elim<strong>in</strong>ation of emission, and<br />

. apolication of rapidly biodegradable lubricants.<br />

It follows that the basis for characterization of future<br />

lubricants is go<strong>in</strong>g to be a comb<strong>in</strong>ation of economic and<br />

ecological factors.<br />

3. LUBRICANTS FOR TRANSPORTA'TION<br />

MEANS AND MECruTNIZATION<br />

Basic types of lubricants that are applied <strong>in</strong> transportation<br />

and mechanization are eng<strong>in</strong>e oils, gear oils and<br />

lubricat<strong>in</strong>greases. Out of the lubricants mentioned here<br />

the dom<strong>in</strong>ant ones accord<strong>in</strong>g to application are eng<strong>in</strong>e<br />

oils with about BSVo, while the consumption of gear oils<br />

amounts to cra l3Vo, and lubricat<strong>in</strong>g greases 2 to 3Vo.It<br />

should be kept <strong>in</strong> m<strong>in</strong>d that transportation consumes<br />

over 507o of the total quantity of lubricants [6, 7]. These<br />

data expla<strong>in</strong> why eng<strong>in</strong>e oils and gear oils are <strong>in</strong> the focus<br />

of <strong>in</strong>terest of both lubricants manufacturers and consumers.<br />

Hydrocracked oils, whose production was realized a few<br />

years back, erhibit certa<strong>in</strong> advantages with respect to<br />

parraf<strong>in</strong>ic solvent raff<strong>in</strong>ants Cfub 1).<br />

Table L Properties ofhydro-crackedbase oib<br />

n(/-l nu-tl HC-lll<br />

Vscosity<br />

<strong>in</strong>dex 1O0<br />

Chemicailv clean<br />

S/ithout suitur<br />

lncreased thermal<br />

stabilitv<br />

Volatility (<strong>No</strong>ack)<br />

similar to SN<br />

Manufactur<strong>in</strong>g<br />

costs similar to<br />

SN<br />

Viscosity<br />

<strong>in</strong>dex 130<br />

Chemicailv clean<br />

Without sultur<br />

Increased<br />

thermal stabilitv<br />

Volatility (<strong>No</strong>ack)<br />

decreased<br />

Manufactur<strong>in</strong>g<br />

costs significantly<br />

lower than for<br />

PAO<br />

Viscosity<br />

<strong>in</strong>dex 145<br />

Chemicallv clean<br />

Without sultur<br />

Increased<br />

thermal stabilitv<br />

Volatility (<strong>No</strong>ack)<br />

decreased<br />

Manufactur<strong>in</strong>g<br />

costs lower than<br />

for PAO<br />

New technologr offers base oils of such quality that can<br />

satisfy present-day specifications. In their properties hydrocracked<br />

oils surpass typical solvent raff<strong>in</strong>ants, especially<br />

<strong>in</strong> applications where thermal and oxidation stability<br />

is important. In literature, these base oils are frequently<br />

called pure base oils (PBO) or unconventional hydrocarbon<br />

base oils (UHBO).<br />

Generally, base oiis used for manufactur<strong>in</strong>g modern eng<strong>in</strong>e<br />

oils, ought to provide for [B]:<br />

. fuel efficiency (lubricants rheology)<br />

. low emission (low volatility ai low visccrsify)<br />

. extended oil dra<strong>in</strong> <strong>in</strong>tewals (chemical purity).<br />

Decrease of fuel consumptiorr <strong>in</strong> eng<strong>in</strong>es (better fuel<br />

efticiency) can be achieved by lower<strong>in</strong>g friction, which <strong>in</strong><br />

ihe case of eng<strong>in</strong>e oils nreans apply<strong>in</strong>g low viscosity base<br />

oils. Due to this, the use of monograde oils <strong>in</strong> Diesel<br />

eng<strong>in</strong>es is becom<strong>in</strong>g ever smaller,while <strong>in</strong> multigrade oils<br />

there is a tendency to change from grade 15w-x to 10w-x.<br />

As regards petrol eng<strong>in</strong>es, oils with grade 5w-x are already<br />

to be found on the market.<br />

Lowvolatilityof thebase oil results <strong>in</strong> Ioweroil consumption<br />

and <strong>in</strong> lower emission, which is significant <strong>in</strong> Diesel<br />

3.1.Eng<strong>in</strong>e oils<br />

Development of new eng<strong>in</strong>es requires new high quality<br />

lubricants of precisely def<strong>in</strong>ed properties. Also, consumers<br />

today damand higher performances from lubricants,<br />

s<strong>in</strong>ce they are striv<strong>in</strong>g for lower qystem costs and<br />

higher efficiency of the equipment. Manufactur<strong>in</strong>g of<br />

such lubricants makes necessary the improvement of the<br />

characteristics of both base oils and additives.<br />

The future belongs to the family of base oils that <strong>in</strong>cludes:<br />

hydrocracked oils (FIC), polyalphaolef<strong>in</strong>s (PAO)<br />

and rapidly biodegradablesters.<br />

ni<br />

q)<br />

c<br />

(U<br />

'x<br />

o<br />

o<br />

I<br />

o<br />

:<br />

6n<br />

40<br />

JU<br />

20<br />

IU<br />

Figurc 1. Differences <strong>in</strong> evaporatiott belnvior<br />

of base oils (<strong>No</strong>ack test)<br />

138<br />

Tibologt itt <strong>in</strong>dwtry, Volume 20, <strong>No</strong>. 4rLggl.


eng<strong>in</strong>e s, where there are restrictions on particulate emisr;ir:-rl.<br />

Investigations show that <strong>in</strong> totai particulate emission<br />

<strong>in</strong> Diesel eng<strong>in</strong>es, the eng<strong>in</strong>e oil's conrrit-.ution is<br />

irhaur- 35Va, \,blatiiiqv of certa<strong>in</strong> base oils is presented <strong>in</strong><br />

Figrre 1.<br />

l{i;:li puri|1 cf base orls provides for excellent oxidation<br />

:tabiiity, which is a means of preventilg oil degradaticn<br />

if'92).In that rvay longer dra<strong>in</strong> <strong>in</strong>terval is achieved.<br />

r<strong>in</strong>g technniogies of the basic components of <strong>in</strong>dustrial<br />

lubrir:i<strong>in</strong>ts beccimcs an <strong>in</strong>iperlitive.<br />

However, iii ccrrparison to automctive lubricants, <strong>in</strong><br />

<strong>in</strong>dustrial lubricants the activities aimed at Cef<strong>in</strong><strong>in</strong>g the<br />

standard perfbrmances are limited. This is due to a great<br />

variery of equipuient, <strong>in</strong>dustries, fieid of lubricant applicatic,n<br />

and work<strong>in</strong>g conditions to which these iubricants<br />

are exi)c3ed. This leads to an extremely large number of<br />

products of various characteristics.<br />

o\<br />

'{<br />

:t<br />

O<br />

O<br />

z<br />

E<br />

-s<br />

|-igure 2. Oxi'Tation stabikty of diffarcnt hase. oil,s<br />

J"2. Gear oils<br />

Tbere are numerous factors that <strong>in</strong>fluence the development<br />

c.f lubricat<strong>in</strong>g oils for gears. Grow<strong>in</strong>g specific loads<br />

of gearr cltments have as a consequence high thermal and<br />

ricchanic'ai stra<strong>in</strong><strong>in</strong>g of oils. Reduc<strong>in</strong>g mechanicalosses<br />

jn r.c.:is i:; also an irnportant task of their Iubricatiugoils.<br />

European manufiicturers strive to extend the dra<strong>in</strong> <strong>in</strong>tervais<br />

of oils cr to eiim<strong>in</strong>ate oil replacement. i.e. their<br />

thoice is for permanent lubrication. Automatic transmissian<br />

is becom<strong>in</strong>g more common with European car manufaciurcrs<br />

too.<br />

Thc facts cited above determ<strong>in</strong>e the necessary properties<br />

of iiiture gear oils, and these are: high oxidation stability,<br />

convenient frictional characteristics, good iow temperati:r,:<br />

behavior, low volatilify, high natural viscosity <strong>in</strong>dex,<br />

gc


Tabie 3. Typical ISO viscosirt* groLq.s.frtr <strong>in</strong>dust;'la! ltii;ricants<br />

stance to ag<strong>in</strong>g, cro<strong>in</strong>patibility v,'ith scarl<strong>in</strong>g nrzrtt:rials, liydrolytic<br />

stabiliii,, as -rvell as to fuifiii certaur ecological<br />

requirements - riol tu conta<strong>in</strong> haearclous materials, to be<br />

bioclegradable, nr;ntoxic, and nct llr poUute waters above<br />

thc legally pennissiirle values.<br />

4.2. lV{etal work<strong>in</strong>g fluids<br />

Other factors that have to be considered when apply<strong>in</strong>g<br />

hydroprocessed base oils are solubilify and dispersivit'v.<br />

Most <strong>in</strong>di-rstria! oils with a greater content of additives -<br />

hydraulic oils, gear oils, and others - require good solubrlity<br />

cr dispersivity of additives and contam<strong>in</strong>ants, <strong>in</strong><br />

order to control sludge or deposit formation, and thus fo<br />

exten,d thc dra<strong>in</strong> irten'als and oil filter life.<br />

A proper selection of the base oil, together with a balanced<br />

system of additives, is the funciantental approach <strong>in</strong><br />

the nanufactur<strong>in</strong>g of highly productive <strong>in</strong>dustrial lubricants,<br />

The possibility of a application of base oils<br />

"vider<br />

obta<strong>in</strong>ed by hydroprocesses will require new tecl<strong>in</strong>ologies<br />

that wili produce wider ranges of base oils viscositi.<br />

Basic types of lubricants, most frequently applied <strong>in</strong><br />

<strong>in</strong>dustrial practice, are hydraulic fluids, gear oils, metalwork<strong>in</strong>g<br />

fluids and iotal loss lubricants.<br />

4.1. Hy'draulic fluids<br />

Hydraulic fluids, whose consumpticrn ranges frorn -15 to<br />

207o of the total lubricant consunrpiion, represent an<br />

important group of lubricants. Their application is rvide<br />

and it <strong>in</strong>cludes mobile mach<strong>in</strong>es and stationary equipment,<br />

mach<strong>in</strong>e tools, plants and equiptnent <strong>in</strong> food and<br />

beverage <strong>in</strong>dustry, etc.<br />

Possible trends <strong>in</strong> hydraulic fluids development are illustrated<br />

<strong>in</strong> Table 4 by the exarrple of Germany.<br />

T'able 4. l'uture rlevclopmeri oflrydraulic lluids itt Gertnaty<br />

Rapidly biodeg raCable lubricants<br />

M<strong>in</strong>eral oils basec flL:iCs<br />

7 i 10<br />

._t_.<br />

I<br />

__f____<br />

zi5<br />

It is obvious that a significant <strong>in</strong>crease is expectetJ <strong>in</strong> the<br />

application of biodegradable prociucts, liased both on<br />

vegetable oils i;nd synthesized esters.<br />

The future hydraulic fluids will have to satisfu a series oi<br />

technical criteria - low tcmperature characteristics, resi-<br />

lvlelal*,r'ri


arrd electronic systerns are needed, with high hydiaulic<br />

piessures. thrcugh the application of such systems higher<br />

produciivit,v is aehieved.<br />

Fundamental prcblems iippeer<strong>in</strong>g <strong>in</strong> their operiition are<br />

related to process fluicis (lubricants, hydraulic oils, cutt<strong>in</strong>g<br />

{iuiiis). Their <strong>in</strong>teractions can often result <strong>in</strong> destai,ih;:<strong>in</strong>g<br />

both the cutt<strong>in</strong>g t'luids and lubricants, regardless<br />

of lne faci tliat ir,.dividually they were properiy selec,red.<br />

[iecause of this, Mercedes for <strong>in</strong>stance, is consider<strong>in</strong>g io<br />

elimi::ate water-miscible fluids <strong>in</strong> its production plants,<br />

and to use only straight mach<strong>in</strong><strong>in</strong>g oils, which are totally<br />

solubie with lubricants, and compatible with all materials<br />

thai are used <strong>in</strong> :irach<strong>in</strong>e tools manufactur<strong>in</strong>g.<br />

4.3. Tatal Loss l,erbricants<br />

Total Loss Lubricernts (TLL) constitute about 7o/o of all<br />

anpiied lubricants. Accord<strong>in</strong>g to their characteristics<br />

Ihey are very dif reni, but they have one comnron prope<br />

rqv and that is that they are, due to the way of their<br />

application, significant pollutarts of waters and soil. This<br />

is tbe reason wiry <strong>in</strong> the future the application of biodeqracjilble<br />

Iubricants is expected, whether of vegetable or<br />

synthetic orig<strong>in</strong>. Basic areas of the application of these<br />

lubricants are given <strong>in</strong> Table 5.<br />

Tcble 5. {.uiut'c fotn! Loss Lubicants<br />

i<br />

lq"pd@<br />

I Grease applicaticns f l^^.-_^.<br />

5. COFICLUSIOI{<br />

Perrnanent technical progress, ecological nspects and<br />

econcmic factors il'Etr) dict:rte the new qualities of<br />

lubricants. Of all base oils, that ct;nstitute 90Vc of total<br />

cuantity r:f produced lubricrants, the ones that will be<br />

most applied <strong>in</strong> the future are hydrocracked oils, polyalphaolef<strong>in</strong>cs<br />

and biodegraciable products obta<strong>in</strong>ed form<br />

natural raw materials. These base oils, together with the<br />

new types of additives give lubricants with optimal performances,<br />

which satisfy ihe TEE requirements.<br />

REFERENCES<br />

[1.) Dowsort, D., Hrstory of iribology, I-ongman, 1979.<br />

[2.] Rac, A., Pogonske materije - III Deo: MAZIVA, (<strong>in</strong><br />

Serbian), Mai<strong>in</strong>sla fakultet, Beograd,1991.<br />

[3.) Rac,.,4., Hidrod<strong>in</strong>amidki klizni leZaji - Teorija i<br />

praksa, (<strong>in</strong> Serbian), Tribologija u <strong>in</strong>dustriji, XV, 3,<br />

1993, 111 -116.<br />

[4.) Rac, A., Up-to-l)ate Tribological Consideration of<br />

Roll<strong>in</strong>g Bear<strong>in</strong>g. Tribolog.v irr <strong>Industry</strong>, 18, 3, (E),<br />

1996, pp. 105-110.<br />

[5.] Rrzc,,:1.,'Iribolcgija rnotora SUS- Startje<br />

je, i tendenci-<br />

(<strong>in</strong> Serbian), Tribologija u <strong>in</strong>dustriji, XVI ,4,<br />

1994,719-126.<br />

[6.) Rac, A., Maziva za rnotorna vozila,(<strong>in</strong> Serbian),<br />

Osmisimpozijum MVlv{, Kragujevac, MVM "Saop-<br />

Stenja", 94021,1994,153-158.<br />

[1.)Rac,<br />

A.,l'ravci razvoja motora SUS i motornih ulja:<br />

Interakcija motor-motorno ulje. (<strong>in</strong> Serbian),Henrijska<br />

<strong>in</strong>


=<br />

(J<br />

ul<br />

U)<br />

LrJ<br />

t\a<br />

T<br />

T<br />

il<br />

t-i<br />

tl<br />

rl<br />

S, TANASUEWC<br />

UDK 621,9r9.2.Nr.12<br />

Characteristics of Existence and<br />

flevelopment of Mac<strong>in</strong>e Elements<br />

<strong>Tribology</strong><br />

Tibologt oJ rnach<strong>in</strong>e elernetils is the trcw cotrcept of application of tibological hrowledge <strong>in</strong> analysis of<br />

operatiort, design and constructittg of machhrc elernents, as carriers of elementary functiorts <strong>in</strong> the general<br />

stntcture of mach<strong>in</strong>e systems. The corntnon goal and obligation is to obta<strong>in</strong> "tribologically proper constnrctions"<br />

as the.most signiJicant Enli1t irtdicator.<br />

Keywords: Tibologt, Desigrt, Mach<strong>in</strong>e elernerils<br />

l.INTRODUCTION<br />

In contemporary mechanical eng<strong>in</strong>eer<strong>in</strong>g, mach<strong>in</strong>e elements<br />

represent the irreplaceable group of general or<br />

special purpose of many rnach<strong>in</strong>es and mechanisms, thirt.<br />

<strong>in</strong> many cases are determ<strong>in</strong><strong>in</strong>g the value of technical<br />

parameters of the mach<strong>in</strong>e systems <strong>in</strong>to which they are<br />

be<strong>in</strong>g built. Regardless of that whether the mach<strong>in</strong>e<br />

element is a part, sub-assembly, assembly, or a group, its<br />

role <strong>in</strong> perform<strong>in</strong>g the elementary functions is irreplaceable<br />

<strong>in</strong> the general structure of the mach<strong>in</strong>e system.<br />

Tiibology, as the new science on friction, wear, lubrication<br />

and mutual <strong>in</strong>teractions of the surfaces <strong>in</strong> contact<br />

dur<strong>in</strong>g their relative motion, has found its practical application<br />

<strong>in</strong> mach<strong>in</strong>e elements very tast. Nature of tribological<br />

processes and natural <strong>in</strong>evitability that mach<strong>in</strong>e<br />

elements wear dur<strong>in</strong>g exploitation, have caused the necessary<br />

need for m<strong>in</strong>imiz<strong>in</strong>g this process down to the<br />

Iimit of be<strong>in</strong>g possible. The fact thai majority of mach<strong>in</strong>e<br />

elements is be<strong>in</strong>g removed from application due to excessive<br />

wear have caused that, with<strong>in</strong> tribologry as a science,<br />

the special area is develop<strong>in</strong>g: the mach<strong>in</strong>e elernents<br />

tribolory and tribology of design, Their ma<strong>in</strong> task is to<br />

obta<strong>in</strong> "tribologically proper constructions", as the important<br />

quality <strong>in</strong>dicator of the mach<strong>in</strong>e elements and<br />

the mach<strong>in</strong>e system as a whole.<br />

Present modest results <strong>in</strong> the area of mach<strong>in</strong> elenrents<br />

tribology and of <strong>in</strong>troduction of tribology <strong>in</strong> the design<br />

process, are the evidence of complexity of tribological<br />

processes, and also the evidence of certa<strong>in</strong> op<strong>in</strong>ion that<br />

both tribological processes and tribological errors can be<br />

corrected later <strong>in</strong> exploitation. Thus improv<strong>in</strong>g of con-<br />

Prof. dr Slobodan Tanasijevit, dipl. <strong>in</strong>g.<br />

Faculty of Mechanical Ertgilrcerittg, Kragjevac<br />

structions and mak<strong>in</strong>g of mach<strong>in</strong>e elements, development<br />

of new highly productive and economical technological<br />

processes for <strong>in</strong>creas<strong>in</strong>g the reliability and work<strong>in</strong>g<br />

life, are directly related to significant <strong>in</strong>troductions<br />

of tribology and tribological knowledge. And those are<br />

the tasks of the general social importance,<br />

2. TRIBOLOGY AND DEVBLOPMENT OF<br />

THE MACHINE SYSTEMS<br />

Historically consider<strong>in</strong>g, development of each science is<br />

different, but <strong>in</strong> the f<strong>in</strong>al prospective the goal was always<br />

the same: clevelopment of the new and better product,<br />

servic<strong>in</strong>g the society with the new offer, for the sake of<br />

<strong>in</strong>creas<strong>in</strong>g both the general and <strong>in</strong>dividual standard. Development<br />

of each science had always assumed the necessary<br />

complex of highly <strong>in</strong>tellectual enterprises, undertaken<br />

<strong>in</strong> the aim of progress of society and the community<br />

as a whole.<br />

Existence and development of technical sciences was<br />

closely related to production of technical systems, improvements,<br />

renewal and manufactur<strong>in</strong>g. Thus, at early stage<br />

of development of mechanical eng<strong>in</strong>eer<strong>in</strong>g, the technical<br />

sciences were develop<strong>in</strong>g, like: theory of cutt<strong>in</strong>g,<br />

science about metals, mach<strong>in</strong>e tools, technology of mach<strong>in</strong>e<br />

build<strong>in</strong>g, etc. Design, and especially methods of<br />

design, came on later. Scientific fundamentals of technical<br />

systems development entered the practice of manufactur<strong>in</strong>g<br />

companies, and they serve <strong>in</strong> the basic sources<br />

of <strong>in</strong>forrnation of specialists from different groups, only<br />

after the batch product development. Typical example of<br />

the close relation between the production and science is<br />

development, creation and realization of electronic comput<strong>in</strong>g<br />

mach<strong>in</strong>es, as well as development of space science<br />

and technology.<br />

1t1<br />

f+L<br />

Tibologt itt irtdustry, Volume 20, <strong>No</strong>. 4,<strong>1998</strong>.


Application of trrhology ir-, design and construct<strong>in</strong>g of<br />

technical systems, and ascord<strong>in</strong>gly <strong>in</strong> de'.veloprnent of<br />

mach<strong>in</strong>e systems, wzrs completeiy lagg<strong>in</strong>g beh<strong>in</strong>d the<br />

appiication of otirer technical sciences. Tribological <strong>in</strong>forrnation<br />

were optional for application and use. Constructors<br />

were try<strong>in</strong>g to <strong>in</strong>crease work<strong>in</strong>g reliability and<br />

':i<strong>in</strong>i<strong>in</strong>ate failures, and they considered wear as oae of<br />

cther requiremeirts. For a long time constructors were<br />

calculat<strong>in</strong>g that computation of mach<strong>in</strong>e elements frir<br />

their siatic strength, peimanent strength and stiffness,<br />

can be the necessary warrant of reliable and efficient<br />

operrtion of each mach<strong>in</strong>e. For <strong>in</strong>dividual work<strong>in</strong>g conditrons<br />

of rrachires it was really the like situation. But<br />

tirrr ycars went by. Technical progress persistently required<br />

<strong>in</strong>crease of power, operat<strong>in</strong>g speecis and loads, <strong>in</strong><br />

order to <strong>in</strong>crease.the work<strong>in</strong>g productivity. Mach<strong>in</strong>e ele<strong>in</strong>ents<br />

were operat<strong>in</strong>g <strong>in</strong> more and more severe work<strong>in</strong>g<br />

conditions. At that po<strong>in</strong>t and time distance, the attention<br />

was devoted to causes of failures, and sometimes to<br />

sudden deplet<strong>in</strong>g of thcir projccted work<strong>in</strong>g resources.<br />

More det:iiled analyses have sliown that the most frequent<br />

cause was excessive wear and tribological processes<br />

on vital rnach<strong>in</strong>e elements and assemblies. That was<br />

esoecially obvious <strong>in</strong> oil and gas <strong>in</strong>dustry, m<strong>in</strong><strong>in</strong>g and<br />

agriculturai techniques.<br />

Proirierns of <strong>in</strong>creas<strong>in</strong>g the wear resistance of mach<strong>in</strong>e<br />

elements and assemblie suddenly became actual. That<br />

problem was aga<strong>in</strong> soived by <strong>in</strong>creas<strong>in</strong>S; the strength, In<br />

<strong>in</strong>dividual cases, the problem of <strong>in</strong>creas<strong>in</strong>g the wear<br />

resistance was soived by choos<strong>in</strong>g the steel of higher<br />

hardness. For a long time steel was considered as analogotis<br />

to wear resistance. Later, materialswere substituted<br />

by lubricant, thus the problem of decreas<strong>in</strong>g wear were<br />

for a long time solved by adequate choice of lubricant,<br />

I-ong and difficult penetrat<strong>in</strong>g of tribology <strong>in</strong>to the sciense<br />

of deign and scientific discipl<strong>in</strong>es like: macli<strong>in</strong>e elenrents,<br />

mach<strong>in</strong>c toois, etc., can be expla<strong>in</strong>ed <strong>in</strong> several<br />

wa'r's, and from ciiffereiit po<strong>in</strong>ts of view. The essence of<br />

trrbolcgy, as a uew scientrfic discipl<strong>in</strong>e, is such that form<br />

the beg<strong>in</strong>n<strong>in</strong>g it <strong>in</strong>volved: eng<strong>in</strong>eers, chemists. technologists.<br />

metallurgists, physicists, and others, each frorn<br />

ilieir own aspect. Sueh a rvide ray of possibie <strong>in</strong>terests is,<br />

certii<strong>in</strong>ly, an important ch:rracteristics of tribology, s<strong>in</strong>ce<br />

it is. by its niliilre, <strong>in</strong>terdisc\ll<strong>in</strong>ary. At the same time, just<br />

because i:f that, it was not, for a long tirne, applicable,<br />

:;ree tiie irjomiation of fundamental research could not<br />

sufficientiy satisfy practicai needs of design and construct<strong>in</strong>g.<br />

Another aspect of <strong>in</strong>sufficient application of tribology <strong>in</strong><br />

lnechanicai eng<strong>in</strong>eer<strong>in</strong>g is absence cf coord<strong>in</strong>ation <strong>in</strong><br />

coniiuct<strong>in</strong>g the tribological <strong>in</strong>vestigations, regularly<br />

riann<strong>in</strong>g of publish<strong>in</strong>g the tribological <strong>in</strong>forrnation, notic<strong>in</strong>g<br />

prionf' directicirs, and rrnsl'nchronizedevelopment.<br />

Thus, even tr,-da1', therg exists several versions; of<br />

wear tv,pes classifications, methods of wear tests, wear<br />

evaluations, wear resistance, wear <strong>in</strong>tensity, etc. Certa<strong>in</strong><br />

lack of system <strong>in</strong> development of tribolory as a science<br />

has contributed to the fact that majority of <strong>in</strong>formation<br />

had accidenial character, and was <strong>in</strong> no way related to<br />

practical needs of


and systens, and the numbet lf si:ii:r:iific <strong>in</strong>fi-,r'l:,lilietn<br />

fi'orn this are is go<strong>in</strong>g to i:e larger Still rerna<strong>in</strong>s: the<br />

problem of their applicability and search<strong>in</strong>g f;rr the shoriest<br />

way to practrcal design .urd construct<strong>in</strong>g,<br />

3. TR.IBOLOGICAL PROCESSES IN<br />

S,IACHINE ELEMENTS<br />

Contemporary classification of classical nlirch<strong>in</strong>e elements<br />

to: elements for r:onnection. elements for power<br />

transmission, elenrents for rctational rnotions, and elements<br />

of armatures anrl hydrauiic <strong>in</strong>stallations. did noi<br />

dim<strong>in</strong>ish the global nced for analysis and identifica-tion<br />

of arisen tribolcgical phencmena and proccsses. In the<br />

frictional contitct zone of any mach<strong>in</strong>e element appelrr<br />

complex non-stationary physical-chemical and mechar.l i-<br />

cal processes, of stochastic nature, detemt<strong>in</strong>ed by the<br />

non-unique irifluence of numerous factors. ! ei us rrcntion<br />

only the rnost imp;rtanf oire::: pirysical-ciremicll and<br />

mechanical properties of elerrelts <strong>in</strong> contact, rneciiuui,<br />

roughness, ma.nufactur<strong>in</strong>g accuracy, load (rnagnit',ide<br />

and character of variatiort), spe ed and acceicration, tcr:',-<br />

per.tture of ccntirct suliaces, *tc.<br />

Processes on contact surfaces are, by their nalure, stochastic<br />

and af ccntiriuos duration, <strong>No</strong>n-unique <strong>in</strong>fluence<br />

of numerous factors Iearis to an-rbiguous results: nragnriricl,.r<br />

of the friction force and wear.<br />

Co<strong>in</strong>plexty of tribological phenornena <strong>in</strong> mircir<strong>in</strong>e elements,<br />

especially <strong>in</strong> elements for pcwer transnrissii-rn and<br />

eiements for rotation:rl motions, Coes irot imply that the<br />

processe s of friction and u,ear are totally out of control.<br />

N'{oijern kno*'iedge and availabie <strong>in</strong>iormation of the


NIacli!nc eiem*irts<br />

exploitation c;vcic,<br />

<strong>in</strong>itial<br />

c:onditions<br />

Material<br />

Environmcnta<br />

rwl<br />

d.iE:.iif I kgg<br />

charactcristics<br />

Manufactur<br />

accuracY<br />

Contact<br />

nature<br />

Mutual <strong>in</strong>teractions<br />

of activc surfaces<br />

{frictional couples)<br />

..:.RealbontaCt<br />

Meclianical<br />

constra<strong>in</strong>ts<br />

Aton.iic-molocular<br />

tlonds<br />

Friction<br />

tempcralure<br />

Processes of<br />

adsorption<br />

Elastohydlod<strong>in</strong>amic<br />

eflects<br />

Adlicsion frict<br />

Chernical<br />

Friction<br />

Deformational<br />

frict. comoon.<br />

,,ClJa11g9s,ilr<br />

sunilce, layer<br />

Structural<br />

Deforrnation<br />

and strcss<br />

Numbcr of<br />

'fimc of corrt.<br />

oFDratrot'l<br />

K<strong>in</strong>ematic<br />

aranleters<br />

Dyuarnic<br />

Srameterrs<br />

Workilig lilc<br />

Figure I. General picture oi tnaclt<strong>in</strong>e elenrctt$ erploitation c,-c!es<br />

work<strong>in</strong>g life of mach<strong>in</strong>e elements. Influence of large<br />

nurnber of otherfactors, that def<strong>in</strong>e <strong>in</strong>itial and additional<br />

conditicns, that appeared <strong>in</strong> the friction and wear processes,<br />

is still poorly <strong>in</strong>vestigated, and even less accepteil<br />

<strong>in</strong> practiee. All these testify about necessiry of more<br />

<strong>in</strong>tensrve development of mach<strong>in</strong>e elements trib


area of triboiogy of the real mach<strong>in</strong>e svstems, and that<br />

<strong>in</strong>fluences of numerous <strong>in</strong>dividuel factors on prJcesses<br />

of friction and wear are <strong>in</strong>sufficiently knorvn, let us remark<br />

that tlie similar situation exists when one considers<br />

friction and friction mechanisms of mach<strong>in</strong>e elements.<br />

This is especially expressed <strong>in</strong> modern mechanical power<br />

transmitten by friction (frictional, belt and cha<strong>in</strong>), where<br />

the process of oppos<strong>in</strong>g the reiative motion is used for<br />

ihe basic function and purpose of transmitters. The mechanism<br />

of power transmission by the idle friction is still<br />

<strong>in</strong>sufficiently understood, and especially are <strong>in</strong>sufficiently<br />

known previous displacements, relative micro-displarcments,<br />

at which theses processes occur.<br />

4. MACHINE ELEMENTS WEAR<br />

Wear is, <strong>in</strong> general sense, any type of material removal<br />

from the contact surfaces. Simultaneously, that is also the<br />

natural process, that can not be avoided, and which<br />

accompanies operation of eech mach<strong>in</strong>e element and<br />

mach<strong>in</strong>e system as a whole. Consequences of wear are<br />

changes of system's technical parameters, changes <strong>in</strong><br />

function<strong>in</strong>g, and f<strong>in</strong>ally, removal from exploitation, or <strong>in</strong><br />

the extreme case fracture and failure.<br />

Period of functional ag<strong>in</strong>g of mach<strong>in</strong>e systems is, <strong>in</strong><br />

pr<strong>in</strong>ciple, significantly longer than the period of permissible<br />

wear of mach<strong>in</strong>e elements. Physical wear of elements<br />

(/.5 to 2 years) occurs much faster than the<br />

functional (moral) ag<strong>in</strong>g (5 to ./0 vears) of a mach<strong>in</strong>e<br />

svstem. Limit<strong>in</strong>g tendency is to reach their equality, s<strong>in</strong>ce<br />

at present trme such an accord does not exist. N{a<strong>in</strong> task<br />

of tribolog'y is to m<strong>in</strong>imize breaks between these two<br />

periods, up ro the possible lirnits.<br />

The nature of the wearprocess, possibility of <strong>in</strong>direct and<br />

Cirect identifications, as well as possibility of measurement,<br />

have caused that today wear of mach<strong>in</strong>e elements<br />

is used as the most natural criterion for evaluation of the<br />

operat<strong>in</strong>g condition dur<strong>in</strong>g the exploitation period. Furihermore.<br />

wear is now even more used also <strong>in</strong> criteria for<br />

mach<strong>in</strong>e elements computations. The best example for<br />

this are computations of gears. The calculation of cha<strong>in</strong><br />

trausmitters is based on permissible cirange of the cha<strong>in</strong><br />

step due to elements wear (AJr = 3o/o), at nom<strong>in</strong>al work<strong>in</strong>g<br />

life ot- 15000 hours.<br />

In Thbie 1 are presented resuits of many years long<br />

analysis of tile most characterisiic phenomena and the<br />

most frequcntly present types mach<strong>in</strong>e elements wear.<br />

At the same time are presented the fundamental recomm0rrdations<br />

for m<strong>in</strong>imiz<strong>in</strong>g the wear procress and slow<strong>in</strong>g<br />

down its further developrnent. Possibilities exist <strong>in</strong> design,<br />

technology- i<strong>in</strong>d exploitation doma<strong>in</strong>s,<br />

mena of pitt<strong>in</strong>g represen'.s about 90c,6 of all wear phenomena<br />

on <strong>in</strong>dustrial and ship gears. 'loday, this type of<br />

wear is studied relatively good, and the general pr<strong>in</strong>ciples<br />

of its appearance, development and <strong>in</strong>fluence on the<br />

mach<strong>in</strong>e elements work<strong>in</strong>g life and reliabiiity are known.<br />

However, besides that, there are still some unanswered<br />

questions <strong>in</strong> the phenomenon of pitt<strong>in</strong>g, like the appearance<br />

of cyclic destructive pitt<strong>in</strong>g, <strong>in</strong>fluence of technological<br />

<strong>in</strong>heritance, relationship between pitt<strong>in</strong>g and work<strong>in</strong>g<br />

life, etc.<br />

Abrasive wear is the frequent form of wear of mach<strong>in</strong>e<br />

elements that operate both <strong>in</strong> conditions of open and<br />

closed systems. The rnajority of available <strong>in</strong>formation<br />

exist and the most is known about abrasive wear of gears<br />

(<strong>in</strong>vestigations of Tonn, Hru5ov, Babidev and others).<br />

There are significantly less <strong>in</strong>formation about other mach<strong>in</strong>e<br />

elements (especially roll<strong>in</strong>g bear<strong>in</strong>gs and belt<br />

transmitters). Especially are needed <strong>in</strong>vestigations about<br />

the <strong>in</strong>fluence of concentrirtion of abrasives <strong>in</strong> lubricant,<br />

<strong>in</strong>fluence of number of revolutions, slipp<strong>in</strong>g, etc.<br />

Scor<strong>in</strong>g is the type of wear of relatively recent times, and<br />

contemporary trends of designers to tran.smit as iarge as<br />

possible loads with sizes that are as small as possible, This<br />

natural discord leads to <strong>in</strong>crease of mechanical and thermal<br />

stresses and destruction of the <strong>in</strong>tegrity of the limit<strong>in</strong>g<br />

lubricat<strong>in</strong>g layer. Scor<strong>in</strong>g can appear <strong>in</strong> several different<br />

forms (cold weld<strong>in</strong>g, scuff<strong>in</strong>g, seiz<strong>in</strong>g, gall<strong>in</strong>g,<br />

etc.), what renders nrore difficult identification, remov<strong>in</strong>g<br />

and slorvs down further development. Especially<br />

<strong>in</strong>terest<strong>in</strong>g area of further <strong>in</strong>vestigations is <strong>in</strong>fluence of<br />

roughness on appearance of scor<strong>in</strong>g, s<strong>in</strong>ce <strong>in</strong> technical<br />

literature, for now, there is no unique op<strong>in</strong>ion.<br />

Corrosion, as characteristic form of tribo-chemical wear,<br />

is frequently present <strong>in</strong> exploitation of mach<strong>in</strong>e elements.<br />

Present <strong>in</strong>terests of researchers are directed towards<br />

development of new oxidation <strong>in</strong>hibitors, <strong>in</strong>vestigations<br />

of <strong>in</strong>fluence of conrposition and degree of<br />

mach<strong>in</strong><strong>in</strong>g of contact surfaces, as u'eli as <strong>in</strong>fluence oi<br />

stra<strong>in</strong><strong>in</strong>g structure.<br />

Frett<strong>in</strong>g and frett<strong>in</strong>g corrosion are types of wear that are<br />

recently i


Table l. The <strong>in</strong>ost freque nt types of mach<strong>in</strong>e elements we*r<br />

cc<br />

ril ^<br />

5O :i,z<br />

tr<br />

Y-n<br />

s<br />

z<br />

LJ<br />

6<br />

t_<br />

co<br />

z<br />

6<br />

t<br />

CE<br />

,NA<br />

2X<br />

F6<br />

-F<br />

[I| h;<br />

LLU<br />

Mach<strong>in</strong> eiements I<br />

t Gears<br />

. Boll<strong>in</strong>g bear<strong>in</strong>gs<br />

. Belts<br />

. Journai bear<strong>in</strong>gs<br />

. Frictional transmitters<br />

(lubricated)<br />

. Seais<br />

. Geats<br />

. Cha<strong>in</strong>s<br />

. Journal<br />

. Bear<strong>in</strong>gs<br />

. Roll<strong>in</strong>g bear<strong>in</strong>gs<br />

. Metal seais<br />

. pueV<br />

. Bear<strong>in</strong>gs<br />

. Gears<br />

" Eelts<br />

. Seais<br />

. Grocves, wedges<br />

. Clutches, flanges<br />

. Cha<strong>in</strong>s<br />

. Bear<strong>in</strong>g outer r<strong>in</strong>g<br />

5. CONCLUSION<br />

Ma<strong>in</strong> caulses<br />

of appearance and<br />

development<br />

Cyclic stra<strong>in</strong><strong>in</strong>g ciur<strong>in</strong>g<br />

the longer period Material<br />

<strong>in</strong>clusions Overloads and<br />

stress concentrations<br />

Solid partucies conta<strong>in</strong>ed<br />

<strong>in</strong> oil<br />

Insufficient material<br />

hardness<br />

Hard, rough metals <strong>in</strong><br />

contact with the softer<br />

materiai<br />

High loads, speeds, and<br />

temperatures<br />

Application of sta<strong>in</strong>less<br />

steels or alum<strong>in</strong>um<br />

I nsuffi cient lubrication<br />

Lack of additives<br />

Operation without<br />

runn<strong>in</strong>g <strong>in</strong><br />

Abrasive wear<br />

Corrosiv environment<br />

Corroded metals<br />

High temperatures<br />

Corrosive lubricants<br />

Mbrations and small<br />

osci ilatory displacements<br />

<strong>in</strong> conditions of corrosive<br />

environmental actions<br />

Ti"ibology of mach<strong>in</strong>e elements is the new concept of<br />

applicrrtion of tribological knowledge <strong>in</strong> analysis of operation,<br />

design and construct<strong>in</strong>g of macli<strong>in</strong>e elements, as<br />

carrien of elementary funciions <strong>in</strong> the general structure<br />

of rrach<strong>in</strong>e systems. The cornmon goal and obligation is<br />

to obta<strong>in</strong> "tribok;gicallv proper constructions" as the<br />

most significant quality <strong>in</strong>dicator.<br />

Present modest results, especially <strong>in</strong> practical applications,<br />

are rrot satisfactory, but the encourag<strong>in</strong>g is the fact<br />

that the knowledge has matured that the time that is<br />

coml.rg will require iarger application <strong>in</strong> area o mach<strong>in</strong>e<br />

eiemenis i'rnd construction as a whole. The grow<strong>in</strong>g number<br />

of scientific <strong>in</strong>formation from this area and their<br />

pr.Icticai applic:rtion are prornis<strong>in</strong>g.<br />

recornrnendations for remov<strong>in</strong>g and slow<strong>in</strong>g<br />

cf tirfher develooment<br />

On eiements<br />

Reductiorr oi crtntacl stresses<br />

anrj freqrency cf cyclic stra<strong>in</strong>s<br />

fuplication of hi.3ir ei:ality,<br />

materials<br />

Application of the acjequate<br />

mach<strong>in</strong><strong>in</strong>g regime (hereditary<br />

cnaracterisiics)<br />

Removal of abrasives by<br />

improv<strong>in</strong>g the air and oii filters<br />

Sea! improvement<br />

Addition and more freq'".rent oil<br />

repiacement<br />

Increase ct meial surfaces<br />

hardne;s<br />

tion of loads, speed and<br />

ure<br />

rmprovement<br />

of compatible<br />

tion of surface coat<strong>in</strong>gs<br />

g. fosfatiz<strong>in</strong>g)<br />

morirfication<br />

lcryc qe!!piq4q!9!)<br />

of worx<strong>in</strong>g<br />

alures<br />

ov<strong>in</strong>g of corrosive<br />

am<strong>in</strong>ation sources<br />

Preventiirg cf <strong>in</strong>tern'. rolecular<br />

bond<strong>in</strong>g<br />

REFER:INCES<br />

In lubricant<br />

Application of cor'<br />

respond<strong>in</strong>g oils of<br />

higher viscosity and<br />

adequate additives<br />

Application of oil<br />

clean of abrasive<br />

particies<br />

Application of more<br />

viscous oils<br />

Applicaticn of more<br />

viscous oils<br />

A ^^l;^^r,^^<br />

hPptrvquvr<br />

^l<br />

I vl<br />

'extreme pressure"<br />

additives (anti-scor<strong>in</strong>g<br />

additives)<br />

Application of<br />

corrosron resrstant<br />

lubricants<br />

A.void<strong>in</strong>g of high<br />

pressure oils<br />

Application of fresh<br />

oils<br />

Application of lower<br />

viscosity olls<br />

More frequent<br />

lubrication<br />

Apolication of the<br />

oxidation <strong>in</strong>hibitors<br />

[1.] O. Curtt, G. 5'., Ob5ia kart<strong>in</strong>a procesov trenia i iznosa<br />

v d<strong>in</strong>arnike ih razvitia, Vestnik ma5<strong>in</strong>ostroenia,<br />

<strong>No</strong>.2, 1997.<br />

[2.j Sorok<strong>in</strong>, G. II., Osobenosti sfanovlenia tribotogii<br />

kak nauki, Vestnik ma(<strong>in</strong>ostroenia, <strong>No</strong>. 4, 1997.<br />

13.lT*tasijevlc', S., Fundamentals of Mach<strong>in</strong>e Elements<br />

'fribologr, Scientific tsook, Belgrade, 1989. (In Serbian).<br />

[1.) Tanasijavit, 5., Mechanical po$,er transmission by<br />

friction - wa"vs of further der.'elopment, Tribolory <strong>in</strong><br />

<strong>Industry</strong>, Nci.4, 1994. (In Serbian).<br />

[5.] 7'arusijetil', S., Tribological aspccts of detailed design<br />

<strong>in</strong> the phase of construction realization, <strong>Tribology</strong><br />

<strong>in</strong> <strong>in</strong>dustrn, <strong>No</strong>. 4, 1997. (In Serbian).<br />

[6.] Tanasijr:ttii,9., I'r-iboiogicat aspccts <strong>in</strong> rnechanical<br />

transmitters d*sign, Proceed<strong>in</strong>gs of the IV Sever<br />

Syrnposium on rnechanical transmissions, Subotica,<br />

1993, (In Serbian).<br />

fi.]Tarnsijevii, S., Tribologicat aspects of design, Procceri<strong>in</strong>gs<br />

of YUTRIB'91, Kragujevac, 199tr.<br />

Tiholog, irt irtdustry, Volume 20, <strong>No</strong>. 4, i998"<br />

1 A1<br />

L+t


UDK 621:192.6.N4<br />

I<br />

O cc<br />

LU<br />

U)<br />

[!<br />

E<br />

M, BABIC<br />

<strong>Tribology</strong> and Energy<br />

Funttamenlcl problem that hurnanity is fac<strong>in</strong>g with comes from opposite requirements that are enforced<br />

simultaneously, for providitry stfficient amowt af energ for the growittg needs, for preservittg the non-restorable<br />

energt resources cnd for decreas<strong>in</strong>g ecological loads of the etwironment.<br />

Urgent need to rn<strong>in</strong>irnize this problem is apparent itt yiew of the powerful cleveloprnett of the new, so called<br />

environrmental technologies, like enetgt sav<strong>in</strong>gs, clean enerry, renewable enetry) resources, weste menagement,<br />

recyclirry, artd environmeril monito<strong>in</strong>g. Coruideitry the scenaios for the 21st century about the exponential<br />

growth of the enetgt cotuumptiot4 it is clear that the most important place belongs to enet&l sav<strong>in</strong>gs. Havbtg<br />

<strong>in</strong> m<strong>in</strong>d the dissipative nature of the tw'o basic tribological phenomena - fiction and wear, tribologt today, as<br />

the multidiscipl<strong>in</strong>ary concept, is accepted as ane of the most important chances for contibutiort, to general<br />

efforts for borh direct and <strong>in</strong>direct sav<strong>in</strong>gs of enetgl<br />

l.INTRODUCTION<br />

Fundamental probiem that humarrity is fac<strong>in</strong>g with comes<br />

from opposite requirements that are enforced simultaneously,<br />

for provid<strong>in</strong>g sufficient amount of energy for<br />

the grow<strong>in</strong>g needs, for preserv<strong>in</strong>g the non-restorable<br />

euerg/ resources and for decreas<strong>in</strong>g ecological loads of<br />

the envrronment. The degree of systematic deal<strong>in</strong>g with<br />

this problem is directly related to the degree of the<br />

country's development.<br />

In developed countries efforts for decreas<strong>in</strong>g this problem<br />

result <strong>in</strong> development of the new, so called environmental<br />

technologies, like the energy sav<strong>in</strong>gs, clean enerry,<br />

renewabie energy resources, waste management,<br />

rerycl<strong>in</strong>g, and environment monitor<strong>in</strong>g [1]. Consider<strong>in</strong>g<br />

the scenarios for the 21st century about the exponential<br />

growth of the energy consumption and further dom<strong>in</strong>ant<br />

part of fossil energy resources, it is clear that the most<br />

important place belongs to energy sav<strong>in</strong>gs. Hav<strong>in</strong>g <strong>in</strong><br />

m<strong>in</strong>d the dissipative nature of the two basic tribological<br />

phenomena - friction and wear, tribologSr ioday, as the<br />

multidiscipl<strong>in</strong>ary concept, is accepted as one of the most<br />

important chances for contribution to general effo(s for<br />

both direct and <strong>in</strong>direct sav<strong>in</strong>gs of energSr and ecological<br />

proteciion of the environment.<br />

In many countries (Engiand, Germany, USA, Japan,<br />

Canada, Ch<strong>in</strong>a) large funds were and are <strong>in</strong>vested today<br />

<strong>in</strong>to research that have as a goal to identify areas of<br />

largest "tribological s<strong>in</strong>ks" and to economically express<br />

Prof. dr kliroslav Babit, dipL <strong>in</strong>g.<br />

Faculty of Mechanical Engilrce<strong>in</strong>g, Kragtlevac<br />

losses and potential sav<strong>in</strong>gs, as well as to def<strong>in</strong>e ma<strong>in</strong><br />

directions of research, development and education <strong>in</strong><br />

order to realize estimated sav<strong>in</strong>gs [2-8]. lbk<strong>in</strong>g <strong>in</strong>to account<br />

the world experiences <strong>in</strong> this area, it can be expected<br />

that pay<strong>in</strong>g the adequate attention to tribology will<br />

result <strong>in</strong> sav<strong>in</strong>gs (of energetic character) of up to 27o of<br />

the gross nationai product. Up to 207o of these effects<br />

can be achieved without significant <strong>in</strong>vestments,<br />

A topic like energry sav<strong>in</strong>gs through tribology, assumes a<br />

broader approach to tribology as a science and technology.<br />

That approach should highlight direct easier to<br />

spot, but also <strong>in</strong>directhidden, relations between the contact<br />

phenomena dur<strong>in</strong>g the relative motion, that are of<br />

the dissipative nature, and their effects on different macro<br />

levels of express<strong>in</strong>g. Just the existence of such relations<br />

represents the basic power of the exponential development<br />

of tribology <strong>in</strong> the last thirty years.<br />

In this paper is given the global approach to problem of<br />

enerry sav<strong>in</strong>gs through tribologry. It enhances relations<br />

between micro-dissipative contact phenomena of friction<br />

and wear, and negative effects that are expressed as<br />

direct or <strong>in</strong>direct ener6y losses, as well as the estimate of<br />

basic tribological s<strong>in</strong>ks and possible energy sav<strong>in</strong>gs<br />

through tribology.<br />

2. DISSIPATIVE NATURE OF FRICTION<br />

AND WEAR<br />

Friction and wear represent fundamental processes dur<strong>in</strong>g<br />

the relative motion of solids, liquids and gasses, that<br />

are of stochastic nature, and that are manifested by<br />

dissipative, nonl<strong>in</strong>ear dynamic effects <strong>in</strong> the contact zones.<br />

1,4E<br />

Tibologt <strong>in</strong> <strong>in</strong>dwtry, Volume 20, <strong>No</strong>. 4,<strong>1998</strong>.


Cn the raicrc levei, irictron is occurr<strong>in</strong>g through irit;rac"<br />

:lcn of miss.!-roug,Frli:5.s, i.e . through diss.ipative piocess<br />

of iormiiig and break<strong>in</strong>g .--rf micro-c.ilittcts. 'iJre tct'll<br />

;'e:.isiance to relaii'' c motic;n, i.e., the frir;tion force represerrts<br />

thc sum r..f tlic-. resistance micro-cornponeiris iresistance<br />

tc eiasiic deformation, pl;istir Cefornration, jam-<br />

'lilI ,-rf mici'o-ror-r{ht:ess. and break<strong>in</strong>g of adltesive<br />

uciriisj on ihr,'tctei rer.l :-iurface, anri riissipatiofi cf euirrgy<br />

:,q a surn c-i ;lementar;,' dissipation Frccesses.<br />

iJnergi cissipiltion ocLrurs through <strong>in</strong>crease of corriact<br />

tenperature and hea,t losses, <strong>in</strong>crease of <strong>in</strong>temal energy<br />

Lif r.'liii.aci layers materials (defccts, dislocaiions) and<br />

ei il3,:iio i'l (phr.' t,-, n s, Crame r's eff eil, pho to- h r m<strong>in</strong> escence).<br />

Thr slidirg friction is aocompanied by co<strong>in</strong>plex wear<br />

pro(:s:i-s - fcr<strong>in</strong>iri; r.,f s::r'iace layer <strong>in</strong>teract<strong>in</strong>g with the<br />

envir,rrirnent, adhesive transfer between the contact surf;rccs,<br />

an.i generatio;i of the rvear prcducts (basic materi:1,<br />

reirliion products and transferred mitterial). that is<br />

happenil:g thror.rgh nrecharrisnrs af surface fatigue and<br />

aBiiistOI-r.<br />

'l'he-e processe-r:f prorn<strong>in</strong>ent scientific importance.<br />

.hougir rru academic level sometimes neglectrii due to<br />

the ccr:,ple, Infcrmaticu technclogies (generation and signal<br />

trrnsm.ission). etc.<br />

i ':hlt' i. 7 r!bu':itcitrztricoi sl,r/crtts<br />

Outptr!<br />

i iiloticn<br />

rt-ii:-n l---'-- -<br />

Primlry tecnnical --<br />

:1_;^- 1 Examples<br />

runcilon I<br />

If^]i^- -, :.:^^^--<br />

rvlJllL,l | 3ui;el<br />

llg<br />

Motion transmission<br />

fuloticn restra<strong>in</strong>!nc<br />

Bear<strong>in</strong>gs<br />

Clutches<br />

Brakes<br />

.'\I!:liei.e s','ste'iis i-epre-se1it th{ lii-r caIied "tribomechani-<br />

;;! iti';19,,r""" iii i1l(it':j oi i::;.;..r lit-tpieX Structufe, with <strong>in</strong>put<br />

arid dutpui uotiol;ir-::t. Tircre , as the <strong>in</strong>put variables usually<br />

apir;ir ni,-iiir'ti*woik and r:otion*rn:rterial, anci as<br />

r)iltput variiii,lcs <strong>in</strong>ot,irJlr, work, <strong>in</strong>formation and rnateri'<br />

al, depead<strong>in</strong>g on the prirnarl functior, the system is<br />

perfti::nr<strong>in</strong>g i libie 1 ).<br />

In the procesr of tr'iirolnechanicai systems function<strong>in</strong>g<br />

tliction is manifesred the most directly and obviously,<br />

cau:,<strong>in</strong>g direct energy loss (Figure i), aftect<strong>in</strong>g <strong>in</strong> that r.vay<br />

the <strong>in</strong>puVoutput relation and power<strong>in</strong>g the system's efficiency<br />

ratio.<br />

I<br />

l__<br />

Input L TMS t+<br />

I\IOTION +<br />

WORK<br />

nt011cN +<br />

]\i,,\ TI'RIAL<br />

Technically<br />

useful<br />

outout<br />

!.<br />

MOTION :<br />

woRN .,<br />

IN!'ORtl,t-rroN<br />

]\tA'l tiRtaL<br />

liNtrR(;y<br />

CuNlsUIlttrD oN F'lil(--IION<br />

Figurt i. f)rtct-g' 16';, s '.:! a lribr;titclnitical s1'stcnr<br />

.-;\<br />

'**l/<br />

,w<br />

r.Wm* -"1r&tffi<br />

wiib<br />

Wear is t<strong>in</strong>-rervise irreversible process, that l'rzrs clear and<br />

characteristic dep.en.1.na" oii t<strong>in</strong>le, kttou'tt as the wear<br />

curve (Figure 2). Worsen<strong>in</strong>g of different aspects of technically<br />

useful oulirut corresponds to this curve. Namely,<br />

wear primarily causes change of tire sysiem structure<br />

(condition of the contact surfaces and iayers, iorms.anct<br />

clearances), rvhat r;r-'gativeiY aftects different aspects of<br />

function<strong>in</strong>g, and leads to failure. For friction there is no<br />

such a ciear relation. ihough one can speak about existencc<br />

r;i' correlatior.i i:vtrveen ihe <strong>in</strong>crease of wear and<br />

ilicrelse of losses duc tc friction.<br />

.diiditN:<br />

7<br />

-)<br />

F<br />

:f<br />

_l<br />

:)<br />

u<br />

tt I<br />

=<br />

J<br />

_l<br />

Wcat'pilrarrrcter'<br />

i-------<br />

"a.<br />

r)<br />

=<br />

I<br />

iI<br />

I<br />

'tt\,ett I itso.#ertransler<br />

: Senscrs<br />

\<br />

I<br />

U -Z{<br />

I<br />

heDrcouclion o1<br />

. i Caf!-lefs Ot<br />

r<br />

and<br />

;-"" i,,l.,re,.ier t'^t1:11|a__,_l idqlrcqsil<br />

rviaieriaii<br />

ilr+gpgit _,__, I u:te9Jl!rec!_<br />

r i ':---'<br />

I i l i,rlr^l- rr4-' -,-- ii^+',1 ,-r,rt<strong>in</strong>d I I llr lv ,vr


3. TRIBOLOGIC,{L ENERGY LOSSES<br />

Tiibological processes, thus, <strong>in</strong>evitatrly cause direct energy<br />

and material losses, and with time this becomes apparent<br />

e$ worsen<strong>in</strong>g of the system's flnctionaiiry and faiiure.<br />

In order to decrease, prevent and elirn<strong>in</strong>ate negative<br />

c()usequences of friction auci wear, differenr ma<strong>in</strong>tenance<br />

activities are be<strong>in</strong>g undertaken. On the other side,<br />

tribologically shorten work<strong>in</strong>g life of technical systerns,<br />

conta<strong>in</strong>eci <strong>in</strong> various equipment, manufactur<strong>in</strong>g means,<br />

transportation means, etc, as a consequence has a need<br />

for new <strong>in</strong>vestments. Consider<strong>in</strong>g that, the negative consequcnces<br />

of tribological processes (tribological losses)<br />

can be irlentified on different levels (Figure 3).<br />

r".1.jt .r' rRr<br />

L_:":r tso r "o Gr cnr.<br />

-__:f<br />

:-"1r_Tl<br />

:<br />

Inl csl.mcnas<br />

Figura 3. Gbbal .correquencas of tibological processcs<br />

The most glol--aiiy considered, they can be of direct and<br />

<strong>in</strong>direci character (Figure 4) with respect to tribological<br />

processes [2].<br />

Direct losses are i<strong>in</strong>nrediate energy ioss due to friction,<br />

arid matenal loss of contact elernents due to wear, as well<br />

irs losses relatecl to ma<strong>in</strong>tenarrce. It comb<strong>in</strong>es diiferent<br />

Teftiary<br />

TRIBOLOGlCAL<br />

LOSSES/SAVINGS<br />

ecti"",ities, like monitor<strong>in</strong>g of changes <strong>in</strong> conditions of<br />

both cornponents and systems, diagnostic of their<br />

functions, as wcli as def<strong>in</strong>ition and undertak<strong>in</strong>g of concrete<br />

actions of ciean<strong>in</strong>g, lubrications. regeneration, repair,<br />

elemenis replacement, etc., what is, however, related<br />

to production of necessary means for ma<strong>in</strong>tenance<br />

and spare parts.<br />

Direct energy losses due to friction are marked as primary<br />

direct losses. These losses are the easiest to spot, and<br />

<strong>in</strong> superficial approach to the problem they are assumed<br />

as equal to total losses of tribological nature. The truth<br />

is that <strong>in</strong> total lost e nertry, <strong>in</strong> technical systems function<strong>in</strong>g,<br />

the large share belongs to losses due to friction.<br />

thus, fricticn is the important cause of low efficiency<br />

ratio of technical systems.<br />

The secondary direct losses are ma<strong>in</strong>ly relateC to necessity<br />

of produc<strong>in</strong>g and replacement of the worn criiical<br />

elements of the tribomechanical systems, and lubrication<br />

<strong>in</strong> orcler to decrease <strong>in</strong>tensity of friction and wear. With<br />

that it shoulci be kept <strong>in</strong> m<strong>in</strong>d that the requirement for<br />

simulti<strong>in</strong>eous decrease of friction and wear is not always<br />

present, what is compatible. Sometimes is present the<br />

requirement for <strong>in</strong>crease clf friction and simultaneous<br />

decrease of wear (wheel/track, car tires/road, brakes,<br />

frictional transmissions, etc.). N{aterial mach<strong>in</strong><strong>in</strong>g for<br />

replac<strong>in</strong>g the worn elements nssume set of technologies<br />

<strong>in</strong> which the energr is consunred, what can also be quantified<br />

energetically.<br />

The tertiary direct losses, namely sav<strong>in</strong>gs, are ma<strong>in</strong>ly<br />

related to material for manufactur<strong>in</strong>g the worn elements.<br />

Amount of losses/sav<strong>in</strong>gs is proportional to enerry equivalent<br />

of material and price. Every loss/sav<strong>in</strong>g on the<br />

primarl level of lower<strong>in</strong>g the friction and wear most<br />

frequently res,,rlts <strong>in</strong> even higher effects on the secondary<br />

and teriiary level.<br />

Same as prirnary and secondary losses, the tertiary losses<br />

also have dimension of energy. Namely, the metal mach<strong>in</strong><strong>in</strong>g<br />

procedures, as rvell as the material itself that is used<br />

for manufar:tur<strong>in</strong>g the triboelements, have their own<br />

enertry equivalent [2].<br />

Indirect losscslsav<strong>in</strong>gs come as a consequence of direct<br />

ones of any k<strong>in</strong>d. Losses due to delays (prirnary <strong>in</strong>direct<br />

losses) are economicaily very irnportant, but they do not<br />

have the energy d<strong>in</strong>rension. The secondary <strong>in</strong>direct sav<strong>in</strong>gs<br />

of tribologic:rl nature reflect on the capital <strong>in</strong>vestments<br />

plan, and lot only through money, but also<br />

through energy and rnaterial. Here we th<strong>in</strong>k of <strong>in</strong>vestments<br />

that are consequence of tribologically decreased<br />

work<strong>in</strong>g life of equiprnent, as well as the need for <strong>in</strong>creas<strong>in</strong>g<br />

the efficiency.<br />

Figure 4. Gicbal clatsificatk:rt of ttibological losscshav<strong>in</strong>gs<br />

150<br />

Tribolog' irt irulustry, Volunte 20, <strong>No</strong>. 4, <strong>1998</strong>.


4. IICS SI FiLE TRIISCILGGICAI- EI IERGY<br />

SAVINGS<br />

In view of ver"l liirge iril-r-'iogicai dire;t and iiidirect<br />

iosses, il. is esseiiti;il te. ansrver the follo;v<strong>in</strong>g basrc qr:ei<br />

liL] irs:<br />

* <strong>in</strong> ';'liich arra;c are possible the rnost significant trib)it--qicai<br />

sav<strong>in</strong>;as:'<br />

> What is tire structrire of changes vrith respect to their<br />

tribcicgicai orig<strong>in</strong><br />

b llorv large are the global sav<strong>in</strong>gs<br />

> In i'.,l:et- wA-v- can the sar'lngs be realized <br />

F-lthc:,tgh the irihclogiclr] processes are preseitt every^rrihere,<br />

it is clea' lhat the largest sav<strong>in</strong>gs can be reaiized <strong>in</strong><br />

irreas Gf largest energy consumcrs. l-la:;eci cn analysis of<br />

i,cveriil rrports <strong>in</strong> this i-,rea, for <strong>in</strong>dustrizilly developed<br />

countdes, <strong>in</strong>drrstry, transport, and households can he<br />

s<strong>in</strong>glerl out iis tire <strong>in</strong>dividual largest enerry consurners,<br />

Th,-:ir sirirri:': <strong>in</strong> ttre total consurnptton are:<br />

" ir:eiusli:v with i0-i8c',<br />

. trarislrur:t with 20-260/o<br />

" lic usehoids u'ith 2 l - 27 oio.<br />

From the sianclpa<strong>in</strong>i of the energy biiianee, there should<br />

be kept <strong>in</strong> m<strong>in</strong>d tirat only 65.9ctb oi the energy, on the<br />

a'./erage, reaches the f<strong>in</strong>a! consumer, while 27.77o islos,t<br />

stili ;n the prociuctiotr pl,ase [4]. Energy that is availalrle<br />

i.i ft;al c'Jrlsunlers, is thus spent ma<strong>in</strong>lv <strong>in</strong> the three<br />

erJrrrrierated atias.<br />

lribclogically relevant is only' that energy which is spent<br />

ol reailzation of relarive motion <strong>in</strong> all k<strong>in</strong>ds of tribornechanical<br />

systenls, rvhat can conditionally be identified as<br />

i;re driv<strong>in</strong>g enerry. In vi;w of the fact that <strong>in</strong> house,holds<br />

th,= :ivailable portion of energy is primarily spent on<br />

various ,.;tirer r:eecis (heat<strong>in</strong>g, lighl;, etc.), it is ciear that<br />

<strong>in</strong>dustry ln,i trzrrisport are the areas of primary tiibologi.al<br />

<strong>in</strong>tere-st, and befcre all;<br />

* r'()ad tr':rnspoi!<br />

. energetics<br />

. ertractire i;rrJuslry<br />

i =ri:ri!'iip1<br />

' met;ri worliag <strong>in</strong>dustry<br />

{ cerT!ent Inirnutlrclu:'<strong>in</strong>g <strong>in</strong>dirstry.<br />

Tl r*:riiiiically consider enersv that is spent tribologically<br />

twhi;ie part itrat can i:'e saved) it is necessary tc have at<br />

ir-'i;'s J;:iprosdi daf a on balattce of energy that is spent by<br />

J<strong>in</strong>silrrcr; <strong>in</strong> the areas of lhe large-st consumption.<br />

l3r:.se,.l on r csults ol irivcstigations reported iu published<br />

,c[i,.)rl-j. ii la:. be uoitc]uded that the useful enerE]<br />

it:lro!ii:.i iir iiille q\';t SA{)b <strong>in</strong> thc area of <strong>in</strong>dustry, and<br />

',,:low 2J7o iir the srca of lran:;pori. There, the shnrc of<br />

lhe tir:ir;<strong>in</strong>g et:ergy (pou'er) <strong>in</strong> t1:e u:ied energ'/ is estiira-<br />

icii io :,r,rrii:wi.r:,1 i:"cr l}lt'<br />

iii iriJitsti-;'. :ritil :ibctii :;91b it't<br />

trattspr-rt.i" i-Ia',,irti: tilis irr miiicl, it i:r ,litv!cus tiriii the<br />

greates a ci Uri lc*-. i (:r'! : r li rgy s.r; l r:qs r ir rt} tl gi't tril-'Ol ugy are<br />

<strong>in</strong> tir'; .,. Lii ()i lr',lir:jrr,'i<br />

As ar !ilustr lt;i'lr for the enelg:,,'consurngrtil;n on overcorn<strong>in</strong>g<br />

the iriction ri:ri:it::nce i<strong>in</strong>ci for pcltrtiii! :,a" jri gs, clri<br />

-neryer s$;lre of ttre r:x;rn.-:-rics ir thi: ii:;;i;r-ioled ir.!ticai<br />

areas, T'iiur,, <strong>in</strong> ths case '.;t e nergclics, that <strong>in</strong> tlte 3;lerai<br />

sense irclr.rdes obta<strong>in</strong>iirg of ihe enerery carriers (coal<br />

niiies, pctroieum exijioitatioil, etc.). lrnC its proCuction,<br />

energy l\)sses on {riction are B - l}Vr,, rvi;at itr FR Germany<br />

<strong>in</strong> 1982. r',,:rs equiviiient tc /. i :o r.6'i:iliioii-.r i:i Liennan<br />

X{ai'ks (Di;U). [.11. <strong>in</strong> iriii,rsi;i: ]iisse: iil,- ft' ii!i:tiorr, il:<br />

the driv<strong>in</strong>g ciierli 'rr;rliorr- v;1.1;. ijsis"ilrng rn tiie pri;-<br />

r.!ucti,rn prilces-ses tei:ititokig,'rri:':i trseti crlitipt-.rtent, lton-'<br />

f-i:jtb <strong>in</strong> <strong>in</strong><strong>in</strong>ii;gi i1; -l-Jri'.; <strong>in</strong> for';ii ilrodiiJi!r-t <strong>in</strong>r-iustry. In<br />

Ilru arei.r ui tiuti'ir: iii,i i.t;i'.t\t l)(;l'lirri: r,l -;:L::!i i; tt;i]i-i'<br />

med <strong>in</strong> ioa;l irlilfie. ijrit ci ii'::rt. 8i.t(.; iir.ri tiilj(;ii!::;ci.ri<br />

lorisc:s.<br />

How important tot;rl cnci<strong>in</strong>'lossei ihitiirEll frretitln ar.<br />

<strong>in</strong> all areas spcai:;.:;cs (i;t.t.\t'{i t;i f :.ii:;t;i:.({i':i h'.<br />

Tral'iic<br />

nti:ti; i1l<br />

l{;c.:.7fi t 677<br />

C.2C(;4O<br />

nia<br />

Small consunrers j t 3,i<br />

Tiibologi,.al losses r.iue i(i v/eilr c;f lriti,;rl eiemertis <strong>in</strong><br />

tr"ibc,rreciii<strong>in</strong>ical sy:i,e ms oi .''r,; tt-,lrs tecitnical s-vsietr]s.<br />

slu'f:l .s direil klr-;:;rrs ciuc to fi-!';iirn i,,t:,-iiri t<strong>in</strong>lc-.. Thr.: i r<br />

illur,tratcd by <strong>in</strong>ciicatirrs firr i-ti 'l ,;erliar:y (1:i8iill.1 tbi<br />

the grcup r,'f f<strong>in</strong>ai ii ritsuiilills ::,ic',',t <strong>in</strong> Tri;ii: 2.<br />

By tiieir tiatulc, iiic,l'iuciuilr: iltir'!t eiisii,-if ;lteir,r.,riilc'.:<br />

ancl <strong>in</strong>t!it'r:ci cts!s iirtr: trr: li::ili;",1r ir, iil:r,::l-riruitig i.li r.jirij)-<br />

ment and 'r-Llri:liti:rtrrtii-;it ntcirls. i';ticrtiiatir:ns shi.t.;' thut<br />

tt\tout 2^6"io oi th.: e1rjii:r, (ir)ilsi<strong>in</strong>le(i <strong>in</strong> l.!SA rr-ict-s tc<br />

nut<strong>in</strong>len;ti-tcc, t'cp,i!:- :-irit.i irir;ijli:tir,;,


\biurmno u s <strong>in</strong>vr.:stigations cf economical <strong>in</strong>n IiLrtanre of<br />

ma<strong>in</strong>tenance <strong>in</strong> Japan, conducted <strong>in</strong> eighties, liave shown<br />

that the total cc-rsts of ma<strong>in</strong>tenar-rce of me;hlnical sl,,slenrs<br />

Ln i979. were 8.x.r'0"2 Yen, what represents.,J. 73(,t


:riace a: thr bctti'm cf the energ/ consutners, clata frerm<br />

lhe reporl A strategy lor Tiibcrlogy <strong>in</strong> Carracia po<strong>in</strong>t tc<br />

ll:' lc:isibilitv ior ar<strong>in</strong>ual saviirgs <strong>in</strong> this area <strong>in</strong> Canada<br />

:ri ile iei'el :rf jiZnriliions of dollars.<br />

l-.1, the slrictilre of sav<strong>in</strong>gs through iribology, one can<br />

r-li iier,;rrtiate between sav<strong>in</strong>gs without research-rievelop-<br />

';:ei'*\r'ork anC ,"iv<strong>in</strong>gs that rerquire research-developrlcni<br />

work. that can be of medium term or the long term<br />

cillla,-ter.<br />

'fhe first group {lf sav<strong>in</strong>gs (short tenrr cnes) can bc<br />

rrci,ie'rcd Lry application of the exist<strong>in</strong>g tribologicai<br />

ll''rowle dge, through <strong>in</strong>crease of motivation, Ievel of educatiirl,<br />

tra<strong>in</strong><strong>in</strong>g and <strong>in</strong>formation. Economic effects of<br />

sucir sav<strong>in</strong>gs can be ma<strong>in</strong>ly expected <strong>in</strong> the period of -l to<br />

i yc;ris. The secr-.nci gloup of sav<strong>in</strong>gs requires R&D<br />

.rl:ticns alcou:panied by education, tra<strong>in</strong><strong>in</strong>g and <strong>in</strong>format:i:n,<br />

fu;- the periocl of up to 5 years. Tleir effects are<br />

:)iDcct€iJ with<strong>in</strong> the 5 to 8 years period. The third group<br />

r,i sarrngs assurnes long term systematic R&D work,<br />

u'lrere rrconomic effects have now certa<strong>in</strong> prospective. It<br />

should be kept <strong>in</strong> rn<strong>in</strong>d that by <strong>in</strong>vestments <strong>in</strong>to research<br />

lrr


nn n T<br />

o E,<br />

lrJ<br />

(t)<br />

IU<br />

E<br />

YY<br />

P. BI}ISKOWC<br />

UDK 621..919.2.ffi1.42<br />

Tribological Behaviour<br />

of Surfac<strong>in</strong>g Layers<br />

for Cont<strong>in</strong>ual Cast<strong>in</strong>g Rolls<br />

Prodactionofroobforcott<strong>in</strong>ualcast<strong>in</strong>gandroll<strong>in</strong>gmills andtheirrenovatianrepresents aphenomenonwhich<br />

is economically very srgnificant for metalluryists. It can be simply proved that the roll as a tool significantly<br />

affects the quality of rolled products and also contirudty of prodaction related to its hfe.<br />

The Weld<strong>in</strong>g Research Instilute is devoted to these problems for more than 40 years,<br />

Kcywords: Tibolog, regeneratiott, surface layer, harclen<strong>in</strong>g<br />

l.INTRODUCTION<br />

Production of rools for cont<strong>in</strong>ual cast<strong>in</strong>g and roll<strong>in</strong>g mills<br />

and their renovation represents a phenomenon which is<br />

economically very significant for metallurgists. It can be<br />

simply proved that the roll as a tool significantly affects<br />

the quality of rolled products and also cont<strong>in</strong>uity of<br />

production related to its life.<br />

In the world we ever more often encounter the metallurgical<br />

rolls with two, or even more surface layers, where<br />

the quality of work<strong>in</strong>g surface can be separated from that<br />

of base body of the roll. Such is also the pr<strong>in</strong>ciple of rools<br />

where the work<strong>in</strong>g surface is obta<strong>in</strong>ed by weld<strong>in</strong>g tech'<br />

nologies.<br />

Moreover, the new types of teel rolls [1,2], which were<br />

first succesfully used <strong>in</strong> Japan <strong>in</strong> 1986 (HSS rolls), have<br />

shown great possibilities of their renovation but also their<br />

production by weld<strong>in</strong>g technologies.<br />

The Weld<strong>in</strong>g Research Institute is devoted to these problems<br />

for more than 40 years.<br />

We shall <strong>in</strong>dicatewhat is now available forthe mentioned<br />

purposes.<br />

2. CURRENT APPLICATIONS<br />

The ma<strong>in</strong> advantage of surfac<strong>in</strong>g technolory application<br />

is a good comtrol over the process micrometallurry and<br />

consequentnly improved quality and purity of the deposited<br />

layer, and most recently also fabrication of composite<br />

weld overlays.<br />

Pavel Blalkovil,<br />

Department of Fha CoveredArc lAeld<strong>in</strong>g and Su(ac<strong>in</strong>g<br />

Weld<strong>in</strong>g Research Institute, Bratislava, Slavakia<br />

The mostly used surfac<strong>in</strong>g technolory is submerged arc<br />

process (SA). It is used for deposition of block rolls, billet<br />

rolls, pref<strong>in</strong>ish<strong>in</strong>g rolls and for the rolls of cont<strong>in</strong>ual<br />

cast<strong>in</strong>g l<strong>in</strong>es.<br />

2.1The parent material<br />

The base metal of surfaced rolls is selected from the<br />

follow<strong>in</strong>g steel types:<br />

L.0.6VoC;l.VoCr;O.3VoMo - steel <strong>in</strong> accordance with<br />

STN 42 2366.5 (Slovak Standard)<br />

2,0,8VoCL,VoCr,0.3VoMo - steel <strong>in</strong> accordance with'<br />

sTN42 2865.9<br />

3.05VoC;7VoCr - forged steel <strong>in</strong> accordance with<br />

sTN 14161<br />

4.0.6VoC - forged steel <strong>in</strong> accordance with<br />

srN 12060.9<br />

5.0.5VoC;0.8VoCr - steel <strong>in</strong> acrordance with<br />

sTN42 n39.5<br />

The choice of base metal depends on overall load<strong>in</strong>g of<br />

roll and its dimensions.<br />

2.2 Filler materials<br />

For submerged are surfac<strong>in</strong>g of the roll<strong>in</strong>g mill rolls and<br />

rolls for cont<strong>in</strong>ual cast<strong>in</strong>g the follow<strong>in</strong>g types of tubular<br />

wire and flux cored strip electrodes, <strong>in</strong>clud<strong>in</strong>g the flux<br />

comb<strong>in</strong>ation from the production of Weld<strong>in</strong>g Research<br />

Institute Bratislava, the types given <strong>in</strong> Table 1 are used.<br />

[4,6]<br />

In addition to submerged arc surfac<strong>in</strong>g of the cont<strong>in</strong>ual<br />

cast<strong>in</strong>g rolls, also open arc self-shield<strong>in</strong>g process is hpplied.<br />

The used tlpe of tubular wires are shown <strong>in</strong> Table<br />

2.[s)<br />

L54<br />

Tibologt <strong>in</strong> <strong>in</strong>dwtry, Volume 20, <strong>No</strong>. 4,<strong>1998</strong>.


Table l: Chemical composition of weld deposits fabricated<br />

with !'lux cored wire (RD) and flux strip electrodes<br />

(PP)<br />

,Marj


Distribution of these <strong>in</strong>clusions was studied <strong>in</strong> detail and<br />

described <strong>in</strong> work [9]. Most <strong>in</strong>clusions were observed <strong>in</strong><br />

the mentioned projections of the weld overlay close to<br />

surface while form<strong>in</strong>g whole agglomerates.<br />

The results from the study of samples <strong>in</strong> the zone of two<br />

adjacent projections surface, as the result of roll<strong>in</strong>g process<br />

(relative movement of hot and work<strong>in</strong>g surface of<br />

the roll), can be seen. At greater magnification (Fig. 2,3)<br />

spheroidized carbidic particles, as the result of thermal<br />

impacts <strong>in</strong> roll<strong>in</strong>g and plastic stra<strong>in</strong> of the surface layer,<br />

and also agglomerates of <strong>in</strong>clusions of manganese-silicate<br />

type can be observed,<br />

Thus <strong>in</strong> fnrmation of plastic stra<strong>in</strong> barriers we encounter<br />

two phenomena, namely the presence of carbidic globules<br />

distributed non-uniformly through the weld overlay<br />

thickness and also clusters of <strong>in</strong>clusions of manganesesilicate<br />

type.<br />

Plastic crack stra<strong>in</strong> around the <strong>in</strong>clusions qruses nuclei<br />

which due to cyclic temperature variations grow and<br />

form thermal fatigue craks (Fig.4).<br />

4. SURFACING OF WORKING ROLLS<br />

FOR CONTINUAL CASTING OF SI"ABS<br />

Fig. 2. Plastic defonnation of the surface layer<br />

Fig. 3. Plastic deformation of tlu surface layer<br />

Besides the rolls for form<strong>in</strong>g of metals, also the rolls for<br />

cont<strong>in</strong>ual cast<strong>in</strong>g of slabs are deposited <strong>in</strong> Slovakia. The<br />

work<strong>in</strong>g rolls serve for draw<strong>in</strong>g of slabs, their support and<br />

coll<strong>in</strong>g. Fig. 5 shows the position of the rolls <strong>in</strong> "the<br />

cont<strong>in</strong>ual cast<strong>in</strong>g l<strong>in</strong>e.<br />

The work<strong>in</strong>g rolls are arranged <strong>in</strong> separate sections and<br />

their diameters are graded as follows: A250, 270, 300,<br />

370 and 380 mm, with weight from 800 to 1960 kg.<br />

Material of rolls is forged lowcarbon steel with follow<strong>in</strong>g<br />

chemical composition:<br />

C=0.17 +0.27Vo, Mn=0.3+0.7Vo, 5i - Q,lJ+0,4Vo,<br />

Cr= 1.2 + 1. 6Vo, Mo = 0.25 + 0. 5 Vo, V= 0. 4 + 0.7Vo.<br />

Roll hardness after treatment is 250H8. [7]<br />

In order to prolong their life the rolls are surfaced by use<br />

of SA process with tubular wires <strong>in</strong> comb<strong>in</strong>ation with<br />

fluxes accord<strong>in</strong>g to table 1.<br />

The laboratory tests of weld metals aga<strong>in</strong>st wear from<br />

various tubularwires on the abrasion and on the p<strong>in</strong>-ondisc<br />

mach<strong>in</strong>e are given <strong>in</strong> table 3.<br />

Table 3. The results of wear coeficient, fiction coeficient<br />

and hardness of hardfac<strong>in</strong>g mateials from tubularwires<br />

[7]<br />

.Maqk,of..,<br />

eledffctCe Vaut V.an<br />

'::::<br />

:l: ::: l:::: :::l::::::::: :l::::::<br />

p,Coet,,of<br />

Haidnesq.;<br />

.ifriCtion.;l..'.ltlV'.,..<br />

.' 1,81 6,36 0,386 440<br />

"v,uz..B'2<br />

VUZ;RD531i 1,70 5,08 0.388 314<br />

1.78 5,44 0,388 418<br />

VUzHossC",, 1,62 2,05 0,470 2ffi<br />

1,36 3,57 0,390 280<br />

1,28 1.57 0,580 210<br />

Elalan:l I ED2<br />

1,0 1,0 0,680 175<br />

Fig. 4. Nucbation of tlrc crack<br />

Practical tests of roll life have shown that after production<br />

of" 200 M0 t of slabs, the wear on forged rolls without<br />

surfac<strong>in</strong>g was 6 mm from the roll surface with fatigue<br />

156 Triholog <strong>in</strong> <strong>in</strong>&utry, Volume 20, <strong>No</strong>. 4,<strong>1998</strong>.


___,.--<br />

\ i -.-<br />

I<br />

Fig 5. The scheme of cont<strong>in</strong>ual slab cast<strong>in</strong>g<br />

s - upper po$ .b - cuned central sectio4 c - lower paft<br />

cracks up to .15 mm <strong>in</strong> depth, and wear on weld overlay<br />

was 0.1+0.2 rnnr without fatigue cracks formation.<br />

It means that actual life atta<strong>in</strong>s more then I 000 000 t of<br />

slabs <strong>in</strong> dependence on load<strong>in</strong>g and overall conditions.<br />

Caster rolls dur<strong>in</strong>g operation are subject to a specialy<br />

harsch environment. High pressure contact, plastic deformation<br />

of roll surfaces at contact areas, severe abrasion<br />

by oxides, slags and powders, cyclic mechanical and<br />

thermal stresses and above all, corrosion contribute towards<br />

the deterioration of caster rolls, To improve the<br />

life expectancy of these rolls more noble materials are<br />

required. [5]<br />

The very new malerials have been developed, where<br />

<strong>in</strong>stead of carbon is aded nitrogen <strong>in</strong>to the crhomium<br />

alloy<strong>in</strong>g tubular wires. First work have been realised with<br />

open arc technolory [5].By the chromium nitrides CrN,<br />

Cr2Nwe can improve the hardness but the carbon is ultra<br />

low. Nitrides like hard particles <strong>in</strong> the matrix blockades<br />

the movement of dislocations growth of the gra<strong>in</strong>s, creat<strong>in</strong>g<br />

of the carbides CryC6 on the gra<strong>in</strong> bundaries,<br />

Weld<strong>in</strong>g Research Institute <strong>in</strong> Bratislava <strong>in</strong> cooperation<br />

with Metallurgical Plant Koiice developed new tubular<br />

wire VUZ-RD537N for submerged arc surfac<strong>in</strong>g. We<br />

obta<strong>in</strong>ed the same Cr2Nchromium nitrides <strong>in</strong>weld metal<br />

and Ms temperature is abo$20FC. [6] The structure is<br />

martensitic with hardness 421Hv,practically the same as<br />

by open arc technolory. Improvement <strong>in</strong> this case is very<br />

high efticiency.<br />

5" MODUI,AR SYSTEM FOR<br />

HARDFACING OF CONTINUOUS<br />

ROLLS<br />

'Ihis system is prepared for hardfac<strong>in</strong>g and reclamation<br />

of worn steel mill components by open arc and submerged<br />

arc techniques namely for hardfac<strong>in</strong>g of cont<strong>in</strong>ual<br />

cast<strong>in</strong>g rolls.<br />

Model description:<br />

L. Manipulator for rotat<strong>in</strong>g of the roll with faceplhte<br />

and travel carriage,<br />

2. Weld<strong>in</strong>g head and power source.<br />

3. Horizontal and vertical beam.<br />

4. Motorised horizontal and vertical lift (X, Y) and Z-<br />

axis manual.<br />

5. Computer for carriage and oscillation control enabl<strong>in</strong>g<br />

computerised control of:<br />

- Carriage oscilation<br />

- Oscillation width displayed <strong>in</strong> mm<br />

- Step over distance <strong>in</strong> mm<br />

- Step over speed<br />

- Spirall<strong>in</strong>g<br />

- Off-automatic-manual operation<br />

- F<strong>in</strong>e tun<strong>in</strong>g of oscillation widttr/end stops<br />

- Dwell at oscillation edses<br />

Paramcters:<br />

Diameterof theroll .. .. .Am<strong>in</strong> = 60 mm<br />

Omax= 450mm<br />

Total lenght<br />

lmax = 2000 mm<br />

Max. weight<br />

Gmax = 1500 kg<br />

The mach<strong>in</strong>e is equipped with s<strong>in</strong>gle wire open arc or<br />

submerged are weld<strong>in</strong>g head <strong>in</strong>clud<strong>in</strong>g automatic flux<br />

recirculation and power sources for open arc or for<br />

submerged arc hardflac<strong>in</strong>gs (Fig. 6).<br />

Fig. 6. Hardfacilry equipment for open arc and<br />

submerged arc surfac<strong>in</strong>g<br />

6. ELECTROSI,AG SURFACING OF<br />

ROLLS<br />

The third technology, which is concerned <strong>in</strong> relation to<br />

production of renovation of rolls is the electroslag surfac<strong>in</strong>g<br />

[3]. Up to now we have surfaced and service tested<br />

two types of materials given <strong>in</strong> table 4. It has been shown<br />

Tribologt <strong>in</strong>hdtutry, Yolume 20, <strong>No</strong>. 4,<strong>1998</strong>.<br />

157


Fig. 7. Detail of electroslag sutfactug of flat tolls<br />

that this technology can be applied ma<strong>in</strong>ly by the switch<br />

from production of rolls of high-chromium alloy to the<br />

high-speed steel materials (HSS).<br />

Table 4. Chemical compositiort of electroslag wekl deposits<br />

on rolls<br />

Mark<br />

Electroslag surfac<strong>in</strong>g can be seen <strong>in</strong> Fig, 7. The roll after<br />

surfac<strong>in</strong>g is shown <strong>in</strong> Fig. 8.<br />

7. CONCLUSION<br />

Submerged arc hardfac<strong>in</strong>g and electroslag hardfac<strong>in</strong>g<br />

technology can solve lot of problems with metallurgical<br />

rolls and can improve the quality of the rolls and their<br />

long life.<br />

REFERENCES<br />

Chemical composition [%Wt]<br />

Mn DI P<br />

194:t1 0,79 0,39 0,26 0.012 0,011<br />

GCr 2,46 0,52 0,28 0,014 0,035<br />

Cont<strong>in</strong>uatiort of Table 4<br />

Chemical composition [7oWt]<br />

Ar Ni Mo V<br />

Application<br />

0,05 0,3'l 1,65 0,19 0,01 cold rolls<br />

0,43 14,27 o,47 0,05 hot rolls<br />

lL) Bryant,,L M.: Rolls 2000 - The Challenge In.: Rolls<br />

2000, Birm<strong>in</strong>gham UK, March, 1996.<br />

Fig. 8. The roll afret surfuc<strong>in</strong>g<br />

12.) Hashimoto, M. - Shibao, S. : Recent Technical Trends<br />

of Hot Strip Mill Rolls at Nippon Steel Corporation.<br />

In.: Rolls 2000, Birm<strong>in</strong>gham, UK March 1996.<br />

[3.] Blaikovii, P.: Present State and Future Perspectives<br />

of Surfac<strong>in</strong>g Roll<strong>in</strong>g Mill Rolls <strong>in</strong> Slovakia, Doc.<br />

IIW: SC-S-48/94<br />

[4.] Filler Materials. Catalogue, VUZ Bratislava,1996.<br />

[5.] Stekly, J.J. - Atamert, S. : Nitrogen Bear<strong>in</strong>g 400 Series<br />

Alloys for Cladd<strong>in</strong>g Cont<strong>in</strong>uous Cast<strong>in</strong>g Rolls. In.:<br />

36th Mechanical Work<strong>in</strong>g and Steel Process<strong>in</strong>g<br />

Conference, Oct. 1994 Baltimore, USA.<br />

16.l Cornaj M. - Sefiik D. - Mihalkovii K. - Domankova<br />

M.: Predli,enie Zivotnosti valcov ZPO navaranim 3-<br />

tej generacie. In.: Weldtech 97 - Progress <strong>in</strong> Weld<strong>in</strong>g,<br />

Proceed<strong>in</strong>gs, WRI Bratislaa 22-23 Oct.1997.<br />

[7.]Comaj M.: <strong>No</strong>ve poznatky v navarani valcov zariadenia<br />

pre plynule odlievanie ocele do bram pridavnymi<br />

materialmi VUZ. In.: Weld<strong>in</strong>g 94. Progress <strong>in</strong><br />

weld<strong>in</strong>g technolory. WRI Bratislava May 1994.<br />

[8.] Blaikovil P.: Tribological aspects of non-uniform<br />

wear of surfac<strong>in</strong>g layers. In.: 2-nd Symposium IN-<br />

TERTRIBO,S4 - Procced<strong>in</strong>gs, DT Brutislava, The<br />

High Tatras 1984, Czechoslovakia.<br />

[9.] Blaikovic'P.: Tribological aspects of hardfac<strong>in</strong>gs.<br />

Doctor's work. STU Bratislava 1992.<br />

158<br />

Tibologt itt <strong>in</strong>dtstry, Volume 20, <strong>No</strong>.4, <strong>1998</strong>"

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!