25.12.2014 Views

Shear Rate (s -1 ) - Quartz Presentations Online

Shear Rate (s -1 ) - Quartz Presentations Online

Shear Rate (s -1 ) - Quartz Presentations Online

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

SHEAR-THICKENING IN<br />

AQUEOUS SURFACTANT-<br />

ASSOCIATIVE THICKENER<br />

MIXTURES<br />

Raymond H Fernando, PhD<br />

Polymers and Coatings Program<br />

Department of Chemistry and Biochemistry<br />

California Polytechnic State University<br />

San Luis Obispo, CA 93407<br />

www.polymerscoatings.calpoly.edu


►One of 23 CSU System<br />

Universities<br />

►Over 18,000 Students<br />

►Six Colleges<br />

►Top Largely<br />

Undergraduate School<br />

in Western US<br />

►Polytechnic Curricula<br />

Cal Poly, SLO


CAL POLY SCIENCE CENTER<br />

Western Coatings<br />

Technology Center


►Introduction<br />

Outline<br />

• <strong>Shear</strong> rate dependence of viscosity<br />

• Associative thickener types<br />

• HEAT associative thickeners<br />

• Surfactant effects<br />

►Results<br />

• <strong>Shear</strong> thickening<br />

• Cyclodextrin effects<br />

►Discussion<br />

►Summary


If viscosity of a fluid is<br />

independent of shear rate, it is<br />

Newtonian<br />

<strong>Shear</strong> Stress, Pa<br />

Viscosity, Pa s<br />

<strong>Shear</strong> <strong>Rate</strong>, s -1 <strong>Shear</strong> <strong>Rate</strong>, s -1


<strong>Shear</strong> Thinning Behavior<br />

Viscosity Measured with ARES<br />

100000<br />

Viscosity (cps)<br />

10000<br />

10 0 0<br />

10 0<br />

10<br />

0.01 0.10 1.00 10.00 100.00 1000.00<br />

<strong>Shear</strong> R ate (s-1)<br />

<strong>Shear</strong> Stress, Pa<br />

<strong>Shear</strong> <strong>Rate</strong>, s -1


Thixotropy – time<br />

dependence of viscosity<br />

Viscosity<br />

Viscosity<br />

Time<br />

<strong>Shear</strong> <strong>Rate</strong>


<strong>Shear</strong> <strong>Rate</strong>s for Various Sub-Processes<br />

Sag & Leveling<br />

Settling<br />

log (Viscosity)<br />

Wicking<br />

Brush/Roll<br />

Pick Up<br />

Mixing<br />

(Slurries)<br />

Roll<br />

Coating<br />

Spray<br />

Coating<br />

10 -2 10 -1 10 0 10 +1 10 +2 10 +3 10 +4 10 +5 10 +6<br />

log (<strong>Shear</strong> <strong>Rate</strong> (s -1 ))


<strong>Shear</strong> <strong>Rate</strong> Dependence of<br />

Thickening Mechanisms<br />

log (Viscosity)<br />

10 -2 10 -1 10 0 10 +1 10 +2 10 +3 10 +4 10 +5 10 +6<br />

log (<strong>Shear</strong> <strong>Rate</strong> (s -1 ))<br />

10


<strong>Shear</strong> <strong>Rate</strong> Dependence of<br />

Thickening Mechanisms<br />

log (Viscosity)<br />

Brownian Motion<br />

Flocculation<br />

Aggregation<br />

Chain Entanglements<br />

Intermolecular<br />

Associations<br />

Hydrodynamic Volume<br />

Adsorption<br />

Aggregation<br />

Intermolecular<br />

Associations<br />

Hydrodynamic Volume<br />

Adsorption<br />

10 -2 10 -1 10 0 10 +1 10 +2 10 +3 10 +4 10 +5 10 +6<br />

log (<strong>Shear</strong> <strong>Rate</strong> (s -1 ))<br />

11


High shear can break up<br />

entanglements<br />

Viscosity<br />

<strong>Shear</strong> <strong>Rate</strong>


Associative thickeners - HEUR<br />

R-N-C-(O-CH<br />

2 -CH<br />

2 ) x -[O-C-N-R” R”-N-C-(O-CH<br />

2 -CH<br />

2 ) x ] n -O-C-N-R’<br />

-<br />

H<br />

= O<br />

R, R’ = C 12<br />

12 -C 18<br />

= O<br />

-<br />

H<br />

H-<br />

= O<br />

18 ; R” = C 7 -C 36 ; x = 90 - 455; n = 1-4<br />

= O<br />

H-<br />

(C 12 H 25 Terminal Hydrophobes; 40,000 Approx. M.W.)<br />

• Polymeric surfactants<br />

• Amphiphilic polymers<br />

13


O(<br />

Associative Thickeners -<br />

HASE<br />

CH 3<br />

CH 3<br />

(-CH 2 -C-) (-CH 2 -CH-) (-CH 2 -C-)<br />

C=O C=O C=O<br />

OH OC 2 H 5<br />

O<br />

CH 2<br />

CH 2<br />

(<br />

20<br />

C 18 H 37<br />

14


Sensitivity of Associative Thickeners<br />

Performance Sensitivity to Formulation Variables -<br />

A Drawback of Associative Thickeners<br />

► Latex Particle Surface<br />

Characteristics<br />

► Surfactants<br />

► Dispersants<br />

► Cosolvents<br />

15


Assoc. Thickener Sensitivity<br />

to Latex<br />

Surface Stabilization<br />

Latex<br />

Polymer<br />

Composition<br />

Particle<br />

Size(nm)<br />

Protective<br />

Colloid<br />

Non-Ionic<br />

Surfactants<br />

Anionic<br />

Surfactants<br />

Acid<br />

Monomer<br />

VAE155 Vinyl Acetate (87)<br />

Ethylene (13)<br />

VAEVCl Vinyl Acetate (36)<br />

Ethylene (24)<br />

Vinyl Chloride (39)<br />

VAE145 Vinyl Acetate (85)<br />

Ethylene (15)<br />

EVCl Ethylene (15)<br />

Vinyl Chloride (85)<br />

155 Yes Yes No No<br />

154 No Yes Yes Yes<br />

145 No Yes No Yes<br />

131 No No Yes Yes<br />

UrAcr Urethane-Acrylic 85 No No No Yes<br />

Acr All-Acrylic 130 -- -- -- --<br />

VAcr Vinyl-Acrylic 149 -- -- -- --<br />

Fernando, Wickmann, Louie, and Chelius, ICE Proceedings, 2000


HEUR-2020<br />

(1.0wt.%)/Latex (30<br />

30wt.%)<br />

Aqueous Blends<br />

Viscosity (mPa s)<br />

1.E+04<br />

1.E+03<br />

1.E+02<br />

1.E+01<br />

∗ - VAE155; • - VAEVCl<br />

+ - VAE145; - EVCl<br />

× -UrAcr; -Acr<br />

• -VAcr<br />

1.E+00<br />

1.E- 02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04<br />

<strong>Shear</strong> <strong>Rate</strong> (s -1 )<br />

Fernando, Wickmann, Louie, and Chelius,ICE Proceedings, 2000


Thickener Sensitivity to Surfactant<br />

[HEC]<br />

Tergitol 15S7 Addition to 0.75% HEC Solution<br />

Viscosity, centipoise<br />

1000000<br />

100000<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

1.0E-2 1.0E-1 1.0E+0 1.0E+1 1.0E+2 1.0E+3<br />

<strong>Shear</strong> <strong>Rate</strong>, s-1<br />

0.00%<br />

0.10%<br />

2.00%


Thickener Sensitivity to Surfactant<br />

[HASE]<br />

Tergitol 15S7 Addition to HASE 0.5% Solution<br />

Viscosity, centipoise<br />

1000000<br />

100000<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

1.0E-2 1.0E-1 1.0E+0 1.0E+1 1.0E+2 1.0E+3<br />

<strong>Shear</strong> <strong>Rate</strong>, s-1<br />

0.00%<br />

0.10%<br />

2.00%


Thickener Sensitivity to Surfactant<br />

[HASE]<br />

Tergitol 15S7 Addition to 0.5% HASE 935 Solution<br />

Viscosity, centipoise<br />

200000<br />

150000<br />

100000<br />

50000<br />

0<br />

0.0% 1.0% 2.0% 3.0% 4.0% 5.0%<br />

Tergitol Concentration<br />

<strong>Shear</strong> <strong>Rate</strong>,s -1<br />

0.08<br />

8.00<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0


Surfactant/Polymeric<br />

Surfactant Interactions<br />

Polymer / surfactant<br />

complex formation<br />

21


Associative Thickeners -<br />

HASE Type<br />

CH 3<br />

CH 3<br />

(-CH 2 -C-) (-CH 2 -CH-) (-CH 2 -C-)<br />

C=O C=O C=O<br />

OH OC 2 H 5<br />

O<br />

• Hulden, Colloids and Surfaces A (1994)<br />

• Jenkins et al., Polymeric Dispersions: Principles and<br />

Applications (1997)<br />

• Oleson et al., Progress in Organic Coatings (1998)<br />

• Enghlish et al., J. Rheology (1997); Ind. Eng. Chem Res.<br />

(2002)<br />

• Kulicke et al., Colloid Polymer Sci. (1998)<br />

• Tam et al., J. P{olym. Sci.: Part B (2000)<br />

• Talwar et al., J. Rheology (2006)<br />

(<br />

CH 2<br />

CH 2<br />

20<br />

C 18 H 37<br />

O(<br />

22


Generic Structure of Hydrophobically-<br />

Modified, Aminoplast Thickener (HEAT)<br />

Optiflo L100<br />

(20% in water)<br />

Supplied by<br />

Sud Chemie<br />

Steinmetz, A.L., FSCT Mid-Year Symposium<br />

Ft. Lauderdale, FL (2004)


HEAT Thickener<br />

US 5,627,232 – Glancy & Steinmetz<br />

US 5,629,373 – Glancy & Steinmetz<br />

HEATs are Glycoluril based;<br />

M.W. 30,000 – 80,000


Ethoxylated, Octylphenol Surfactants<br />

Used in the Study<br />

► Triton X-45<br />

(n=4.5)<br />

► Triton X-100<br />

(n=9.5)<br />

► Triton X-102<br />

(n= 13)<br />

► Triton X-405<br />

(n= 40)<br />

CH 3<br />

CH 3<br />

H 3<br />

C C CH 2<br />

C<br />

O CH 2<br />

CH 2<br />

O H<br />

n<br />

CH 3<br />

CH 3<br />

Proceedings of ICE 2007


CMC and HLB Values of Surfactants<br />

Surfactant<br />

CMC (mM)<br />

CMC<br />

(wt.%)<br />

HLB<br />

Triton X-45<br />

0.11 0.0045 9.8<br />

Triton X-100<br />

0.24 0.0150 13.4<br />

Triton X-102<br />

0.28 0.022 14.4<br />

Triton X-405<br />

0.81 0.16 17.6


Viscosity Dependence on Surfactant<br />

Concentration for Aqueous L100 (0.5<br />

wt.%) and Surfactant Blends<br />

Viscosity (cP)<br />

1000.00<br />

100.00<br />

10.00<br />

1.00<br />

Viscosity of Optiflo L100 blends at 9.283 1/s<br />

0 1 2 3 4 5<br />

Surfactant Concentration (wt%)<br />

X-45<br />

X-100<br />

X-102<br />

X-405


<strong>Shear</strong>-thickening of L100<br />

solutions<br />

Viscosity dependence on shear rate of Triton X-45 surfactant<br />

(varying concentrations) and Optiflo L-100 (1.0 Wt.%) aqueous<br />

blends. Data point equilibration time – 30 seconds


<strong>Shear</strong>-thickening of L100<br />

solutions<br />

Viscosity dependence on shear rate of Triton X-45 surfactant (1.5 Wt.%)<br />

and Optiflo L-100 (1.0 Wt.%) aqueous blend. Data point equilibration<br />

time – 30 & 90 seconds represented by circle and square symbols,<br />

respectively.


<strong>Shear</strong>-thickening of L100 solutions<br />

Viscosity dependence on shear rate of Triton X-45 surfactant (1.0<br />

Wt.% - closed circles & 2.5 Wt.% - open circles) and Optiflo L-100<br />

(1.0 Wt.%) aqueous blends.<br />

1 – <strong>Shear</strong> rate ramp-up; 2 – <strong>Shear</strong> rate ramp-down.


Complex Viscosity of L100<br />

Solutions<br />

complex viscosity (h*) dependence on frequency of Triton X-45<br />

surfactant (varying concentrations) and Optiflo L-100 (1.0 Wt.%)<br />

aqueous blends.


Cyclodextrin Structure<br />

Capable of removing hydrophobic<br />

interactions by forming inclusion complexes


β-Cyclodextrin<br />

Structure<br />

Capable of breaking<br />

up hydrophobic<br />

interactions by<br />

forming inclusion<br />

complexes<br />

Lau, W., “Frontiers in Emulsion Polymerization in Coatings”,<br />

American Coatings Conference, 2010


Effect of m-βCD<br />

on viscosity of<br />

HEUR-C16-51K (2% in water)


Proposed viscosity reduction<br />

mechanism


β-cyclodextrin<br />

effect on L-100<br />

1% L-100<br />

2% L-100<br />

Viscosity (Pa*s)<br />

0.1<br />

0.01<br />

1% L-100<br />

w ith 1% BCD<br />

Viscosity (Pa*s)<br />

0.1<br />

0.01<br />

2% L-100<br />

w ith 1% BCD<br />

0.001<br />

1 10 100 1000<br />

<strong>Shear</strong> <strong>Rate</strong> (1/s)<br />

0.001<br />

1 10 100 1000<br />

<strong>Shear</strong> <strong>Rate</strong> (1/s)<br />

0.1<br />

3% L-100<br />

0.1<br />

4% L-100<br />

3% L-100<br />

w ith 1% BCD<br />

Viscosity (Pa*s)<br />

0.01<br />

Viscosity<br />

0.01<br />

4% L-100<br />

w ith 1% BCD<br />

0.001<br />

1 10 100 1000<br />

<strong>Shear</strong> <strong>Rate</strong> (1/s)<br />

0.001<br />

1 10 100 1000<br />

<strong>Shear</strong> rate (1/s)


β-cyclodextrin<br />

effect on<br />

L-100/X-45 blend<br />

0.1<br />

1% L-100<br />

1% L-100<br />

w ith 1% BCD<br />

w ith 1% BCD and<br />

1% X-45<br />

w ith 1% X-45<br />

Viscosity (Pa*s)<br />

0.01<br />

0.001<br />

1 10 100 1000<br />

<strong>Shear</strong> <strong>Rate</strong> (1/s)


Effect of order of order of addition<br />

0.1<br />

1% L-100<br />

0.1<br />

1.5% L-100<br />

Viscosity (Pa*s)<br />

0.01<br />

X-45 equilibrated<br />

first<br />

BCD equilibrated<br />

first<br />

0.001<br />

1 10 100 1000<br />

<strong>Shear</strong> <strong>Rate</strong> (1/s)<br />

Viscosity (Pa*s)<br />

0.01<br />

X-45 Equilibrated<br />

First<br />

BCD Equilibrated<br />

First<br />

0.001<br />

1 10 100 1000<br />

<strong>Shear</strong> <strong>Rate</strong> (1/s)<br />

0.1<br />

2% L-100<br />

0.1<br />

3% L-100<br />

Viscosity (Pa*s)<br />

0.01<br />

0.001<br />

X-45 Equilibrated<br />

First<br />

BCD Equilibrated<br />

First<br />

1 10 100 1000<br />

<strong>Shear</strong> <strong>Rate</strong> (1/s)<br />

Viscosity (Pa*s)<br />

0.01<br />

0.001<br />

X-45 Equilibrated<br />

First<br />

BCD Equilibrated<br />

First<br />

1 10 100 1000<br />

<strong>Shear</strong> <strong>Rate</strong> (1/s)


0.05<br />

Time Dependence of Viscosity at Constant <strong>Shear</strong> <strong>Rate</strong><br />

2% L-100 with 10/s <strong>Shear</strong><br />

0.04<br />

Viscosity ( Pa*s)<br />

0.03<br />

0.02<br />

2% L-100<br />

with 1% BCD<br />

with 1 % X-45<br />

with 1% BCD and 1% X-45<br />

0.01<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br />

Time (Minutes)


Summary<br />

►HEAT L100<br />

thickener exhibits shear-<br />

thickening in the presence of the highly<br />

hydrophobic X-45<br />

surfactant<br />

►<strong>Shear</strong>-thickening is observed within a<br />

narrow range of shear rates<br />

►Effect of β-cyclodextrin indicate shear-<br />

thickening is caused by specific<br />

hydrophobes that are not disrupted by<br />

cyclodextrin


Acknowledgement<br />

►Dr. Alan Steinmetz (Southern Clay)<br />

►Dow Chemical<br />

►Cal Poly Bill Moore Fellowship Fund<br />

►Cal Poly Students<br />

• Laura Johnson<br />

• Sean Manion<br />

• Gary Deng<br />

• Adam Paiz

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!