25.12.2014 Views

Shear Rate (s -1 ) - Quartz Presentations Online

Shear Rate (s -1 ) - Quartz Presentations Online

Shear Rate (s -1 ) - Quartz Presentations Online

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SHEAR-THICKENING IN<br />

AQUEOUS SURFACTANT-<br />

ASSOCIATIVE THICKENER<br />

MIXTURES<br />

Raymond H Fernando, PhD<br />

Polymers and Coatings Program<br />

Department of Chemistry and Biochemistry<br />

California Polytechnic State University<br />

San Luis Obispo, CA 93407<br />

www.polymerscoatings.calpoly.edu


►One of 23 CSU System<br />

Universities<br />

►Over 18,000 Students<br />

►Six Colleges<br />

►Top Largely<br />

Undergraduate School<br />

in Western US<br />

►Polytechnic Curricula<br />

Cal Poly, SLO


CAL POLY SCIENCE CENTER<br />

Western Coatings<br />

Technology Center


►Introduction<br />

Outline<br />

• <strong>Shear</strong> rate dependence of viscosity<br />

• Associative thickener types<br />

• HEAT associative thickeners<br />

• Surfactant effects<br />

►Results<br />

• <strong>Shear</strong> thickening<br />

• Cyclodextrin effects<br />

►Discussion<br />

►Summary


If viscosity of a fluid is<br />

independent of shear rate, it is<br />

Newtonian<br />

<strong>Shear</strong> Stress, Pa<br />

Viscosity, Pa s<br />

<strong>Shear</strong> <strong>Rate</strong>, s -1 <strong>Shear</strong> <strong>Rate</strong>, s -1


<strong>Shear</strong> Thinning Behavior<br />

Viscosity Measured with ARES<br />

100000<br />

Viscosity (cps)<br />

10000<br />

10 0 0<br />

10 0<br />

10<br />

0.01 0.10 1.00 10.00 100.00 1000.00<br />

<strong>Shear</strong> R ate (s-1)<br />

<strong>Shear</strong> Stress, Pa<br />

<strong>Shear</strong> <strong>Rate</strong>, s -1


Thixotropy – time<br />

dependence of viscosity<br />

Viscosity<br />

Viscosity<br />

Time<br />

<strong>Shear</strong> <strong>Rate</strong>


<strong>Shear</strong> <strong>Rate</strong>s for Various Sub-Processes<br />

Sag & Leveling<br />

Settling<br />

log (Viscosity)<br />

Wicking<br />

Brush/Roll<br />

Pick Up<br />

Mixing<br />

(Slurries)<br />

Roll<br />

Coating<br />

Spray<br />

Coating<br />

10 -2 10 -1 10 0 10 +1 10 +2 10 +3 10 +4 10 +5 10 +6<br />

log (<strong>Shear</strong> <strong>Rate</strong> (s -1 ))


<strong>Shear</strong> <strong>Rate</strong> Dependence of<br />

Thickening Mechanisms<br />

log (Viscosity)<br />

10 -2 10 -1 10 0 10 +1 10 +2 10 +3 10 +4 10 +5 10 +6<br />

log (<strong>Shear</strong> <strong>Rate</strong> (s -1 ))<br />

10


<strong>Shear</strong> <strong>Rate</strong> Dependence of<br />

Thickening Mechanisms<br />

log (Viscosity)<br />

Brownian Motion<br />

Flocculation<br />

Aggregation<br />

Chain Entanglements<br />

Intermolecular<br />

Associations<br />

Hydrodynamic Volume<br />

Adsorption<br />

Aggregation<br />

Intermolecular<br />

Associations<br />

Hydrodynamic Volume<br />

Adsorption<br />

10 -2 10 -1 10 0 10 +1 10 +2 10 +3 10 +4 10 +5 10 +6<br />

log (<strong>Shear</strong> <strong>Rate</strong> (s -1 ))<br />

11


High shear can break up<br />

entanglements<br />

Viscosity<br />

<strong>Shear</strong> <strong>Rate</strong>


Associative thickeners - HEUR<br />

R-N-C-(O-CH<br />

2 -CH<br />

2 ) x -[O-C-N-R” R”-N-C-(O-CH<br />

2 -CH<br />

2 ) x ] n -O-C-N-R’<br />

-<br />

H<br />

= O<br />

R, R’ = C 12<br />

12 -C 18<br />

= O<br />

-<br />

H<br />

H-<br />

= O<br />

18 ; R” = C 7 -C 36 ; x = 90 - 455; n = 1-4<br />

= O<br />

H-<br />

(C 12 H 25 Terminal Hydrophobes; 40,000 Approx. M.W.)<br />

• Polymeric surfactants<br />

• Amphiphilic polymers<br />

13


O(<br />

Associative Thickeners -<br />

HASE<br />

CH 3<br />

CH 3<br />

(-CH 2 -C-) (-CH 2 -CH-) (-CH 2 -C-)<br />

C=O C=O C=O<br />

OH OC 2 H 5<br />

O<br />

CH 2<br />

CH 2<br />

(<br />

20<br />

C 18 H 37<br />

14


Sensitivity of Associative Thickeners<br />

Performance Sensitivity to Formulation Variables -<br />

A Drawback of Associative Thickeners<br />

► Latex Particle Surface<br />

Characteristics<br />

► Surfactants<br />

► Dispersants<br />

► Cosolvents<br />

15


Assoc. Thickener Sensitivity<br />

to Latex<br />

Surface Stabilization<br />

Latex<br />

Polymer<br />

Composition<br />

Particle<br />

Size(nm)<br />

Protective<br />

Colloid<br />

Non-Ionic<br />

Surfactants<br />

Anionic<br />

Surfactants<br />

Acid<br />

Monomer<br />

VAE155 Vinyl Acetate (87)<br />

Ethylene (13)<br />

VAEVCl Vinyl Acetate (36)<br />

Ethylene (24)<br />

Vinyl Chloride (39)<br />

VAE145 Vinyl Acetate (85)<br />

Ethylene (15)<br />

EVCl Ethylene (15)<br />

Vinyl Chloride (85)<br />

155 Yes Yes No No<br />

154 No Yes Yes Yes<br />

145 No Yes No Yes<br />

131 No No Yes Yes<br />

UrAcr Urethane-Acrylic 85 No No No Yes<br />

Acr All-Acrylic 130 -- -- -- --<br />

VAcr Vinyl-Acrylic 149 -- -- -- --<br />

Fernando, Wickmann, Louie, and Chelius, ICE Proceedings, 2000


HEUR-2020<br />

(1.0wt.%)/Latex (30<br />

30wt.%)<br />

Aqueous Blends<br />

Viscosity (mPa s)<br />

1.E+04<br />

1.E+03<br />

1.E+02<br />

1.E+01<br />

∗ - VAE155; • - VAEVCl<br />

+ - VAE145; - EVCl<br />

× -UrAcr; -Acr<br />

• -VAcr<br />

1.E+00<br />

1.E- 02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04<br />

<strong>Shear</strong> <strong>Rate</strong> (s -1 )<br />

Fernando, Wickmann, Louie, and Chelius,ICE Proceedings, 2000


Thickener Sensitivity to Surfactant<br />

[HEC]<br />

Tergitol 15S7 Addition to 0.75% HEC Solution<br />

Viscosity, centipoise<br />

1000000<br />

100000<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

1.0E-2 1.0E-1 1.0E+0 1.0E+1 1.0E+2 1.0E+3<br />

<strong>Shear</strong> <strong>Rate</strong>, s-1<br />

0.00%<br />

0.10%<br />

2.00%


Thickener Sensitivity to Surfactant<br />

[HASE]<br />

Tergitol 15S7 Addition to HASE 0.5% Solution<br />

Viscosity, centipoise<br />

1000000<br />

100000<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

1.0E-2 1.0E-1 1.0E+0 1.0E+1 1.0E+2 1.0E+3<br />

<strong>Shear</strong> <strong>Rate</strong>, s-1<br />

0.00%<br />

0.10%<br />

2.00%


Thickener Sensitivity to Surfactant<br />

[HASE]<br />

Tergitol 15S7 Addition to 0.5% HASE 935 Solution<br />

Viscosity, centipoise<br />

200000<br />

150000<br />

100000<br />

50000<br />

0<br />

0.0% 1.0% 2.0% 3.0% 4.0% 5.0%<br />

Tergitol Concentration<br />

<strong>Shear</strong> <strong>Rate</strong>,s -1<br />

0.08<br />

8.00<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0


Surfactant/Polymeric<br />

Surfactant Interactions<br />

Polymer / surfactant<br />

complex formation<br />

21


Associative Thickeners -<br />

HASE Type<br />

CH 3<br />

CH 3<br />

(-CH 2 -C-) (-CH 2 -CH-) (-CH 2 -C-)<br />

C=O C=O C=O<br />

OH OC 2 H 5<br />

O<br />

• Hulden, Colloids and Surfaces A (1994)<br />

• Jenkins et al., Polymeric Dispersions: Principles and<br />

Applications (1997)<br />

• Oleson et al., Progress in Organic Coatings (1998)<br />

• Enghlish et al., J. Rheology (1997); Ind. Eng. Chem Res.<br />

(2002)<br />

• Kulicke et al., Colloid Polymer Sci. (1998)<br />

• Tam et al., J. P{olym. Sci.: Part B (2000)<br />

• Talwar et al., J. Rheology (2006)<br />

(<br />

CH 2<br />

CH 2<br />

20<br />

C 18 H 37<br />

O(<br />

22


Generic Structure of Hydrophobically-<br />

Modified, Aminoplast Thickener (HEAT)<br />

Optiflo L100<br />

(20% in water)<br />

Supplied by<br />

Sud Chemie<br />

Steinmetz, A.L., FSCT Mid-Year Symposium<br />

Ft. Lauderdale, FL (2004)


HEAT Thickener<br />

US 5,627,232 – Glancy & Steinmetz<br />

US 5,629,373 – Glancy & Steinmetz<br />

HEATs are Glycoluril based;<br />

M.W. 30,000 – 80,000


Ethoxylated, Octylphenol Surfactants<br />

Used in the Study<br />

► Triton X-45<br />

(n=4.5)<br />

► Triton X-100<br />

(n=9.5)<br />

► Triton X-102<br />

(n= 13)<br />

► Triton X-405<br />

(n= 40)<br />

CH 3<br />

CH 3<br />

H 3<br />

C C CH 2<br />

C<br />

O CH 2<br />

CH 2<br />

O H<br />

n<br />

CH 3<br />

CH 3<br />

Proceedings of ICE 2007


CMC and HLB Values of Surfactants<br />

Surfactant<br />

CMC (mM)<br />

CMC<br />

(wt.%)<br />

HLB<br />

Triton X-45<br />

0.11 0.0045 9.8<br />

Triton X-100<br />

0.24 0.0150 13.4<br />

Triton X-102<br />

0.28 0.022 14.4<br />

Triton X-405<br />

0.81 0.16 17.6


Viscosity Dependence on Surfactant<br />

Concentration for Aqueous L100 (0.5<br />

wt.%) and Surfactant Blends<br />

Viscosity (cP)<br />

1000.00<br />

100.00<br />

10.00<br />

1.00<br />

Viscosity of Optiflo L100 blends at 9.283 1/s<br />

0 1 2 3 4 5<br />

Surfactant Concentration (wt%)<br />

X-45<br />

X-100<br />

X-102<br />

X-405


<strong>Shear</strong>-thickening of L100<br />

solutions<br />

Viscosity dependence on shear rate of Triton X-45 surfactant<br />

(varying concentrations) and Optiflo L-100 (1.0 Wt.%) aqueous<br />

blends. Data point equilibration time – 30 seconds


<strong>Shear</strong>-thickening of L100<br />

solutions<br />

Viscosity dependence on shear rate of Triton X-45 surfactant (1.5 Wt.%)<br />

and Optiflo L-100 (1.0 Wt.%) aqueous blend. Data point equilibration<br />

time – 30 & 90 seconds represented by circle and square symbols,<br />

respectively.


<strong>Shear</strong>-thickening of L100 solutions<br />

Viscosity dependence on shear rate of Triton X-45 surfactant (1.0<br />

Wt.% - closed circles & 2.5 Wt.% - open circles) and Optiflo L-100<br />

(1.0 Wt.%) aqueous blends.<br />

1 – <strong>Shear</strong> rate ramp-up; 2 – <strong>Shear</strong> rate ramp-down.


Complex Viscosity of L100<br />

Solutions<br />

complex viscosity (h*) dependence on frequency of Triton X-45<br />

surfactant (varying concentrations) and Optiflo L-100 (1.0 Wt.%)<br />

aqueous blends.


Cyclodextrin Structure<br />

Capable of removing hydrophobic<br />

interactions by forming inclusion complexes


β-Cyclodextrin<br />

Structure<br />

Capable of breaking<br />

up hydrophobic<br />

interactions by<br />

forming inclusion<br />

complexes<br />

Lau, W., “Frontiers in Emulsion Polymerization in Coatings”,<br />

American Coatings Conference, 2010


Effect of m-βCD<br />

on viscosity of<br />

HEUR-C16-51K (2% in water)


Proposed viscosity reduction<br />

mechanism


β-cyclodextrin<br />

effect on L-100<br />

1% L-100<br />

2% L-100<br />

Viscosity (Pa*s)<br />

0.1<br />

0.01<br />

1% L-100<br />

w ith 1% BCD<br />

Viscosity (Pa*s)<br />

0.1<br />

0.01<br />

2% L-100<br />

w ith 1% BCD<br />

0.001<br />

1 10 100 1000<br />

<strong>Shear</strong> <strong>Rate</strong> (1/s)<br />

0.001<br />

1 10 100 1000<br />

<strong>Shear</strong> <strong>Rate</strong> (1/s)<br />

0.1<br />

3% L-100<br />

0.1<br />

4% L-100<br />

3% L-100<br />

w ith 1% BCD<br />

Viscosity (Pa*s)<br />

0.01<br />

Viscosity<br />

0.01<br />

4% L-100<br />

w ith 1% BCD<br />

0.001<br />

1 10 100 1000<br />

<strong>Shear</strong> <strong>Rate</strong> (1/s)<br />

0.001<br />

1 10 100 1000<br />

<strong>Shear</strong> rate (1/s)


β-cyclodextrin<br />

effect on<br />

L-100/X-45 blend<br />

0.1<br />

1% L-100<br />

1% L-100<br />

w ith 1% BCD<br />

w ith 1% BCD and<br />

1% X-45<br />

w ith 1% X-45<br />

Viscosity (Pa*s)<br />

0.01<br />

0.001<br />

1 10 100 1000<br />

<strong>Shear</strong> <strong>Rate</strong> (1/s)


Effect of order of order of addition<br />

0.1<br />

1% L-100<br />

0.1<br />

1.5% L-100<br />

Viscosity (Pa*s)<br />

0.01<br />

X-45 equilibrated<br />

first<br />

BCD equilibrated<br />

first<br />

0.001<br />

1 10 100 1000<br />

<strong>Shear</strong> <strong>Rate</strong> (1/s)<br />

Viscosity (Pa*s)<br />

0.01<br />

X-45 Equilibrated<br />

First<br />

BCD Equilibrated<br />

First<br />

0.001<br />

1 10 100 1000<br />

<strong>Shear</strong> <strong>Rate</strong> (1/s)<br />

0.1<br />

2% L-100<br />

0.1<br />

3% L-100<br />

Viscosity (Pa*s)<br />

0.01<br />

0.001<br />

X-45 Equilibrated<br />

First<br />

BCD Equilibrated<br />

First<br />

1 10 100 1000<br />

<strong>Shear</strong> <strong>Rate</strong> (1/s)<br />

Viscosity (Pa*s)<br />

0.01<br />

0.001<br />

X-45 Equilibrated<br />

First<br />

BCD Equilibrated<br />

First<br />

1 10 100 1000<br />

<strong>Shear</strong> <strong>Rate</strong> (1/s)


0.05<br />

Time Dependence of Viscosity at Constant <strong>Shear</strong> <strong>Rate</strong><br />

2% L-100 with 10/s <strong>Shear</strong><br />

0.04<br />

Viscosity ( Pa*s)<br />

0.03<br />

0.02<br />

2% L-100<br />

with 1% BCD<br />

with 1 % X-45<br />

with 1% BCD and 1% X-45<br />

0.01<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br />

Time (Minutes)


Summary<br />

►HEAT L100<br />

thickener exhibits shear-<br />

thickening in the presence of the highly<br />

hydrophobic X-45<br />

surfactant<br />

►<strong>Shear</strong>-thickening is observed within a<br />

narrow range of shear rates<br />

►Effect of β-cyclodextrin indicate shear-<br />

thickening is caused by specific<br />

hydrophobes that are not disrupted by<br />

cyclodextrin


Acknowledgement<br />

►Dr. Alan Steinmetz (Southern Clay)<br />

►Dow Chemical<br />

►Cal Poly Bill Moore Fellowship Fund<br />

►Cal Poly Students<br />

• Laura Johnson<br />

• Sean Manion<br />

• Gary Deng<br />

• Adam Paiz

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!