27.12.2014 Views

Extrusion Introduction An extruder is a common machine in industry ...

Extrusion Introduction An extruder is a common machine in industry ...

Extrusion Introduction An extruder is a common machine in industry ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

R o<br />

2 <br />

z<br />

p<br />

<br />

1 <br />

<br />

u<br />

<br />

<br />

<br />

r<br />

<br />

<br />

<br />

2<br />

R o<br />

z<br />

w<br />

z<br />

<br />

<br />

<br />

<br />

<br />

<br />

1 <br />

<br />

<br />

<br />

u<br />

<br />

2<br />

r<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

R<br />

<br />

o <br />

u<br />

<br />

z <br />

<br />

z<br />

<br />

R o <br />

u<br />

<br />

<br />

z <br />

z<br />

w<br />

r<br />

<br />

<br />

<br />

w<br />

<br />

r<br />

<br />

<br />

<br />

<br />

<br />

<br />

R o<br />

z<br />

0<br />

2<br />

<br />

<br />

<br />

<br />

w <br />

<br />

z <br />

<br />

(5)<br />

(6)<br />

At r = R i (z),<br />

u <br />

<br />

<br />

<br />

R i<br />

2 <br />

z<br />

p p i<br />

R i<br />

z<br />

<br />

<br />

<br />

w<br />

<br />

<br />

u<br />

<br />

<br />

<br />

r<br />

<br />

1 <br />

<br />

<br />

<br />

0<br />

w<br />

z<br />

2<br />

R i<br />

z<br />

<br />

<br />

<br />

<br />

<br />

<br />

1 <br />

<br />

<br />

<br />

<br />

<br />

<br />

u<br />

<br />

2<br />

r<br />

<br />

<br />

<br />

2<br />

R<br />

<br />

i <br />

u<br />

<br />

z <br />

<br />

z<br />

<br />

<br />

<br />

<br />

R i <br />

u<br />

<br />

<br />

z <br />

z<br />

w<br />

r<br />

w<br />

r<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0<br />

R i<br />

z<br />

2<br />

<br />

<br />

<br />

<br />

w <br />

<br />

z <br />

<br />

(7)<br />

(8)<br />

(9)<br />

Here (4) and (7) are the k<strong>in</strong>ematic conditions, (5) and (8) the tangential stress balances,<br />

and (6) and (9) are the normal stress balances at the outer and the <strong>in</strong>ner surfaces of the<br />

tube. In (9), p i <strong>is</strong> the pressure <strong>in</strong>side the tube (i.e., <strong>in</strong>ternal pressure) that can be<br />

controlled. That <strong>is</strong>, the <strong>in</strong>ner (hence the outer) radius can be controlled by vary<strong>in</strong>g the<br />

<strong>in</strong>ternal pressure when other conditions are fixed.<br />

At z = 0,<br />

R i<br />

ri<br />

, R o ro<br />

, w w o<br />

(10)<br />

At z = L,<br />

w w L<br />

(11)<br />

Here w o <strong>is</strong> the average velocity <strong>in</strong> the axial direction that <strong>is</strong> determ<strong>in</strong>ed once the output<br />

flow rate and the die geometry (i.e., r i and r o ) are specified. the axial velocity at z = L<br />

(i.e., position the fiber <strong>is</strong> quenched or solidified <strong>in</strong>stantaneously). w L <strong>is</strong> also known as the<br />

take-up velocity (v t ) that <strong>is</strong> controlled by the take-up device.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!