27.12.2014 Views

Extrusion Introduction An extruder is a common machine in industry ...

Extrusion Introduction An extruder is a common machine in industry ...

Extrusion Introduction An extruder is a common machine in industry ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Extrusion</strong><br />

<strong>Introduction</strong><br />

<strong>An</strong> <strong>extruder</strong> <strong>is</strong> a <strong>common</strong> <strong>mach<strong>in</strong>e</strong> <strong>in</strong> <strong>in</strong>dustry, not only used <strong>in</strong> extrusion operations, but<br />

also used <strong>in</strong> mold<strong>in</strong>g operations, such as <strong>in</strong>jection mold<strong>in</strong>g and blow mold<strong>in</strong>g. In plastic<br />

<strong>in</strong>dustry, the screw <strong>extruder</strong> <strong>is</strong> the most <strong>common</strong>.<br />

air<br />

feed<strong>in</strong>g zone<br />

melt<strong>in</strong>g, mix<strong>in</strong>g<br />

& pump<strong>in</strong>g zone<br />

Figure 1. The <strong>extruder</strong>.<br />

mix<strong>in</strong>g &<br />

pump<strong>in</strong>g zone<br />

tube die<br />

What Happens <strong>in</strong> an Extruder<br />

The screw <strong>in</strong> the <strong>extruder</strong> will rotate and develop sufficient pressure to force material to<br />

go through die and produce products with different geometries.<br />

Components of an Extruder<br />

There are five ma<strong>in</strong> components of an <strong>extruder</strong>: screw, <strong>extruder</strong> drive, barrel, feed hopper,<br />

die. The helical structured <strong>extruder</strong> screw <strong>is</strong> the heart of an <strong>extruder</strong>, which <strong>in</strong>cludes<br />

transport, heat<strong>in</strong>g, melt<strong>in</strong>g and mix<strong>in</strong>g functions for plastic. <strong>An</strong> <strong>extruder</strong> drive, an<br />

electrical motor, supplies power to rotate the screw. The stability and quality of products<br />

<strong>is</strong> highly dependent of the design of the screw. The <strong>extruder</strong> barrel <strong>is</strong> outside the screw<br />

provid<strong>in</strong>g heat<strong>in</strong>g and cool<strong>in</strong>g capabilities. There <strong>is</strong> a feed throat connect feed hopper and<br />

barrel. The feed hopper <strong>is</strong> designed to hold the plastic pellets, and allows plastic pellets<br />

flow <strong>in</strong>to the barrel steadily. The die <strong>is</strong> placed at the end of the <strong>extruder</strong>, and can<br />

determ<strong>in</strong>e the shape of the product. Different types of dies are: tub<strong>in</strong>g die, flat film dies,


lown film dies, etc. In th<strong>is</strong> lab, we are us<strong>in</strong>g an annular structured tub<strong>in</strong>g die. Note that<br />

the size and shape of the extruded products will not be exactly the same as the size and<br />

shape of the die, because of several reasons: draw down, cool<strong>in</strong>g, swell<strong>in</strong>g and relaxation.<br />

Figure 2. The cross section of the die for tubes.<br />

<strong>Extrusion</strong> L<strong>in</strong>es<br />

For a complete extrusion process, <strong>in</strong> addition to <strong>extruder</strong>, upstream and downstream<br />

equipment <strong>is</strong> needed to produce useful products. The ma<strong>in</strong> equipment of an extrusion l<strong>in</strong>e<br />

<strong>is</strong> res<strong>in</strong> handl<strong>in</strong>g, dry<strong>in</strong>g system, <strong>extruder</strong>, post-shap<strong>in</strong>g or calibrat<strong>in</strong>g device, cool<strong>in</strong>g<br />

device, take-up device, and cutter or saw. The extrusion l<strong>in</strong>e <strong>in</strong> th<strong>is</strong> lab <strong>in</strong>cludes <strong>extruder</strong>,<br />

take-off roller and cool<strong>in</strong>g water trough, which are shown <strong>in</strong> Figure 3.<br />

Air<br />

Take-off roller<br />

Extruder<br />

Cool<strong>in</strong>g water trough<br />

Figure 3. The extrusion l<strong>in</strong>e <strong>in</strong> th<strong>is</strong> lab, <strong>in</strong>clud<strong>in</strong>g <strong>extruder</strong>, take-off roller and cool<strong>in</strong>g<br />

water trough.


Objectives for <strong>Extrusion</strong><br />

1. Determ<strong>in</strong>e the material volumetric feed<strong>in</strong>g rates based on different screw rotat<strong>in</strong>g<br />

speed (ω).<br />

2. F<strong>in</strong>d the tube dimensions based on different screw rotat<strong>in</strong>g speeds (ω), different takeoff<br />

speeds (v t ) and different pressure differences (p i ).<br />

3. Compare the experiment data with theoretical prediction.<br />

Proposed Goals<br />

1. Run the equipment and determ<strong>in</strong>e the volumetric feed<strong>in</strong>g rates based on different<br />

screw rotat<strong>in</strong>g speeds. Plot the volumetric feed<strong>in</strong>g rate versus screw rotat<strong>in</strong>g speed.<br />

Refer “Investigation of the Thickness (θ) of Tube with Different Screw Rotat<strong>in</strong>g<br />

Speeds (ω)” <strong>in</strong> Experimental Procedures.<br />

2. Plot the tube thickness versus screw rotat<strong>in</strong>g speed (ω), take-off speed (v t ) and<br />

pressure difference (p i ).<br />

Refer “Investigation of the Thickness (θ) of Tube with Different Screw Rotat<strong>in</strong>g<br />

Speeds (ω)”, “Investigation of the Thickness (θ) of Tube with Different Take-Off<br />

Speeds (v t )” and “Investigation of the Thickness (θ) of Tube with Different Pressure<br />

Differences (p i )” <strong>in</strong> Experimental Procedures, respectively.<br />

Internal air pressure<br />

(p i ) Hopper<br />

Die<br />

Screw<br />

Screw rotat<strong>in</strong>g speed<br />

(ω)<br />

Motor<br />

Motor<br />

Take-off speed<br />

(v t )<br />

Output material<br />

Figure 4. Scheme of control variables <strong>in</strong> th<strong>is</strong> experiment, where ω <strong>is</strong> the screw rotat<strong>in</strong>g<br />

speed, v t <strong>is</strong> the take-off speed of the roller and p i <strong>is</strong> the <strong>in</strong>ternal air pressure.


Theory<br />

Theoretical Background<br />

In th<strong>is</strong> lab, we are go<strong>in</strong>g to use an annular structured tub<strong>in</strong>g die to produce tubes <strong>in</strong><br />

different dimensions. When a polymer melt <strong>is</strong> extruded through an annular die and<br />

stretched under tension to a desired diameter, a hollow tube can be made. Although the<br />

overall process that <strong>in</strong>volves die swell followed by draw down (or stretch<strong>in</strong>g) <strong>is</strong> rather<br />

complicated as <strong>in</strong>dicated <strong>in</strong> Figure 5, analytic understand<strong>in</strong>g of the process can be made<br />

under some simplify<strong>in</strong>g assumptions.<br />

die exit<br />

die swell zone<br />

r<br />

z=0<br />

z<br />

r = R o (z)<br />

r = R i (z)<br />

u = (u, w)<br />

draw down region<br />

z=L<br />

F, w L<br />

Figure 5. The diagram for analyz<strong>in</strong>g polymer flow through the die.


In Figure 5., r and z are the radial and axial direction, respectively. R o (z) and R i (z) are the<br />

outer and <strong>in</strong>ner radius at different z position, respectively. The polymer flow<strong>in</strong>g velocity<br />

<strong>is</strong> def<strong>in</strong>ed as u, which <strong>in</strong>clud<strong>in</strong>g r-direction velocity u and z-direction velocity w.<br />

When a polymer melt flows out of the die exit, “die swell” occurs <strong>in</strong> that the polymer<br />

melt expands <strong>in</strong> the radial direction (i.e., swells) due to residual stress <strong>in</strong> the melt. Die<br />

swell <strong>is</strong> a very complicated phenomenon because it depends on the stra<strong>in</strong> h<strong>is</strong>tory (i.e.,<br />

memory effect) <strong>in</strong> the die as well as the rheological properties (both v<strong>is</strong>cous and<br />

v<strong>is</strong>coelastic) of the melt. Thus, prediction of it <strong>is</strong> very difficult. The die swell, however, <strong>is</strong><br />

restricted to a very short region near the die exit and an analytic progress can be made by<br />

simply neglect<strong>in</strong>g the die swell region and focus<strong>in</strong>g on the draw-down region.<br />

The simplify<strong>in</strong>g assumptions for the current analys<strong>is</strong> are<br />

a) Isothermal and ax<strong>is</strong>ymmetric flow<br />

b) Length of the draw-down region (L) <strong>is</strong> much longer than the radius of the exit hole of<br />

the die<br />

c) V<strong>is</strong>cous force <strong>is</strong> dom<strong>in</strong>ant and the v<strong>is</strong>coelastic force, <strong>in</strong>ertia, gravity and surface<br />

tension are negligible.<br />

d) Newtonian fluid<br />

Although polymer melts are non-Newtonian and the v<strong>is</strong>coelasticity effects are often<br />

important, the current flow of <strong>in</strong>terest <strong>is</strong> weakly extensional and slow. Furthermore, the<br />

shear stra<strong>in</strong> <strong>is</strong> also very weak throughout the entire draw-down region for th<strong>is</strong> free<br />

surface problem. Thus, the Newtonian assumption <strong>is</strong> not too restrictive. Consider<strong>in</strong>g that<br />

the v<strong>is</strong>cosity of polymer melts are quite high, assumption (c) <strong>is</strong> also not very restrictive.<br />

As the draw-down region <strong>is</strong> typically exposed to the air, the temperature may decrease as<br />

it flows down due to the cool<strong>in</strong>g by air. However, the temperature variation may not be<br />

very large unless air <strong>is</strong> blown aga<strong>in</strong>st the polymer melt for forced convective cool<strong>in</strong>g.<br />

We consider the cyl<strong>in</strong>drical coord<strong>in</strong>ates while determ<strong>in</strong><strong>in</strong>g the variables <strong>in</strong> the <strong>extruder</strong><br />

process. Figure 6. <strong>is</strong> the figure of a standard cyl<strong>in</strong>drical system.


Figure 6. Standard cyl<strong>in</strong>drical coord<strong>in</strong>ate<br />

Govern<strong>in</strong>g Equations<br />

Under the assumptions ((a)~(d)), the govern<strong>in</strong>g equations, cont<strong>in</strong>uity equation and the r-<br />

and z-directional momentum equation, for the flow <strong>in</strong> the draw-down region are as<br />

follows:<br />

1 <br />

r r ru<br />

p<br />

r<br />

p<br />

z<br />

<br />

<br />

( ) + w<br />

<br />

z = 0 (1)<br />

1<br />

<br />

<br />

2<br />

u <br />

ru<br />

<br />

<br />

(2)<br />

r<br />

<br />

r r<br />

1<br />

<br />

r<br />

<br />

<br />

2<br />

z <br />

2<br />

w w <br />

r <br />

r r 2<br />

z <br />

(3)<br />

As <strong>in</strong>dicated <strong>in</strong> Figure 5, u and w are the r- and z-directional component of the velocity<br />

vector u. R o (z) and R i (z) are the position of the outer and the <strong>in</strong>ner surface of the tube<br />

that should be also determ<strong>in</strong>ed as the solution along with u, w and p for th<strong>is</strong> free surface<br />

problem.<br />

The boundary conditions at the two free surfaces are follows,<br />

At r = R o (z),<br />

u<br />

<br />

<br />

<br />

<br />

R o<br />

z<br />

<br />

<br />

<br />

w<br />

<br />

0<br />

(4)


R o<br />

2 <br />

z<br />

p<br />

<br />

1 <br />

<br />

u<br />

<br />

<br />

<br />

r<br />

<br />

<br />

<br />

2<br />

R o<br />

z<br />

w<br />

z<br />

<br />

<br />

<br />

<br />

<br />

<br />

1 <br />

<br />

<br />

<br />

u<br />

<br />

2<br />

r<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

R<br />

<br />

o <br />

u<br />

<br />

z <br />

<br />

z<br />

<br />

R o <br />

u<br />

<br />

<br />

z <br />

z<br />

w<br />

r<br />

<br />

<br />

<br />

w<br />

<br />

r<br />

<br />

<br />

<br />

<br />

<br />

<br />

R o<br />

z<br />

0<br />

2<br />

<br />

<br />

<br />

<br />

w <br />

<br />

z <br />

<br />

(5)<br />

(6)<br />

At r = R i (z),<br />

u <br />

<br />

<br />

<br />

R i<br />

2 <br />

z<br />

p p i<br />

R i<br />

z<br />

<br />

<br />

<br />

w<br />

<br />

<br />

u<br />

<br />

<br />

<br />

r<br />

<br />

1 <br />

<br />

<br />

<br />

0<br />

w<br />

z<br />

2<br />

R i<br />

z<br />

<br />

<br />

<br />

<br />

<br />

<br />

1 <br />

<br />

<br />

<br />

<br />

<br />

<br />

u<br />

<br />

2<br />

r<br />

<br />

<br />

<br />

2<br />

R<br />

<br />

i <br />

u<br />

<br />

z <br />

<br />

z<br />

<br />

<br />

<br />

<br />

R i <br />

u<br />

<br />

<br />

z <br />

z<br />

w<br />

r<br />

w<br />

r<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0<br />

R i<br />

z<br />

2<br />

<br />

<br />

<br />

<br />

w <br />

<br />

z <br />

<br />

(7)<br />

(8)<br />

(9)<br />

Here (4) and (7) are the k<strong>in</strong>ematic conditions, (5) and (8) the tangential stress balances,<br />

and (6) and (9) are the normal stress balances at the outer and the <strong>in</strong>ner surfaces of the<br />

tube. In (9), p i <strong>is</strong> the pressure <strong>in</strong>side the tube (i.e., <strong>in</strong>ternal pressure) that can be<br />

controlled. That <strong>is</strong>, the <strong>in</strong>ner (hence the outer) radius can be controlled by vary<strong>in</strong>g the<br />

<strong>in</strong>ternal pressure when other conditions are fixed.<br />

At z = 0,<br />

R i<br />

ri<br />

, R o ro<br />

, w w o<br />

(10)<br />

At z = L,<br />

w w L<br />

(11)<br />

Here w o <strong>is</strong> the average velocity <strong>in</strong> the axial direction that <strong>is</strong> determ<strong>in</strong>ed once the output<br />

flow rate and the die geometry (i.e., r i and r o ) are specified. the axial velocity at z = L<br />

(i.e., position the fiber <strong>is</strong> quenched or solidified <strong>in</strong>stantaneously). w L <strong>is</strong> also known as the<br />

take-up velocity (v t ) that <strong>is</strong> controlled by the take-up device.


With boundary conditions occur at r = R o (z), r = R i (z), z = 0 and z = L, the <strong>in</strong>ner and<br />

outer surface profile can be determ<strong>in</strong>ed as follows.<br />

R ( z )<br />

i<br />

<br />

<br />

<br />

<br />

exp<br />

<br />

2<br />

i<br />

r<br />

<br />

<br />

<br />

(1 r<br />

2<br />

i<br />

) / w ( z )<br />

p<br />

i<br />

(1 w ( z )) <br />

<br />

<br />

w ( z ) <br />

2<br />

i<br />

r<br />

<br />

<br />

<br />

<br />

<br />

<br />

1 / 2<br />

(12)<br />

R<br />

o<br />

( z )<br />

<br />

<br />

R<br />

<br />

2<br />

i<br />

( z ) <br />

(1 r<br />

2<br />

i<br />

w ( z )<br />

) <br />

<br />

<br />

1 / 2<br />

(13)<br />

w<br />

( z ) exp <br />

z <br />

(14)<br />

<br />

w L<br />

ln <br />

w o<br />

<br />

<br />

<br />

(15)<br />

where r i and r o are known as the die geometry factors (i.e., <strong>in</strong>ner and outer diameters of<br />

exit of the die), w o <strong>is</strong> output rate at die exit and w L <strong>is</strong> the take-off velocity.<br />

Sample Calculations<br />

Figure 7 through 9 provide the theoretical predictions given by the equations (12) through<br />

(15) for the follow<strong>in</strong>g conditions:<br />

the outer radius of the die, r o : 2.788 mm (7/32” diameter)<br />

the <strong>in</strong>ner radius of the die, r i : 1.588 mm (1/8” diameter)<br />

draw span, L :<br />

v<strong>is</strong>cosity, :<br />

50 cm<br />

1000 Pa-s<br />

density, : 0.92 g/cm 3<br />

mass flow rate, m :<br />

take-up speed, w(L) :<br />

<strong>in</strong>ternal pressure, p i :<br />

50 g/m<strong>in</strong><br />

40 cm/s<br />

0 ~60 Pa


8.0<br />

7.0<br />

6.0<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

0.0<br />

W(z)<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Figure 7. Dimensionless axial velocity<br />

1.0<br />

pi = 0 Pa<br />

1.0<br />

pi = 20 Pa<br />

0.8<br />

0.8<br />

0.6<br />

0.6<br />

0.4<br />

0.4<br />

0.2<br />

0.0<br />

Ro(z)<br />

Ri(z)<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

z<br />

(a)<br />

0.2<br />

0.0<br />

Ro(z)<br />

Ri(z)<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

z<br />

(b)<br />

1.0<br />

pi = 40 Pa<br />

1.0<br />

pi = 60 Pa<br />

0.8<br />

0.8<br />

0.6<br />

0.6<br />

0.4<br />

0.4<br />

0.2<br />

0.0<br />

Ro(z)<br />

Ri(z)<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

z<br />

(c)<br />

0.2<br />

0.0<br />

Ro(z)<br />

Ri(z)<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

z<br />

(d)<br />

Figure 8. Variation of <strong>in</strong>ner and outer radius of the tube at various <strong>in</strong>ternal pressure


0.7<br />

Ri(z)/Ro(z)<br />

(<strong>in</strong>creas<strong>in</strong>g pi)<br />

pi = 60 Pa<br />

0.6<br />

pi = 0 Pa<br />

0.5<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Figure 9. Variation of <strong>in</strong>ner to outer radius ratio for various <strong>in</strong>ternal pressure<br />

Operat<strong>in</strong>g Procedures<br />

General Operations<br />

Start Up<br />

Die<br />

Off On<br />

Zone 3 Zone 2 Zone 1<br />

On Off Auto<br />

On Off Auto<br />

On Off Auto<br />

S D S 3 S 2 S 1<br />

Thermal meter<br />

for each zone<br />

T D T 3 T 2 T 1<br />

Ammeter for<br />

each zone<br />

Screw rotat<strong>in</strong>g speed<br />

15 rpm<br />

Stop<br />

Start<br />

Present temp. of die<br />

325 ℉<br />

Motor<br />

Motor speed<br />

controller<br />

Figure 10. The control panel of the extrusion system.


1. Switch the ma<strong>in</strong> power from “OFF” to “ON”.<br />

2. Turn the heat<strong>in</strong>g switches of Zone 1 (S 1 ), Zone 2 (S 2 ) and Zone 3 (S 3 ) to “Auto.” Turn<br />

the heat<strong>in</strong>g switch of Die (S D ) to “On.”<br />

3. Adjust the temperature of each zone to the desired temperature. (Goal temperature<br />

depends on the material we are us<strong>in</strong>g. For DYNH-1, the goal temperature T 1 =250°F<br />

T 2 =280°F, T 3 =280°F and T D =280°F)<br />

WARNING: EVERY PART OF THE EQUIPMENT IS EXTREMLY HOT. DON’T<br />

TOUCH IT.<br />

4. Wait until green light <strong>is</strong> d<strong>is</strong>played on every thermal meter, and check that the “present<br />

temperature of die” <strong>is</strong> the same as the goal temperature.<br />

5. Wait for another 15 m<strong>in</strong>utes to make sure the temperature of die <strong>in</strong>deed reaches the<br />

goal temperature.<br />

WARNING: EXTREMELY HOT POLYMER MAY SHOOT OUT AND<br />

SERIOUSLY HURT PEOPLE IF YOU FORGET TO WAIT ANOTHER 15<br />

MINUTES BEFORE STARTING.<br />

6. The equipment <strong>is</strong> ready to start.<br />

7. Place a water bath under die to cool down the output material.<br />

8. Make sure there are enough DYNH-1 beads <strong>in</strong> hopper.<br />

9. Press green “Start” button on the control panel.<br />

WARNING: NEVER STAND IN FRONT OF DIE SECTION AFTER START.<br />

10. Slowly adjust the motor speed to make the screw rotate at a certa<strong>in</strong> speed. (Stand<br />

beh<strong>in</strong>d the motor, you can see the screw rotation direction <strong>is</strong> counter-clockw<strong>is</strong>e.)<br />

11. Open the air valve.<br />

12. Introduce air <strong>in</strong>to the die to provide a certa<strong>in</strong> <strong>in</strong>ternal pressure (p i ).<br />

13. Open the feed gate of hopper to <strong>in</strong>troduce DYNH-1 beads <strong>in</strong>to barrel.<br />

Shut Down<br />

1. Close the feed gate of hopper.<br />

2. Let the screw run until barrel <strong>is</strong> empty, which means there <strong>is</strong> no more material go<strong>in</strong>g<br />

out.


3. Slowly adjust the motor speed to zero.<br />

4. Press red “Stop” button on the control panel.<br />

5. Turn off the switches of Zone 1 (S 1 ), Zone 2 (S 2 ) and Zone 3 (S 3 ) and Die (S D ) to<br />

“Off.”<br />

6. Switch the ma<strong>in</strong> power to “OFF.”<br />

7. Place the warn<strong>in</strong>g board near die section.<br />

WARNING: EVERY PART OF THE EQUIPMENT IS STILL EXTREMLY HOT.<br />

DON’T TOUCH IT.<br />

Experimental Procedures<br />

In th<strong>is</strong> experiment, different dimensions of tube will be obta<strong>in</strong>ed by chang<strong>in</strong>g three<br />

variables: screw rotation speed (ω), take-off speed (v t ) and <strong>in</strong>ternal pressure (p i ).<br />

D o (R o ) and m can be measured. Based on the conservation of mass shown as follows, D i<br />

(R i ) can be calculated.<br />

2<br />

D<br />

D v m<br />

2<br />

4<br />

o<br />

i<br />

t<br />

(16)<br />

where D o <strong>is</strong> the outer diameter of tube, which can be measured; ρ <strong>is</strong> the density of the<br />

material used <strong>in</strong> th<strong>is</strong> experiment, which <strong>is</strong> DYNH-1, and m <strong>is</strong> the mass feed<strong>in</strong>g rate,<br />

which <strong>is</strong> related to the screw rotation speed.<br />

NOTE: You can time and collect tube. Then, Weigh the rod and get the mass feed<strong>in</strong>g<br />

rate. Furthermore, divide the mass feed<strong>in</strong>g rate by density of DYNH-1, and volumetric<br />

feed<strong>in</strong>g rate can be obta<strong>in</strong>ed.<br />

Then, the thickness of the tube can be easily obta<strong>in</strong>ed.<br />

θ = R o − R i (17)


These are the experimental dimensions of tube. By compar<strong>in</strong>g experimental data with<br />

theoretical prediction, you can f<strong>in</strong>d out how the model works.<br />

Investigation of the Thickness of Tube with Different Screw Rotat<strong>in</strong>g Speeds<br />

1. Develop a table as follows:<br />

Table 1. Table for the dimensions of the tube with different screw rotat<strong>in</strong>g speeds,<br />

different take-off speeds and different pressure differences.<br />

ω<br />

(rpm)<br />

v t<br />

(m/s)<br />

p i<br />

(psi)<br />

Run 1 ω ○1 v t ○1 p i ○1<br />

Run 2 ω ○2 v t ○1 p i ○1<br />

Run 3 ω ○3 v t ○1 p i ○1<br />

Run 4 ω ○4 v t ○1 p i ○1<br />

Run 5 ω ○5 v t ○1 p i ○1<br />

Run 1 ω ○3 v t ○1 p i ○1<br />

Run 2 ω ○3 v t ○2 p i ○1<br />

Run 3 ω ○3 v t ○3 p i ○1<br />

Run 4 ω ○3 v t ○4 p i ○1<br />

Run 5 ω ○3 v t ○5 p i ○1<br />

Run 1 ω ○3 v t ○3 p i ○1<br />

Run 2 ω ○3 v t ○3 p i ○2<br />

Run 3 ω ○3 v t ○3 p i ○3<br />

Run 4 ω ○3 v t ○3 p i ○4<br />

Run 5 ω ○3 v t ○3 p i ○5<br />

m V<br />

(kg/m<strong>in</strong>) (m 3 /m<strong>in</strong>)<br />

SECTION 1<br />

SECTION 2<br />

SECTION 3<br />

w o<br />

(m/s)<br />

R o<br />

(mm)<br />

R i<br />

(mm)<br />

2. Fix the take-off speed, and slowly adjust motor speed to make the screw rotate at a<br />

certa<strong>in</strong> speed (rpm).<br />

3. Record the pressure gauge of the die section.<br />

4. Start to time and collect the tube.<br />

5. Weigh the tube and get the mass feed<strong>in</strong>g rate. Then, divide the mass feed<strong>in</strong>g rate by<br />

density of DYNH-1, and volumetric feed<strong>in</strong>g rate can be obta<strong>in</strong>ed.<br />

6. Calculate the output speed by divid<strong>in</strong>g the volumetric feed<strong>in</strong>g rate with cross area at<br />

the exit of die.<br />

θ<br />

(mm)


7. Measure the outer diameter (D o ) of the obta<strong>in</strong>ed tube to obta<strong>in</strong> outer radius (R o ).<br />

8. Calculate the <strong>in</strong>ner diameter (Di) from Eq. (16) to obta<strong>in</strong> <strong>in</strong>ner radius (R i ).<br />

9. Calculate the thickness (θ) from Eq. (17)<br />

10. Repeat several different screw rotat<strong>in</strong>g speeds to f<strong>in</strong><strong>is</strong>h section 1 <strong>in</strong> Table 1. (Choose<br />

at least 5 different screw rotat<strong>in</strong>g speeds.)<br />

11. Plot tube outer and <strong>in</strong>ner radius versus screw rotat<strong>in</strong>g speed and versus theoretical<br />

prediction.<br />

(Note: the diagrams may or may not be l<strong>in</strong>ear.)<br />

Investigation of the Thickness of Tube with Different Take-Off Speeds<br />

1. Fix the screw rotat<strong>in</strong>g speed and <strong>in</strong>ternal pressure (p i ), and adjust the take-off speed<br />

(v t ) to a certa<strong>in</strong> value.<br />

2. Record the pressure gauge of the die section.<br />

3. Refer to the previous section to get the volumetric feed<strong>in</strong>g rate at a specific screw<br />

rotat<strong>in</strong>g speed (rpm).<br />

4. Measure the outer diameter (D o ) of the obta<strong>in</strong>ed tube to obta<strong>in</strong> outer radius (R o ).<br />

5. Calculate the <strong>in</strong>ner diameter (Di) to obta<strong>in</strong> <strong>in</strong>ner radius (R i ) and thickness (θ) from<br />

Eq. (16) and Eq. (17), respectively.<br />

6. Repeat with several different take-off speeds to f<strong>in</strong><strong>is</strong>h section 2 <strong>in</strong> Table 1. (Choose at<br />

least 5 different take-off speeds.)<br />

7. Plot tube outer and <strong>in</strong>ner radius versus take-off speed and versus theoretical<br />

prediction.<br />

(Note: the diagrams may or may not be l<strong>in</strong>ear.)<br />

Investigation of the Thickness of Tube with Different Pressure Differences<br />

1. Fix the screw rotat<strong>in</strong>g speed and take-off speed, and adjust the <strong>in</strong>ternal pressure (p i ) to<br />

a certa<strong>in</strong> value.<br />

2. Record the pressure gauge of the die section.<br />

3. Refer to the previous section to get the volumetric feed<strong>in</strong>g rate at a specific screw<br />

rotat<strong>in</strong>g speed (rpm).<br />

4. Measure the outer diameter (D o ) of the obta<strong>in</strong>ed tube to obta<strong>in</strong> outer radius (R o ).


5. Calculate the <strong>in</strong>ner diameter (Di) to obta<strong>in</strong> <strong>in</strong>ner radius (R i ) and thickness (θ) from<br />

Eq. (16) and Eq. (17), respectively.<br />

6. Repeat with several different <strong>in</strong>ternal pressures to f<strong>in</strong><strong>is</strong>h section 3 <strong>in</strong> Table 1. (Choose<br />

at least 5 different <strong>in</strong>ternal pressures.)<br />

7. Plot tube outer and <strong>in</strong>ner radius versus <strong>in</strong>ternal pressure and versus theoretical<br />

prediction.<br />

(Note: the diagrams may or may not be l<strong>in</strong>ear.)<br />

Notations<br />

u Velocity factor (m/s)<br />

u r-directional component of the velocity vector u (m/s)<br />

w z-directional component of the velocity vector u (m/s)<br />

μ V<strong>is</strong>cosity of fluid (Pas)<br />

w o Output speed at die exit (m/s)<br />

w L Take-off speed (m/s)<br />

r o Outer radius at die exit (mm)<br />

r i Inner radius at die exit (mm)<br />

R o Outer radius of tube (mm)<br />

R i Inner radius of tube (mm)<br />

p i Internal pressure (pa)<br />

ω Screw rotat<strong>in</strong>g speed (rpm)<br />

v t Take-off speed (m/s)<br />

m Mass feed<strong>in</strong>g rate of DYNH-1 (kg/m<strong>in</strong>)<br />

V Volumetric feed<strong>in</strong>g rate of DYNH-1 (m 3 /m<strong>in</strong>)<br />

ρ Density of DYNH-1 (kg/m 3 )<br />

D o Outer diameter of tube (mm)<br />

D i Inner diameter of tube (mm)<br />

θ Thickness of tube (mm)<br />

Reference<br />

Dr. Chang-Won Park, <strong>Extrusion</strong> of Hollow Tubes<br />

Mark, H. F. (ed.), Encyclopedia of Polymer Science and Technology, Edition 3 rd ., John<br />

Wiley & Sons (2004) (Vol. 2)<br />

Stanley Middleman, Fundamentals of Polymer Process<strong>in</strong>g, McGraw Hill (1977)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!