27.12.2014 Views

Derivation of a fundamental diagram for urban traffic flow

Derivation of a fundamental diagram for urban traffic flow

Derivation of a fundamental diagram for urban traffic flow

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4 The European Physical Journal B<br />

(1 − f i )/(1 − u i ) ≤ 1 <strong>of</strong> vehicles is delayed, together with<br />

equations (15) and(20) we find<br />

Fig. 2. Schematic illustration <strong>of</strong> vehicle trajectories and signal<br />

operation in the case f i = u i, where there are no excess green<br />

times so that the <strong>traffic</strong> light is turned red as soon as the vehicle<br />

queue has been fully resolved.<br />

Hence, the percentage <strong>of</strong> delayed vehicles is<br />

A i [T cyc − (ΔT i − T i )]<br />

A i T cyc<br />

=1− f i − u i<br />

1 − u i<br />

= 1 − f i<br />

1 − u i<br />

≤ 1. (19)<br />

Altogether, the average delay <strong>of</strong> all vehicles is expected<br />

to be<br />

T av<br />

i (u i , {f j })= (1 − f i)<br />

(1 − u i )<br />

Inserting equation (5) gives<br />

T max<br />

i ({f j })<br />

2<br />

= (1 − f i) 2 T cyc ({f j })<br />

. (20)<br />

1 − u i 2<br />

Ti av (u i , {f j })= (1 − f i) 2 T los<br />

(1 − u i ) 2(1 − ∑ j f j) , (21)<br />

while with equation (15) weobtain<br />

Ti<br />

av (u i , {f j })= 1 − f i ΔNi max (u i , {f j })<br />

. (22)<br />

1 − u i 2u i ̂Q i<br />

There<strong>for</strong>e, the average delay time is proportional to the<br />

maximum queue length ΔNi<br />

max , but the prefactor depends<br />

on f i = (1 + δ i )u i (or the safety factor δ i , respectively).<br />

In case <strong>of</strong> no excess green time (δ i =0and<br />

f i = u i ), we just have<br />

Ti av ({u j })=(1− u i ) T cyc({u j })<br />

=<br />

2<br />

=<br />

ΔN<br />

max<br />

i ({u j })<br />

2A i<br />

ΔN<br />

max<br />

i ({u j })<br />

2u i ̂Qi<br />

(23)<br />

(see Fig. 2).<br />

Similarly to the average travel time, we may determine<br />

the average queue length. As the average number<br />

<strong>of</strong> delayed vehicles is (ΔNi<br />

max +0)/2 andafraction<br />

ΔN av<br />

i (u i , {f j })= (1 − f i)<br />

(1 − u i )<br />

ΔN max<br />

i (u i , {f j })<br />

2<br />

(1 − f i ) 2 T cyc ({f j })<br />

= u i ̂Qi<br />

(1 − u i ) 2<br />

= u i ̂Qi Ti av (u i , {f j }). (24)<br />

This remarkably simple relationship is known in queuing<br />

theory as Little’s Law [39], which holds <strong>for</strong> time-averaged<br />

variables even in the case <strong>of</strong> non-uni<strong>for</strong>m arrivals, if the<br />

system behaves stable (i.e. the queue length is not systematically<br />

growing or shrinking). It also allows one to establish<br />

a direct relationship between the “average vehicle<br />

density”<br />

ρ av<br />

av<br />

ΔNi<br />

i = (25)<br />

L i<br />

on the road section used by stream i and the utilization<br />

u i = A i / ̂Q i ,namely<br />

ρ av<br />

i = u i ̂Q i Ti<br />

av<br />

. (26)<br />

L i<br />

Note that the average density ρ av<br />

i has the same dependencies<br />

on other variables as ΔNi<br />

av or Ti<br />

av , and an additional<br />

dependency on L i , i.e. the more natural quantity to use is<br />

the queue length ΔNi av .<br />

2.1 Efficiency <strong>of</strong> <strong>traffic</strong> operation<br />

In reality, the average delay time will depend on the timedependence<br />

<strong>of</strong> the in<strong>flow</strong> A i (t),andonhowwellthe<strong>traffic</strong><br />

light is coordinated with the arrival <strong>of</strong> vehicle platoons. In<br />

particular, this implies a dependence on the signal <strong>of</strong>fsets.<br />

In the best case, the average delay is zero, but in the worst<br />

case, it may also be larger than<br />

1 − u i<br />

T cyc ({u j })= (1 − u i)T los<br />

2<br />

2(1 − ∑ j u j) , (27)<br />

see equation (20) withf i = u i . We may, there<strong>for</strong>e, introduce<br />

an efficiency coefficient ɛ i by the definition<br />

Ti<br />

av ({u j },ɛ i )=(1− ɛ i ) (1 − u i)T los<br />

2(1 − ∑ j u j)<br />

or, considering equation (24), equivalently by<br />

(28)<br />

ΔNi<br />

av<br />

(1 − u i )T los<br />

({u j },ɛ i )=(1− ɛ i )u i ̂Qi<br />

2(1 − ∑ j u j) . (29)<br />

For ɛ i = 1, the <strong>traffic</strong> light is perfectly synchronized with<br />

platoons in <strong>traffic</strong> stream i, i.e. vehicles are served without<br />

any delay, while <strong>for</strong> ɛ i = 0, the delay corresponds to<br />

uni<strong>for</strong>m arrivals <strong>of</strong> vehicles, when no excess green time<br />

is given. If the <strong>traffic</strong> light is not well synchronized with<br />

the arrival <strong>of</strong> vehicle platoons, we may even have ɛ i < 0.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!