27.12.2014 Views

Dr. Lihan Huang - Center for Food Safety Engineering - Purdue ...

Dr. Lihan Huang - Center for Food Safety Engineering - Purdue ...

Dr. Lihan Huang - Center for Food Safety Engineering - Purdue ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ERRC Predictive Microbiology<br />

Toolbox and <strong>Food</strong> <strong>Safety</strong><br />

In<strong>for</strong>mation Gateway<br />

<strong>Lihan</strong> <strong>Huang</strong>, Ph.D<br />

Research Leader<br />

Residue Chemistry and Predictive Microbiology Research Unit<br />

Agricultural<br />

Research<br />

Service


Overview<br />

• Research Unit<br />

• Predictive Microbiology<br />

• Future research and USDA Predictive<br />

Microbiology Tool Box and <strong>Food</strong> <strong>Safety</strong><br />

In<strong>for</strong>mation Gateway


Who we are and what we do<br />

• This unit is a brand new unit and was<br />

<strong>for</strong>med after reorganization in May, 2010.<br />

• I was called to duty on August 1, 2010.<br />

• We have chemists, microbiologists, food<br />

technologists, and engineers.<br />

• Hopefully, we can have a computational<br />

biologist in the future.


The Great Unit of RCPM<br />

• We are a unique group of scientists with diverse expertise<br />

and combined talents to address some of the most<br />

pressing challenges facing the nation’s food supply.<br />

• Together, we strive to conduct both basic and applied<br />

research in science, developing new technologies and<br />

methods to detect chemical residues, predict the fate of<br />

foodborne pathogens, and control their presence in foods.


Four Research Groups<br />

Residue Chemistry<br />

Predictive Microbiology<br />

<strong>for</strong> <strong>Food</strong> <strong>Safety</strong><br />

Integrated Approach to Process<br />

and Package Technologies<br />

Data Acquisition and Modeling<br />

<strong>for</strong> Poultry <strong>Food</strong> <strong>Safety</strong>


Residue Chemistry Group<br />

<strong>Dr</strong>. Steven Lehotay, Investigation in all<br />

aspects of chemical residue analysis.<br />

<strong>Dr</strong>. Marilyn Schneider<br />

Development of methods <strong>for</strong><br />

analysis of veterinary drug<br />

residues in food<br />

Vacant (100 applicants)<br />

Expert in Chromatography and<br />

Mass Spectrometry<br />

<strong>Dr</strong>. Guoying Chen<br />

Application of optical<br />

spectroscopy and other<br />

techniques to rapid food<br />

analysis<br />

<strong>Dr</strong>. Marjorie B. Medina<br />

Development of immunoassay,<br />

biosensor, immunoaffinity, and other<br />

techniques <strong>for</strong> detection of<br />

antioxidants, phytoestrogens, endocrine<br />

disruptors, and pathogen toxins


Predictive Microbiology<br />

<strong>Dr</strong>. Vijay Juneja<br />

<strong>Dr</strong>. Andy Hwang<br />

Predictive Microbiology In<strong>for</strong>mation Portal<br />

Regulations Models Useful Links<br />

• Final Rule on Listeria<br />

monocytogenes in RTE Meat<br />

and Poultry Products<br />

• “Zero Tolerance” Policy<br />

<strong>Dr</strong>. <strong>Lihan</strong> <strong>Huang</strong>


Integrated Approach to <strong>Food</strong> <strong>Safety</strong><br />

<strong>Dr</strong>. Xuetong Fan<br />

Irradiation and produce safety,<br />

chemical, nutritional and quality<br />

changes<br />

<strong>Dr</strong>. Tony Jin<br />

Biopolymers,<br />

antimicrobials, and<br />

food packaging<br />

<strong>Dr</strong>. Sudarsan Mukhopadhyay<br />

Process engineering <strong>for</strong><br />

food safety


<strong>Dr</strong>. Thomas Oscar,<br />

Predictive modeling, risk<br />

analysis and poultry safety<br />

Data Acquisition and Modeling<br />

<strong>for</strong> Poultry <strong>Food</strong> <strong>Safety</strong>


Mathematical Methods and Computer Simulation<br />

in Predictive Microbiology<br />

A fundamental question - how bacteria grow in the eyes of microbiologists<br />

Cytokinesis<br />

Chromosome segregation<br />

Binary fusion<br />

Cell<br />

DNA replication<br />

Chromosome


Binary Fusion


This is an exponential growth process


Modeling Binary Fusion<br />

x(t) = x 0 •2 t<br />

Ln(X) or log 10<br />

(X)<br />

time


The whole world is filled with bacteria!()<br />

If the exponential growth is allowed to proceed<br />

unlimitedly, the whole world may have been<br />

occupied by microorganisms.<br />

Apparently, the nature does not allow unlimited<br />

growth of microorganisms.


The Reality of Bacterial Growth in <strong>Food</strong><br />

A three-phase process, progressing from lag<br />

phase, through exponential phase, to and<br />

stationary phase.<br />

Stationary phase<br />

Log concentration<br />

Lag phase<br />

Exponential phase<br />

time


The Easiest Method<br />

• The “Ruler Method” - used in the “stone age” and in classroom teaching<br />

• Makes great sense in the eyes of microbiologists<br />

Log concentration<br />

time


The Manual Method<br />

• Labor-intensive, slow<br />

• Not suitable <strong>for</strong> large amount of data<br />

• Hard to find a journal to publish your work


Mathematical Modeling<br />

The question is -<br />

Can we use some kind of mathematical<br />

models to describe the bacterial growth<br />

The answer is Yes!


Empirical Models<br />

• Find an equation that resembles growth<br />

curves<br />

• The S-shaped curves<br />

• This approach is primarily used by U.S.<br />

scientists (ARS ERRC) and is the buildingblock<br />

<strong>for</strong> the early versions of the USDA<br />

Pathogen Modeling Program (PMP)


Empirical Models<br />

• Modified Gompertz model<br />

• Modified logistic model<br />

( t) = L + ( L L ) S( t)<br />

L<br />

0 max<br />

!<br />

0<br />

S<br />

( t)<br />

$ exp<br />

!<br />

= #<br />

!<br />

!"<br />

1+<br />

exp<br />

{%<br />

exp[ % µ ( t % M )]<br />

}<br />

1<br />

[%<br />

µ ( t % M )]<br />

Gompertz<br />

Logistic


Kinetic parameters derived from<br />

empirical models<br />

( t) = L + ( L L ) S( t)<br />

L<br />

0 max<br />

!<br />

0<br />

& =<br />

$<br />

!<br />

M<br />

!<br />

#<br />

!<br />

! M<br />

"<br />

%<br />

%<br />

1<br />

µ<br />

2<br />

µ<br />

Gompertz<br />

Logistics<br />

S<br />

( t)<br />

=<br />

$ exp<br />

!<br />

#<br />

!<br />

!"<br />

1+<br />

exp<br />

{%<br />

exp[ % µ ( t % M )]<br />

}<br />

1<br />

[%<br />

µ ( t % M )]<br />

Gompertz<br />

Logistic<br />

K<br />

=<br />

$ L<br />

!<br />

!<br />

#<br />

! L<br />

!<br />

"<br />

max<br />

max<br />

% L<br />

e<br />

% L<br />

4<br />

0<br />

0<br />

µ<br />

µ<br />

Gompertz<br />

Logistic<br />

<strong>Dr</strong>awback<br />

- These are EMPIRICAL models<br />

- Curve-fitting<br />

- Do not tell too much about the nature of bacterial growth


Mechanistic models<br />

The Baranyi Model It was originally based on Michaelis-Menten kinetics<br />

dq<br />

dt<br />

dC<br />

dt<br />

= ( q<br />

=<br />

µ<br />

q &<br />

q<br />

$ '<br />

1+<br />

%<br />

max<br />

1<br />

C<br />

C<br />

y<br />

max<br />

#<br />

! C<br />

"<br />

Formation of critical substances<br />

Logistic equation<br />

max 0 0<br />

( t) = y + ( )'<br />

$ +<br />

! 0<br />

µ<br />

max<br />

A t ln 1<br />

ymax<br />

' y0<br />

% e "<br />

&<br />

e<br />

µ<br />

t'<br />

h<br />

' e<br />

h<br />

#<br />

1 !"<br />

t ! h<br />

( ) ln( )<br />

0 !"<br />

t!<br />

h<br />

= t + e + e ! e<br />

0<br />

A t<br />

"<br />

h<br />

ln ( q %<br />

&<br />

0<br />

1<br />

# !<br />

' q + $<br />

0<br />

0<br />

= " = " ln<br />

( )<br />

0


Primary Models<br />

• These models have been used <strong>for</strong> many<br />

years and appeared in numerous<br />

publications<br />

• Both models are widely used in the U.S.-<br />

based publications<br />

• The Baranyi model is predominantly used<br />

outside the U.S.


Progress from ERRC - A New<br />

Primary Model<br />

• Strictly based on the biological phenomenon that<br />

are observed in the experiments<br />

• Basic definition of lag phase – no change in cell<br />

counts<br />

• Exponential growth – log-linear growth curve<br />

• Stationary phase – no change in cell counts


A New Primary Model from ERRC<br />

dC<br />

dt<br />

) C & 1<br />

= µ C<br />

' 1 #<br />

$<br />

( Cmax<br />

% 1+<br />

exp t<br />

[#<br />

"( # !)]<br />

From lag phase to exponential phase<br />

λ, lag phase


Analytical Solution to the New<br />

Growth Model<br />

y<br />

( t) = y0<br />

+ ymax<br />

# ln{ exp( y0) + [ exp( ymax) # exp( y0)<br />

] exp[ # µ $ exp( ymax) B( t)<br />

]}<br />

,<br />

1 1+<br />

exp<br />

( )<br />

(#<br />

!( t # "<br />

)<br />

B t = t + ln<br />

! 1+<br />

exp( !")<br />

where<br />

10<br />

9<br />

8<br />

log(CFU/g)<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

0 5 10 15 20 25 30 35 40<br />

t (h)<br />

! = 0.1 ! = 0.5 ! = 1 ! = 25


L. Monocytogenes in BHI Broth (37 o C)<br />

10<br />

log(CFU/ml)<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Lag phase determined by the new model<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24<br />

t (h)<br />

G1 G2 G3 G4 Gompertz Baranyi New model


Special case (no stationary phase)<br />

y<br />

( t)<br />

=<br />

y<br />

0<br />

+<br />

&<br />

µ % t<br />

$<br />

1 1+<br />

exp<br />

+ ln<br />

( 1+<br />

exp<br />

['<br />

(<br />

t ' )<br />

]<br />

(()) ! "#<br />

10<br />

9<br />

8<br />

log(CFU/g)<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

0 10 20 30 40 50 60 70<br />

t (h)<br />

15°C 30°C 37°C


E. coli O157:H7 in beef<br />

20<br />

Rif r , 25°C<br />

20<br />

Wild, 25°C<br />

18<br />

18<br />

16<br />

16<br />

14<br />

14<br />

12<br />

12<br />

10<br />

10<br />

8<br />

8<br />

Ln cfu/g<br />

6<br />

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32<br />

6<br />

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32<br />

20<br />

Rif r , 37°C<br />

20<br />

Wild, 37°C<br />

18<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

0 2 4 6 8 10 12 14 16 18 20 22 24 26<br />

t (h)<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

0 2 4 6 8 10 12 14 16 18 20 22 24 26<br />

t (h)<br />

Red: <strong>Huang</strong> model<br />

Green: Baranyi<br />

Yellow: Gompertz


The New ERRC Model<br />

• Directly derived from the fundamental<br />

assumptions of bacterial growth<br />

• All three phases clearly identifiable<br />

• The lag phase and exponential growth<br />

explicitly determined<br />

• Accurate


Progress from ERRC – A More Realistic<br />

Secondary Model<br />

Effect of Temperature on Growth Rate<br />

Optimum Temp<br />

Growth Rate<br />

Min Temp<br />

Max Temp<br />

Temperature


Ratkowsky Models<br />

µ<br />

µ<br />

µ =<br />

=<br />

=<br />

a<br />

a<br />

a<br />

( T ! T )<br />

[ ]<br />

[ ]<br />

1!<br />

e<br />

b T ! T<br />

( T ! T ) 1!<br />

e<br />

b( T ! T ) max<br />

( )<br />

2<br />

T ! T<br />

( ) max<br />

min<br />

min<br />

min


Ratkowsky models - Limitations<br />

Optimum Temp<br />

Growth Rate<br />

Ratkowsky model<br />

Min Temp<br />

Real Max Temp<br />

Real Min Temp<br />

Temperature


Progress from ERRC - A More Realistic<br />

Secondary Model<br />

µ =<br />

a<br />

[ ]<br />

( T ! T )"<br />

1!<br />

e<br />

b( T ! T ) max<br />

min


A New Secondary Model from ERRC<br />

L. Monocytogenes in beef hot dogs


What’s next<br />

Our Short Term Goal -<br />

• Develop a software tool<br />

• Primary models<br />

• Secondary models<br />

• PMP – USDA Pathogen Modeling Program<br />

• PMIP – USDA Pathogen Modeling<br />

In<strong>for</strong>mation Portal


Our Long Term Goal - ERRC Predictive<br />

Microbiology Toolbox and <strong>Food</strong> <strong>Safety</strong><br />

In<strong>for</strong>mation Gateway<br />

Computation/<br />

Numerical<br />

Analysis<br />

Engine<br />

Data<br />

Processing<br />

Engine<br />

Database<br />

Engine<br />

Mathematical<br />

Model Engine<br />

Menu Bar<br />

<strong>Food</strong><br />

<strong>Engineering</strong><br />

Engine<br />

Front-End Engine<br />

Documentation<br />

Engine<br />

Report<br />

Engine<br />

System<br />

Update<br />

Engine<br />

Risk Analysis Engine

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!