24.12.2014 Views

view - Department of Reproduction, Obstetrics and Herd Health

view - Department of Reproduction, Obstetrics and Herd Health

view - Department of Reproduction, Obstetrics and Herd Health

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

FACULTY OF VETERINARY MEDICINE<br />

<strong>Department</strong> <strong>of</strong> <strong>Reproduction</strong>, <strong>Obstetrics</strong> <strong>and</strong> <strong>Herd</strong> <strong>Health</strong><br />

<strong>Department</strong> <strong>of</strong> Pathology, Bacteriology <strong>and</strong> Poultry Diseases<br />

Virulence <strong>and</strong> antimicrobial susceptibility <strong>of</strong> Mycoplasma<br />

hyopneumoniae isolates from pigs<br />

Jo VICCA<br />

Thesis to obtain the academic degree <strong>of</strong> Doctor <strong>of</strong> Veterinary Science (PhD)<br />

Faculty <strong>of</strong> Veterinary Medicine, Ghent University<br />

2005<br />

Promotoren: Pr<strong>of</strong>. Dr. F. Haesebrouck, Pr<strong>of</strong>. Dr. D. Maes<br />

Co-promotor: Pr<strong>of</strong>. Dr. Dr.h.c. A. de Kruif


FRONT COVER: Male pig kept for several months as blood donor for in vitro studies with M. hyopneumoniae. Unfortunately,<br />

the results did not satisfy <strong>and</strong> are not included in this PhD thesis. To my opinion, the pigs do deserve a place in this thesis <strong>and</strong><br />

therefore reached the cover.<br />

BACK COVER: - Me together with my blood donating pigs<br />

- Scanning electron microscopic photograph <strong>of</strong> a M. hyopneumoniae colony grown on agar<br />

- Cryosection <strong>of</strong> M. hyopneumoniae infected lung tissue labeled with anti-M. hyopneumoniae<br />

antibodies <strong>and</strong> showing positive immun<strong>of</strong>luorescence<br />

- Section <strong>of</strong> paraffin embedded M. hyopneumoniae infected lung tissue, stained with hematoxylineosin,<br />

showing the typical peribronchiolar hyperplasia compressing the involved airway<br />

PRINTING: Plot-it Merelbeke, 2005<br />

ISBN: 90-5864-086-8<br />

EAN: 9789058640864


Wisdom is not a question <strong>of</strong> learning facts with the mind; it can only be<br />

acquired through perfection <strong>of</strong> living.<br />

N. Sri Ram


CONTENTS<br />

List <strong>of</strong> abbreviations 1<br />

1. INTRODUCTION 3<br />

1.1 Re<strong>view</strong> <strong>of</strong> the literature 5<br />

1.1.1 Pathogenesis <strong>of</strong> enzootic pneumonia 11<br />

1.1.2 Control <strong>and</strong> treatment <strong>of</strong> enzootic pneumonia in pigs <strong>and</strong><br />

in vitro susceptibility <strong>of</strong> M. hyopneumoniae 27<br />

1.2 Aims 59<br />

2. EXPERIMENTAL STUDIES 63<br />

2.1 Virulence <strong>of</strong> Mycoplasma hyopneumoniae isolates 65<br />

2.1.1 Patterns <strong>of</strong> Mycoplasma hyopneumoniae infections in Belgian<br />

farrow-to-finish pig herds with diverging disease course 67<br />

2.1.2 Evaluation <strong>of</strong> virulence <strong>of</strong> Mycoplasma hyopneumoniae field<br />

isolates 85<br />

2.2 Susceptibility <strong>of</strong> Mycoplasma hyopneumoniae to antimicrobial agents 107<br />

2.2.1 In vitro susceptibilities <strong>of</strong> Mycoplasma hyopneumoniae field<br />

isolates 109<br />

2.2.2 Characterization <strong>of</strong> in vivo acquired resistance <strong>of</strong> Mycoplasma<br />

hyopneumoniae to macrolides <strong>and</strong> lincosamides 125<br />

2.2.3 Mechanism <strong>of</strong> resistance against the fluoroquinoles flumequine<br />

<strong>and</strong> enr<strong>of</strong>loxacin in Mycoplasma hyopneumoniae field isolates 139<br />

2.2.4 The efficacy <strong>of</strong> tylosin premix for the treatment <strong>and</strong> control <strong>of</strong><br />

Mycoplasma hyopneumoniae infections 157<br />

3 GENERAL DISCUSSION 175<br />

4 SUMMARY 187<br />

5 SAMENVATTING 195<br />

Dankwoord 203<br />

Curriculum vitae 209<br />

Publications 213


LIST OF ABBREVIATIONS<br />

A: Adenine<br />

ABC:<br />

ATP-Binding Cassette<br />

ADG:<br />

Average Daily weight Gain<br />

AIAO:<br />

All-in/All-out<br />

AMK:<br />

Amoxycillin<br />

ANOVA:<br />

ANalysis Of VAriance<br />

APC:<br />

Antigen-Presenting Cell<br />

APR:<br />

Apramycin<br />

ATCC:<br />

American Type Culture Collection<br />

ATP:<br />

Adenosine triphosphate<br />

BALT:<br />

Bronchus-Associated Lymphoid Tissue<br />

bp:<br />

base pair<br />

BW:<br />

Body Weight<br />

C: Cytosine<br />

CD:<br />

Cluster <strong>of</strong> Differentiation<br />

CCU:<br />

Colour Changing Units<br />

CEF:<br />

Cefquinome<br />

CHLO:<br />

Chloortetracycline<br />

CIPRO:<br />

Cipr<strong>of</strong>loxacin<br />

CLIN:<br />

Clindamycin<br />

COL:<br />

Colistin<br />

DANO:<br />

Dan<strong>of</strong>loxacin<br />

DNA:<br />

DeoxyriboNucleic Acid<br />

DOX:<br />

Doxycycline<br />

DWG:<br />

Daily Weight Gain<br />

E. coli: Escherichia coli<br />

ELISA:<br />

Enzyme-Linked ImmunoSorbent Assay<br />

ENRO:<br />

Enr<strong>of</strong>loxacin<br />

FCR:<br />

Feed Conversion Ratio<br />

FFN:<br />

Florfenicol<br />

FLUM:<br />

Flumequin<br />

G: Guanine<br />

GEN:<br />

Gentamicin<br />

G-F:<br />

Growth-Finishing<br />

HEPA:<br />

High Efficiency Particulate Air<br />

IF:<br />

Immun<strong>of</strong>luorescence<br />

Ig:<br />

Immunoglobulin<br />

IL:<br />

Interleukin<br />

IL-R:<br />

Interleukin-Receptor<br />

IM:<br />

Intramuscular<br />

IRPCM:<br />

International Research Programme on Comparative Mycoplasmology<br />

K+:<br />

kalium ion<br />

kDa:<br />

kilo Dalton<br />

LIN:<br />

Lincomycin<br />

MALP:<br />

Macrophage Activating LipoProtein<br />

Mbp:<br />

Million base pairs<br />

MCP:<br />

Monocyte chemoattractant protein<br />

MEW:<br />

Medicated Early Weaning<br />

Mh:<br />

Mycoplasma hyopneumoniae<br />

MHC:<br />

Major Histocompatibility Complex<br />

M. hyopneumoniae: Mycoplasma hyopneumoniae<br />

MIC:<br />

Minimum Inhibitory Concentration<br />

MIP:<br />

Macrophage Inflammatory Protein<br />

MLS:<br />

Macrolides, Lincosamides <strong>and</strong> Streptogramins<br />

MPC:<br />

Mutant Prevention Concentration<br />

mRNA:<br />

messenger RiboNucleic Acid<br />

- 1 -


N: Nursery<br />

NCCLS:<br />

National Committee for Clinical Laboratory St<strong>and</strong>ards<br />

NK cells:<br />

Natural Killer cells<br />

NOR:<br />

Norfloxacin<br />

nPCR:<br />

nested Polymerase Chain Reaction<br />

OD:<br />

Optical Density<br />

OFLO:<br />

Ofloxacin<br />

OXY:<br />

Oxytetracycline<br />

PBS:<br />

Phosphate Buffered Saline<br />

PCR:<br />

Polymerase Chain Reaction<br />

PEN:<br />

Penicillin<br />

PFGE<br />

Pulsed Field Gel Electrophoresis<br />

ppm:<br />

parts per million<br />

PRRSV:<br />

Porcine Reproductive <strong>and</strong> Respiratory Syndrome Virus<br />

RAPD:<br />

R<strong>and</strong>omly Amplified Polymorphic DNA<br />

rDNA:<br />

ribosomal DeoxyriboNucleic Acid<br />

RDS:<br />

Respiratory Disease Score<br />

R n :<br />

Adjusted reproduction ratio<br />

RNA:<br />

RiboNucleic Acid<br />

rpm:<br />

revolutions per minute<br />

RR:<br />

Repeat Region<br />

rRNA:<br />

ribosomal RiboNucleic Acid<br />

QRDR:<br />

Quinolone Resistance Determining Region<br />

30S: 30 Svedberg units<br />

SD:<br />

St<strong>and</strong>ard Deviation<br />

SPIRA:<br />

Spiramycin<br />

SPT:<br />

Spectinomycin<br />

STR:<br />

Streptomycin<br />

SULF:<br />

Sulfamides<br />

T: Thymine<br />

TBE:<br />

Tris-Borate-EDTA<br />

TEM:<br />

Transmission Electron Microscopy<br />

TET:<br />

Tetracycline<br />

Th-cell:<br />

T helper-cell<br />

TIA:<br />

Tiamulin<br />

TIL:<br />

Tilmicosin<br />

TLR:<br />

Toll-Like Receptor<br />

TMP:<br />

Trimethoprim<br />

TNF:<br />

Tumor Necrosis Factor<br />

TP:<br />

Tylosin-Premix<br />

tRNA:<br />

transfer RiboNucleic Acid<br />

TYL:<br />

Tylosin<br />

VAL:<br />

Valnemulin<br />

VLA:<br />

Veterinary Laboratory Agency<br />

Vlp:<br />

Variable lipoproteins<br />

w/v:<br />

weight/volume<br />

- 2 -


- 3 -<br />

1 INTRODUCTION


1.1 REVIEW OF THE LITERATURE<br />

- 5 -


Mycoplasma hyopneumoniae causes porcine enzootic pneumonia, a chronic<br />

respiratory disease occurring worldwide in the pig industry. Over 90% <strong>of</strong> the Belgian<br />

pig herds are endemically infected (Maes et al., 1999). The major drawbacks <strong>of</strong><br />

enzootic pneumonia are the economic losses due to decreased daily weight gain,<br />

increased feed conversion ratio, number <strong>of</strong> days to reach slaughterweight <strong>and</strong><br />

medication costs.<br />

Outbreaks <strong>of</strong> enzootic pneumonia are mainly experienced in the growing <strong>and</strong><br />

finishing units. The incubation period <strong>of</strong> the disease is 10-16 days under experimental<br />

conditions, but this period can vary greatly under natural conditions. There is no agerelated<br />

susceptibility <strong>of</strong> pigs to infection with M. hyopneumoniae, piglets in the<br />

farrowing unit as well as sows can become infected after experimental inoculation or<br />

during a natural outbreak <strong>of</strong> enzootic pneumonia (Goodwin et al., 1969; Piffer <strong>and</strong><br />

Ross, 1984; Kobisch et al., 1993; Wallgren et al., 1998).<br />

Macroscopic lesions are mainly found bilaterally in the apical, cardiac,<br />

intermediate <strong>and</strong> the anterior parts <strong>of</strong> the diaphragmatic lobes. They appear at 7-10<br />

days after experimental infection <strong>and</strong> reach their maximum extension after 4 weeks.<br />

The lesions are well demarcated from the normal tissue <strong>and</strong> consist <strong>of</strong> purple to gray<br />

areas <strong>of</strong> consolidation. After incision <strong>of</strong> the affected tissue, the consistency is meaty<br />

<strong>and</strong> there is a catarrhal exudate in the airways. The bronchial <strong>and</strong> mediastinal lymph<br />

nodes are <strong>of</strong>ten enlarged. Lesions become deeper red <strong>and</strong> even more demarcated<br />

when the disease evolves to the chronic stage. Less exudate is present in the airways.<br />

Recovering lesions consist <strong>of</strong> fissures <strong>of</strong> collapsed alveoli (interlobular scar<br />

retractions). Macroscopic lesions <strong>of</strong> a pure M. hyopneumoniae infection are usually<br />

resolved after 12-14 weeks but M. hyopneumoniae can still be detected (Blanchard et<br />

al., 1992; Sørensen et al., 1997). Despite the resolving <strong>of</strong> the lung lesions, the<br />

organism can be demonstrated in the lungs for at least 185 days using nested PCR on<br />

bronchial swabs (Fano et al., 2004).<br />

Because M. hyopneumoniae infections disturb the mucosal clearance, form<br />

characteristic lesions <strong>and</strong> modulate the immune system, secondary infections with<br />

Pasteurella multocida, Actinobacillus pleuropneumoniae, Bordetella bronchiseptica,<br />

Haemophilus parasuis <strong>and</strong> Streptococcus suis are common (Yagihashi et al., 1984;<br />

Ciprian et al., 1988; Asai et al., 1996; Sørensen et al., 1997).<br />

- 7 -


In the present re<strong>view</strong>, literature dealing with the pathogenesis <strong>of</strong> enzootic<br />

pneumonia will be summarized. Thereafter an over<strong>view</strong> <strong>of</strong> antimicrobial treatment<br />

<strong>and</strong> control <strong>of</strong> the disease will be presented.<br />

- 8 -


REFERENCES<br />

1. Asai, T., Okada, M., Yokomizo, Y., Sato, S. & Mori, Y. (1996). Suppressive effect <strong>of</strong><br />

bronchoalveolar lavage fluid from pigs infected with Mycoplasma hyopneumoniae on<br />

chemiluminescence <strong>of</strong> porcine peripheral neutrophils. Veterinary Immunology <strong>and</strong><br />

Immunopathology 51, 325-331.<br />

2. Blanchard, B., Vena, M.M., Cavalier, A., Le Lannic, J., Gouranton, J. & Kobisch, M.<br />

(1992). Electron microscopic observation <strong>of</strong> the respiratory tract <strong>of</strong> SPF piglets inoculated with<br />

Mycoplasma hyopneumoniae. Veterinary Microbiology 30, 329-341.<br />

3. Ciprian, A., Pijoan, C., Cruz, T., Camacho, J., Tortora, J., Colmenares, G., Lopez-Revilla,<br />

R. & De La Garza, M. (1988). Mycoplasma hyopneumoniae increases the susceptibility <strong>of</strong> pigs<br />

to experimental Pasteurella multocida pneumoniae. Canadian Journal <strong>of</strong> Veterinary Research<br />

52, 434-438.<br />

4. Fano, E., Pijoan, C. & Dee, S. (2004). Assessing the duration <strong>of</strong> Mycoplasma hyopneumoniae<br />

infection in gilts. Proceedings <strong>of</strong> the International Pig Veterinary Society, 18 th Congress, June<br />

27- Juli 1, Hamburg / Germany.<br />

5. Goodwin, R., Hodgson, R., Wittlestone, P. & Woodhams, R. (1969). Immunity in<br />

experimentally induced enzootic pneumonia <strong>of</strong> pigs. Journal <strong>of</strong> Hygiene (London) 67, 193-208.<br />

6. Kobisch, M., Blanchard, B. & Le Poitier, M.F. (1993). Mycoplasma hyopneumoniae<br />

infections in pigs: duration <strong>of</strong> the disease <strong>and</strong> resistance to reinfection. Veterinary Research 24,<br />

67-77.<br />

7. Maes, D. (1999). Respiratory disease in slaughter pigs: epidemiological aspects <strong>and</strong> effect <strong>of</strong><br />

vaccination against Mycoplasma hyopneumoniae. PhD Thesis / Ghent University / Belgium.<br />

8. Piffer, I. & Ross, R. (1984). Effect <strong>of</strong> age on susceptibility <strong>of</strong> pigs to Mycoplasma<br />

hyopneumoniae pneumonia. American Journal <strong>of</strong> Veterinary Research 45, 478-481.<br />

9. Sørensen, V., Ahrens, P., Barfod, K., Feenstra, A.A., Feld, N.C., Friis, N.F., Bille-Hansen,<br />

V., Jensen, N.E. & Pedersen, M.W. (1997). Mycoplasma hyopneumoniae infection in pigs:<br />

duration <strong>of</strong> the disease <strong>and</strong> evaluation <strong>of</strong> four diagnostic assays. Veterinary Microbiology 54,<br />

23-34.<br />

10. Wallgren, O., Bolske, G., Gustafsson, S., Mattsson, S., Fossum, C. (1998). Humoral immune<br />

responses to Mycoplasma hyopneumoniae in sows <strong>and</strong> <strong>of</strong>fspring following an outbreak <strong>of</strong><br />

mycoplasmosis. Veterinary Microbiology 60, 193-205.<br />

11. Yagihashi, T., Nunoya, T., Mitui, T. & Tajima, M. (1984). Effect <strong>of</strong> Mycoplasma<br />

hyopneumoniae on the development <strong>of</strong> Haemophilus pleuropneumoniae pneumonia in pigs. The<br />

Japanese Journal <strong>of</strong> Veterinary Science 46, 705-713.<br />

- 9 -


1.1.1 PATHOGENESIS OF ENZOOTIC PNEUMONIA<br />

- 11 -


1.1.1 PATHOGENESIS OF ENZOOTIC PNEUMONIA<br />

Mycoplasmas are the smallest <strong>and</strong> simplest self-replicating organisms <strong>and</strong> are<br />

distinguished phenotypically from other bacteria by their minute size <strong>and</strong> lack <strong>of</strong> a<br />

cell wall. They are characterized by their small genome size (0.58-2.2 Mbp) <strong>and</strong> a low<br />

G+C content (23-40 mol% <strong>of</strong> the genome). During their evolution, Mycoplasma spp.<br />

have lost all the genes involved in amino acid <strong>and</strong> fatty acid biosynthesis <strong>and</strong> thus<br />

require the full spectrum <strong>of</strong> the essential amino acids <strong>and</strong> fatty acids from the host or<br />

from the artificial culture medium. Also genes involved in c<strong>of</strong>actor biosynthesis are<br />

lost, so that to cultivate Mycoplasma spp. in vitro, the medium has to be supplemented<br />

with essentially all the vitamins (Razin et al., 1998). Competition between<br />

mycoplasma <strong>and</strong> host for these biosynthetic precursors may lead to disruption <strong>of</strong> the<br />

host cell integrity <strong>and</strong> alter host cell function (Rottem, 2003).<br />

ADHESION OF M. HYOPNEUMONIAE TO THE HOST CELLS<br />

Adhesion <strong>of</strong> Mollicutes to host cells is a prerequisite for colonization <strong>and</strong> for<br />

infection. The loss <strong>of</strong> adhesion capacity by several passages in vitro results in loss <strong>of</strong><br />

infectivity (Mebus <strong>and</strong> Underdahl, 1977; Thomas et al., 2003). M. hyopneumoniae<br />

adheres to the apex <strong>of</strong> cilia <strong>of</strong> tracheal, bronchial <strong>and</strong> bronchiolar epithelial cells but<br />

does not penetrate into the lung parenchyma nor invade cells (Blanchard et al., 1992;<br />

Kwon <strong>and</strong> Chae, 1999). Very few mycoplasmas are present in the small bronchioli<br />

<strong>and</strong> alveoli since ciliated epithelium is absent in the lower respiratory tract<br />

(Christensen et al., 1999). M. hyopneumoniae exclusively adheres to cilia <strong>and</strong><br />

therefore uses fine fibrils (Tajima <strong>and</strong> Yagihashi, 1982; Blanchard et al., 1992;<br />

Sarradell et al., 2003) (Figure 1). Using electron microscopy, Tajima <strong>and</strong> Yagihashi<br />

(1982) <strong>and</strong> Tajima et al. (1985) observed the presence <strong>of</strong> a capsule <strong>and</strong> found an<br />

association between the thickness <strong>of</strong> this polysaccharide capsule <strong>and</strong> the pathogenicity<br />

<strong>of</strong> the organism.<br />

- 13 -


1.1.1 PATHOGENESIS OF ENZOOTIC PNEUMONIA<br />

Figure 1: Adapted from Tajima <strong>and</strong> Yagihashi (1982). A TEM photograph <strong>of</strong> a crosssection<br />

<strong>of</strong> the bronchiolar epithelium from a M. hyopneumoniae inoculated pig.<br />

Numerous mycoplasmas are seen among the cilia <strong>and</strong> on the tips <strong>of</strong> microvilli <strong>of</strong> the<br />

epithelial cells. The organisms are not in contact with the epithelial surface. Bar:<br />

1.000 nm. The inset shows a mycoplasma which is elongated <strong>and</strong> constricted in the<br />

middle part <strong>of</strong> the body <strong>and</strong> appears to be in the process <strong>of</strong> binary fission. Many radial<br />

fibrils can be seen projecting outward from the cell surface. Bar: 100 nm.<br />

Still little is known about the mechanism <strong>of</strong> adherence <strong>of</strong> M. hyopneumoniae.<br />

It is clear that the process is multifactorial <strong>and</strong> that multiple genes are involved.<br />

Zhang et al. (1995) identified a ciliary adhesion molecule (P97). Monoclonal<br />

antibodies against P97 inhibited adherence <strong>and</strong> stained the fuzzy structures, as<br />

described by Tajima <strong>and</strong> Yagihashi (1982), on the surface <strong>of</strong> the micro-organism.<br />

Further analysis <strong>of</strong> the DNA sequences surrounding the P97 structural gene revealed<br />

an operon composed <strong>of</strong> two open reading frames encoding the P97 adhesion molecule<br />

<strong>and</strong> a 102 kDA protein (P120). The role <strong>of</strong> P102 is unknown. P97 includes two repeat<br />

regions, R1 <strong>and</strong> R2. (Hsu et al., 1997; Hsu <strong>and</strong> Minion, 1998a). The cilium binding<br />

site is located in R1 <strong>and</strong> it is supposed that at least seven AAKPV(E) repeats are<br />

required for functional binding (Hsu <strong>and</strong> Minion, 1998b; Minion et al. 2000).<br />

A glycoprotein <strong>of</strong> 110 kDa, consisting <strong>of</strong> one P54 <strong>and</strong> two P28 subunits is also<br />

associated with adhesion <strong>of</strong> M. hyopneumoniae organisms to the cilia (Chen et al.,<br />

1998).<br />

- 14 -


1.1.1 PATHOGENESIS OF ENZOOTIC PNEUMONIA<br />

Adherence is associated with degenerative changes in the ciliated epithelial<br />

cells: reduction <strong>of</strong> the ciliary activity, loss <strong>of</strong> cilia <strong>and</strong> clumping <strong>of</strong> cilia. By attaching<br />

to the surface <strong>of</strong> host cells, mycoplasmas may interfere with membrane receptors or<br />

alter transport mechanisms <strong>of</strong> the host cell. In the case <strong>of</strong> M. hyopneumoniae, a<br />

disruption <strong>of</strong> K+ channels <strong>of</strong> ciliated bronchial epithelial cells which results in<br />

ciliostasis has been described (Debey <strong>and</strong> Ross, 1994). Recent research revealed the<br />

increase <strong>of</strong> intracellular calcium in porcine ciliated tracheal cells after adhesion <strong>of</strong><br />

pathogenic M. hyopneumoniae isolates (Park et al., 2002). This increase may serve as<br />

an intracellular signal to induce loss <strong>of</strong> cilia. Cell damage may also be caused by the<br />

mildly toxic by-products <strong>of</strong> mycoplasma metabolism, such as hydrogen peroxide <strong>and</strong><br />

superoxide radicals. In addition, cytotoxic factors have been associated with some<br />

Mycoplasma spp., including M. fermentans (Gabridge <strong>and</strong> Murphy, 1971; Gabridge<br />

<strong>and</strong> Schneider, 1975), M. hyorhinis (Darai et al., 1981) M. neurolyticum (Tully, 1981)<br />

<strong>and</strong> M. hyopneumoniae (Geary <strong>and</strong> Walczak, 1985).<br />

In the host, receptors for mycoplasmas are usually <strong>of</strong> sialoglycoconjugate<br />

nature (Razin <strong>and</strong> Jacobs, 1992; Zhang et al., 1994). The restricted attachment <strong>of</strong> M.<br />

hyopneumoniae to cilia can partially be explained by the presence <strong>of</strong> these<br />

sialoglycoconjugate-type receptors on the apical microvillar border <strong>and</strong> the cilia, <strong>and</strong><br />

the absence on the secretory cells <strong>and</strong> mucus (Loveless <strong>and</strong> Feizi, 1989).<br />

MICROSCOPIC LESIONS ASSOCIATED WITH M. HYOPNEUMONIAE INFECTION<br />

Histological lesions in the acute stage <strong>of</strong> the disease include accumulation <strong>of</strong><br />

neutrophils <strong>and</strong> macrophages in <strong>and</strong> around airways (Livingston et al., 1972). As the<br />

disease progresses (7-28 days post infection), the changes consist <strong>of</strong> infiltrates <strong>of</strong><br />

mononuclear cells (lymphocytes <strong>and</strong> macrophages) around bronchi, bronchioles <strong>and</strong><br />

small blood vessels, accumulation <strong>of</strong> inflammatory mononuclear cells forming<br />

lymphoid follicles around the airways <strong>and</strong> prominent lymphoid hyperplasia <strong>of</strong> the<br />

lymphoid tissue associated with intrapulmonary airways, known as bronchusassociated<br />

lymphoid tissue (BALT) (Huang et al., 1990) (Figure 2). In alveolar<br />

lumina <strong>and</strong> septa, lymphocytes, plasma cells <strong>and</strong> neutrophils accumulate (Rodríguez<br />

et al., 2004). This accumulation aggravates obliteration <strong>of</strong> the lumen <strong>of</strong> bronchioles<br />

<strong>and</strong> atelectasis <strong>of</strong> surrounding alveoli.<br />

- 15 -


1.1.1 PATHOGENESIS OF ENZOOTIC PNEUMONIA<br />

Figure 2: Infection with M. hyopneumoniae is characterized by infiltration <strong>of</strong><br />

mononuclear cells around bronchi, bronchioles <strong>and</strong> small blood vessels forming<br />

lymphoid follicles. This accumulation aggravates obliteration <strong>of</strong> the lumen <strong>of</strong> bronchi<br />

<strong>and</strong> bronchioles (arrow) <strong>and</strong> small blood vessels. Hematoxilin-Eosin X 400.<br />

Four mechanisms may contribute to the obliteration <strong>of</strong> airways: (1)<br />

accumulation <strong>of</strong> mucus <strong>and</strong> inflammatory exudates due to loss <strong>of</strong> mucociliary<br />

function, (2) increased activity <strong>of</strong> mucus-secreting cells <strong>and</strong> altered glycoprotein<br />

production in goblet cells, (3) broncho-constriction by chemical mediators released by<br />

alveolar macrophages <strong>and</strong> inflammatory cells <strong>and</strong> (4) pressure from the aggregates <strong>of</strong><br />

lymphoid tissue (Sarradell et al., 2003).<br />

- 16 -


1.1.1 PATHOGENESIS OF ENZOOTIC PNEUMONIA<br />

INTERACTION OF M. HYOPNEUMONIAE WITH THE IMMUNE SYSTEM<br />

The complex network <strong>of</strong> interactions between mycoplasmas <strong>and</strong> the host<br />

immune system involves mycoplasma-induced non-specific <strong>and</strong> specific immune<br />

reactions. Non-specific mechanisms include (1) increase <strong>of</strong> the cytotoxicity <strong>of</strong><br />

macrophages, natural killer cells <strong>and</strong> T-cells, (2) enhancement <strong>of</strong> the expression <strong>of</strong><br />

cell receptors <strong>and</strong> activating the complement cascade <strong>and</strong> (3) polyclonal activation <strong>of</strong><br />

B- <strong>and</strong> T-lymphocytes. Specific protective defense mechanisms include (1)<br />

stimulation <strong>of</strong> cell-mediated immunity, (2) opsonisation <strong>and</strong> phagocytosis <strong>of</strong><br />

organisms <strong>and</strong> (3) the production <strong>of</strong> systemic as well as local anti-mycoplasmal<br />

antibodies <strong>of</strong> different classes <strong>and</strong> subclasses. These immune reactions are important<br />

in host defense but have also been shown to play a role in the development <strong>of</strong> lesions<br />

<strong>and</strong> the exacerbation <strong>of</strong> mycoplasma induced disease (Razin et al., 1998).<br />

After colonizing the respiratory tract, M. hyopneumoniae stimulates<br />

macrophages to secrete cytokines (Asai et al., 1993, Rodríguez et al., 2004). Proinflammatory<br />

cytokines (IL-1, IL-6 <strong>and</strong> TNF-α) exert a non-specific mitogenic<br />

activity <strong>of</strong> M. hyopneumoniae on lymphocytes.<br />

Lymphocyte recruitment <strong>and</strong> activation are important in the pathogenesis <strong>of</strong><br />

mycoplasma respiratory disease. T-cells are an important component <strong>of</strong> these<br />

responses. In M. hyopneumoniae infected animals, CD4+ Th-cells represent the<br />

predominant subset responsible <strong>of</strong> the observed BALT hyperplasia (Saradell et al.,<br />

2003). CD4+ Th-cells are capable <strong>of</strong> activating macrophages, which results in<br />

efficient intracellular killing <strong>of</strong> the mycoplasmas (Caruso <strong>and</strong> Ross, 1990; Messier et<br />

al., 1990; Asai et al., 1994). Using in situ hybridization, Kwon <strong>and</strong> Chae (1999) were<br />

able to demonstrate the presence <strong>of</strong> M. hyopneumoniae DNA in interstitial <strong>and</strong><br />

alveolar macrophages. In mice, CD4+ Th-cells play a role in immune mediated<br />

pathogenesis <strong>of</strong> mycoplasmal disease since CD4+ Th-cell depleted mice develop<br />

milder pulmonary lesions than immunocompetent mice (Jones et al., 2002). Both<br />

Th1- <strong>and</strong> Th2-type cytokine responses develop in mycoplasma respiratory disease <strong>and</strong><br />

these responses are associated with disease severity. Infection results in a shift from<br />

the resident Th2 population to a mixed Th1/Th2 response. CD8+ T-<br />

- 17 -


1.1.1 PATHOGENESIS OF ENZOOTIC PNEUMONIA<br />

cells are also observed in M. hyopneumoniae infected lungs (Sarradell et al., 2003),<br />

but less numerous compared to the CD4+ subpopulation. These cells were shown to<br />

dampen mycoplasma-associated proinflammatory responses during in vivo<br />

experimental studies in mice (Jones et al., 2002). The recruitment <strong>of</strong> B-lymphocytes<br />

results in locally secreted IgA en IgG (Messier et al., 1990). IgA prevents the<br />

adhesion <strong>of</strong> mycoplasmas to the ciliated epithelium, <strong>and</strong> IgG participates in<br />

opsonization <strong>and</strong> phagocytosis by alveolar macrophages (Sheldrake, 1990; Sheldrake<br />

et al., 1993; Walker et al., 1996). Local humoral immune response can be protective<br />

before exposure to mycoplasmas (Okada et al., 2000; Fagan et al., 2001) or can<br />

prevent the spread <strong>of</strong> the organism to other tissues. Locally secreted antibodies appear<br />

to play a limited role in recovery from mycoplasma infection since mycoplasmas can<br />

survive despite vigorous local antibody responses in the host (Simecka et al., 1993;<br />

Djordjevic et al., 1997). For several respiratory mycoplasmal diseases, locally<br />

produced antibodies are more important than circulating antibodies (Hodge <strong>and</strong><br />

Simecka, 2002).<br />

Recently, research aimed to further clarify the trigger for inflammatory cell<br />

influx after M. hyopneumoniae infection by studying the role <strong>of</strong> pro-inflammatory<br />

cytokines, which are believed to play a prominent role in the disease symptoms <strong>of</strong><br />

enzootic pneumonia. Lipoproteins are probably the principle components <strong>of</strong> intact<br />

mycoplasma organisms that activate macrophages <strong>and</strong> they may play an important<br />

role in the inflammatory process (Chambaud et al., 1999). After interaction with<br />

ciliated epithelial cells, M. hyopneumoniae causes an increase <strong>of</strong> the proinflammatory<br />

cytokines IL-1, IL-6 <strong>and</strong> TNF-α (Asai et al., 1993; 1994;<br />

Thanawongnuwech et al., 2001; Rodríguez et al., 2004). The main biological actions<br />

<strong>of</strong> the pro-inflammatory cytokines are summarized in Table 1.<br />

- 18 -


1.1.1 PATHOGENESIS OF ENZOOTIC PNEUMONIA<br />

Table 1: Biological actions <strong>of</strong> IL-1, IL-6 <strong>and</strong> TNF-α (adapted from Henderson et al.,<br />

1996).<br />

Biological action<br />

Action displayed by:<br />

IL-1 IL-6 TNF-α<br />

Actions involved in lesion development after infection with M. hyopneumoniae<br />

Activation <strong>of</strong> T- <strong>and</strong> B-lymphocytes + + +<br />

Stimulation <strong>of</strong> immunoglobulin synthesis - + -<br />

Upregulation <strong>of</strong> cytocidal activity <strong>of</strong> macrophages <strong>and</strong> + - +<br />

NK cells<br />

Increased expression <strong>of</strong> MHC antigen on APC + - +<br />

Stimulation <strong>of</strong> cyclooxygenase II induction + - +<br />

Activation <strong>of</strong> endothelial cells + - +<br />

Induction <strong>of</strong> endothelial adhesion molecules + - +<br />

Induction <strong>of</strong> IL-1, TNF-α <strong>and</strong> IL-8 + - +<br />

Induction <strong>of</strong> IL-6 + - +<br />

Induction <strong>of</strong> IL-2 <strong>and</strong> IL-2R - + -<br />

Endogenous pyrogen + + +<br />

Additional actions with no direct impact on lesion development after infection<br />

with M. hyopneumoniae<br />

Induction <strong>of</strong> acute-phase proteins + + +<br />

Stimulation <strong>of</strong> fibroblast proliferation + + +<br />

Stimulation <strong>of</strong> hematopoiesis + + +<br />

Stimulation <strong>of</strong> cartilage breakdown + - +<br />

Stimulation <strong>of</strong> murine bone breakdown + + +<br />

Induction <strong>of</strong> septic-shock like syndrome + - +<br />

Induction <strong>of</strong> hyperalgesia + - +<br />

A macrophage activating lipoprotein 2 kDa (MALP-2), characterized in<br />

Mycoplasma fermentans (Mühlradt et al., 1997), was found to be a potent inducer in<br />

vitro <strong>and</strong> in vivo <strong>of</strong> the chemokines macrophage inflammatory protein 1α (MIP-1α),<br />

monocyte chemoattractant protein 1 (MCP-1) <strong>and</strong> MIP-2 (Deiters <strong>and</strong> Mühlradt,<br />

1999, Lührmann et al., 2002). This diacylated lipoprotein, integrated in the membrane<br />

<strong>of</strong> mycoplasmas, is recognized by Toll-like receptors (TLR)2 / TLR6. This<br />

recognition leads to a cascade reaction resulting in apoptotic cell death, complement<br />

activation or cytokine production (Akira <strong>and</strong> Hemmi, 2003; Into et al., 2004). TLR<br />

families expressed in the antigen-presenting cells (APCs) are pattern recognition<br />

molecules that recognize foreign antigens during innate immune responses <strong>of</strong> the host<br />

- 19 -


1.1.1 PATHOGENESIS OF ENZOOTIC PNEUMONIA<br />

animals. MALP-2 like structures have been found in other mycoplasmas as well,<br />

including M. arthritidis (Cole, 1991), M. hyorhinis (Mühlrath et al., 1998) <strong>and</strong> M.<br />

salivarum (Shibata et al., 2000; Okusawa et al., 2004). Several lipoproteins in M.<br />

hyopneumoniae have been described: p65, p50 <strong>and</strong> p44 (Wise <strong>and</strong> Kim, 1987). The<br />

recently sequenced genome <strong>of</strong> M. hyopneumoniae revealed 53 open reading frames<br />

with prokaryotic lipoprotein lipid attachment sites, but only 3 <strong>of</strong> them have a<br />

functional assignment (Minion et al., 2004). P46 <strong>and</strong> P65 have already been studied<br />

<strong>and</strong> found to be strong species-specific immunogenic proteins (Futo et al., 1995;<br />

Schmidt et al., 2004). P65 has lipolytic properties (Schmidt et al., 2004). The<br />

presence <strong>of</strong> TLR2 <strong>and</strong> TLR6 on porcine alveolar macrophages was demonstrated by<br />

Muneta et al. (2003). The same authors also demonstrated that blocking TLR2 <strong>and</strong><br />

TLR6 by monoclonal antibodies resulted in a decrease <strong>of</strong> TNF-α production by<br />

alveolar macrophages in vitro. The blocking did not completely inhibit TNF-α<br />

production, suggesting that other receptors may intervene in cytokine production<br />

(Muneta et al., 2003).<br />

Several studied mycoplasmas have the tendency to persist for long periods at<br />

the site <strong>of</strong> infection despite <strong>of</strong> the presence <strong>of</strong> a strong immune response (Adegboye,<br />

1978). M. hyopneumoniae has been demonstrated in pig lungs until 185 days after<br />

infection (Fano et al., 2004). The ability to polyclonally activate cells <strong>of</strong> the immune<br />

system may be one possible mechanism to modulate immunity <strong>and</strong> avoid clearance<br />

(Simecka, 2005). Another approach that mycoplasma may use to avoid clearance is<br />

through the variation <strong>of</strong> cell surface antigens. The best known mechanism is<br />

phenotypic plasticity by antigenic variation (Rottem, 2003). The number <strong>of</strong> genes<br />

involved in diversifying the antigenic nature <strong>of</strong> their cell is relatively high compared<br />

to other bacteria (Razin et al., 1998). The system used for this surface variation has<br />

been described in M. hyorhinis, a gene family called vlp genes, in M. gallisepticum<br />

(pMGA genes), M. bovis (vsp genes) <strong>and</strong> some human mycoplasmas (Raizin et al.,<br />

1998). Mostly lipoproteins are involved. Genes for lipoproteins contain t<strong>and</strong>em<br />

repeats that undergo slipped str<strong>and</strong> mispairing, resulting in either phase switching or<br />

phase variation. A similar system has not (yet) been described for M. hyopneumoniae.<br />

Compared to other Mycoplasmas spp., M. hyopneumoniae has few significant t<strong>and</strong>em<br />

repeat sequences, with one exception, the gene for the cilium adhesin P97, as<br />

described earlier (Djordjevic et al., 2004; Minion et al., 2004).<br />

- 20 -


1.1.1 PATHOGENESIS OF ENZOOTIC PNEUMONIA<br />

REFERENCES<br />

1. Adegboye, D.S. (1978). A re<strong>view</strong> <strong>of</strong> Mycoplasma-induced immunosuppression. British Veterinary<br />

Journal 134, 556-560.<br />

2. Akira, S. & Hemmi, H. (2003). Recognition <strong>of</strong> pathogen-associated molecular patterns by TLR<br />

family. Immunology Letters 85, 85-95.<br />

3. Asai, T., Okada, M., Ono, M., Irisawa, T., Mori, Y., Yokomizo, Y. & Sato, S. (1993).<br />

Increased levels <strong>of</strong> tumor necrosis factor <strong>and</strong> interleukin-1 in bronchoalveolar lavage fluids from<br />

pigs infected with Mycoplasma hyopneumoniae. Veterinary Immunology <strong>and</strong> Immunopathology<br />

38, 253-260.<br />

4. Asai, T., Okada, M., Ono, M., Mori, Y., Yokomizo, Y. & Sato, S. (1994). Detection <strong>of</strong><br />

interleukin-6 <strong>and</strong> prostagl<strong>and</strong>in E2 in bronchoalveolar lavage fluids <strong>of</strong> pigs experimentally<br />

infected with Mycoplasma hyopneumoniae. Veterinary Immunology <strong>and</strong> Immunopathology 44,<br />

97-102.<br />

5. Blanchard, B., Vena, M.M., Cavalier, A., Le Lannic, J., Gouranton, J. & Kobisch, M. (1992).<br />

Electron microscopic observation <strong>of</strong> the respiratory tract <strong>of</strong> SPF piglets inoculated with<br />

Mycoplasma hyopneumoniae. Veterinary Microbiology 30, 329-341.<br />

6. Caruso, J.P. & Ross, R.F. (1990). Effects <strong>of</strong> Mycoplasma hyopneumoniae <strong>and</strong> Actinobacillus<br />

(Haemophilus) pleuropneumoniae infections on alveolar macrophage functions in swine.<br />

American Journal <strong>of</strong> Veterinary Research 51, 227-231.<br />

7. Chambaud, I., Wróblewski, H. & Blanchard, A. (1999). Interactions between mycoplasma<br />

lipoproteins <strong>and</strong> the host immune system. Trends in Microbiology 7, 493-499.<br />

8. Chen, J.R., Lin, J.H., Weng, C.N. & Lai, S.S. (1998). Identification <strong>of</strong> a novel adhesion-like<br />

glycoprotein from Mycoplasma hyopneumoniae. Veterinary Microbiology 62, 97-110.<br />

9. Christensen, G., Sørensen, V. & Mousing, J. (1999). Diseases <strong>of</strong> the respiratory system. In:<br />

Straw, B.E., D’Allaire, S., Mengeling, W.L., Taylor, D.J. (Editors), Diseases <strong>of</strong> swine, 8 th edition,<br />

Iowa State University Press, Ames, Iowa, pp. 913-940.<br />

10. Cole, B.C. (1991). The immunobiology <strong>of</strong> Mycoplasma arthritidis <strong>and</strong> its superantigen MAM.<br />

Current Topics in Microbiology <strong>and</strong> Immunology 174, 107-119.<br />

11. Darai, G., Flugel, R.M., Zoller, L., Matz, B., Kreig, A., Gelderblom, H., Delius, H. & Leach,<br />

R.H. (1981). The plaque-forming factor for mink lung cells present in cytomegalovirus <strong>and</strong><br />

herpes-zoster virus stocks identified as Mycoplasma hyorhinis. The Journal <strong>of</strong> General Virology<br />

55, 201-205.<br />

12. Debey, M.C. & Ross, R.F. (1994). Ciliostasis <strong>and</strong> loss <strong>of</strong> cilia induced by Mycoplasma<br />

hyopneumoniae in porcine tracheal organ cultures. Infection <strong>and</strong> Immunity 62, 5312-5318.<br />

13. Deiters, U. & Mülhradt, P.F. (1999). Mycoplasmal lipopeptide MALP-2 induced the<br />

chemoattractant proteins macrophage inflammatory protein 1α (MIP-1α), monocyte<br />

chemoattractant protein 1, <strong>and</strong> MIP-2 <strong>and</strong> promotes leukocyte infiltration in mice. Infection <strong>and</strong><br />

Immunity 67, 3390-3398.<br />

14. Djordjevic, S.P., Cordwell, S.J., Djordjevic, M.A., Wilton, J. & Minion, F.C. (2004). Proteolytic<br />

processing <strong>of</strong> the Mycoplasma hyopneumoniae cilium adhesion. Infection <strong>and</strong> Immunity 72, 2791-<br />

2802.<br />

- 21 -


1.1.1 PATHOGENESIS OF ENZOOTIC PNEUMONIA<br />

15. Djordjevic, S.P., Eamens, G.J., Romalis, L.F., Nicholls, P.J., Taylor, V. & Chin, J. (1997).<br />

Serum <strong>and</strong> mucosal antibody responses <strong>and</strong> protection in pigs vaccinated against Mycoplasma<br />

hyopneumoniae with vaccines containing a denatured membrane antigen pool <strong>and</strong> adjuvant.<br />

Australian Veterinary Journal 75, 504-511.<br />

16. Fagan, P.K., Walker, M.J., Chin, J., Eamens, G.J. & Djordjevic S.P. (2001). Oral<br />

immunisation <strong>of</strong> swine with attenuated Salmonella typhimurium aroA SL3261 expressing a<br />

recombinant antigen <strong>of</strong> Mycoplasma hyopneumoniae (NrdF) primes the immune system for a NrdF<br />

specific secretory IgA response in the lungs. Microbial Pathogenesis 30, 101-110.<br />

17. Fano, E., Pijoan, C. & Dee, S. (2004). Assessing the duration <strong>of</strong> Mycoplasma hyopneumoniae<br />

infection in gilts. Proceedings <strong>of</strong> the International Pig Veterinary Society, 18 th Congress, June 27-<br />

Juli 1, Hamburg / Germany, pp. 167.<br />

18. Futo, S., Seto, Y., Okada, M., Sato, S., Suzuki, T., Kawai, K., Imada, Y. & Mori, Y. (1995).<br />

Recombinant 46-kilodalton surface antigen (P46) <strong>of</strong> Mycoplasma hyopneumoniae expressed in<br />

Escherichia coli can be used for early specific diagnosis <strong>of</strong> mycoplasmal pneumonia <strong>of</strong> swine by<br />

enzyme-linked immunosorbent assay. Journal <strong>of</strong> Clinical Microbiology 33, 680-683.<br />

19. Gabridge, M.G. & Murphy, W.H. (1971). Toxic membrane fractions from Mycoplasma<br />

fermentans. Infection <strong>and</strong> Immunity 4, 678-682.<br />

20. Gabridge, M.G. & Schneider, P.R. (1975). Cytotoxic effect <strong>of</strong> Mycoplasma fermentans on<br />

mouse thymocytes. Infection <strong>and</strong> Immunity 11, 460-465.<br />

21. Geary, S.J. & Walczak, E.M. (1985). Isolation <strong>of</strong> a cytopathic factor from Mycoplasma<br />

hyopneumoniae. Infection <strong>and</strong> Immunity 48, 576-578.<br />

22. Henderson, B., Poole, S. & Wilson, M. (1996). Bacterial modulins: a novel class <strong>of</strong> virulence<br />

factors which cause host tissue pathology by inducing cytokine synthesis. Microbiological re<strong>view</strong>s<br />

60, 316-341.<br />

23. Hodge, L.M. & Simecka, J.W. (2002). Role <strong>of</strong> upper <strong>and</strong> lower respiratory tract immunity in<br />

resistance to Mycoplasma respiratory disease. The Journal <strong>of</strong> Infectious Diseases 186, 290-294.<br />

24. Hsu, T., Artiushin, S. & Minion, F.C. (1997). Cloning <strong>and</strong> analysis <strong>of</strong> P97, a respiratory cilium<br />

adhesion gene <strong>of</strong> Mycoplasma hyopneumoniae. Journal <strong>of</strong> Bacteriology 179, 1317-1323.<br />

25. Hsu, T. & Minion, F.C. (1998a). Molecular analysis <strong>of</strong> the P97 cilium adhesin operon <strong>of</strong><br />

Mycoplasma hyopneumoniae. Gene 214, 13-23.<br />

26. Hsu, T. & Minion, F.C. (1998b). Identification <strong>of</strong> the cilium binding epitope <strong>of</strong> the Mycoplasma<br />

hyopneumoniae P97 adhesin. Infection <strong>and</strong> Immunity 66, 4762-4766.<br />

27. Huang, Y.T., Chu, R.M., Liu, R.S. & Weng, C.N. (1990). Morphologic studies <strong>of</strong><br />

intrapulmonary airway mucosa-associated lymphoid tissues in swine. Veterinary Immunology <strong>and</strong><br />

Immunopathology 25, 13.22.<br />

28. Into, T., Kiura, K., Yasuda, M., Kataoka, H., Inoue, N., Hasebe, A., Takeda, K., Akira, S. &<br />

Shibata, K. (2004). Stimulation <strong>of</strong> human Toll-like receptor (TLR)2 <strong>and</strong> TLR6 with membrane<br />

lipoproteins <strong>of</strong> Mycoplasma fermentans induces apoptotic cell death after NF-κB activation.<br />

Cellular Microbiology 6, 187-199.<br />

29. Jones, H., Tabor, L., Sun, X., Woolard, M. & Simecka, J. (2002). Depletion <strong>of</strong> CD8+ cells<br />

exacerbates CD4+ Th-cell associated inflammatory lesions during murine mycoplasma respiratory<br />

disease. Journal <strong>of</strong> Immunology 168, 3493-3501.<br />

- 22 -


1.1.1 PATHOGENESIS OF ENZOOTIC PNEUMONIA<br />

30. Kwon, D. & Chae, C. (1999). Detection <strong>and</strong> localization <strong>of</strong> Mycoplasma hyopneumoniae DNA in<br />

lungs from naturally infected pigs by in situ hybridization using a digoxigenin-labeled probe.<br />

Veterinary Pathology 36, 308-313.<br />

31. Livingston, D.W., Stair, E.L., Underdahl, N.R. & Mebus, C.A. (1972). Pathogenesis <strong>of</strong><br />

Mycoplasma pneumonia in swine. American Journal <strong>of</strong> Veterinary Research 33, 2249-2258.<br />

32. Loveless, R.W. & Feizi, T. (1989). Sialo-oligosaccharide receptors for Mycoplasma pneumoniae<br />

<strong>and</strong> related oligosaccharides <strong>of</strong> poly-N-acetyl lactosamine series are polarized at the cilia <strong>and</strong><br />

apical microvillar domains <strong>of</strong> the ciliated cells in human bronchial epithelium. Infection <strong>and</strong><br />

Immunity 57, 1285-1289.<br />

33. Lührmann, A., Deiters, U., Skokowa, J., Hanke, M., Gessner, J.E., Mülhradt, P.F. Pabst, R.<br />

& Tschernig, T. (2002). In vivo effects <strong>of</strong> a synthetic 2-kilodalton macrophage activating<br />

lipopeptide <strong>of</strong> Mycoplasma fermentans after pulmonary application. Infection <strong>and</strong> Immunity 70,<br />

3785-3792.<br />

34. Mebus, C.A. & Underdahl, N.R. (1977). Scanning electron microscopy <strong>of</strong> trachea <strong>and</strong> bronchi<br />

from gnotobiotic pigs inoculated with Mycoplasma hyopneumoniae. American Journal <strong>of</strong><br />

Veterinary Research 38, 1249-1254.<br />

35. Messier, S., Ross, R.F. & Paul, P.S. (1990). Humoral <strong>and</strong> cellular immune responses <strong>of</strong> pigs<br />

inoculated with Mycoplasma hyopneumoniae. American Journal <strong>of</strong> Veterinary Research 51, 52-58.<br />

36. Minion, F.C., Adams, C. & Hsu, T. (2000). R1 region on P97 mediates adherence <strong>of</strong><br />

Mycoplasma hyopneumoniae to swine cilia. Infection <strong>and</strong> Immunity 68, 3056-3060.<br />

37. Minion, F.C., Lefkowitz, E.J., Madsen, M.L., Cleary, B.J., Swartzell, S.M. & Mahairas, G.G.<br />

(2004). The genome sequence <strong>of</strong> Mycoplasma hyopneumoniae strain 232, the agent <strong>of</strong> swine<br />

mycoplasmosis. Journal <strong>of</strong> Bacteriology 186, 7123-7133.<br />

38. Mühlradt, P.F., Kieβ, M., Meyer, H., Süβmuth, R. & Jung, G. (1997). Isolation, structure<br />

elucidation, <strong>and</strong> synthesis <strong>of</strong> a macrophage stimulatory lipopeptide from Mycoplasma fermentans<br />

acting at picomolar concentration. The Journal <strong>of</strong> Experimental Medicine 185, 1951-1958.<br />

39. Mühlradt, P.F., Kieβ, M., Meyer, H., Süβmuth, R. & Jung, G. (1998). Structure <strong>and</strong> specific<br />

activity <strong>of</strong> macrophage-stimulating lipopeptides from Mycoplasma hyorhinis. Infection <strong>and</strong><br />

Immunity 66, 4804-4810.<br />

40. Muneta, Y., Uenishi, H., Kikuma, R., Yoshihara, K., Shimoji, Y., Yamamoto, R.,<br />

Hamashima, N., Yokomizo, Y. & Mori, Y. (2003). Porcine TLR2 <strong>and</strong> TLR6: Identification <strong>and</strong><br />

their involvement in Mycoplasma hyopneumoniae infection. Journal <strong>of</strong> Interferon & Cytokine<br />

Research 23, 583-590.<br />

41. Okada, M., Asai, T., Ono, M., Sakano, T. & Sato, S. (2000). Cytological <strong>and</strong> immunological<br />

changes in bronchoalveolar lavage fluid <strong>and</strong> histological observation <strong>of</strong> lung lesions in pigs<br />

immunized with Mycoplasma hyopneumoniae inactivated vaccine prepared from broth culture<br />

supernate. Vaccine 18, 2825-2831.<br />

42. Okusawa, T., Fujita, M., Nakamura, J., Into, T., Yasuda, M., Yoshimura, A., Hara, Y.,<br />

Hasebe, A., Golenbock, D.T., Morita, M., Kuroki, Y., Ogawa, T. & Shibata, K. (2004).<br />

Relationship between structures <strong>and</strong> biological activities <strong>of</strong> mycoplasmal diacylated lipopeptides<br />

<strong>and</strong> their recognition by Toll-like receptors 2 <strong>and</strong> 6. Infection <strong>and</strong> Immunity 72, 1657-1665.<br />

43. Park, S-C., Yibchok-Anun, S., Cheng, H., Young, T.F., Thacker, E.L., Minion, F.C., Ross,<br />

R.F. & Hsu, W.H. (2002). Mycoplasma hyopneumoniae increased intracellular calcium release in<br />

porcine ciliated tracheal cells. Infection <strong>and</strong> Immunity 70, 2502-2506.<br />

- 23 -


1.1.1 PATHOGENESIS OF ENZOOTIC PNEUMONIA<br />

44. Razin, S. & Jacobs, E. (1992). Mycoplasma adhesion. Journal <strong>of</strong> General Microbiology 138, 407-<br />

422.<br />

45. Razin, S., Yogev, D. & Naot, Y. (1998). Molecular biology <strong>and</strong> pathogenicity <strong>of</strong> Mycoplasmas.<br />

Microbiology <strong>and</strong> Molecular Biology Re<strong>view</strong>s 62, 1094-1156.<br />

46. Rodríguez, F., Ramírez, G.A., Sarradell, J., Andrada, M. & Lorenzo, H. (2004).<br />

Immunohistochemical labelling <strong>of</strong> cytokines in lung lesions <strong>of</strong> pigs naturally infected with<br />

Mycoplasma hyopneumoniae. Journal <strong>of</strong> Comparative Pathology 130, 306-312.<br />

47. Rottem, S. (2003). Interaction <strong>of</strong> Mycoplasmas with host cells. Physiological Re<strong>view</strong>s 83, 417-<br />

432.<br />

48. Sarradell, J., Andrada, M., Ramírez, A.S., Fernández, A., Gómez-Villam<strong>and</strong>os, J.C., Jover,<br />

A., Lorenzo, H., Herráez, P. & Rodríguez, F. (2003). A morphological <strong>and</strong><br />

immunohistochemical study <strong>of</strong> the bronchus-associated lymphoid tissue <strong>of</strong> pigs naturally infected<br />

with Mycoplasma hyopneumoniae. Veterinary Pathology 40, 395-404.<br />

49. Schmidt, J.A., Browning, G.F. & Markham, P.F. (2004). Mycoplasma hyopneumoniae p65<br />

surface lipoprotein is a lipolytic enzyme with a preference for shorter-chain fatty acids. Journal <strong>of</strong><br />

Bacteriology 186, 5790-5798.<br />

50. Sheldrake, R.F. (1990). IgA immune responses in the respiratory tract <strong>of</strong> pigs. Research in<br />

Veterinary Science 49, 98-103<br />

51. Sheldrake, R.F., Romalis, L.F. & Saunders, M.M. (1993). Serum <strong>and</strong> mucosal antibody<br />

responses against Mycoplasma hyopneumoniae following intraperitoneal vaccination <strong>and</strong><br />

challenge <strong>of</strong> pigs with M. hyopneumoniae. Research in Veterinary Science 55, 371-376.<br />

52. Shibata, K., Hasebe, A., Into, T., Yamada, M. & Watanabe, T. (2000). The N-terminal<br />

lipopeptide <strong>of</strong> a 44-kDa membrane-bound lipoprotein <strong>of</strong> Mycoplasma salivarum is responsible for<br />

the expression <strong>of</strong> intercellular adhesion molecule-1 on the cell surface <strong>of</strong> normal human gingival<br />

fibroblasts. The Journal <strong>of</strong> Immunology 165, 6538-6544.<br />

53. Simecka, J.W. (2005). Immune responses following Mycoplasma infection. In: Mycoplasmas:<br />

molecular biology, pathogenicity <strong>and</strong> strategies for control. Blanchard, A., Browning, G., Editors.<br />

Horizon Bioscience, Norfolk, UK, pp. 485-534.<br />

54. Simecka, J.W., Ross, S.E., Cassell, G.H. & Davis, J.K. (1993). Interactions <strong>of</strong> Mycoplasmas<br />

with B cells: antibody production <strong>and</strong> nonspecific effects. Clinical Infectious Diseases, 17 (Suppl.<br />

1), S176-182.<br />

55. Tajima, M. & Yagihashi, T. (1982). Interaction <strong>of</strong> Mycoplasma hyopneumoniae with the porcine<br />

respiratory epithelium as observed by electron microscopy. Infection <strong>and</strong> Immunity 37, 1162-<br />

1169.<br />

56. Tajima, M., Yagihashi, T. & Nunoya, T. (1985). Ultrastructure <strong>of</strong> mycoplasmal capsule as<br />

revealed by stabilization with antiserum <strong>and</strong> staining with ruthenium red. The Japanese Journal <strong>of</strong><br />

Veterinary Science 47, 217-223.<br />

57. Thanawongnuwech, R., Young, T.F., Thacker, B.J. & Thacker, E.L. (2001). Differential<br />

production <strong>of</strong> proinflammatory cytokines: in vitro PRRSV <strong>and</strong> Mycoplasma hyopneumoniae coinfection<br />

model. Veterinary Immunology <strong>and</strong> Immunopathology 79, 115-127.<br />

58. Thomas, A., Sachse, K., Dizier, I., Grajetzki, C., Farnir, F., Mainil, J.G. & Linden, A. (2003).<br />

Adherence to various host cell lines <strong>of</strong> Mycoplasma bovis strains differing in pathogenic <strong>and</strong><br />

cultural features. Veterinary Microbiology 91, 101-113.<br />

59. Tully, J.G. (1981). Mycoplasmal toxins. Israel Journal <strong>of</strong> Medical Sciences 17, 604-607.<br />

- 24 -


1.1.1 PATHOGENESIS OF ENZOOTIC PNEUMONIA<br />

60. Walker, J., Lee, R., Mathy, N., Doughty, S. & Conlon, J. (1996). Restricted B-cell responses to<br />

microbial challenge <strong>of</strong> the respiratory tract. Veterinary Immunology <strong>and</strong> Immunopathology 54,<br />

197-204.<br />

61. Wise, K. & Kim, M. (1987). Major membrane surface proteins <strong>of</strong> Mycoplasma hyopneumoniae<br />

selectively modified by covalently bound lipid. Journal <strong>of</strong> Bacteriology 169, 5546-5555.<br />

62. Zhang, Q., Young, T.F. & Ross, R.F. (1994). Glycolipid receptors for attachement <strong>of</strong><br />

Mycoplasma hyopneumoniae to porcine respiratory ciliated cells. Infection <strong>and</strong> Immunity 62,<br />

4367-4373.<br />

63. Zhang, Q., Young, T.F. & Ross, R.F. (1995). Identification <strong>and</strong> characterization <strong>of</strong> a<br />

Mycoplasma hyopneumoniae adhesion. Infection <strong>and</strong> Immunity 63, 1013-1019.<br />

- 25 -


1.1.2 ANTIMICROBIAL TREATMENT AND CONTROL OF<br />

ENZOOTIC PNEUMONIA IN PIGS<br />

- 27 -


1.1.2 ANTIMICROBIAL TREATMENT AND CONTROL OF ENZOOTIC PNEUMONIA IN PIGS<br />

Enzootic pneumonia is responsible for large economic losses in the pig<br />

industry worldwide. This makes prevention or treatment <strong>of</strong> the disease inevitable to<br />

limit the losses. Control <strong>of</strong> mycoplasmal infections can be accomplished by<br />

optimizing <strong>of</strong> management <strong>and</strong> housing, by vaccination <strong>and</strong> by preventive medication.<br />

Improvement <strong>of</strong> the housing <strong>and</strong> management conditions (ventilation, stocking<br />

density, purchase policy <strong>and</strong> hygiene) are primordial in the control <strong>of</strong> enzootic<br />

pneumonia <strong>and</strong> should be the first to be accomplished. In a well managed herd still<br />

suffering from M. hyopneumoniae infections, vaccination is a further important tool to<br />

reduce economic losses. Vaccination against M. hyopneumoniae in pigs is<br />

successfully practiced in most countries with an intensive pig production (Maes et al.,<br />

1998; 1999; 2003; Haesebrouck et al., 2004). Local, mucosal, humoral <strong>and</strong> cellular<br />

immune responses are induced, resulting in a reduction <strong>of</strong> lung lesions (Thacker et al.,<br />

2000). Economical benefit is achieved by an increase in daily weight gain (Jensen et<br />

al., 2002), a decrease <strong>of</strong> the feed conversion ratio <strong>and</strong> a reduction in medication costs<br />

(Maes et al., 2003).<br />

Nevertheless, the use <strong>of</strong> antimicrobials, either in a preventive or curative way<br />

remains necessary in many pig herds, due to a non-vaccination policy, vaccination<br />

failure or purchase <strong>of</strong> piglets with unknown vaccination status or from several<br />

suppliers. The control <strong>of</strong> the disease by medication can be approached by strategic<br />

administration <strong>of</strong> antimicrobials. This paper gives an over<strong>view</strong> <strong>of</strong> antimicrobials<br />

active against M. hyopneumoniae <strong>and</strong> summarizes in vitro <strong>and</strong> in vivo studies<br />

conducted to evaluate that activity.<br />

ANTIMICROBIAL AGENTS USED FOR THE TREATMENT OF M.<br />

HYOPNEUMONIAE INFECTIONS<br />

Potentially active antimicrobials against M. hyopneumoniae include<br />

tetracyclines, macrolides <strong>and</strong> lincosamides, pleuromutilins, fluoroquinolones,<br />

florfenicol, aminoglycosides <strong>and</strong> aminocyclitols. To control <strong>and</strong> treat respiratory<br />

disease in swine, tetracyclines <strong>and</strong> macrolides are most frequently used (Chauvin et<br />

al., 2002; Timmerman et al., 2005). Only fluoroquinolones <strong>and</strong> aminoglycosides have<br />

mycoplasmacidal effect (Hannan et al., 1989) which is an important characteristic<br />

when eradication <strong>of</strong> enzootic pneumonia is intended.<br />

- 29 -


1.1.2 ANTIMICROBIAL TREATMENT AND CONTROL OF ENZOOTIC PNEUMONIA IN PIGS<br />

In Table 1, recommended systemic or oral dosages <strong>of</strong> antimicrobials used to<br />

treat Mycoplasma hyopneumoniae infections are summarized.<br />

Table 1: Recommended systemic / oral dosages <strong>of</strong> antimicrobials used to treat<br />

Mycoplasma hyopneumoniae infections in pigs.<br />

Type <strong>of</strong><br />

antimicrobial<br />

Route <strong>of</strong><br />

administration<br />

Dose (mg/kg<br />

bodyweight)<br />

Interval (h)<br />

Oxytetracycline IM<br />

Oral<br />

10 - 20<br />

20-50<br />

12 - 24<br />

-<br />

Doxycyline hyclate Oral 10<br />

Lincomycin<br />

hydrochloride<br />

IM<br />

Oral<br />

10<br />

5-10<br />

24<br />

-<br />

Tilmicosin Oral 8-20 -<br />

Tylosin<br />

IM<br />

Oral<br />

5-20<br />

30-60<br />

24<br />

-<br />

Tulathromycin IM 2.5 -<br />

Tiamulin Oral 8.8 -<br />

Valnemulin Oral 3-4 -<br />

Florfenicol IM 15 48<br />

Enr<strong>of</strong>loxacin IM 2.5-5 24<br />

Marb<strong>of</strong>loxacin IM 2 24<br />

Flumequin Oral 15 -<br />

Gentamicin IM 3-5 24<br />

Spectinomycin IM 20 12<br />

1. Tetracyclines<br />

Tetracyclines (including tetracycline, chlortetracycline, doxycycline, <strong>and</strong><br />

oxytetracycline) are amphoteric molecules that are poorly soluble in water at pH 7.<br />

Tetracyclines are bacteriostatic antibiotics that bind irreversibly to receptors <strong>of</strong> the<br />

30S bacterial ribosome, where they interfere with the association <strong>of</strong> aminoacyl-tRNA<br />

to the acceptor site on the mRNA ribosome complex resulting in inhibition <strong>of</strong><br />

bacterial protein synthesis (Prescott, 2000b; Chopra <strong>and</strong> Roberts, 2001). They are<br />

- 30 -


1.1.2 ANTIMICROBIAL TREATMENT AND CONTROL OF ENZOOTIC PNEUMONIA IN PIGS<br />

broad-spectrum antimicrobials active against Gram-positive bacteria, including<br />

mycoplasmas, <strong>and</strong> Gram-negative bacteria, including chlamydiae <strong>and</strong> rickettsias, <strong>and</strong><br />

some protozoa (Babesia, Theileria). In the host, their bacteriostatic activity is optimal<br />

in an acid environment. Oral bioavailability is lowered when administered in feed,<br />

except for doxycycline. Bivalent cations (calcium, magnesium, iron) decrease the<br />

absorption <strong>and</strong> activity by chelating tetracycline (Luthman <strong>and</strong> Jacobsson, 1983).<br />

Also, when administered via the drinking water, the bioavailability can be influenced<br />

by the water quality (degree <strong>of</strong> acidity) <strong>and</strong> bivalent cations in the material (iron) <strong>of</strong><br />

the water pipes (Prescott, 2000b). Tetracyclines are lipophilic <strong>and</strong> therefore diffuse<br />

easily through biological barriers <strong>and</strong> cell membranes. Generally speaking,<br />

tetracyclines are the drugs <strong>of</strong> first choice for the treatment <strong>of</strong> respiratory Mycoplasma<br />

infections in pigs.<br />

2. Macrolides <strong>and</strong> lincosamides<br />

Macrolides <strong>and</strong> lincosamides are structurally distinct antibiotics but share<br />

many common properties such as a similar mode <strong>of</strong> action <strong>and</strong> an overlapping binding<br />

site on the 50S ribosome (Weisblum, 1998; Vester <strong>and</strong> Douthwaite, 2001). They are<br />

basic compounds, have a high lipid solubility <strong>and</strong> have a good absorption from the<br />

intestine <strong>and</strong> tissue distribution. After uptake, macrolides <strong>and</strong> lincosamides<br />

accumulate mainly in phagocytes, with 51 - 85 % localized in lysozomes (Scorneaux<br />

<strong>and</strong> Shryock, 1998). Like tetracyclines, macrolides <strong>and</strong> lincosamides inhibit protein<br />

synthesis at the ribosome level <strong>and</strong> are bacteriostatic. By binding to the 50S subunit <strong>of</strong><br />

the ribosome, they block the growth <strong>of</strong> the nascent peptide chain, probably causing<br />

premature dissociation <strong>of</strong> the peptidyl-tRNA from the ribosome (Vester <strong>and</strong><br />

Douthwaite, 2001). Macrolides <strong>and</strong> lincosamides have been mapped by chemical<br />

footprinting to the central loop in domain V <strong>of</strong> 23S rRNA, which is associated with<br />

the peptidyl transferase activity (Cundliffe, 1990).<br />

Macrolides are divided into three subgroups according to the size <strong>of</strong> their<br />

lactone ring. Erythromycin <strong>and</strong> ole<strong>and</strong>omycin belong to the 14-membered ring<br />

macrolides, while josamycin, kitasamycin, tylosin, tilmicosin <strong>and</strong> spiramycin belong<br />

to the 16-membered ring subgroup. Azithromycin <strong>and</strong> tulathromycin are members <strong>of</strong><br />

the 15 membered ring macrolides. Macrolides are active against Gram-positive<br />

bacteria (Rhodococcus equi, Bacillus spp., Corynebacterium spp., Erysipelothrix<br />

- 31 -


1.1.2 ANTIMICROBIAL TREATMENT AND CONTROL OF ENZOOTIC PNEUMONIA IN PIGS<br />

rhusiopathiae, Listeria spp., Staphylococcus spp., Streptococcus spp., Mycoplasma<br />

spp.), selected Gram-negative bacteria (Pasteurella, Mannheimia, Leptospira,<br />

Campylobacter, Actinobacillus) <strong>and</strong> anaerobes (Actinomyces spp., Clostridium spp.,<br />

Bacteroides spp., Prevotella spp., …).<br />

Lincosamides (lincomycin <strong>and</strong> clindamycin) are active against many Grampositive<br />

bacteria <strong>and</strong> anaerobes but they are considerably less effective against Gramnegative<br />

bacteria <strong>and</strong> Mycoplasma spp. compared to macrolides (Prescot, 2000c).<br />

Absorption <strong>of</strong> lincomycin <strong>and</strong> clindamycin is very good after oral administration in<br />

monogastric animals. Absorption is slower when administered together with food.<br />

Lincosamides diffuse well through biological barriers <strong>and</strong> can obtain high tissue<br />

concentrations.<br />

3. Pleuromutilins<br />

Pleuromutilins (tiamulin <strong>and</strong> valnemulin) share many common properties such<br />

as a similar mode <strong>of</strong> action <strong>and</strong> an overlapping binding site on the 50S ribosome<br />

(Weisblum, 1998; Vester <strong>and</strong> Douthwaite, 2001) with macrolides <strong>and</strong> lincosamides.<br />

They are bacteriostatic, have a comparable antimicrobial spectrum as macrolides, but<br />

have remarkable activities against anaerobes <strong>and</strong> mycoplasmas. Pleuromutilins are<br />

exclusively used in veterinary medicine, mainly in swine. Valnemulin is 30 times<br />

more active than tiamulin, especially against Mycoplasma spp. (Aitken et al., 1999).<br />

Pleuromutilins are almost completely absorbed after oral administration in<br />

monogastrates (Prescott, 2000c). The bioavailability <strong>of</strong> both compounds reaches over<br />

90% <strong>and</strong> both achieve high drug concentrations in the lung (Burch, 2001).<br />

4. Fluoroquinolones<br />

Fluoroquinolones are widely used broad-spectrum antibiotics in human <strong>and</strong><br />

veterinary medicine. Nalidixic acid, the original non-fluorinated molecule <strong>of</strong> the<br />

quinolone class, is inactive against Gram-positive bacteria <strong>and</strong> Mycoplasma spp.<br />

(Roberts, 1992). These micro-organisms are however susceptible to the derived<br />

fluoroquinolone classes. Compared to flumequine, the fluoroquinolones enr<strong>of</strong>loxacin,<br />

dan<strong>of</strong>loxacin, cipr<strong>of</strong>loxacin <strong>and</strong> norfloxacin show an enhanced activity against all<br />

- 32 -


1.1.2 ANTIMICROBIAL TREATMENT AND CONTROL OF ENZOOTIC PNEUMONIA IN PIGS<br />

mycoplasmas studied (Hannan et al., 1997a) <strong>and</strong> are mycoplasmacidal when they are<br />

administered in an increased dose (Arai et al., 1992).<br />

The intracellular targets <strong>of</strong> fluoroquinolones in bacteria are considered the<br />

type II topoisomerases, DNA gyrase <strong>and</strong> topoisomerase IV. Both enzymes are<br />

essential for DNA replication. DNA gyrase is composed <strong>of</strong> two GyrA <strong>and</strong> two GyrB<br />

subunits (A 2 B 2 ), encoded by the gyrA <strong>and</strong> gyrB genes, respectively. This tetrameric<br />

enzyme catalyzes ATP-dependent negative supercoiling <strong>of</strong> DNA. Topoisomerase IV,<br />

a C 2 E 2 tetramer encoded by the parC <strong>and</strong> parE genes, separates interlocked DNA<br />

str<strong>and</strong>s to allow segregation <strong>of</strong> daughter chromosomes into daughter cells. ParC is<br />

similar in structure to GyrA while ParE is homologous to GyrB (Hooper, 2002).<br />

In monogastric animals, orally administered fluoroquinolones are absorbed quickly<br />

<strong>and</strong> completely (80-100%) (Inui et al., 1998). Maximum plasma concentrations are<br />

reached one hour after intake. Fluoroquinolones are strongly lipophilic <strong>and</strong> therefore a<br />

high tissue distribution is reached with good penetration through biological barriers.<br />

5. Florfenicol<br />

Florfenicol is exclusively used in veterinary medicine. The compound is<br />

analogous to chloramphenicol but does not cause irreversible depression <strong>of</strong> the bone<br />

marrow <strong>and</strong> can therefore be used in food producing animals. Florfenicol is a strong<br />

inhibitor <strong>of</strong> the microbial protein synthesis through irreversible binding with the 50S<br />

subunit <strong>of</strong> the ribosomes, abolishing the activity <strong>of</strong> peptidyl transferase. The antibiotic<br />

is bacteriostatic <strong>and</strong> active against most Gram-positive (including Mycoplasma spp.)<br />

<strong>and</strong> Gram-negative bacteria (including rickettsia <strong>and</strong> chlamydia) <strong>and</strong> anaerobes.<br />

Pharmacokinetic data on florfenicol metabolism in the pig are scarce, but the<br />

properties are generally similar to chloramphenicol. This lipophilic drug has a wide<br />

tissue distribution. Florfenicol is absorbed quickly <strong>and</strong> completely after oral<br />

administration, rapidly distributed <strong>and</strong> eliminated slowly. Feed intake did not<br />

significantly change the pharmacokinetics <strong>of</strong> florfenicol after oral administration in<br />

pigs (Liu et al., 2003).<br />

- 33 -


1.1.2 ANTIMICROBIAL TREATMENT AND CONTROL OF ENZOOTIC PNEUMONIA IN PIGS<br />

6. Aminoglycosides <strong>and</strong> aminocyclitols<br />

Aminoglycosides (streptomycin, neomycin, kanamycin, gentamicin,<br />

tobramycin, apramycin <strong>and</strong> amikacin) <strong>and</strong> aminocyclitols (spectinomycin) are a<br />

widely used group <strong>of</strong> broad-spectrum antimicrobials which are bactericidal <strong>and</strong> target<br />

the bacterial ribosome. They inhibit bacterial protein synthesis by binding on one<br />

(streptomycin) or different sites in the 16S rRNA <strong>of</strong> the 30S subunit <strong>and</strong> to some<br />

ribosomal proteins, decreasing the fidelity <strong>of</strong> translation (Kotra et al., 2000). Other<br />

effects <strong>of</strong> aminoglycosides include interference with the cellular electron transport<br />

system, induction <strong>of</strong> RNA breakdown, inhibition <strong>of</strong> translation, effects on DNA<br />

metabolism <strong>and</strong> damage to cell membranes (Prescott, 2000a). They are active against<br />

several Gram-positive (including Mycoplasma spp. <strong>and</strong> Mycobacterium spp.) <strong>and</strong><br />

many Gram-negative bacteria. Their action against Streptococcus spp. is limited. The<br />

activity decreases in an anaerobic, acid or purulent environment since penetration<br />

through the cell membrane is in part an active oxydative transport.<br />

Aminoglycosides are administered orally or parenterally. Resorption is limited<br />

in the gastro-intestinal tract <strong>and</strong> they bind poorly to plasma proteins (less than 25%).<br />

Distribution after parenteral administration is limited to the extracellular fluid since<br />

aminoglycosides in general are too polar to cross mammalian cell membranes by<br />

diffusion. Poor diffusibility can be attributed to their low degree <strong>of</strong> lipid solubility<br />

(Giroux et al., 1995). Parenterally administered aminoglycosides easily penetrate in<br />

lung parenchyma <strong>and</strong> bronchial secretions according to the plasma-tissue<br />

concentration ratio (Saux et al., 1986; Goldstein et al., 2002).<br />

ROUTE OF ANTIMICROBIAL ADMINISTRATION<br />

In modern pig herds, animals are mostly treated as a group <strong>and</strong> not as single<br />

individuals. Consequently, treatment occurs predominantly through in-feed or inwater<br />

medication because this is easier to apply <strong>and</strong> less stressful compared to<br />

parenteral medication. Usually, only pigs suffering from acute disease receive<br />

parenteral injections on the first 2-3 days <strong>of</strong> disease, <strong>and</strong> are usually further treated<br />

per os. Parenteral injection <strong>of</strong>ten results in the best response, particularly in the case<br />

<strong>of</strong> acute respiratory tract disease (Henry <strong>and</strong> Apley, 1999).<br />

- 34 -


1.1.2 ANTIMICROBIAL TREATMENT AND CONTROL OF ENZOOTIC PNEUMONIA IN PIGS<br />

Achieving sufficiently high levels <strong>of</strong> the administered drug in the lung tissue is<br />

difficult when using oral medication. Even though in-feed medication is the most<br />

common method <strong>of</strong> administering antimicrobials, there are several disadvantages.<br />

This approach is rather wasteful since diseased but also healthy pigs receive<br />

medication. This can be justified by the knowledge that penmates are at-risk to<br />

become infected as well, especially in herds with a high stocking density. Sick pigs<br />

<strong>of</strong>ten have a suppressed appetite <strong>and</strong> therefore do not eat sufficient amounts <strong>of</strong> the<br />

drug to reach therapeutic levels in their body. Adaptation <strong>of</strong> the antimicrobial dose in<br />

the feed or water may overcome this problem. A close follow-up <strong>of</strong> the feed intake is<br />

required to achieve appropriate therapeutic levels <strong>and</strong> to avoid toxic effects due to<br />

overdosing. Some antimicrobial agents are poorly absorbed or are metabolized by the<br />

low pH in the stomach <strong>and</strong> may therefore not achieve therapeutic levels. The choice<br />

<strong>of</strong> a correct antimicrobial is indispensable. In-feed medication is especially suited for<br />

endemic or chronic diseases, such as enzootic pneumonia, since a quick<br />

administration <strong>of</strong> the medicated feed is not as important as for acute infections with<br />

eg. Actinobacillus pleuropneumoniae (Henry <strong>and</strong> Apley, 1999; Friendship, 2000).<br />

Pulse-medication is a variant <strong>of</strong> in-feed or in-water medication (Burch, 1990). A short<br />

period during which a therapeutic dose <strong>of</strong> antimicrobials is included in the feed is<br />

alternated with a longer period without medication. During the non-medication period<br />

pigs are able to develop an active immune response.<br />

In-water medication which can be administered more quickly is recommended<br />

for acute diseases, such as Actinobacillus pleuropneumoniae infections. Sick pigs<br />

<strong>of</strong>ten continue to drink, even when they refuse food. A major disadvantage is the<br />

spilling that <strong>of</strong>ten occurs by playing with the drinking nipples out <strong>of</strong> boredom. Some<br />

antimicrobials are unstable in water, poorly soluble due to the water pH or react with<br />

the water pipe material (e.g. tetracyclines with iron). Water intake <strong>of</strong> the piglets may<br />

greatly vary with the season; appropriate follow-up <strong>of</strong> the water intake is a<br />

prerequisite for achieving correct therapeutic doses (Henry <strong>and</strong> Apley, 1999).<br />

M. hyopneumoniae infections can be managed metaphylaxially or<br />

prophylaxially. Metaphylaxis means the use <strong>of</strong> medication with therapeutic levels <strong>of</strong><br />

drugs when some animals are clinically diseased while others are subclinically<br />

diseased or at high risk. Prophylaxis is the use <strong>of</strong> medication with therapeutic levels<br />

<strong>of</strong> drugs during high-risk periods for disease. A high-risk period in Western Europe<br />

- 35 -


1.1.2 ANTIMICROBIAL TREATMENT AND CONTROL OF ENZOOTIC PNEUMONIA IN PIGS<br />

for achieving M. hyopneumoniae infection is usually at 10 weeks <strong>of</strong> age, after transfer<br />

<strong>of</strong> animals to the finishing houses (Léon et al., 2001).<br />

THE EFFICACY OF SEVERAL ANTIMICROBIALS AGAINST M. HYOPNEUMONIAE<br />

INFECTIONS UNDER EXPERIMENTAL AND / OR FIELD CONDITIONS.<br />

Several studies have been conducted to assess the efficacy <strong>of</strong> various<br />

antimicrobials used for the prevention <strong>and</strong> the treatment <strong>of</strong> M. hyopneumoniae<br />

infections. Comparison <strong>of</strong> these studies is complicated due to considerable variations<br />

in study design. An over<strong>view</strong> <strong>of</strong> the conclusions drawn from studies published in<br />

peer-re<strong>view</strong>ed journals is given in Table 2 (experimental studies) <strong>and</strong> Table 3 (field<br />

studies).<br />

From these tables it can be concluded that for most antimicrobials tested,<br />

economic parameters (daily weight gain <strong>and</strong> feed conversion ratio) were improved<br />

<strong>and</strong> lung lesions as well as clinical signs were decreased in treated animals.<br />

- 36 -


1.1.2 ANTIMICROBIAL TREATMENT AND CONTROL OF ENZOOTIC PNEUMONIA IN PIGS<br />

Table 2: The effect <strong>of</strong> different antimicrobial regimens for treatment <strong>of</strong> experimental<br />

infections with Mycoplasma hyopneumoniae.<br />

Antimicrobial drug, dosage,<br />

scheme<br />

6-chloro analogue <strong>of</strong> Norfloxacin<br />

400 or 200 ppm<br />

Norfloxacin 100 ppm<br />

feed medication during 3 weeks<br />

starting 1 month after infection<br />

Tiamulin 100 or 200 ppm<br />

feed medication during 10 days<br />

starting 2 days before infection<br />

Tiamulin 50 mg/kg<br />

feed medication during 10 days<br />

starting 1 month after infection<br />

Tiamulin 240 ppm<br />

feed medication during 10 days<br />

starting 10 days after infection<br />

Tiamulin 60, 120, 180 ppm<br />

medication in drinking water<br />

during 10 days starting 11 days<br />

after infection<br />

Tylosin tartrate 50 mg/kg<br />

combined with Tiamulin 10<br />

mg/kg<br />

medication in drinking water<br />

during 10 days starting 14 days<br />

after infection<br />

Effects<br />

improvement <strong>of</strong> DWG <strong>and</strong> FCR<br />

improvement <strong>of</strong> lung lesions by 6-<br />

chloro analogue at 400 ppm only<br />

improvement <strong>of</strong> DWG <strong>and</strong> FCR<br />

lung lesions were not prevented<br />

M. hyopneumoniae could still be<br />

isolated<br />

improvement <strong>of</strong> DWG, clinical signs,<br />

lung lesions<br />

M. hyopneumoniae could still be<br />

isolated<br />

improvement <strong>of</strong> DWG, FCR, clinical<br />

signs, <strong>and</strong> macroscopic <strong>and</strong> microscopic<br />

lung lesions<br />

no beneficial effect on DWG, FCR,<br />

clinical signs, <strong>and</strong> macroscopic <strong>and</strong><br />

microscopic lung lesions<br />

improvement <strong>of</strong> macroscopic lung<br />

lesions<br />

M. hyopneumoniae could not be<br />

isolated<br />

less frequently secondary bacterial<br />

infections<br />

Reference<br />

Hannan <strong>and</strong> Goodwin,<br />

1990<br />

Schuller et al., 1977<br />

Goodwin, 1979<br />

Kobisch <strong>and</strong> Sibelle,<br />

1982<br />

Ross <strong>and</strong> Cox, 1988<br />

Hannan et al., 1982<br />

DWG: daily weight gain; FCR: feed conversion ratio<br />

- 37 -


1.1.2 ANTIMICROBIAL TREATMENT AND CONTROL OF ENZOOTIC PNEUMONIA IN PIGS<br />

Table 3: The effect <strong>of</strong> different antimicrobial regimens for treatment <strong>of</strong> Mycoplasma<br />

hyopneumoniae infections in herds clinically affected by enzootic pneumonia.<br />

Treatment<br />

Effects<br />

Reference<br />

Enr<strong>of</strong>loxacin 5 mg/kg<br />

Per os during 3 weeks starting after birth<br />

followed by parenteral treatment during<br />

3 weeks every 3 days starting in nursery<br />

unit followed by parenteral treatment<br />

during one week every 2 days<br />

prevention <strong>of</strong> clinical signs Frank, 1989<br />

Marb<strong>of</strong>loxacin 3 mg/kg<br />

IM during 3 days<br />

decrease <strong>of</strong> rectal temperature,<br />

improved DWG <strong>and</strong> clinical signs<br />

Thomas et al.,<br />

2000<br />

Chlortetracycline 800 ppm<br />

feed medication during 3 weeks<br />

Chlortetracycline 110 ppm<br />

feed medication for 1, 2, 3 or 4 months<br />

improvement <strong>of</strong> clinical signs <strong>and</strong><br />

oxygen saturation<br />

no improvement <strong>of</strong> DWG, FCR <strong>and</strong><br />

macroscopic lesions<br />

Ganter, 1995<br />

Ice et al., 1999<br />

Doxycycline 11 mg/kg<br />

feed medication during 8 days in the<br />

fattening unit<br />

improvement <strong>of</strong> DWG, incidence <strong>of</strong><br />

diseased pigs <strong>and</strong> cure rate<br />

Bousquet et al.,<br />

1998<br />

Lincomycin 5 mg/kg<br />

parenteral at day 1, 2, 3, <strong>and</strong> at day 39,<br />

40, 41<br />

Lincomycin 220 ppm<br />

feed medication during 3 weeks<br />

improved DWG, FCR, <strong>and</strong> clinical signs<br />

no significant improvements<br />

Lukert <strong>and</strong><br />

Mulkey, 1982<br />

Mateusen et al.,<br />

2002<br />

Tiamulin 200 ppm<br />

feed medication during 10 days in the<br />

growing unit<br />

Tiamulin 30 ppm<br />

feed medication during 8 weeks in pigs<br />

from 30 to 70 kg<br />

Tiamulin 100 ppm combined with<br />

Chlortetracycline 300 ppm or<br />

Chlortetracycline 300 ppm alone<br />

feed medication during 7 days<br />

improvement <strong>of</strong> DWG, clinical signs,<br />

macroscopic lung lesions, <strong>and</strong> mortality<br />

rate<br />

improvement <strong>of</strong> DWG, FCR<br />

no decrease in macroscopic lung lesions<br />

improvement <strong>of</strong> DWG, FCR, <strong>and</strong><br />

no improvement <strong>of</strong> macroscopic lung<br />

lesions for the combined group<br />

improvement <strong>of</strong> DWG for the single<br />

group only<br />

Martineau, 1980<br />

Burch, 1984<br />

Burch et al., 1986<br />

- 38 -


1.1.2 ANTIMICROBIAL TREATMENT AND CONTROL OF ENZOOTIC PNEUMONIA IN PIGS<br />

Tylosin 4 mg/kg or<br />

Lincomycin 5 mg/kg<br />

parenteral during 3 days after birth <strong>and</strong><br />

for 3 days at weaning<br />

Tilmicosin 300 ppm in feed<br />

during 9 or 14 days<br />

Tilmicosin 200 ppm in feed<br />

during 3 weeks after weaning (days 34-<br />

55) <strong>and</strong> during 2 weeks in the nursery<br />

period (days 77-98)<br />

improved DWG with Tylosin<br />

no significant improvement <strong>of</strong> FCR <strong>and</strong><br />

clinical signs with both antibiotics<br />

improved DWG, clinical signs<br />

less secondary bacteria<br />

Beneficial effects <strong>of</strong> DWG, FCR,<br />

mortality, <strong>and</strong> macroscopic lesions<br />

comparable to M. hyopneumoniae<br />

vaccination<br />

Kunesh, 1981<br />

Binder et al., 1993<br />

Mateusen et al.,<br />

2001<br />

Tiamulin 200 ppm in feed<br />

Chlortetracycline 600 ppm in feed<br />

pulse medication:<br />

2 days treatment/2 weeks during the<br />

fattening period<br />

Tiamulin 30 ppm in feed<br />

Oxytetracycline 300 ppm in feed<br />

pulse medication:<br />

2 or 3 days treatment/week during the<br />

fattening period<br />

Tiamulin 40 ppm in feed<br />

Oxytetracycline 300 ppm in feed<br />

pulse medication:<br />

2 days treatment/week during the<br />

fattening period<br />

Tiamulin 100 ppm in feed<br />

during 7 day at weaning <strong>and</strong><br />

during 7 days at 4 months <strong>of</strong> age (<strong>and</strong><br />

during 7 days at 6 months <strong>of</strong> age)<br />

lower prevalence <strong>of</strong> macroscopic lung<br />

lesions<br />

no influence on severity <strong>of</strong> macroscopic<br />

lung lesions<br />

improved DWG <strong>and</strong> FCR, prevalence<br />

<strong>and</strong> severity <strong>of</strong> lung lesions<br />

financial benefit<br />

improved DWG <strong>and</strong> mortality rate<br />

no improvement <strong>of</strong> FCR <strong>and</strong> severity <strong>of</strong><br />

lung lesions<br />

Improved DWG <strong>and</strong> mortality rate,<br />

improvement <strong>of</strong> FCR <strong>and</strong> severity <strong>of</strong><br />

lung lesions, financial benefit<br />

Le Gr<strong>and</strong> <strong>and</strong><br />

Kobisch, 1996<br />

Kavanagh, 1994<br />

Jouglar et al., 1993<br />

Stipkovits et al.,<br />

2003<br />

DWG: daily weight gain; FCR: feed conversion ratio; IM: intramuscular<br />

ANTIMICROBIAL SUSCEPTIBILITY TESTING FOR MYCOPLASMA SPP.<br />

The Clinical <strong>and</strong> Laboratory St<strong>and</strong>ards Institute issues no specific guidelines<br />

for susceptibility testing <strong>of</strong> Mycoplasma spp. Therefore, there has been little<br />

st<strong>and</strong>ardization <strong>of</strong> the procedures used to determine the minimal inhibitory<br />

concentration (MIC) <strong>of</strong> antimicrobials against these micro-organisms. This makes the<br />

comparison <strong>of</strong> MIC results between laboratories difficult. St<strong>and</strong>ard broth <strong>and</strong> agar<br />

dilution methods used for susceptibility testing <strong>of</strong> other bacteria have been adapted for<br />

use with mycoplasmas. These methods, performed with appropriate controls, give<br />

- 39 -


1.1.2 ANTIMICROBIAL TREATMENT AND CONTROL OF ENZOOTIC PNEUMONIA IN PIGS<br />

useful results for the treatment <strong>of</strong> mycoplasmal infections. Recently ‘Guidelines <strong>and</strong><br />

recommendations for antimicrobial minimum inhibitory concentration (MIC) testing<br />

against veterinary mycoplasma species’ were proposed by the ‘International Research<br />

Programme on Comparative Mycoplasmology (IRPCM)’ (Hannan, 2000). No single<br />

st<strong>and</strong>ardized medium or pH can be indicated for mycoplasmas since growth<br />

requirements vary with the species.<br />

An inoculum <strong>of</strong> 10 4 to 10 5 colour changing units (CCU) per ml has been<br />

recommended. If available, a control strain with well established MIC ranges <strong>of</strong> the<br />

tested drugs should be included to validate the test. Finally, m<strong>and</strong>atory controls such<br />

as sterile growth medium <strong>and</strong> the control strain in drug-free medium are required. The<br />

choice <strong>of</strong> test procedure is influenced by several factors such as the number <strong>of</strong> strains<br />

to be tested, their growth titer in broth or agar, <strong>and</strong> the generation time <strong>of</strong> the species.<br />

Broth dilution <strong>and</strong> especially microbroth dilution techniques have been<br />

modified for mycoplasmas <strong>and</strong> are the most widely used. The method employs<br />

mycoplasmal media with increasing antibiotic concentrations, inoculated with a<br />

st<strong>and</strong>ardized number <strong>of</strong> micro-organisms in 96-well microtiter plates. Commercially<br />

available 96-well microtiter plates precoated with antimicrobials can be ordered <strong>and</strong><br />

used with good results (Tanner <strong>and</strong> Wu, 1992; Tanner et al., 1993). Mycoplasma<br />

growth results in degradation <strong>of</strong> the metabolizable substrate such as glucose, arginin<br />

or urea, present in the medium with the resulting pH change visible as a colour change<br />

<strong>of</strong> a pH indicator. The MIC is defined as the lowest concentration <strong>of</strong> an antimicrobial<br />

agent that prevents a colour change at the time when the colour in the control without<br />

antibiotics has changed. The MIC <strong>of</strong> an antimicrobial agent for M. hyopneumoniae<br />

will only be available after 14 days <strong>of</strong> incubation. Turbidity or colour change in broth<br />

control indicates bacterial contamination.<br />

MICs <strong>of</strong> mycoplasmas growing more easily on solid agar, e.g. M. bovis<br />

(Francoz et al., 2005) <strong>and</strong> M. hominis (Waites et al., 1999), can also be determined<br />

using the E-test (AB BIODISK, Solna, Sweden). This test is based on the transfer <strong>of</strong> a<br />

continuous concentration gradient <strong>of</strong> an antimicrobial agent from a plastic strip into<br />

agar medium (Waites et al., 1997).<br />

No specific breakpoints for mycoplasmas are available, so it is preferable to<br />

merely report MICs. Some laboratories have adopted the breakpoints used for the<br />

interpretation <strong>of</strong> MICs for other bacteria (Bébéar <strong>and</strong> Bébéar, 2002). The<br />

development <strong>of</strong> antimicrobial resistance can be determined using the microbiological<br />

- 40 -


1.1.2 ANTIMICROBIAL TREATMENT AND CONTROL OF ENZOOTIC PNEUMONIA IN PIGS<br />

criterion. When a monomodal Gaussian distribution is found, no acquired resistance is<br />

present, but when the distribution is bimodal or multimodal a resistance mechanism<br />

can be supposed. Also when tailing, i.e. the loss <strong>of</strong> the normal Gaussian distribution,<br />

is seen, a resistance mechanism can be supposed (Butaye, 2000).<br />

IN VITRO SUSCEPTIBILITY OF M. HYOPNEUMONIAE TO ANTIMICROBIALS USED<br />

IN PIG VETERINARY MEDICINE<br />

Few studies are available that document the in vitro susceptibilities <strong>of</strong> M.<br />

hyopneumoniae against antimicrobials used in swine practice to treat respiratory<br />

disorders. Since M. hyopneumoniae is a fastidious organism to isolate <strong>and</strong> the<br />

procedure is time consuming, only limited numbers <strong>of</strong> isolates were used for MIC<br />

determination. Broth is preferable <strong>and</strong> most frequently used (Table 4).<br />

Inconsistencies in results were seen in the susceptibility testing <strong>of</strong><br />

tetracyclines. Williams (1978) found chlortetracycline to be less active than<br />

oxytetracycline <strong>and</strong> doxycycline, Etheridge et al. (1979) found a wide variation in the<br />

MICs (1.6 – 25 µg/ml) for chlortetracycline <strong>and</strong> Yamamoto <strong>and</strong> Koshimizu (1984)<br />

reported high MICs (≥ 40 µg/ml) for chlortetracycline. Inamoto et al. (1994) observed<br />

an increase in resistance to both chlortetracycline <strong>and</strong> oxytetracycline occurring in<br />

Japanese M. hyopneumoniae field strains isolated between 1970 <strong>and</strong> 1990. MICs <strong>of</strong><br />

unstable antimicrobials like chlortetracycline <strong>and</strong> valnemulin are unreliable since<br />

MIC determination <strong>of</strong> M. hyopneumoniae can take up to 14 days.<br />

In contrast to most studies reporting the lack <strong>of</strong> acquired resistance in M.<br />

hyopneumoniae, Wu et al. (1997) found several resistant isolates. Of the 14 isolates<br />

tested, 13 were resistant against tylosin, although 10 were susceptible to tilmicosin.<br />

One isolate was resistant to lincomycin, apramycin <strong>and</strong> enr<strong>of</strong>loxacin, two against<br />

spectinomycin. All isolates were susceptible to tetracycline <strong>and</strong> gentamicin. Because<br />

<strong>of</strong> inconsistency in the resistance pr<strong>of</strong>ile against macrolides <strong>and</strong> the fact that the M.<br />

hyopneumoniae isolates were incubated for only 3 days, the results should be<br />

interpreted with caution <strong>and</strong> are therefore not included in Table 2.<br />

In conclusion, despite some reports on resistance against tetracyclines,<br />

acquired resistance in M. hyopneumoniae does not seem to constitute a major problem<br />

to date. Genotypical confirmation <strong>of</strong> resistance has not been reported for M.<br />

hyopneumoniae.<br />

- 41 -


1.1.2 ANTIMICROBIAL TREATMENT AND CONTROL OF ENZOOTIC PNEUMONIA IN PIGS<br />

- 42 -


1.1.2 ANTIMICROBIAL TREATMENT AND CONTROL OF ENZOOTIC PNEUMONIA IN PIGS<br />

- 43 -


1.1.2 ANTIMICROBIAL TREATMENT AND CONTROL OF ENZOOTIC PNEUMONIA IN PIGS<br />

ANTIMICROBIAL RESISTANCE IN MYCOPLASMA SPP.<br />

Intrinsic, innate or natural resistance is defined as the relative insensitivity <strong>of</strong><br />

all members <strong>of</strong> a bacterial species or genus against an antimicrobial agent. Some<br />

intrinsic resistances can be related to only one Mycoplasma species, while others can<br />

be related to all members <strong>of</strong> the class <strong>of</strong> Mollicutes. By contrast, resistance may be<br />

acquired by some strains within a species usually susceptible to the antimicrobial<br />

agent under consideration.<br />

Similar biochemical mechanisms may be responsible for intrinsic <strong>and</strong> acquired<br />

resistances, e.g. target modification, decreased uptake or enzymatic modification <strong>of</strong><br />

the antimicrobial agent.<br />

Intrinsic resistance related to the class Mollicutes<br />

Mollicutes lack a cell wall <strong>and</strong> are therefore resistant to all β-lactam<br />

antibiotics, like penicillin, ampicillin, amoxicillin, methicillin <strong>and</strong> cephalosporins.<br />

Also other antimicrobials targeting the cell wall, like glycopeptides (vancomycin,<br />

teicoplanin <strong>and</strong> avoparcin) are <strong>of</strong> no use in the treatment <strong>of</strong> mycoplasma infections. In<br />

addition, mycoplasmas are also resistant to polymyxins, sulfonamides, trimethoprim,<br />

naladixic acid <strong>and</strong> rifampin.<br />

Intrinsic resistance related to the Mycoplasma species<br />

Innate resistance related to specific Mycoplasma species concerns mainly the<br />

macrolides. As described above, macrolides are classified into three subgroups<br />

according to their lactone ring sizes (14-, 15- <strong>and</strong> 16-membered lactone ring). M.<br />

hyopneumoniae, M. flocculare, M. bovis, M. pulmonis <strong>and</strong> M. fermentans are<br />

insensitive to the 14-membered lactone ring macrolides, erythromycin <strong>and</strong><br />

ole<strong>and</strong>omycin (Williams, 1978; Tanner et al., 1993; Chambaud et al., 2001; Bébéar<br />

<strong>and</strong> Bébéar, 2002; Francoz et al., 2005), whereas M. pneumoniae <strong>and</strong> M. genitalium<br />

are susceptible (Bébéar et al., 2000; Kenny <strong>and</strong> Cartwright, 2001). The genetic basis<br />

<strong>of</strong> this innate resistance has been elucidated. Macrolides bind to the bacterial<br />

ribosome <strong>and</strong> affect its peptidyltransferase activity in the V domain <strong>of</strong> 23S rRNA. In<br />

- 44 -


1.1.2 ANTIMICROBIAL TREATMENT AND CONTROL OF ENZOOTIC PNEUMONIA IN PIGS<br />

erythromycin <strong>and</strong> ole<strong>and</strong>omycin resistant mycoplasmas, a G →A transition at position<br />

2057 is found in the sequence <strong>of</strong> the 23S rRNA.<br />

Acquired antimicrobial resistance in Mycoplasma spp.<br />

Generally speaking, there are three main mechanisms <strong>of</strong> acquired<br />

antimicrobial resistance in mycoplasmas: active efflux mechanisms, enzymatic<br />

modification <strong>of</strong> the drug or alteration in the drug target site. Mycoplasmas are<br />

characterized by high mutation frequencies due to the limited amount <strong>of</strong> genetic<br />

information dedicated to DNA repair systems (Razin et al., 1998).<br />

1. Tetracyclines<br />

Acquired resistance to tetracyclines has been documented in human<br />

mycoplasmas <strong>of</strong> the urogenital tract: M. hominis <strong>and</strong> Ureaplasma urealyticum (Kenny<br />

<strong>and</strong> Cartwright, 1994; Waites et al., 1997). In veterinary medicine, tetracycline<br />

resistance has been described in M. bovis <strong>and</strong> M. hyopneumoniae (Inamoto et al.,<br />

1994; Thomas et al., 2003). Resistance in M. hominis <strong>and</strong> Ureaplasma spp. to<br />

tetracycline has been associated with the presence <strong>of</strong> the tetM determinant (Roberts et<br />

al., 1985; Blanchard et al., 1992). Blanchard et al. (1992) reported that all <strong>of</strong> the tetMpositive<br />

M. hominis isolates were sensitive to doxycycline, indicating that tetM does<br />

not necessarily confer resistance to this antibiotic. Recent research supports the<br />

assumption that tetracycline resistance in mollicutes can also be mediated by other<br />

genes than tetM (Taraskina et al., 2002). In veterinary mycoplasmas, no resistance<br />

mechanisms have currently been described.<br />

2. Macrolides <strong>and</strong> lincosamides<br />

Acquired resistance to macrolides is not well documented in human (M.<br />

pneumoniae, M. hominis <strong>and</strong> U. urealyticum) <strong>and</strong> animal (M. bovis <strong>and</strong> M.<br />

gallisepticum) mycoplasmas, but seems to increase considerably during the last years<br />

(Samra et al., 2002; Thomas et al., 2003; Francoz et al., 2005; Morozumi et al.,<br />

2005). In vitro selected resistant Mycoplasma strains showed mutations in the domain<br />

V <strong>of</strong> the 23S rRNA. Positions 2058, 2059 (E. coli numbering) seem to be hot spots for<br />

- 45 -


1.1.2 ANTIMICROBIAL TREATMENT AND CONTROL OF ENZOOTIC PNEUMONIA IN PIGS<br />

macrolide resistance. This is in agreement with the situation in other bacteria (Lucier<br />

et al., 1995; Alvarez-Elcoro <strong>and</strong> Enzler, 1999; Pereyre et al, 2004; Wu et al., 2005).<br />

In addition, position 2062 was determined as a position responsible for resistance<br />

against 16-lactone ring macrolides (Furneri et al., 2001). Recently, mutations in the<br />

ribosomal proteins L4 <strong>and</strong> L22 have been associated with increased MIC-values in<br />

Gram-negative bacteria <strong>and</strong> Streptococcus spp. (Franceschi et al., 2004; Roberts,<br />

2004; Prunier et al., 2005). Similar mutations were found in M. pneumoniae after in<br />

vitro selection (Pereyre et al., 2004) but not in clinical isolates. The resistance<br />

mechanism in veterinary important mycoplasmas has not yet been elucidated but it is<br />

probably similar to that in human mycoplasmas.<br />

3. Pleuromutilins<br />

Development <strong>of</strong> resistance against pleuromutilins in animal-associated<br />

mycoplasmas isolated from clinical specimens has not yet been described. One<br />

publication (Gautier-Bouchardon et al., 2002) reports the development <strong>of</strong> resistance in<br />

some M. iowae isolates after repeated passages in vitro in the presence <strong>of</strong> tiamulin,<br />

but the mechanism was not described.<br />

4. Fluoroquinolones<br />

Two fluoroquinolone resistance mechanisms have been described: 1) mutation<br />

in the four target genes, gyrA, gyrB, parC <strong>and</strong> parE <strong>and</strong> 2) reduction in the level <strong>of</strong><br />

quinolone accumulation inside the cells either by efflux or lack <strong>of</strong> penetration<br />

(Hooper, 1999).<br />

In human medicine, acquired resistance has only been reported for genital<br />

mycoplasmas. The veterinary important mycoplasmas M. gallisepticum (Reinhardt et<br />

al., 2002) <strong>and</strong> M. bovis (Thomas et al., 2003) have been shown to be able to develop<br />

resistance against fluoroquinolones in vivo. Resistance is based on stepwise alterations<br />

in the four target genes but as in other Gram-positive bacteria, mainly gyrA <strong>and</strong> parC<br />

are involved (Chen <strong>and</strong> Lo, 2003). The existence <strong>of</strong> efflux mechanisms increasing the<br />

MIC has only been demonstrated in M. hominis (Raherison et al., 2002).<br />

- 46 -


1.1.2 ANTIMICROBIAL TREATMENT AND CONTROL OF ENZOOTIC PNEUMONIA IN PIGS<br />

5. Florfenicol<br />

No resistance against florfenicol has been described in animal-associated<br />

mycoplasmas.<br />

6. Aminoglycosides <strong>and</strong> aminocyclitols<br />

Acquired resistance to aminoglycosides has been described for M. bovis<br />

(Thomas et al., 2003) <strong>and</strong> M. hyorhinis (Idowu et al., 2003). Resistance mechanisms<br />

in other bacteria include mutations in the ribosome target, presence <strong>of</strong> efflux<br />

mechanisms, or the presence <strong>of</strong> aminoglycoside-modifying enzymes (aminoglycoside<br />

phosphotransferases, aminoglycoside nucleotidyltransferases <strong>and</strong> aminoglycoside<br />

acetyltransferases) (Kotra et al., 2000). Stepwise selections <strong>of</strong> Mycoplasma strains<br />

grown in the presence <strong>of</strong> aminoglycosides or aminocyclitols result in resistance<br />

against aminoglycosides, but the resistance mechanism has not been elucidated<br />

(Hannan, 1995).<br />

PREVENTIVE MEDICATION VERSUS VACCINATION<br />

The use <strong>and</strong> efficacy <strong>of</strong> either vaccination or preventive (strategic) medication<br />

is frequently discussed among swine veterinarians <strong>and</strong> both strategies have<br />

advantages <strong>and</strong> disadvantages. Advantages <strong>of</strong> antimicrobial prevention strategies are<br />

the flexibility, antimicrobials are <strong>of</strong>ten effective against several (respiratory)<br />

pathogens <strong>and</strong> the administration is less labour-intensive since group treatments are<br />

mainly accomplished by in-feed or in-water medication. Vaccination on the other<br />

h<strong>and</strong>, does not select for antimicrobial resistance in pathogenic bacteria <strong>and</strong> in<br />

bacteria belonging to the microbiota <strong>of</strong> the animal. It also avoids risks for<br />

antimicrobial residues in slaughter pigs. While for antimicrobial treatment, an<br />

immediate effect at herd level can be expected, the effect <strong>of</strong> vaccination <strong>of</strong> young<br />

piglets will only be evident if it is continued during approximately 6 months. It is not<br />

warranted to interrupt vaccination during periods <strong>of</strong> low risk for disease outbreaks or<br />

during periods <strong>of</strong> poor market conditions (Maes et al., 2003). Vaccination against M.<br />

hyopneumoniae has as additional effect that secondary bacterial infections<br />

- 47 -


1.1.2 ANTIMICROBIAL TREATMENT AND CONTROL OF ENZOOTIC PNEUMONIA IN PIGS<br />

(Pasteurella multocida, Actinobacillus pleuropneumoniae) less frequently occur<br />

under field conditions (Kobisch et al., 1993; Sørensen et al., 1997).<br />

Neither vaccination nor preventive medication can prevent infection <strong>and</strong><br />

adherence <strong>of</strong> M. hyopneumoniae to the ciliated cells <strong>of</strong> the respiratory tract <strong>of</strong> treated<br />

or vaccinated pigs has been demonstrated in several studies (Hannan et al., 1982;<br />

Kubo et al., 1990; Le Gr<strong>and</strong> <strong>and</strong> Kobisch 1996, Schatzmann et al., 1996, Mateusen et<br />

al., 2002).<br />

ERADICATION OF M. HYOPNEUMONIAE<br />

Eradication <strong>of</strong> enzootic pneumonia would result in serious savings each year<br />

<strong>and</strong> in improvement <strong>of</strong> the health <strong>and</strong> welfare <strong>of</strong> the pigs.<br />

A depopulation <strong>and</strong> restocking programme has been proposed <strong>and</strong> conducted<br />

in 1960 by the Pig <strong>Health</strong> Control Organisation (Goodwin <strong>and</strong> Wittlestone, 1960) <strong>and</strong><br />

eradication <strong>of</strong> herds in the UK was described by Goodwin <strong>and</strong> Wittlestone (1967).<br />

This programme was expensive <strong>and</strong> reinfections occurred in 20% <strong>of</strong> the herds.<br />

Now, eradication <strong>of</strong> M. hyopneumoniae is mainly applied in Denmark, Finl<strong>and</strong><br />

(Heinonen et al., 1999) <strong>and</strong> Switzerl<strong>and</strong> (Zimmerman et al., 1989; Zimmerman,<br />

1990). In Switzerl<strong>and</strong>, a total <strong>and</strong> partial sanitation programme was set up<br />

(Zimmermann et al., 1989). The total sanitation programme involved complete<br />

emptying <strong>of</strong> the animal facilities by selling or culling all animals. The partial<br />

sanitation programme included a piglet <strong>and</strong> gilt free (< 10 months) interval <strong>and</strong> the<br />

temporary feeding <strong>of</strong> a medicated diet during 10-14 days. The feed contained either<br />

tiamulin (6 mg/kg body weight (BW)) or a combination <strong>of</strong> chlortetracycline (20<br />

mg/kg BW), tylosin (4 mg/kg BW) <strong>and</strong> sulfadimidin (30 mg/kg BW).<br />

Another method used mainly in the US is ‘medicated early weaning (MEW)’<br />

wherein intensive medication <strong>of</strong> the sow during late gestation <strong>and</strong> immediately<br />

following parturition <strong>and</strong> <strong>of</strong> the newborn piglets is used to derive pigs free <strong>of</strong> M.<br />

hyopneumoniae. Piglets are weaned at 5 days <strong>of</strong> age, placed in an isolated nursery on<br />

a separate site <strong>and</strong> medicated for the first 10 days after weaning (Alex<strong>and</strong>er et al.,<br />

1980). Modifications <strong>of</strong> the MEW programme, based on postponing weaning until 21-<br />

25 days <strong>of</strong> age, keeping sows <strong>and</strong> nursery pigs at the same site, vaccination strategies<br />

<strong>and</strong>/or combined with medication <strong>of</strong> the sows <strong>and</strong> medications <strong>of</strong> the piglets before<br />

<strong>and</strong> after weaning were described <strong>and</strong> evaluated by Clark et al. (1994). It was<br />

- 48 -


1.1.2 ANTIMICROBIAL TREATMENT AND CONTROL OF ENZOOTIC PNEUMONIA IN PIGS<br />

concluded that isolating the pigs was as effective as medication <strong>and</strong> vaccination<br />

protocols in controlling the transmission <strong>of</strong> the pathogens investigated, including M.<br />

hyopneumoniae, Bordetella bronchiseptica <strong>and</strong> Pasteurella multocida. M.<br />

hyopneumoniae was not detected when any MEW procedure was used.<br />

Antimicrobials used for eradication programmes are preferably<br />

mycoplasmacidal, like the newer fluoroquinolones, cipr<strong>of</strong>loxacin <strong>and</strong> enr<strong>of</strong>loxacin<br />

(Hannan et al., 1989) <strong>and</strong> aminoglycosides. Tiamulin is most frequently utilized to<br />

sustain eradication programmes (Mészáros et al., 1985).<br />

Although several attempts have been made to eradicate M. hyopneumoniae<br />

from a herd, reinfection frequently occurs (2.6-10% per year) (Keller, 1987,<br />

Whittlestone, 1990; Hege et al., 2002). A prominent explanation for this finding is<br />

that neighbouring herds are not free <strong>of</strong> M. hyopneumoniae (Goodwin, 1985; Jorsal<br />

<strong>and</strong> Thomsen, 1988, Wallgren et al., 1993; Hege et al., 2002). M. hyopneumoniae is<br />

able to spread over a distance <strong>of</strong> 3.2 km (Goodwin, 1985). Other statistically<br />

significant risk factors for the reinfection as determined by Hege et al. (2002) were<br />

'finishing farm', 'large mixed breeding-finishing farm', <strong>and</strong> 'parking site for pig<br />

transport vehicles close to the farm'. A protective factor was the purchase <strong>of</strong> pigs from<br />

one supplier per batch. Another explanation might be the technique used to<br />

investigate the infection status <strong>of</strong> M. hyopneumoniae <strong>of</strong> purchased pigs. Mainly<br />

ELISA techniques on serum or colostrum samples are used. ELISA has proved to be a<br />

very useful technique but recently it was demonstrated that the pigs can be colonized<br />

by low numbers <strong>of</strong> M. hyopneumoniae organisms in the lung without showing<br />

seroconversion (Thacker, 2004).<br />

Based on the cited studies, it can be stated that vaccination or antimicrobial<br />

treatment can indeed reduce the number <strong>of</strong> organisms in the lungs but these measures<br />

do not guarantee the absence <strong>of</strong> M. hyopneumoniae. MEW contributes to prevent<br />

spread <strong>of</strong> M. hyopneumoniae from sow to <strong>of</strong>fspring.<br />

- 49 -


1.1.2 ANTIMICROBIAL TREATMENT AND CONTROL OF ENZOOTIC PNEUMONIA IN PIGS<br />

REFERENCES<br />

1. Alex<strong>and</strong>er, T.J.L., Thornton, K., Boon, G., Lysons, R.J. & Gush, A.F. (1980). Medicated<br />

early weaning to obtain pigs free from pathogens endemic in the herd <strong>of</strong> origin. The Veterinary<br />

Record 106, 114-119.<br />

2. Alvarez-Elcoro, S. & Enzler, M.J. (1999). The macrolides: erythromycin, clarithromycin, <strong>and</strong><br />

azithromycin. Mayo Clinic Proceedings 74, 613-634.<br />

3. Aitken, I.A., Morgan, J.H., Dalziel, R., Burch, D.G.S. & Ripley, P.H. (1999). Comparitive in<br />

vitro activity <strong>of</strong> valnemulin against porcine bacterial pathogens. The Veterinary Record 144,<br />

128.<br />

4. Arai, S., Gohara, Y., Kuwano, K. & Kawashima, T. (1992). Antimycoplasmal activities <strong>of</strong><br />

new quinolones, tetracyclines, <strong>and</strong> macrolides against Mycoplasma pneumoniae. Antimicrobial<br />

Agents <strong>and</strong> Chemotherapy 36, 1322-1324.<br />

5. Bébéar, C.M. & Bébéar, C. (2002). Antimycoplasmal agents. In: Molecular biology <strong>and</strong><br />

pathogenicity <strong>of</strong> mycoplasmas. Razin, S., Herrmann, R., Editors. Kluwer Academic / Plenum<br />

Publishers, New York., pp. 545-566.<br />

6. Bébéar, C.M., Renaudin, H., Bryskier, A. & Bébéar, C. (2000). Comparitive activities <strong>of</strong><br />

telithromycin, lev<strong>of</strong>loxacin, <strong>and</strong> other antimicrobials against human mycoplasmas.<br />

Antimicrobial Agents <strong>and</strong> Chemotherapy 44, 1980-1982.<br />

7. Blanchard, A., Crabb, D.M., Dybvig, K., Duffy, L.B. & Cassell, G.H. (1992). Rapid<br />

detection <strong>of</strong> tetM in Mycoplasma hominis <strong>and</strong> Ureaplasma urealyticum by PCR: tetM confers<br />

resistance to tetracycline but not necessarily to doxycyline. FEMS Microbiology Letters 74, 277-<br />

281.<br />

8. Binder, S., Le, N.B, Berner, H. & Bauer, J. (1993). The effectiveness <strong>of</strong> tilmicosin in<br />

respiratory diseases <strong>of</strong> swine. Berliner <strong>and</strong> Münchener Tierärztliche Wochenschrift 106, 6-9.<br />

9. Bousquet, E., Morvan, H., Aitken, I. & Morgan, J.H. (1997). Comparative in vitro activity <strong>of</strong><br />

doxycycline <strong>and</strong> oxytetracycline against porcine respiratory pathogens. The Veterinary Record<br />

141, 37-40.<br />

10. Bousquet, E., Pommier, P., Wessel-Robert, S., Morvan, H., Benoit-Valierque, H. & Laval,<br />

A. (1998). Efficacy <strong>of</strong> doxycycline in feed for the control <strong>of</strong> pneumonia caused by Pasteurella<br />

multocida <strong>and</strong> Mycoplasma hyopneumoniae in fattening pigs. The Veterinary Record 143, 269-<br />

272.<br />

11. Burch, D. (1984). Tiamulin feed premix in the improvement <strong>of</strong> growth performance <strong>of</strong> pigs in<br />

herds severely affected with enzootic pneumonia. The Veterinary Record 114, 209-211.<br />

12. Burch, D. (1990). Pulse dosing versus pneumonia. Pig International. 20-24.<br />

13. Burch, D. (2001). Oral antimicrobial medication pharmacokinetics in pigs. (Online)<br />

http://www.octagon-services.co.uk/articles/pharmacokinetics.htm.<br />

14. Burch, D., Jones, G., Heard, T. & Tuck, R. (1986). The synergistic activity <strong>of</strong> tiamulin <strong>and</strong> infeed<br />

treatment <strong>of</strong> bacterially complicated enzootic pneumonia in fattening pigs. The Veterinary<br />

Record 119, 108-112.<br />

15. Butaye, P. (2000). Antimicrobial resistance in Enterococcus faecium <strong>and</strong> Enterococcus faecalis<br />

strains from animals <strong>and</strong> animal-derived foods. PhD Thesis / Ghent University / Belgium.<br />

- 50 -


1.1.2 ANTIMICROBIAL TREATMENT AND CONTROL OF ENZOOTIC PNEUMONIA IN PIGS<br />

16. Chambaud, I., Heilig, R., Ferris, S., Barbe, V., Samson, D., Galisson, F., Moszer, I.,<br />

Dybvig, K., Wroblewski, H., Viari, A., Rocha, E.P. & Blanchard, A. (2001). The complete<br />

genome sequence <strong>of</strong> the murine respiratory pathogen Mycoplasma pulmonis. Nucleic Acids<br />

Research 29, 2145-2153.<br />

17. Chauvin, C., Beloeil, P.-A., Or<strong>and</strong>, J.-P., S<strong>and</strong>ers, P. & Madec, F. (2002). A survey <strong>of</strong><br />

group-level antibiotic prescriptions in pig production in France. Preventive Veterinary Medicine<br />

55, 109-120.<br />

18. Chen, F.J. & Lo, H.J. (2003). Molecular mechanisms <strong>of</strong> fluoroquinolone resistance. Journal <strong>of</strong><br />

Microbiology, Immunology <strong>and</strong> Infection 36, 1-9.<br />

19. Chopra, I. & Roberts, M. (2001). Tetracycline antibiotics: mode <strong>of</strong> action, applications,<br />

molecular biology, <strong>and</strong> epidemiology <strong>of</strong> bacterial resistance. Microbiology <strong>and</strong> molecular<br />

biology re<strong>view</strong>s 65, 232-260.<br />

20. Clark, L.K., Hill, M.A., Kniffen, T.S., VanAlstine, W., Stevenson, G., Meyer, K.B., Wu,<br />

C.C., Scheidt, A.B., Knox, K. & Albregts, S. (1994). An evaluation <strong>of</strong> the components <strong>of</strong><br />

medicated early weaning. Swine <strong>Health</strong> <strong>and</strong> Production 2, 5-11.<br />

21. Cundliffe, E. (1990). Recognition sites for antibiotics within rRNA. In: The ribosome: structure,<br />

functions, <strong>and</strong> evolution. Hill, W.E., Dahlberg, A., Garrett, R.A., M.P.B., Schlessinger, D.,<br />

Waener, J.R.: Editors. American Society <strong>of</strong> Microbiology, Washington D.C., pp. 479-490.<br />

22. Etheridge, J., Lloyd, L. & Cottew, G. (1979). Resistance <strong>of</strong> Mycoplasma hyopneumoniae to<br />

chlortetracycline. Australian Veterinary Journal 55, 40.<br />

23. Franceschi, F., Kanyo, Z., Sherer, E.C. & Sutcliffe, J. (2004). Macrolide resistance from the<br />

ribosome perspective. Current Drug Targets - Infectious Disorders 4, 177-191.<br />

24. Francoz, D., Fortin, M., Fecteau, G. & Messier, S. (2005). Determination <strong>of</strong> Mycoplasma<br />

bovis susceptibilities against six antimicrobial agents using the E test method. Veterinary<br />

Microbiology 105, 57-64.<br />

25. Frank, H. (1989). Zur Therapie und Prophylaxe der Enzootischen Pneumonie des Schweines<br />

mit Baytril ® . Wiener Tierarztliche Monatschrift 76, 312.<br />

26. Friendship, R.M. (2000). Antimicrobial drug use in swine. In: Antimicrobial Therapy in<br />

Veterinary Medicine. J.F. Prescott, J.D. Baggot, R.D. Walker, Editors. Iowa State University<br />

Press / Ames, Third Edition, pp. 603-616.<br />

27. Friis, N.F. & Szancer, J. (1994). Sensitivity <strong>of</strong> certain porcine <strong>and</strong> bovine mycoplasmas to<br />

antimicrobial agents in a liquid medium test compared to a disc assay. Acta Veterinaria<br />

Sc<strong>and</strong>inavia 35, 389-394.<br />

28. Furneri, P.M. Rappazzo, G., Musumarra, M.P. Di Pietro, P., Catania, L.S. & Roccasalva,<br />

L.S. (2001). Two new point mutations at A2062 associated with resistance to 16-membered<br />

macrolide antibiotics in mutant strains <strong>of</strong> Mycoplasma hominis. Antimicrobial Agents <strong>and</strong><br />

Chemotherapy 45, 2958-2960.<br />

29. Ganter, M., Dudziak, D. & Delbeck, F. (1995). Treatment <strong>of</strong> swine with chronic pneumonia<br />

with chlortetracycline-medicated feed. Deutsche Tierärztliche Wochenschrift 102, 44-49.<br />

30. Gautier-Bouchardon, A.V., Reinhardt, A.K., Kobisch, M. & Kempf, I. (2002). In vitro<br />

development <strong>of</strong> resistance to enr<strong>of</strong>loxacin, erythromycin, tylosin, tiamulin <strong>and</strong> oxytetracycline<br />

in Mycoplasma gallisepticum, Mycoplasma iowae <strong>and</strong> Mycoplasma synoviae. Veterinary<br />

Microbiology 88, 47-58.<br />

31. Giroux D., Sirois G. & Martineau G.P. (1995). Gentamicin pharmacokinetics in newborn <strong>and</strong><br />

42-day-old male piglets. Journal <strong>of</strong> Veterinary Pharmacology <strong>and</strong> Therapeutics 18, 407-412.<br />

- 51 -


1.1.2 ANTIMICROBIAL TREATMENT AND CONTROL OF ENZOOTIC PNEUMONIA IN PIGS<br />

32. Goldstein, I., Wallet, F., Robert, J., Becquemin, H., Marquette, C-H. & Rouby, J-J. (2002).<br />

Lung tissue concentrations <strong>of</strong> nebulized amikacin during mechanical ventilation in piglets with<br />

healthy lungs. American Journal <strong>of</strong> Respiratory <strong>and</strong> Critical Care Medicine 165, 171-175.<br />

33. Goodwin, R.F.W. (1979). Activity <strong>of</strong> tiamulin against Mycoplasma suipneumoniae <strong>and</strong><br />

enzootic pneumoniae <strong>of</strong> pigs. The Veterinary Record 104, 194-195.<br />

34. Goodwin, R.F.W. (1985). Apparent reinfection <strong>of</strong> enzootic-pneumonia-free herds: search for<br />

possible causes. The Veterinary Record 116, 690-694.<br />

35. Goodwin, R.F.W. & Whittlestone, P. (1960). The Veterinary Record 72, 1029.<br />

36. Goodwin, R.F.W. & Whittlestone, P. (1967). The detection <strong>of</strong> enzootic pneumonia in pig<br />

herds. I. Eight years general experience with a pilot control scheme. The Veterinary Record 81,<br />

643-647.<br />

37. Haesebrouck, F., Pasmans, F., Chiers, K., Maes, D., Ducatelle, R. & Decostere, A. (2004).<br />

Efficacy <strong>of</strong> vaccines against bacterial diseases in swine: what can we expect Veterinary<br />

Microbiology 100, 255-268.<br />

38. Hannan, P.C.T. (1995). Antibiotic susceptibility <strong>of</strong> Mycoplasma fermentans strains from<br />

various sources <strong>and</strong> the development <strong>of</strong> resistance to aminoglycosides in vitro. Journal <strong>of</strong><br />

Medical Microbiology 42, 421-428.<br />

39. Hannan, P.C.T. (2000). Guidelines <strong>and</strong> recommendations for antimicrobial minimum inhibitory<br />

concentration testing against veterinary mycoplasma species. Veterinary Research 31, 373-395.<br />

40. Hannan, P.C.T., Bhogal, B. & Fish, J. (1982). Tylosin tartrate <strong>and</strong> tiamulin effects on<br />

experimental piglet pneumonia induced with pneumonic pig lung homogenate containing<br />

mycoplasmas, bacteria <strong>and</strong> viruses. Research in Veterinary Science 33, 76-88.<br />

41. Hannan, P.C.T. & Goodwin, R.F.W. (1990). Treatment <strong>of</strong> experimental enzootic pneumonia<br />

<strong>of</strong> the pig by norfloxacin or its 6-chloro analogue. Research in Veterinary Science 49, 203-210.<br />

42. Hannan, P.C.T., O’Hanlon, P.J. & Rogers, N.H. (1989). In vitro evaluation <strong>of</strong> various<br />

quinolone antibacterial agents against veterinary mycoplasmas <strong>and</strong> porcine respiratory bacterial<br />

pathogens. Research in Veterinary Science 46, 202-211.<br />

43. Hannan, P.C.T., Windsor, H.M. & Ripley, P.H. (1997a). In vitro susceptibilities <strong>of</strong> recent<br />

field isolates <strong>of</strong> Mycoplasma hyopneumoniae <strong>and</strong> Mycoplasma hyosynoviae to valnemulin<br />

(Econor ® ), tiamulin <strong>and</strong> enr<strong>of</strong>loxacin <strong>and</strong> the in vitro development <strong>of</strong> resistance to certain<br />

antimicrobial agents in Mycoplasma hyopneumoniae. Research in Veterinary Science 63, 157-<br />

160.<br />

44. Hannan, P.C.T., Windsor, G.D., de Jong, A., Schmeer, N. & Stegeman, M. (1997b).<br />

Comparative susceptibilities <strong>of</strong> various animal-pathogenic mycoplasmas to fluoroquinolones.<br />

Antimicrobial Agents <strong>and</strong> Chemotherapy 41, 2037-2040.<br />

45. Hege, R., Zimmermann, W., Scheidegger, R. & Stärk, K.D. (2002). Incidence <strong>of</strong> reinfections<br />

with Mycoplasma hyopneumoniae <strong>and</strong> Actinobacillus pleuropneumoniae in pig farms located in<br />

respiratory-disease-free regions <strong>of</strong> Switzerl<strong>and</strong> - identification <strong>and</strong> quantification <strong>of</strong> risk factors.<br />

Acta Veterinaria Sc<strong>and</strong>inavia 43, 145-156.<br />

46. Heinonen, M., Autio, T., Saloniemi, H. & Tuovinen, V. (1999). Eradication <strong>of</strong> Mycoplasma<br />

hyopneumoniae from infected swine herds joining the LSO 2000 health class. Acta Veterinaria<br />

Sc<strong>and</strong>inavia 40, 241-252.<br />

47. Henry, S.C. & Apley, M. (1999). Therapeutics. In: Straw, B.E., D’Allaire, S., Mengeling,<br />

W.L., Taylor, D.J. (Editors), Diseases <strong>of</strong> Swine, 8 th edition, Iowa State University Press, Ames,<br />

pp. 1155-1162.<br />

- 52 -


1.1.2 ANTIMICROBIAL TREATMENT AND CONTROL OF ENZOOTIC PNEUMONIA IN PIGS<br />

48. Hooper, D.C. (1999). Mechanisms <strong>of</strong> fluoroquinolone resistance. Drug Resistance Updates 2,<br />

38-55.<br />

49. Hooper, D.C. (2002). Fluoroquinolone resistance among Gram-positive cocci. The Lancet<br />

Infectious Diseases 2, 530-538.<br />

50. Ice, A.D., Grant, A.L., Clark, L.K., Cline, T.R., Einstein, M.E., Martin, T.G. & Diekman,<br />

M.A. (1999). <strong>Health</strong> <strong>and</strong> growth performance <strong>of</strong> barrows reared in all-in/all-out or continuous<br />

flow facilities with or without a chlortetracycline feed additive. American Journal <strong>of</strong> Veterinary<br />

Research 60, 603-608.<br />

51. Idowu, A.D., Celones, M.C., Salgado, A.E., Marquez, K.M. & Pleibel, N. (2003).<br />

Characterization <strong>of</strong> gentamicin-resistant Mycoplasma hyorhinis. Biologicals 31, 175-179.<br />

52. Inamoto, T., Takahashi, H., Yamamoto, K., Nakai, Y. & Ogimoto, K. (1994). Antibiotic<br />

susceptibility <strong>of</strong> Mycoplasma hyopneumoniae isolated from swine. The Journal <strong>of</strong> Veterinary<br />

Medical Science 56, 393-394.<br />

53. Inui, T., Taira, T., Matsushita, T. & Endo, T. (1998). Pharmacokinetic properties <strong>and</strong> oral<br />

bioavailabilities <strong>of</strong> difloxacin in pig <strong>and</strong> chicken. Xenobiotica 28, 887-893.<br />

54. Jensen, C.S., Ersboll, A.K. & Nielsen, J.P. (2002). A meta-analysis comparing the effect <strong>of</strong><br />

vaccines against Mycoplasma hyopneumoniae on daily weight gain in pigs. Preventive<br />

Veterinary Medicine 54, 265-278.<br />

55. Jorsal, S. & Thomsen, B. (1988). A cox regression analysis <strong>of</strong> risk factors related to<br />

Mycoplasma suipneumoniae reinfection in Danish SPF-herds. Acta Veterinaria Sc<strong>and</strong>inavia<br />

(Suppl.) 84, 436-438.<br />

56. Jouglar, J., Borne, P., Sionneau, G., Bardon, T. & Eclache, D. (1993). Evaluation de l’intérêt<br />

de l’association tiamuline-oxytétracycline dans la prévention des bronchopneumonies du porc<br />

charcutier. Revue de Médécine Vétérinaire 144, 981-988.<br />

57. Kavanagh, N. (1994). The effect <strong>of</strong> pulse medication with a combination <strong>of</strong> tiamulin <strong>and</strong><br />

oxytetracycline on the performance <strong>of</strong> fattening pigs in a herd infected with enzootic pneumonia.<br />

Irish Veterinary Journal 47, 58-61.<br />

58. Keller, K. (1987). Swiss scheme for higher health. Pig International, June, 14-18.<br />

59. Kenny, G.E. & Cartwright, F.D. (1994). Susceptibilities <strong>of</strong> Mycoplasma hominis, Mycoplasma<br />

pneumoniae, <strong>and</strong> Ureaplasma urealyticum to new glycylcyclines in comparison with those to<br />

older tetracyclines. Antimicrobial Agents <strong>and</strong> Chemotherapy 38, 2658-2632.<br />

60. Kenny, G.E. & Cartwright, F.D. (2001). Susceptibilities <strong>of</strong> Mycoplasma hominis, Mycoplasma<br />

pneumoniae, <strong>and</strong> Ureaplasma urealyticum to GAR-936, dalfopristin, dirithromycin,<br />

evernimicin, gatifloxacin, linezolid, moxifloxacin, quinupristin-dalfopristin, <strong>and</strong> telithromycin<br />

compared to their susceptibilities to reference macrolides, tetracyclines <strong>and</strong> fluoroquinolones.<br />

Antimicrobial Agents <strong>and</strong> Chemotherapy 45, 2604-2608.<br />

61. Kobisch, M., Blanchard, B. & Le Potier, M. (1993). Mycoplasma hyopneumoniae infection in<br />

pigs: duration <strong>of</strong> the disease <strong>and</strong> resistance to reinfection. Veterinary Research 24, 67-77.<br />

62. Kobisch, M. & Sibelle, C. (1982). Evaluation de l’efficacité de la tiamuline chez des porcelets<br />

infectés expérimentalement par Mycoplasma hyopneumoniae. Receuil de Médécine Vétérinaire<br />

158, 375-381.<br />

63. Kotra, L.P., Haddad, J. & Mobashery, S. (2000). Aminoglycosides: perspectives on<br />

mechanisms <strong>of</strong> action <strong>and</strong> resistance <strong>and</strong> strategies to counter resistance. Antimicrobial Agents<br />

<strong>and</strong> Chemotherapy 44, 3249-3256.<br />

- 53 -


1.1.2 ANTIMICROBIAL TREATMENT AND CONTROL OF ENZOOTIC PNEUMONIA IN PIGS<br />

64. Kubo, M., Yamamoto, K., Ibayshi, T. & De Keyser, H. (1990). Study on the effect <strong>of</strong><br />

lincomycin against artificial infection <strong>of</strong> mycoplasmal pneumonia in swine. Proceedings 11 th<br />

IPVS congress. Lausanne, Switzerl<strong>and</strong>. 90.<br />

65. Kunesh, J. (1981). A comparison <strong>of</strong> two antibodies in treating mycoplasma pneumonia in<br />

swine. Veterinary Medicine, Small Animal Clinics 76, 871-872.<br />

66. Le Gr<strong>and</strong>, A. & Kobisch, M. (1996). Comparaison de l’utilisation d’un vaccin et d’un<br />

traitement antibiotique séquentiel dans un élevage infecté par Mycoplasma hyopneumoniae.<br />

Veterinary Research 27, 241-253.<br />

67. Léon, E.A., Madec, F., Taylor, N.M. & Kobisch, M. (2001). Seroepidemiology <strong>of</strong><br />

Mycoplasma hyopneumoniae in pigs from farrow-to-finish farms. Veterinary Microbiology 78,<br />

331-341.<br />

68. Liu, J., Fung, K.F., Chen, Z., Zeng, Z. & Zhang, J. (2003). Pharmacokinetics <strong>of</strong> florfenicol in<br />

healthy pigs <strong>and</strong> in pigs experimentally infected with Actinobacillus pleuropneumoniae.<br />

Antimicrobial Agents <strong>and</strong> Chemotherapy 47, 820-823.<br />

69. Lucier, T.S., Heitzman, K., Liu, S.K. & Hu, P.C. (1995). Transition mutations in the 23S<br />

rRNA <strong>of</strong> erythromycin-resistant isolates <strong>of</strong> Mycoplasma pneumoniae. Antimicrobial Agents <strong>and</strong><br />

Chemotherapy 39, 2770-2773.<br />

70. Lukert, P. & Mulkey, G. (1982). Treatment <strong>of</strong> mycoplasmosis in young swine. Modern<br />

Veterinary Practice 63, 107-110.<br />

71. Luthman, J. & Jacobsson, S.O. (1983). The availability <strong>of</strong> tetracyclines in calves. Nordisk<br />

Veterinaer Medicin 35, 292-299.<br />

72. Maes, D. (1999). Respiratory disease in slaughter pigs: epidemiological aspects <strong>and</strong> effect <strong>of</strong><br />

vaccination against Mycoplasma hyopneumoniae. PhD thesis.<br />

73. Maes, D., Deluyker, H., Verdonck, M., Castryck, F., Miry, C., Lein, A., Vrijens, B. & de<br />

Kruif, A. (1998). The effect <strong>of</strong> vaccination against Mycoplasma hyopneumoniae in pig herds<br />

with a continuous production system. Journal <strong>of</strong> Veterinary Medicine, Series B 45, 495-505.<br />

74. Maes, D., Deluyker, H., Verdonck, M., Castryck, F., Miry, C., Vrijens, B., Verbeke, W.,<br />

Viaene, J. & de Kruif, A. (1999). Effect <strong>of</strong> vaccination against Mycoplasma hyopneumoniae in<br />

pig herds with an all-in/all-out production system. Vaccine 17, 1024-1034.<br />

75. Maes, D., Verbeke, W., Vicca, J., Verdonck, M. & de Kruif, A. (2003). Benefit to cost <strong>of</strong><br />

vaccination against Mycoplasma hyopneumoniae in pig herds under Belgian market conditions<br />

from 1996 to 2000. Livestock Production Science 83, 85-93.<br />

76. Martineau G.P. (1980). Bronchopneumonie enzootique du porc: Amélioration de l’index<br />

pulmonaire après traitement par la tiamuline. Annales de Médécine Vétérinaire 124, 281.<br />

77. Mateusen, B., Maes, D., H<strong>of</strong>lack, G., Verdonck, M. & de Kruif, A. (2001). A comparative<br />

study <strong>of</strong> the preventive use <strong>of</strong> tilmicosin phosphate (Pulmotic premix) <strong>and</strong> Mycoplasma<br />

hyopneumoniae vaccination in a pig herd with chronic respiratory disease. Journal <strong>of</strong> Veterinary<br />

Medicine, Series B 48, 733-741.<br />

78. Mateusen, B., Maes, D., Van Goubergen, M., Verdonck, M. & de Kruif, A. (2002).<br />

Effectiveness <strong>of</strong> treatment with lincomycin hydrochloride <strong>and</strong>/or vaccination against<br />

Mycoplasma hyopneumoniae for controlling chronic respiratory disease in a herd <strong>of</strong> pigs. The<br />

Veterinary Record 151, 135-140.<br />

79. Mészáros, J., Stipkovits, L., Antal, T., Szabo, I. & Veszely, P. (1985). Eradication <strong>of</strong> some<br />

infectious pig diseases by perinatal tiamulin treatment <strong>and</strong> early weaning. The Veterinary<br />

Record 116, 8-12.<br />

- 54 -


1.1.2 ANTIMICROBIAL TREATMENT AND CONTROL OF ENZOOTIC PNEUMONIA IN PIGS<br />

80. Morozumi, M., Hasegawa, K., Kobayashi, R., Inoue, N., Iwata, S., Kuroki, H., Kawamura,<br />

N., Nakayama, E., Tajima, T., Shimizu, K. & Ubukata, K. (2005). Emergence <strong>of</strong> macrolideresistant<br />

Mycoplasma pneumoniae with a 23S rRNA gene mutation. Antimicrobial Agents <strong>and</strong><br />

Chemotherapy 49, 2302-2306.<br />

81. Pereyre, S., Guyot, C., Renaudin, H., Charron, A., Bébéar, C. & Bébéar, C.M. (2004). In<br />

vitro selection <strong>and</strong> characterization <strong>of</strong> resistance to macrolides <strong>and</strong> related antibiotics in<br />

Mycoplasma pneumoniae. Antimicrobial Agents <strong>and</strong> Chemotherapy 48, 460-465.<br />

82. Prescott, J.F. (2000a). Aminoglycosides <strong>and</strong> aminocyclitols. In: Prescott, J.F. Baggot, J.D.,<br />

Walker, R.D. (Editors), Antimicrobial Therapy in Veterinary Medicine, 3 th edition, Iowa State<br />

University Press, Ames, pp.191-228.<br />

83. Prescott, J.F. (2000b). Tetracyclines. In: Prescott, J.F. Baggot, J.D., Walker, R.D. (Editors),<br />

Antimicrobial Therapy in Veterinary Medicine, 3 th edition, Iowa State University Press, Ames,<br />

pp. 275-289.<br />

84. Prescott, J.F. (2000c) Lincosamides, Macrolides <strong>and</strong> Pleuromutilins. In: Prescott, J.F. Baggot,<br />

J.D., Walker, R.D. (Editors), Antimicrobial Therapy in Veterinary Medicine, 3 th edition, Iowa<br />

State University Press, Ames, pp. 229-262.<br />

85. Prunier, A.L., Trong, H.N., T<strong>and</strong>e, D., Segond, C. & Leclercq, R. (2005). Mutation <strong>of</strong> L4<br />

ribosomal protein conferring unusual macrolide resistance in two independent clinical isolates <strong>of</strong><br />

Staphylococcus aureus. Microbial Drug Resistance 11, 18-20.<br />

86. Raherison, S., Gonzales, P., Renaudin, H., Charron, A., Bébéar, C. & Bébéar, C.M. (2002).<br />

Evidence <strong>of</strong> active efflux in resistance to cipr<strong>of</strong>loxacin <strong>and</strong> to ethidium bromide by Mycoplasma<br />

hominis. Antimicrobial Agents <strong>and</strong> Chemotherapy 46, 672-679.<br />

87. Razin, S., Yogev, D. & Naot, Y. (1998). Molecular biology <strong>and</strong> pathogenicity <strong>of</strong> mycoplasmas.<br />

Microbiology <strong>and</strong> Molecular Biology Re<strong>view</strong>s 62, 1094-1156.<br />

88. Reinhardt, A.K., Kempf, I., Kobisch, M. & Gautier-Bouchardon, A.V. (2002).<br />

Fluoroquinolone resistance in Mycoplasma gallisepticum: DNA gyrase as primary target <strong>of</strong><br />

enr<strong>of</strong>loxacin <strong>and</strong> impact <strong>of</strong> mutations in topoisomerase on resistance level. Journal <strong>of</strong><br />

Antimicrobial Chemotherapy 50, 589-592.<br />

89. Roberts, M.C. (1992). Antibiotic resistance. In: Mycoplasmas: molecular biology <strong>and</strong><br />

pathogenesis. Manil<strong>of</strong>f, J., McElhaney, R.N., Finch, L.R. & Baseman, J.B.: Editors. American<br />

Society for Microbiology, Washington, D.C. pp. 513-524.<br />

90. Roberts, M.C. (2004). Distribution <strong>of</strong> macrolide, lincosamide, streptogramin, ketolide <strong>and</strong><br />

oxazolidinone (MLSKO) resistance genes in Gram-negative bacteria. Current Drug Targets -<br />

Infectious Disorders 4, 207-215.<br />

91. Roberts, M.C., Koutsky, L.A., Holmes, K.K., LeBlanc, D.J. & Kenny, G.E. (1985).<br />

Tetracycline-resistant Mycoplasma hominis strains contain streptococcal tetM sequences.<br />

Antimicrobial Agents <strong>and</strong> Chemotherapy 28, 141-143.<br />

92. Ross, R. & Cox, D. (1988). Evaluation <strong>of</strong> tiamulin for treatment <strong>of</strong> mycoplasmal pneumonia in<br />

swine. Journal <strong>of</strong> the American Veterinary Medical Association 193, 441-446.<br />

93. Samra, Z., Rosenberg, S. & S<strong>of</strong>fer, Y. (2002). In vitro susceptibility <strong>of</strong> Mycoplasma hominis<br />

clinical isolates to tetracyclines, quinolones <strong>and</strong> macrolides. Diagnostic Microbiology <strong>and</strong><br />

Infectious Disease 44, 359-361.<br />

94. Saux, M.C., Crockett, R., Fourtillan, J.B., Leng, B. & Couraud, L. (1986). Diffusion <strong>of</strong><br />

amikacin in the lungs. Pathologie - Biologie (Paris) 34, 113-117.<br />

- 55 -


1.1.2 ANTIMICROBIAL TREATMENT AND CONTROL OF ENZOOTIC PNEUMONIA IN PIGS<br />

95. Schatzmann, E., Keller, H., Grest, P., Lorenz, D. & Burri, W. (1996). Feldversuche met<br />

einer Vakzine gegen die Enzootische Pneumonie (EP) der Schweine. Schweizer Archiv für<br />

Tierheilkunde 138, 483-489.<br />

96. Schuller, W., Neumeister, E. & Vogl, D. (1977). Zur Sanierung von mit Enzootischer<br />

Pneumonie versuchten Schweinebest<strong>and</strong>en. Wiener Tierärztliche Monatschrift 64, 156-160.<br />

97. Scorneaux, B. & Shryock, T.R. (1998). Intracellular accumulation, subcellular distribution <strong>and</strong><br />

efflux <strong>of</strong> tilmicosin in swine phagocytes. Journal <strong>of</strong> Veterinary Pharmacology <strong>and</strong> Therapeutics<br />

21, 257-268.<br />

98. Sørensen, V., Ahrens, P., Barfod, K., Feenstra, A.A., Feld, N.C., Friis, N.F., Bille-Hansen,<br />

V., Jensen, N.E. & Pedersen, M.W. (1997). Mycoplasma hyopneumoniae infection in pigs:<br />

duration <strong>of</strong> the disease <strong>and</strong> evaluation <strong>of</strong> four diagnostic assays. Veterinary Microbiology 54,<br />

23-34.<br />

99. Stipkovits, L., Laky, Z., Abonyi, T., Siugzdaite, J. & Szabo, I. (2003). Reduction <strong>of</strong> economic<br />

losses caused by mycoplasmal pneumonia <strong>of</strong> pigs by vaccination with Respisure <strong>and</strong> by<br />

Tiamulin treatment. Acta Veterinaria Hungaria 51, 259-271.<br />

100. Takahashi, K., Kuniyasu, C., Yoshida, Y. & Momotani, E. (1978). Sensitivity in vitro to<br />

macrolide antibiotics <strong>and</strong> tetracyclines <strong>of</strong> Mycoplasma hyopneumoniae isolated from porcine<br />

pneumonic lungs. National Institute <strong>of</strong> Animal <strong>Health</strong> Quarterly (Tokyo) 18, 41-42.<br />

101. Tanner, A.C., Erickson, B.Z. & Ross, R.F. (1993). Adaptation <strong>of</strong> the Sensititre ® broth<br />

microdilution technique to antimicrobial susceptibility testing <strong>of</strong> Mycoplasma hyopneumoniae.<br />

Veterinary Microbiology 36, 301-306.<br />

102. Tanner, A.C. & Wu, C.C. (1992). Adaptation <strong>of</strong> the Sensititre broth microdilution technique to<br />

antimicrobial susceptibility testing <strong>of</strong> Mycoplasma gallisepticum. Avian Diseases 36, 714-717.<br />

103. Taraskina, A.E., Savicheva, A.M., Akopian, T.A., Soroka, A.E., Momynaliev, K.T. &<br />

Govorun, V.M. (2002). Drift <strong>of</strong> tetM determinant in urogenital microbiocenosis containing<br />

mycoplasmas during treatment with a tetracycline antibiotic. Bulletin <strong>of</strong> Experimental Biology<br />

<strong>and</strong> Medicine 134, 60-63.<br />

104. Ter Laak, E.A., Pijpers, A., Noordergraaf, J.H., Schoevers, E.C. & Verheijden, J.H.M.<br />

(1991). Comparison <strong>of</strong> methods for in vitro testing <strong>of</strong> susceptibility <strong>of</strong> porcine Mycoplasma<br />

species to antimicrobial agents. Antimicrobial Agents <strong>and</strong> Chemotherapy 35, 228-233.<br />

105. Thacker, E.L., Thacker, B.J., Kuhn, M., Hawkins, P.A. & Waters, W.R. (2000). Evaluation<br />

<strong>of</strong> local <strong>and</strong> systemic immune response induced by intramuscular injection <strong>of</strong> a Mycoplasma<br />

hyopneumoniae bacterin to pigs. American Journal <strong>of</strong> Veterinary Research 61, 1384-1389.<br />

106. Thacker, E.L. (2004). Diagnosis <strong>of</strong> Mycoplasma hyopneumoniae. Animal <strong>Health</strong> Research<br />

Re<strong>view</strong>s 5, 317-320.<br />

107. Thomas, A., Nicolas, C., Dizier, I., Mainil, J. & Linden, A. (2003). Antibiotic susceptibilities<br />

<strong>of</strong> recent isolates <strong>of</strong> Mycoplasma bovis in Belgium. The Veterinary Record 153, 428-431.<br />

108. Thomas, E., Gr<strong>and</strong>emange, E., Pommier, P., Wessel-Robert, S. & Davot, J.L. (2000). Field<br />

evaluation <strong>of</strong> efficacy <strong>and</strong> tolerance <strong>of</strong> a 2% marb<strong>of</strong>loxacin injectable solution for the treatment<br />

<strong>of</strong> respiratory disease in fattening pigs. The Veterinary Quarterly 22, 131-135.<br />

109. Timmerman, T., Dewulf, J., Catry, B., Feyen, B., Opsomer, G., de Kruif, A. & Maes, D.<br />

(2005). Quantification <strong>and</strong> evaluation <strong>of</strong> antimicrobial-drug use in group treatments for fattening<br />

pigs in Belgium. Preventive Veterinary Medicine, accepted.<br />

110. Vester, B. & Douthwaite, S. (2001). Macrolide resistance conferred by base substitutions in<br />

23S rRNA. Antimicrobial Agents <strong>and</strong> Chemotherapy 45, 1-12.<br />

- 56 -


1.1.2 ANTIMICROBIAL TREATMENT AND CONTROL OF ENZOOTIC PNEUMONIA IN PIGS<br />

111. Waites, K.B., Canupp, K.C. & Kenny, G.E. (1999). In vitro susceptibilities <strong>of</strong> Mycoplasma<br />

hominis to six fluoroquinolones as determined by E test. Antimicrobial Agents <strong>and</strong><br />

Chemotherapy 43, 2571-2573.<br />

112. Waites, K.B., Crabb, D.M., Duffy, L.B. & Cassel, G.H. (1997). Evaluation <strong>of</strong> the E test for<br />

detection <strong>of</strong> tetracycline resistance in Mycoplasma hominis. Diagnostic Microbiology <strong>and</strong><br />

Infectious Disease 27, 117-122.<br />

113. Wallgren, P., Sahl<strong>and</strong>er, P., Hassleback, G. & Heldmer, E. (1993). Control <strong>of</strong> infections with<br />

Mycoplasma hyopneumoniae in swine herds by disrupting the chain <strong>of</strong> infection, disinfection <strong>of</strong><br />

buildings <strong>and</strong> strategic medical treatment. Journal <strong>of</strong> Veterinary Medicine, Series B 40, 157-169.<br />

114. Wallmann, J., Kaspar, H. & Kroker, R. (2004). The prevalence <strong>of</strong> antimicrobial susceptibility<br />

<strong>of</strong> veterinary pathogens from cattle <strong>and</strong> pigs: national antibiotic resistance monitoring<br />

2002/2003 <strong>of</strong> the BVL. Berliner und Münchener Tierärztliche Wochenschrift 117, 480-492.<br />

115. Weisblum, B. (1998). Macrolide resistance. Drug Resistance Updates 1, 29-41.<br />

116. Whittlestone, P. (1990). Control <strong>of</strong> enzootic pneumonia infection in pigs. Zentralblatt (Suppl.)<br />

20, Gustav Fischer Verlag, Stuttgart, New York, pp. 254-259.<br />

117. Williams, P.P. (1978). In vitro susceptibility <strong>of</strong> Mycoplasma hyopneumoniae <strong>and</strong> Mycoplasma<br />

hyorhinis to fifty-one antimicrobial agents. Antimicrobial Agents <strong>and</strong> Chemotherapy 14, 210-<br />

213<br />

118. Wu, C.C., Shryock, T.R., Lin, T.L. & Veenhuizen, M.F. (1997). Testing antimicrobial<br />

susceptibility against Mycoplasma hyopneumoniae in vitro. Swine <strong>Health</strong> <strong>and</strong> Production 5,<br />

227-230<br />

119. Wu, C.M., Wu, H., Ning, Y., Wang, J., Du, X. & Shen, J. (2005). Induction <strong>of</strong> macrolide<br />

resistance in Mycoplasma gallisepticum in vitro <strong>and</strong> its resistance-related mutations within<br />

domain V <strong>of</strong> 23S rRNA. FEMS Microbiology Letters 247, 199-205.<br />

120. Yamamoto, K. & Koshimizu, K. (1984). In vitro susceptibility <strong>of</strong> Mycoplasma hyopneumoniae<br />

to antibiotics. In: Proceedings <strong>of</strong> the 8 th IPVS Congress Ghent, Belgium, 116.<br />

121. Zimmerman, W., Odermatt, W. & Tschudi, P. (1989). Enzootische Pneumonie (EP): die<br />

Teilsanierung EP-reinfizierter Schweinezuchtbetriebe als Alternative zur Totalsanierung.<br />

Schweizer Archiv für Tierheilkunde 131, 179-191.<br />

122. Zimmerman, W. (1990). Erfahrungen met der EP-Teilsanierung im Tilgungsprogramm des<br />

Schweizerischen Schweinegesundheitsdienstes (SGD). Tierärztliche Umschau 45, 556-562.<br />

- 57 -


- 59 -<br />

1.2 AIMS


Mycoplasma hyopneumoniae is the primary cause <strong>of</strong> enzootic pneumonia, a<br />

disease which is responsible for major economic losses in the pig industry worldwide.<br />

In several studies it was shown that environmental factors influence the clinical<br />

course <strong>of</strong> the disease <strong>and</strong> the extent <strong>of</strong> economic losses in infected herds. Variation in<br />

the clinical course <strong>of</strong> the disease may, however, also be due to differences in virulence<br />

between different M. hyopneumoniae strains, as has been demonstrated for several<br />

other bacterial pathogens. No studies dealing with this subject are available in the<br />

literature. The first general aim <strong>of</strong> this thesis was therefore to evaluate the virulence <strong>of</strong><br />

M. hyopneumoniae field isolates.<br />

Antimicrobials are <strong>of</strong>ten used in the field to treat M. hyopneumoniae infected<br />

animals. As stipulated in the re<strong>view</strong> <strong>of</strong> the literature, very few data are available on<br />

the susceptibility <strong>of</strong> M. hyopneumoniae field isolates. This is mainly due to the<br />

fastidious nature <strong>of</strong> this micro-organism that is extremely hard to isolate <strong>and</strong> to<br />

cultivate, making it difficult to obtain field isolates <strong>and</strong> to test their antimicrobial<br />

susceptibility in vitro. A second general aim <strong>of</strong> this thesis was to determine the<br />

susceptibility <strong>of</strong> M. hyopneumoniae field isolates to different antimicrobials.<br />

The specific aims <strong>of</strong> this study were:<br />

- To compare patterns <strong>of</strong> M. hyopneumoniae infections in farrow-to-finish<br />

pig herds with diverging disease-course,<br />

- to evaluate the virulence <strong>of</strong> M. hyopneumoniae field isolates in an<br />

experimental infection model,<br />

- to determine in vitro susceptibility <strong>of</strong> M. hyopneumoniae field isolates to<br />

antimicrobial agents,<br />

- to characterize the genetic mechanisms <strong>of</strong> acquired resistance to<br />

macrolides <strong>and</strong> fluoroquinolones in M. hyopneumoniae,<br />

- to determine the efficacy <strong>of</strong> in feed medication with tylosin for treatment<br />

<strong>of</strong> an experimental M. hyopneumoniae infection.<br />

- 61 -


2 EXPERIMENTAL STUDIES<br />

- 63 -


2.1 VIRULENCE OF MYCOPLASMA HYOPNEUMONIAE<br />

ISOLATES<br />

- 65 -


2.1.1 PATTERNS OF MYCOPLASMA HYOPNEUMONIAE<br />

INFECTIONS IN BELGIAN FARROW-TO-FINISH PIG HERDS WITH<br />

DIVERGING DISEASE-COURSE<br />

Modified from:<br />

PATTERNS OF MYCOPLASMA HYOPNEUMONIAE INFECTIONS IN BELGIAN FARROW-TO-<br />

FINISH PIG HERDS WITH DIVERGING DISEASE-COURSE<br />

J. VICCA, D. MAES, L. THERMOTE, J. PEETERS, F. HAESEBROUCK & A. DE KRUIF<br />

JOURNAL OF VETERINARY MEDICINE, SERIES B 2002, 49, 349-353<br />

- 67 -


2.1.1 PATTERNS OF M. HYOPNEUMONIAE INFECTIONS IN FARROW-TO-FINISH PIG HERDS<br />

SUMMARY<br />

Patterns <strong>of</strong> Mycoplasma hyopneumoniae infections were investigated in 5<br />

clinically infected herds <strong>and</strong> in 5 herds subclinically infected with M. hyopneumoniae.<br />

In the clinically infected herds, housing <strong>and</strong> management conditions were good<br />

whereas these conditions were poor in the subclinically infected herds. In each herd,<br />

serumantibodies against M. hyopneumoniae were detected in pigs <strong>of</strong> different ages<br />

<strong>and</strong> nasal swabs were taken for M. hyopneumoniae detection using nested PCR<br />

(nPCR). The percentage <strong>of</strong> seropositive pigs in the clinically infected herds increased<br />

from 8% in pigs <strong>of</strong> 9 weeks to 52% in pigs <strong>of</strong> 18 weeks <strong>and</strong> seroconversion was most<br />

shown between 12 <strong>and</strong> 15 weeks. In the subclinically infected herds, the percentages<br />

increased from 2% to 24% <strong>and</strong> most <strong>of</strong> the pigs became seropositive between 15 <strong>and</strong><br />

18 weeks. The percentage <strong>of</strong> nPCR positive pigs at 6 weeks was 16% <strong>and</strong> 0% in the<br />

clinically <strong>and</strong> subclinically infected herds, respectively. The results demonstrate that<br />

the seroprevalences were higher in the clinically infected herds <strong>and</strong> that most <strong>of</strong> the<br />

pigs became infected with M. hyopneumoniae at a younger age. It can be concluded<br />

that additional factors different from housing <strong>and</strong> management, like differences<br />

among M. hyopneumoniae isolates, may determine the infection pattern <strong>of</strong> M.<br />

hyopneumoniae <strong>and</strong> the clinical course <strong>of</strong> the infection.<br />

- 69 -


2.1.1 PATTERNS OF M. HYOPNEUMONIAE INFECTIONS IN FARROW-TO-FINISH PIG HERDS<br />

INTRODUCTION<br />

Enzootic pneumonia in pigs, caused by M. hyopneumoniae as primary agent,<br />

is a chronic respiratory disease that causes major economic losses to the pig industry.<br />

Infections with M. hyopneumoniae are very common worldwide, especially in<br />

countries with intensive production systems. Epidemiological studies showed that<br />

more than 90% <strong>of</strong> the swine farms in Belgium are infected with M. hyopneumoniae<br />

(Maes et al., 1999a; 2000). The disease is mainly characterized by chronic coughing<br />

<strong>and</strong> reduced performance in grow-finishing pigs, although many infections with M.<br />

hyopneumoniae occur without overt clinical symptoms (Ross, 1999). The control <strong>of</strong><br />

the disease can be accomplished in a number <strong>of</strong> different ways. First <strong>of</strong> all, the<br />

housing conditions <strong>of</strong> the pigs must be optimal <strong>and</strong> they must be appropriate<br />

according to the age <strong>of</strong> the pigs. Management practices that reduce the spread <strong>of</strong> M.<br />

hyopneumoniae infections e.g. optimal stocking density, no mixing <strong>of</strong> pigs, all-in/allout<br />

(AIAO) production, must be adopted. Additional control measures such as the<br />

preventive use <strong>of</strong> antimicrobials during periods <strong>of</strong> risk <strong>and</strong>/or vaccination against M.<br />

hyopneumoniae have been used in many swine farms. The latter measures are<br />

generally effective in reducing the severity <strong>and</strong> economic losses <strong>of</strong> the disease <strong>and</strong> in<br />

improving the performance <strong>of</strong> the pigs (Clark et al., 1991; Legr<strong>and</strong> <strong>and</strong> Kobisch,<br />

1996).<br />

In some farms, however, these measures, applied either individually or<br />

collectively, do not always control M. hyopneumoniae infections effectively. Farms<br />

with good housing conditions <strong>and</strong> management practices may suffer from clinical<br />

disease whereas in some infected farms with poor environmental conditions, M.<br />

hyopneumoniae infections do not cause obvious clinical disease. Similarly,<br />

medication <strong>and</strong> vaccination do not consistently provide the expected or desired level<br />

<strong>of</strong> control against M. hyopneumoniae infections (Mateusen et al., 2002). The<br />

beneficial effects <strong>of</strong> vaccination against M. hyopneumoniae vary from farm to farm<br />

(Morrow et al., 1994; Maes et al., 1999b) <strong>and</strong> the results cannot consistently be<br />

predicted beforeh<strong>and</strong>. Therefore, it can be expected that besides housing <strong>and</strong><br />

management conditions, other factors e.g. differences in M. hyopneumoniae isolates<br />

(Frey et al., 1992; Artiushin <strong>and</strong> Minion, 1996) may also determine the clinical course<br />

<strong>and</strong> infection pattern <strong>of</strong> M. hyopneumoniae.<br />

- 70 -


2.1.1 PATTERNS OF M. HYOPNEUMONIAE INFECTIONS IN FARROW-TO-FINISH PIG HERDS<br />

The present field study aimed to investigate the infection pattern <strong>of</strong> M.<br />

hyopneumoniae in farms with either good or poor housing <strong>and</strong> management<br />

conditions. According to previous studies (Yagihashi et al., 1993; Horst et al., 1997),<br />

one should expect a higher prevalence <strong>and</strong> earlier infection <strong>of</strong> M. hyopneumoniae in<br />

the herds with poor housing <strong>and</strong> management. In addition, one should expect a higher<br />

chance for clinical disease in these farms (Pointon et al., 1985; Christensen et al.,<br />

1999). However, we intentionally selected 5 farms with poor housing <strong>and</strong><br />

management that were subclinically infected with M. hyopneumoniae, <strong>and</strong> 5 farms<br />

with good housing <strong>and</strong> management that were clinically infected with M.<br />

hyopneumoniae. The hypothesis was that, if the prevalence <strong>of</strong> M. hyopneumoniae is<br />

higher in the clinically infected herds with good housing <strong>and</strong> management conditions<br />

<strong>and</strong> if pigs are infected at a younger age in these herds, then additional factors other<br />

than housing <strong>and</strong> management also determine the course <strong>of</strong> the infection within these<br />

swine farms. The infection pattern was assessed using serology <strong>and</strong> nested PCR<br />

(nPCR) on nasal swabs <strong>of</strong> pigs <strong>of</strong> different age groups.<br />

MATERIALS AND METHODS<br />

Selection <strong>and</strong> description <strong>of</strong> the study farms<br />

Ten farrow-to-finish pig herds, located in 4 different provinces <strong>of</strong> Fl<strong>and</strong>ers<br />

(Belgium), participated in the study (Table 1). They were selected by contacting the<br />

herd health veterinarian. The investigator visited all herds once. All the herds had at<br />

least 100 sows <strong>and</strong> they were infected with M. hyopneumoniae as demonstrated by<br />

previous laboratory data. <strong>Herd</strong>s that had used M. hyopneumoniae vaccination in the<br />

past 3 years were excluded. The breeding population mainly consisted <strong>of</strong> hybrid sows<br />

that were either purchased or produced by on-farm selection. The sows were<br />

inseminated with semen from Piétrain boars for the production <strong>of</strong> slaughter pigs. The<br />

parity distribution <strong>of</strong> the sows was very similar between the selected farms. On<br />

average, sows had 3.5 to 4.5 litters before they were culled. In all the herds, pigs were<br />

weaned when they were about 4 weeks old. At that time, they were transferred to the<br />

nursery unit in which they were housed until 10-12 weeks <strong>of</strong> age. Thereafter, they<br />

were moved to the grow-finishing unit in which they remained until slaughter age (6-<br />

7 months). A fully slatted floor was present in the grow-finishing units <strong>of</strong> all farms.<br />

- 71 -


2.1.1 PATTERNS OF M. HYOPNEUMONIAE INFECTIONS IN FARROW-TO-FINISH PIG HERDS<br />

Table 1: Some important characteristics <strong>of</strong> the 10 selected herds infected with<br />

Mycoplasma hyopneumoniae that participated in the study<br />

<strong>Herd</strong><br />

Infection<br />

Pig density in the<br />

<strong>Herd</strong> size<br />

Purchase <strong>of</strong><br />

Production system<br />

status a<br />

Municipality<br />

(number <strong>of</strong><br />

gilts<br />

(# <strong>of</strong> pigs/km²)<br />

sows)<br />

1 0 1123 120 No AIAO in N,<br />

Continuous in G-F b<br />

2 0 1363 220 Yes AIAO in N,<br />

Continuous in G-F<br />

3 0 845 120 Yes Continuous<br />

4 0 393 120 No Continuous<br />

5 0 1413 200 No Continuous<br />

6 1 1363 240 Yes AIAO<br />

7 1 1472 100 Yes AIAO<br />

8 1 1123 100 Yes AIAO<br />

9 1 1123 200 No AIAO<br />

10 1 875 300 No AIAO<br />

a<br />

b<br />

0 subclinically infected herds; 1 clinically infected herds<br />

AIAO all-in/all-out; N nursery unit; G-F grow-finishing unit<br />

In 5 <strong>of</strong> the 10 herds, the housing conditions <strong>and</strong> management practices were<br />

optimal although the herds were clinically infected with M. hyopneumoniae for at<br />

least one year. Good housing conditions implied the presence <strong>of</strong><br />

compartmentalization, indirect air-inlets so that the incoming air is warmed before<br />

reaching the pig area, <strong>and</strong> programmes to maintain appropriate temperatures in the<br />

rooms according to the age <strong>of</strong> the pigs. Compartmentalization is the subdivision <strong>of</strong> a<br />

barn into rooms with a capacity <strong>of</strong> about 100-150 pigs <strong>and</strong> with its own ventilation<br />

system. The management practices in these farms included the use <strong>of</strong> all-in/all-out<br />

(AIAO) production in the nursery <strong>and</strong> grow-finishing units, maintaining optimal<br />

stocking densities <strong>of</strong> the pigs, <strong>and</strong> practicing strict internal <strong>and</strong> external biosecurity<br />

measures. According to the swine producer, the herd health veterinarian <strong>and</strong> the<br />

investigator, the herds were all clinically infected with M. hyopneumoniae. This was<br />

evidenced by the presence <strong>of</strong> chronic coughing in nursery <strong>and</strong> grow-finishing pigs,<br />

<strong>and</strong> by reduced production parameters in grow-finishing pigs (reduced average daily<br />

- 72 -


2.1.1 PATTERNS OF M. HYOPNEUMONIAE INFECTIONS IN FARROW-TO-FINISH PIG HERDS<br />

weight gain, heterogeneous growth, <strong>and</strong> poor feed conversion) compared to similar<br />

herds without chronic coughing. The clinical course <strong>of</strong> the disease <strong>and</strong> data from<br />

diagnostic laboratories indicated that the problems were not primarily due to<br />

infections with other respiratory pathogens such as Actinobacillus pleuropneumoniae<br />

or swine influenza viruses.<br />

In the 5 remaining herds, the housing conditions <strong>and</strong> management practices<br />

were poor although the herds were not clinically infected with M. hyopneumoniae.<br />

The swine barns were old <strong>and</strong> worn out, there was no compartmentalization, no<br />

indirect air-inlet, <strong>and</strong> no specific programmes to maintain appropriate temperatures in<br />

the rooms. A continuous production system was practised or AIAO was used only in<br />

the farrowing <strong>and</strong> nursery unit, the stocking density in grow-finishing pigs was too<br />

high (


2.1.1 PATTERNS OF M. HYOPNEUMONIAE INFECTIONS IN FARROW-TO-FINISH PIG HERDS<br />

Nasal samples <strong>and</strong> nPCR for M. hyopneumoniae<br />

Nasal swabs were collected in each herd from pigs belonging to 4 different<br />

age groups namely 6, 9, 12 <strong>and</strong> 15 weeks. Five pigs per age category were selected.<br />

The pigs <strong>of</strong> the youngest age group were selected r<strong>and</strong>omly at pen-level; those <strong>of</strong> the<br />

other age groups were r<strong>and</strong>omly selected out <strong>of</strong> the pigs that were blood sampled. The<br />

pigs <strong>of</strong> 6 <strong>and</strong> 9 weeks old were housed in the nursery unit, those <strong>of</strong> 12 <strong>and</strong> 15 weeks<br />

in the grow-finishing unit. None <strong>of</strong> the sampled pigs had received antimicrobials in<br />

the last 4 weeks.<br />

The nasal swabs were 15 cm long <strong>and</strong> they were inserted into the nostrils as deeply as<br />

possible. The swabs were transported in 700 µL PBS with 0.1% Triton x-100, <strong>and</strong><br />

they were vortexed <strong>and</strong> discarded upon arrival in the laboratory. The transport<br />

medium was heated at 100°C for 5 min <strong>and</strong> stored frozen at –25°C until PCR was<br />

performed. Five µL <strong>of</strong> undiluted sample <strong>and</strong> 5 µL <strong>of</strong> 10-fold diluted sample were used<br />

in the nPCR, which was performed as described by Stärk et al. (1998). PCR products<br />

were analyzed by electrophoresis on 1% agarose gels in TBE buffer <strong>and</strong> visualized<br />

under UV illumination after staining in Ethidium Bromide.<br />

Statistical analysis<br />

The percentage <strong>of</strong> seropositive pigs <strong>and</strong> the percentage <strong>of</strong> nPCR positive pigs<br />

in each age category were compared between the clinically <strong>and</strong> the subclinically<br />

infected herds by means <strong>of</strong> Fisher's Exact Tests, performed on the raw numeric data.<br />

The average OD-values <strong>of</strong> the different age groups were compared between the<br />

clinically <strong>and</strong> the subclinically infected herds using two-sample t-tests. Variables<br />

were considered to be significant when P-values were lower than 0.05 (two-sided).<br />

Data were analyzed using the statistical package SPSS 10.0 for Windows (SPSS 10,<br />

SPSS Inc. Illinois 60611 USA 1999).<br />

- 74 -


2.1.1 PATTERNS OF M. HYOPNEUMONIAE INFECTIONS IN FARROW-TO-FINISH PIG HERDS<br />

RESULTS<br />

Blood samples <strong>and</strong> serology for M. hyopneumoniae<br />

The percentage <strong>of</strong> seropositive pigs in the clinically infected herds increased<br />

from 8% in pigs <strong>of</strong> 9 weeks to 52% in pigs <strong>of</strong> 18 weeks, whereas in the subclinically<br />

infected herds the percentages in the same age categories increased from 2% to 24%<br />

(Table 2). At 15 <strong>and</strong> 18 weeks, the percentage <strong>of</strong> seropositive pigs was significantly<br />

higher in the clinically infected herds than in the subclinically infected herds<br />

(P


2.1.1 PATTERNS OF M. HYOPNEUMONIAE INFECTIONS IN FARROW-TO-FINISH PIG HERDS<br />

nPCR positive pigs was almost similar in the clinically (8 <strong>and</strong> 12%, respectively) <strong>and</strong><br />

subclinically (12 <strong>and</strong> 12%, respectively) infected herds (P>0.05).<br />

Table 2. The percentage <strong>of</strong> seropositive pigs a <strong>and</strong> the average OD-values b in the<br />

different age categories <strong>of</strong> 10 farrow-to-finish pig herds that were either clinically (n=5)<br />

or subclinically (n=5) infected with Mycoplasma hyopneumoniae<br />

% <strong>of</strong> seropositive pigs (min.-max.) Average OD-value (SD)<br />

Age<br />

(Weeks)<br />

Clinically<br />

infected herds<br />

Subclinically<br />

infected herds<br />

P-value<br />

Clinically<br />

infected herds<br />

Subclinically<br />

infected herds<br />

P-value<br />

9 8 (0-40) 2 (0-10) 0.362 79.1 (18.27) 82.3 (21.79) 0.088<br />

12 8 (0-40) 0 (0- 0) 0.117 79.8 (16.80) 83.7 (09.02) 0.157<br />

15 20 (0-70) 2 (0-10) 0.008 69.7 (24.36) 83.5 (13.36) 0.013<br />

18 52 (0-100) 24 (0-40) 0.007 53.0 (26.71) 64.7 (22.63) 0.021<br />

a<br />

b<br />

10 pigs per age category were r<strong>and</strong>omly selected at pen-level in each herd<br />

Average OD-values (%) were based on all investigated pigs per age category<br />

- 76 -


2.1.1 PATTERNS OF M. HYOPNEUMONIAE INFECTIONS IN FARROW-TO-FINISH PIG HERDS<br />

Table 3. The results <strong>of</strong> the nested PCR (nPCR) on nasal swabs from pigs <strong>of</strong> different age<br />

categories in 10 farrow-to-finish pig herds that were clinically (n=5) or subclinically<br />

(n=5) infected with Mycoplasma hyopneumoniae<br />

Age category (weeks)<br />

% (min.-max.) <strong>of</strong> positive pigs a, b<br />

Clinically infected herds<br />

Subclinically infected herds<br />

6 16 (0-40) 0 (0-0)<br />

9 24 (0-40) 12 (0-20)<br />

12 8 (0-20) 12 (0-40)<br />

15 12 (0-40) 12 (0-40)<br />

a<br />

b<br />

5 pigs per age category were r<strong>and</strong>omly selected in each herd<br />

there were no significant differences between both types <strong>of</strong> herds (P>0.05)<br />

DISCUSSION<br />

The study assessed the patterns <strong>of</strong> M. hyopneumoniae infections in farms with<br />

good housing <strong>and</strong> management conditions that were clinically infected with M.<br />

hyopneumoniae, <strong>and</strong> in farms with poor housing <strong>and</strong> management conditions that<br />

were subclinically infected with M. hyopneumoniae. The hypothesis was that, if the<br />

prevalence <strong>of</strong> M. hyopneumoniae is higher in the clinically infected herds <strong>and</strong> if pigs<br />

are infected at a younger age in these herds, then additional factors different from the<br />

housing <strong>and</strong> management e.g. differences among circulating M. hyopneumoniae<br />

isolates, are associated with the course <strong>of</strong> the infection within swine farms. A<br />

difference in infection pattern due to a different parity <strong>of</strong> the sows in the herds is very<br />

unlikely since all herds had a comparable parity distribution. Although it cannot be<br />

ruled out, it is also unlikely that infections with other pathogens like PRRSV or<br />

Circovirus type 2 may have accounted for the different M. hyopneumoniae infection<br />

pattern in the selected farms since almost all Belgian herds are infected with PRRSV<br />

(Maes et al., 1997) <strong>and</strong> Circovirus type2 (Labarque et al., 2001). It is generally<br />

accepted that the housing <strong>and</strong> management conditions play a key-role in the spread<br />

<strong>and</strong> clinical course <strong>of</strong> M. hyopneumoniae infections in swine farms (Clark et al.,<br />

1991; Ross, 1999). In this respect, one should have expected a more intensive spread<br />

in the herds with poor housing <strong>and</strong> management conditions. The results <strong>of</strong> the<br />

- 77 -


2.1.1 PATTERNS OF M. HYOPNEUMONIAE INFECTIONS IN FARROW-TO-FINISH PIG HERDS<br />

serology <strong>and</strong> nPCR however, demonstrated that this was not the case. Moreover, the<br />

seroprevalence <strong>of</strong> M. hyopneumoniae was higher <strong>and</strong> most <strong>of</strong> the pigs became<br />

infected with M. hyopneumoniae at a younger age in the clinically infected herds with<br />

good housing <strong>and</strong> management than in the subclinically infected herds with poor<br />

housing <strong>and</strong> management.<br />

The results <strong>of</strong> the present study do not underestimate the importance <strong>of</strong><br />

housing <strong>and</strong> management factors in the transmission <strong>of</strong> M. hyopneumoniae infections<br />

in swine farms (Ross, 1999). The results demonstrate that the presence <strong>of</strong> poor<br />

housing <strong>and</strong> management in M. hyopneumoniae infected herds does not automatically<br />

imply that the clinical symptoms associated with M. hyopneumoniae infections will be<br />

severe, or that the spread <strong>of</strong> M. hyopneumoniae infections will be more intensive than<br />

in other farms. Conversely, the results also demonstrate that good housing <strong>and</strong><br />

management practices do not always result in a subclinical course <strong>of</strong> M.<br />

hyopneumoniae infection. It can thus be deduced that in addition to housing <strong>and</strong><br />

management, other factors are involved in the transmission <strong>of</strong> M. hyopneumoniae<br />

infections in swine farms. These factors are currently not yet fully understood, but it is<br />

reasonable to assume that differences among M. hyopneumoniae isolates concerning<br />

the antigenic, pathogenic <strong>and</strong> genetic characteristics may account for the different<br />

infection patterns in both types <strong>of</strong> farms. Some studies have shown some evidence for<br />

differences among M. hyopneumoniae isolates (Frey et al., 1992; Artiushin <strong>and</strong><br />

Minion, 1996). Further research is currently performed in our laboratory to investigate<br />

the characteristics <strong>of</strong> the M. hyopneumoniae isolates from these farms.<br />

Although specific criteria have been used to select both groups <strong>of</strong> farms, the<br />

individual farms belonging to either the clinically or subclinically infected groups<br />

were not identical. The housing <strong>and</strong> management factors that are important for the<br />

respiratory health status <strong>of</strong> the pigs are very diverse <strong>and</strong> encompass many different<br />

aspects (Christensen et al., 1999). In this respect, it is difficult to select a group <strong>of</strong><br />

farms with all exactly the same housing <strong>and</strong> management characteristics. However, in<br />

the present study, the most important factors <strong>of</strong> the housing <strong>and</strong> management that are<br />

known to be associated with enzootic pneumonia or with respiratory disease were<br />

considered for the selection <strong>of</strong> the farms. Likewise, it is hard to find farms with<br />

identical clinical symptoms <strong>of</strong> enzootic pneumonia in all age groups or in which<br />

clinical symptoms <strong>of</strong> enzootic pneumonia are totally absent. Important symptoms <strong>of</strong><br />

enzootic pneumonia namely chronic coughing <strong>and</strong> reduced performance in grow-<br />

- 78 -


2.1.1 PATTERNS OF M. HYOPNEUMONIAE INFECTIONS IN FARROW-TO-FINISH PIG HERDS<br />

finishing pigs (Ross, 1999) have been considered for the selection procedure, <strong>and</strong><br />

other respiratory diseases have been excluded. Thus, the farms belonging to the same<br />

group in the present study were not identical with respect to housing, management<br />

<strong>and</strong> clinical symptoms <strong>of</strong> M. hyopneumoniae infection, but they were very alike<br />

concerning these factors.<br />

The infection pattern <strong>of</strong> M. hyopneumoniae in the farms was assessed using<br />

serology <strong>and</strong> nPCR on nasal swabs <strong>of</strong> pigs <strong>of</strong> different age groups. Both diagnostic<br />

techniques have been shown to be valuable tools in pr<strong>of</strong>iling herds for M.<br />

hyopneumoniae infection (Calsamiglia et al., 1999). Serological testing is easy to<br />

perform <strong>and</strong> the DAKO ® Mh ELISA has a high sensitivity <strong>and</strong> specificity to detect<br />

serum antibodies following M. hyopneumoniae infection (Sørensen et al., 1992;<br />

1997). However, the serological response following M. hyopneumoniae infection is<br />

variable <strong>and</strong> the time-span between infection <strong>and</strong> seroconversion can take 3 to 8<br />

weeks (Nicolet et al., 1990; Kobisch et al., 1993; Morris et al., 1995). In addition,<br />

there is no correlation between the titer <strong>of</strong> serum antibodies against M.<br />

hyopneumoniae <strong>and</strong> the degree <strong>of</strong> protection against infection (Murphy et al., 1993;<br />

Yagihashi et al., 1993). Testing with nPCR on nasal swabs is a direct measure for<br />

detection <strong>of</strong> presence <strong>of</strong> nucleic acid <strong>of</strong> M. hyopneumoniae organisms. Consequently,<br />

a positive result does not automatically mean that this pig is actively shedding viable<br />

M. hyopneumoniae organisms. False negative results may arise if only negligible<br />

quantities <strong>of</strong> M. hyopneumoniae organisms are present in the nose, <strong>and</strong>/or if the nasal<br />

swab contains a lot <strong>of</strong> cellular debris that can inhibit the PCR (Stärk et al., 1992).<br />

The results <strong>of</strong> the nPCR in the present study corroborate with the serological<br />

results since the number <strong>of</strong> positive pigs in both tests was higher in the clinically<br />

infected herds <strong>and</strong> since both tests demonstrated that pigs became infected at a<br />

younger age in the clinically infected herds. However, the infection can be detected<br />

earlier with nPCR than with serology because there was a higher proportion <strong>of</strong><br />

nursery pigs that was positive using nPCR testing compared to serology. This finding<br />

corroborates with results <strong>of</strong> previous studies (Calsamiglia et al., 1999) <strong>and</strong> it indicates<br />

that nPCR testing is more appropriate than serology to detect M. hyopneumoniae<br />

infection in young pigs at the farm level. In the clinically infected herds, 16% <strong>of</strong> the<br />

pigs at 6 weeks were already positive using nPCR. This means that they became<br />

- 79 -


2.1.1 PATTERNS OF M. HYOPNEUMONIAE INFECTIONS IN FARROW-TO-FINISH PIG HERDS<br />

infected at the beginning <strong>of</strong> the nursery period or possibly during the farrowing<br />

period. It also indicates that good housing <strong>and</strong> management do not guarantee per se<br />

that the occurrence <strong>of</strong> M. hyopneumoniae infection will be delayed until the growfinishing<br />

unit. No pigs younger than 9 weeks were blood sampled to avoid possible<br />

interference with maternal antibodies. Morris et al. (1994) showed that maternal<br />

antibodies against M. hyopneumoniae can persist as long as 9 weeks in pigs derived<br />

from sows with very high titres <strong>of</strong> serum antibodies. Although it cannot be ruled out<br />

with certainty, it is unlikely that the positive ELISA titres in a few pigs <strong>of</strong> 9 weeks<br />

were due to maternal antibodies. The number <strong>of</strong> seropositive pigs gradually increased<br />

towards the end <strong>of</strong> the finishing period. This reflects the chronic nature <strong>of</strong> M.<br />

hyopneumoniae infections (Ross, 1999). Even within clinically or subclinically<br />

infected herds, individual pigs started seroconverting at different ages (data not<br />

shown). In this respect, it is difficult to assess ‘the’ age <strong>of</strong> infection in a farm. It may<br />

be more relevant to determine the age at which most <strong>of</strong> the pigs became infected.<br />

CONCLUSION<br />

Even with a limited number <strong>of</strong> samples <strong>and</strong> the combination <strong>of</strong> nPCR on nasal<br />

swabs <strong>and</strong> serology, it was possible to assess the dynamics <strong>of</strong> M. hyopneumoniae<br />

infection in the selected farms <strong>and</strong> to elucidate differences in infection patterns<br />

between the selected clinically <strong>and</strong> subclinically infected herds. More studies also<br />

including subclinically infected farms with good housing <strong>and</strong> management <strong>and</strong><br />

clinically infected farms with poor housing <strong>and</strong> management are needed to confirm<br />

the present findings. The results <strong>of</strong> this study document that additional factors<br />

different from the investigated housing <strong>and</strong> management conditions may determine<br />

the infection pattern <strong>of</strong> M. hyopneumoniae <strong>and</strong> the clinical course <strong>of</strong> the infection.<br />

Further research will focus on possible mechanisms that can explain the different<br />

infection patterns <strong>and</strong> on possible differences among M. hyopneumoniae isolates from<br />

these farms.<br />

- 80 -


2.1.1 PATTERNS OF M. HYOPNEUMONIAE INFECTIONS IN FARROW-TO-FINISH PIG HERDS<br />

ACKNOWLEDGEMENTS<br />

This research was financially supported by grant S-5940 (section II) <strong>of</strong> the<br />

Belgian Ministry <strong>of</strong> Small Enterprises, Trader <strong>and</strong> Agriculture, Research Foundation<br />

(Brussels). The swine producers <strong>and</strong> herd health veterinarians are acknowledged for<br />

their participation in this study.<br />

- 81 -


2.1.1 PATTERNS OF M. HYOPNEUMONIAE INFECTIONS IN FARROW-TO-FINISH PIG HERDS<br />

REFERENCES<br />

1. Artiushin, S. & Minion, C.F. (1996). Arbitrarily primed PCR analysis <strong>of</strong> Mycoplasma<br />

hyopneumoniae field isolates demonstrates genetic heterogeneity. International Journal <strong>of</strong><br />

Systematic Bacteriology 46, 324-328.<br />

2. Calsamiglia, M., Pijoan, C. & Bosch, G. (1999). Pr<strong>of</strong>iling Mycoplasma hyopneumoniae in<br />

farms using serology <strong>and</strong> a nested PCR technique. Swine <strong>Health</strong> <strong>and</strong> Production 7, 263-268.<br />

3. Clark, L.K., Scheidt, A.B., Armstrong, C.H., Knox, K. & Mayrose, V.B. (1991). The effect<br />

<strong>of</strong> all-in/all-out management on pigs from a herd with enzootic pneumonia. Veterinary Medicine<br />

86, 946-951.<br />

4. Christensen, G., Sørensen, V. & Mousing, J. (1999). Diseases <strong>of</strong> the respiratory system. In:<br />

Leman A.D., Straw B.E., Mengeling W.L., Allaire S.D., Taylor D.J (Eds.), Diseases <strong>of</strong> Swine,<br />

8th Edition, Iowa State University Press, Ames, pp. 913-940.<br />

5. Feld, N.C., Qvist, P., Ahrens, P., Friis, N.F. & Meyling, A. (1992). A monoclonal blocking<br />

ELISA detecting serum antibodies to Mycoplasma hyopneumoniae. Veterinary Microbiology 30,<br />

35-46.<br />

6. Frey J., Haldimann, A. & Nicolet, J. (1992). Chromosomal heterogeneity <strong>of</strong> various<br />

Mycoplasma hyopneumoniae field strains. International Journal <strong>of</strong> Systemic Bacteriology 42,<br />

275-280.<br />

7. Horst, I., Lindner, A., Krüger, M., Gindele, H. & Sting, R. (1997). Verbreitung der<br />

Mycoplasma hyopneumoniae infektion in Deutschl<strong>and</strong>. Schluβfolgerungen für die Bekämpfung<br />

der Enzootischen Pneumonie der Schweine. Tierärztliche Umschau 52, 508-514.<br />

8. Kobisch, M., Blanchard, B. & Le Potier, M.F. (1993). Mycoplasma hyopneumoniae infection<br />

in pigs: duration <strong>of</strong> the disease <strong>and</strong> resistance to reinfection. Veterinary Research 24, 67-77.<br />

9. Labarque, G.G., Nauwynck, H.J., Mesu, A.P. & Pensaert, M.B. (2001). Seroprevalence <strong>of</strong><br />

porcine circovirus types 1 <strong>and</strong> 2 in the Belgian pig population. The Veterinary Quarterly 22,<br />

234-236.<br />

10. LeGr<strong>and</strong>, A. & Kobisch, M. (1996). Comparison <strong>of</strong> the use <strong>of</strong> a vaccine <strong>and</strong> sequential<br />

antibiotic treatment in a herd infected with Mycoplasma hyopneumoniae. Veterinary Medicine<br />

27, 241-253.<br />

11. Maes, D.G., Deluyker, H., Verdonck, M., Castryck, F., Miry, C., Vrijens, B. & de Kruif, A.<br />

(1997). Descriptive epidemiological aspects <strong>of</strong> the seroprevalence <strong>of</strong> five respiratory disease<br />

agents in slaughter pigs from fattening pig herds. In: Proc. 8 th ISVEE Congress Paris France,<br />

05.B.19.<br />

12. Maes, D.G., Deluyker, H., Verdonck, M., Castryck, F., Miry, C., Vrijens, B. & de Kruif, A.<br />

(1999a). Risk indicators for the seroprevalence <strong>of</strong> Mycoplasma hyopneumoniae, porcine<br />

Influenza viruses <strong>and</strong> Aujeszky’s disease virus in slaughter pigs from fattening pig herds.<br />

Journal <strong>of</strong> Veterinary Medicine, Serie B 46, 341-352.<br />

13. Maes, D.G., Deluyker, H., Verdonck, M., Castryck, F., Miry, C., Vrijens, B., Verbeke, W.<br />

& Viaene, J. (1999b). Effect <strong>of</strong> vaccination against Mycoplasma hyopneumoniae in pig herds<br />

with an all-in/all-out production system. Vaccine 17, 1024-1034.<br />

14. Maes, D.G., Deluyker, H., Verdonck, M., Castryck, F., Miry, C., Vrijens, B. & de Kruif, A.<br />

(2000). <strong>Herd</strong> factors associated with the seroprevalences <strong>of</strong> four major respiratory pathogens in<br />

slaughter pigs from farrow-to-finish pig herds. Veterinary Research 31, 313-327.<br />

15. Mateusen, B., Maes, D., Van Goubergen, M., Verdonck, M. & de Kruif, A. (2002). The<br />

effectiveness <strong>of</strong> strategic medication with lincomycin hydrochloride <strong>and</strong>/or vaccination against<br />

- 82 -


2.1.1 PATTERNS OF M. HYOPNEUMONIAE INFECTIONS IN FARROW-TO-FINISH PIG HERDS<br />

16. Mycoplasma hyopneumoniae to control chronic respiratory disease in a swine herd. The<br />

Veterinary Record 151, 135-140.<br />

17. Morris, C.R., Gardner, I.A., Hietala, S.K., Carpenter, T.E., Anderson, R.J. & Parker,<br />

K.M. (1994). Persistence <strong>of</strong> passively acquired antibodies to Mycoplasma hyopneumoniae in a<br />

swine herd. Preventive Veterinary Medicine 21, 29-41.<br />

18. Morris, C.R., Gardner, I.A., Hietala, S.K., Carpenter, T.E., Anderson, R.J. & Parker,<br />

K.M. (1995). Seroepidemiologic study <strong>of</strong> natural transmission <strong>of</strong> Mycoplasma hyopneumoniae<br />

in a swine herd. Preventive Veterinary Medicine 21, 323-337.<br />

19. Morrow, M.W.E., Iglesias, G., Stanislaw, C., Stephenson, A. & Erickson, G. (1994). Effect<br />

<strong>of</strong> a mycoplasma vaccine on average daily gain in swine. Swine <strong>Health</strong> <strong>and</strong> Production 2, 13-18.<br />

20. Murphy, D.A., Van Alstine, W.G., Clark, L.K., Albregts, S.H. & Knok, K. (1993). Aerosol<br />

vaccination <strong>of</strong> pigs against Mycoplasma hyopneumoniae. American Journal <strong>of</strong> Veterinary<br />

Research 54, 1874-1880.<br />

21. Nicolet, J., Zimmerman, W., Chastonay, M. (1990). Epidemiology <strong>and</strong> serodiagnosis <strong>of</strong><br />

Mycoplasma hyopneumoniae. Zentralblatt für Bakteriologie Supplement 20 - Gustav Fischer<br />

Verlag, Stuttgart, New York, pp. 249-253.<br />

22. Pointon, A.M., Heap, P. & McCloud, P. (1985). Enzootic pneumonia in pigs in South<br />

Australia - factors relating to incidence <strong>of</strong> disease. Australian Veterinary Journal 62, 98-100.<br />

23. Ross, R.F. (1999).: Mycoplasmal diseases. In: Leman A.D., Straw B.E., Mengeling W.L.,<br />

Allaire S.D., Taylor D.J (Eds.), Diseases <strong>of</strong> Swine, 8th Edition, Iowa State University Press,<br />

Ames, pp. 495-509.<br />

24. Sørensen, V., Ahrens, P., Barfod, K., Feenstra, A.A., Feld, N.C., Friis, N.F., Bille-Hansen,<br />

V., Jensen, N.E. & Pedersen, M.W. (1997). Mycoplasma hyopneumoniae infection in pigs:<br />

duration <strong>of</strong> the disease <strong>and</strong> evaluation <strong>of</strong> four diagnostic assays. Veterinary Microbiology 54,<br />

23-34.<br />

25. Sørensen, V., Barfod, K. & Feld, N.C. (1992). Evaluation <strong>of</strong> a monoclonal blocking ELISA<br />

<strong>and</strong> IHA for antibodies to Mycoplasma hyopneumoniae in SPF pigs. The Veterinary Record 130,<br />

488-490.<br />

26. Stärk, K.D., Nicolet, J. & Frey, J. (1998). Detection <strong>of</strong> Mycoplasma hyopneumoniae by air<br />

sampling with a nested PCR assay. Applied Environmental Microbiology 64, 543-548.<br />

27. Yagihashi, T., Kazama, S. & Tajima, M. (1993). Seroepidemiology <strong>of</strong> mycoplasmal<br />

pneumonia <strong>of</strong> swine in Japan as surveyed by an Enzyme-Linked Immunosorbent Assay.<br />

Veterinary Microbiology 34, 155-166.<br />

- 83 -


2.1.2 EVALUATION OF VIRULENCE OF M. HYOPNEUMONIAE<br />

FIELD ISOLATES<br />

Modified from:<br />

EVALUATION OF VIRULENCE OF MYCOPLASMA HYOPNEUMONIAE FIELD ISOLATES<br />

J. VICCA, T. STAKENBORG, D. MAES, P. BUTAYE, J. PEETERS, A. DE KRUIF & F. HAESEBROUCK<br />

VETERINARY MICROBIOLOGY 2003, 97, 177-190<br />

- 85 -


2.1.2 EVALUATION OF VIRULENCE OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

SUMMARY<br />

The course <strong>of</strong> enzootic pneumonia, caused by Mycoplasma hyopneumoniae, is<br />

strongly influenced by management <strong>and</strong> housing conditions. Other factors, including<br />

differences in virulence between M. hyopneumoniae isolates, may also be involved.<br />

The aim <strong>of</strong> this study was to evaluate the virulence <strong>of</strong> six M. hyopneumoniae field<br />

isolates <strong>and</strong> link it to genetic differences as determined by r<strong>and</strong>omly-amplified<br />

polymorphic DNA (RAPD) analysis.<br />

Ninety, conventional M. hyopneumoniae-free piglets were inoculated<br />

intratracheally with the field isolates, a virulent reference strain or sterile culture<br />

medium. Animals were examined daily for the presence <strong>of</strong> disease signs <strong>and</strong> a<br />

respiratory disease score (RDS) was assessed per pig. Twenty-eight days post<br />

infection, pigs were euthanised, blood sampled <strong>and</strong> a lung lesion score was given.<br />

Lung samples were processed for histopathology, immun<strong>of</strong>luorescence testing for M.<br />

hyopneumoniae <strong>and</strong> isolation <strong>of</strong> M. hyopneumoniae. RAPD analysis was performed<br />

on all M. hyopneumoniae isolates.<br />

Significant differences between isolates were found for the RDS, lung lesion<br />

score, histopathology, immun<strong>of</strong>luorescence <strong>and</strong> serology. Based on the results <strong>of</strong> the<br />

different parameters, isolates were divided into 3 “virulence” groups: low, moderately<br />

<strong>and</strong> highly virulent isolates. Typically, a 5000 bp RAPD fragment was associated with<br />

the highly <strong>and</strong> moderately virulent isolates whereas it was absent in low virulent<br />

isolates. It was concluded that high variation in virulence exists between M.<br />

hyopneumoniae isolates isolated from different swine herds. Further studies are<br />

required to determine whether the 5000 bp fragment obtained in the RAPD analysis<br />

can be used as a virulence marker.<br />

- 87 -


2.1.2 EVALUATION OF VIRULENCE OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

INTRODUCTION<br />

Enzootic pneumonia in pigs, with M. hyopneumoniae as primary agent, is a<br />

chronic respiratory disease that causes major economic losses to the pig industry<br />

worldwide. The role <strong>of</strong> management <strong>and</strong> housing conditions in the development <strong>of</strong><br />

enzootic pneumonia has been shown to be very important (Maes et al., 1999; Maes et<br />

al., 2000). Additional factors, different from housing <strong>and</strong> management conditions may<br />

also determine the infection pattern <strong>of</strong> M. hyopneumoniae <strong>and</strong> the clinical course <strong>of</strong><br />

the infection (Vicca et al., 2002) since good conditions do not automatically result in<br />

a restricted course <strong>of</strong> enzootic pneumonia <strong>and</strong> poor conditions do not always result in<br />

severe disease.<br />

Several authors have demonstrated antigenic or genetic heterogeneity between<br />

M. hyopneumoniae isolates. Ro <strong>and</strong> Ross (1983) were able to demonstrate some<br />

diversity in antigenic structure; a different number <strong>of</strong> passages could cause a different<br />

pathogenicity in pigs (Zielinski <strong>and</strong> Ross, 1990). Frey et al. (1992) <strong>and</strong> Artiushin <strong>and</strong><br />

Minion (1996) demonstrated genetic heterogeneity by means <strong>of</strong> restriction enzyme<br />

digestion <strong>and</strong> field inversion gel electrophoresis <strong>and</strong> RAPD, respectively. However, it<br />

is not known whether genetic heterogeneity correlates with differences in virulence.<br />

The aim <strong>of</strong> this study was to assess the virulence <strong>of</strong> M. hyopneumoniae<br />

isolates obtained from different herds (Vicca et al., 2002), using a well-st<strong>and</strong>ardised<br />

experimental infection model in conventional M. hyopneumoniae- <strong>and</strong> PRRSV-free<br />

pigs. RAPD analysis was used to determine the extent <strong>of</strong> genetic variability in the M.<br />

hyopneumoniae field isolates.<br />

- 88 -


2.1.2 EVALUATION OF VIRULENCE OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

MATERIALS AND METHODS<br />

M. hyopneumoniae isolates<br />

Six M. hyopneumoniae isolates obtained from the lungs <strong>of</strong> pigs from different<br />

Belgian farrow-to-finish herds were compared. Isolates 1, 2 <strong>and</strong> 3 were obtained from<br />

the lungs <strong>of</strong> pigs produced in herds that experienced a clinical course <strong>of</strong> enzootic<br />

pneumonia (chronic coughing in nursery <strong>and</strong> grow-finishing pigs, reduced production<br />

parameters in grow-finishing pigs). Isolates 4, 5 <strong>and</strong> 6 were obtained from herds with<br />

a subclinical course <strong>of</strong> enzootic pneumonia (no coughing or only some mild coughing<br />

in the last weeks <strong>of</strong> the grow-finishing period <strong>and</strong> the production parameters in the<br />

grow-finishing pigs reached target levels). All isolates originated from a different<br />

herd. Strain MP143 (kindly provided by Pr<strong>of</strong>. Dr. N. Friis, SVS, Denmark) was<br />

isolated in Denmark from the lungs <strong>of</strong> a pig with mycoplasmal disease.<br />

Experimental design <strong>and</strong> animals<br />

Ninety, 3-week-old, cross-bred (Seghers hybrid, Belgium), castrated male pigs<br />

were obtained from a commercial herd that had no serological evidence <strong>of</strong> exposure<br />

to M. hyopneumoniae or porcine reproductive <strong>and</strong> respiratory syndrome virus<br />

(PRRSV). The source herd was a high health breeding herd in which repeated<br />

serological monitoring <strong>of</strong> sows <strong>and</strong> pigs <strong>of</strong> different age categories has been<br />

performed during the last 5 years. To detect antibodies against M. hyopneumoniae, the<br />

DAKO ® Mh ELISA (DAKO, Glostrup, Denmark) (Feld et al. 1992) was used. During<br />

at least five years, there was no clinical evidence <strong>of</strong> M. hyopneumoniae <strong>and</strong> no lung<br />

lesions typical for M. hyopneumoniae in slaughter pigs.<br />

The pigs were weaned at 21 days <strong>of</strong> age <strong>and</strong> moved to the animal facilities at<br />

the Faculty <strong>of</strong> Veterinary Medicine, Ghent University, Belgium. They were fed a<br />

commercial feed not containing antibiotics. Animals were weighed at 4 weeks <strong>of</strong> age,<br />

ranked according to weight <strong>and</strong> stratified into 3 groups. Within each weight group,<br />

pigs were r<strong>and</strong>omly assigned to one <strong>of</strong> eight treatment groups. Each group <strong>of</strong> 10<br />

piglets was housed in rooms equipped with absolute filters (HEPA U15) to avoid<br />

spread <strong>of</strong> M. hyopneumoniae between groups.<br />

- 89 -


2.1.2 EVALUATION OF VIRULENCE OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

Immediately after weighing <strong>and</strong> allocation to the treatment groups, all pigs<br />

were anaesthetized with 0.22 ml/kg <strong>of</strong> a mixture <strong>of</strong> Xylm ® 2% (Intervet) <strong>and</strong> Zoletil<br />

100 ® (Virbac), ear tagged <strong>and</strong> inoculated intratracheally with 7 x 10 7 CCU <strong>of</strong> a M.<br />

hyopneumoniae isolate in 7 ml inoculum (groups inoculated with isolates 1-6 <strong>and</strong><br />

isolate MP143) or with 7 ml sterile culture medium (negative control group). The<br />

group inoculated with strain MP143 served as positive control group. Because <strong>of</strong> the<br />

limited number <strong>of</strong> animal rooms equipped with absolute filters, the experiment was<br />

performed during 2 successive periods. A negative control group was used during<br />

both periods, resulting in a total <strong>of</strong> 20 negative control animals. The two negative<br />

control groups were considered as one group in the statistical analyses. The<br />

inoculation day was designated as day 0 post infection (0 DPI).<br />

The study was conducted after approval by the Ethical Committee for<br />

animal experiments <strong>of</strong> the Faculty <strong>of</strong> Veterinary Medicine, Ghent University.<br />

Clinical <strong>and</strong> performance parameters<br />

For 28 days following challenge, pigs were observed daily for 25 minutes, to<br />

evaluate body condition, appetite, presence <strong>of</strong> dyspnea <strong>and</strong> tachypnea <strong>and</strong> behavioral<br />

changes. In addition, a clinical respiratory disease score (RDS) was assessed daily<br />

from 0 to 28 days post infection (DPI) (Halbur et al., 1996). RDS scores could range<br />

from 0 to 6: 0 (no coughing), 1 (mild coughing after an encouraged move), 2 (mild<br />

coughing while leaving the pigs undisturbed), 3 (moderate coughing after encouraged<br />

move), 4 (moderate coughing while leaving the pigs undisturbed), 5 (severe coughing<br />

after encouraged move), 6 (severe coughing while leaving the pigs undisturbed). The<br />

number <strong>of</strong> coughing days was assessed as the total <strong>of</strong> days on which at least one pig<br />

was coughing. Rectal temperatures were measured on a daily basis from 0-10 DPI <strong>and</strong><br />

every other day from 12-28 DPI.<br />

To calculate average daily weight gain (ADG), pigs were weighed every<br />

week, the first weighing took place at 0 DPI, the last weighing at 28 DPI (5 times in<br />

total). The amount <strong>of</strong> feed consumed during the trial (0-28 DPI) was measured to<br />

calculate the feed conversion ratio (FCR).<br />

- 90 -


2.1.2 EVALUATION OF VIRULENCE OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

Necropsy, lung lesions, immun<strong>of</strong>luorescence <strong>and</strong> bacteriological examinations<br />

All pigs were euthanised at 28 DPI by deep anesthesia with 0.3 ml/kg <strong>of</strong> a<br />

mixture <strong>of</strong> Xylm ® 2% (Intervet) <strong>and</strong> Zoletil 100 ® (Virbac) followed by<br />

exsanguination. The lungs were removed <strong>and</strong> the macroscopic pneumonic lesions<br />

were quantified using a lung lesion score diagram (Hannan et al., 1982). Total lung<br />

scores could vary between score 0 (no lesions) <strong>and</strong> a theoretical maximum <strong>of</strong> 35. A<br />

digital picture was taken from every lung for future reference.<br />

Lung tissue samples from every lobe were collected from the edge <strong>of</strong> a lung<br />

lesion, if present, <strong>and</strong> processed in a semi-quantitative immun<strong>of</strong>luorescence assay<br />

(score 0-3) to detect the presence <strong>of</strong> M. hyopneumoniae (Kobisch et al., 1978); 0: (no<br />

immun<strong>of</strong>luorescence), 1, 2 <strong>and</strong> 3 (limited, moderate <strong>and</strong> intense<br />

immun<strong>of</strong>luorescence). One score was given per lung lobe.<br />

Tissue samples from every lobe were also taken for histopathology. The tissue<br />

was fixed in 10% neutral buffered formalin <strong>and</strong> routinely processed <strong>and</strong> embedded in<br />

paraffin. The percentage <strong>of</strong> lung area occupied by air (percentage air) was examined<br />

using an automatic image analysis system (Optimas ® 6.5, Media Cybernetics, Silver<br />

Spring, USA), measuring the percentage <strong>of</strong> area occupied by air in the microscopic<br />

field (multiplication 400X). This percentage is inversely proportionate to the number<br />

<strong>of</strong> infiltrated cells, the amount <strong>of</strong> atelectasis, intrabronchiolar-intrabronchial exudate,<br />

intra-alveolar exudate <strong>and</strong>/or edema <strong>and</strong> proliferation <strong>of</strong> type II cells. An average<br />

percentage per inoculation group was calculated. This average was based on 700<br />

measurements: 10 microscopic fields per lung lobe, 7 lung lobes per lung <strong>and</strong> 10 pigs<br />

per inoculation group. The measurements were expressed as a percentage that could<br />

range from 0% through 100%.<br />

Using light microscopy, the severity <strong>of</strong> peribronchiolar <strong>and</strong> perivascular<br />

lymphohistiocytic infiltration <strong>and</strong> nodule formation consistent with M.<br />

hyopneumoniae induced pneumonia lesions were scored. The following classes were<br />

used: 0 (no cellular infiltrates), 1 (limited cellular infiltrates (macrophages <strong>and</strong><br />

lymphocytes) around bronchioles, with airways <strong>and</strong> alveolar spaces free <strong>of</strong> cellular<br />

exudates), 2 (light to moderate infiltrates with mild diffuse cellular exudates into<br />

airways), 3, 4 <strong>and</strong> 5 (mild, moderate <strong>and</strong> severe lesions characteristic <strong>of</strong> bronchointerstitial<br />

pneumonia, centered around bronchioles but extending to the interstitium,<br />

- 91 -


2.1.2 EVALUATION OF VIRULENCE OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

with lymph<strong>of</strong>ollicular infiltration <strong>and</strong> mixed inflammatory cell exudates) (Morris et<br />

al., 1995). An average score per inoculation group was calculated, based on 700<br />

measurements: 10 measurements per lung lobe, 7 lung lobes per lung <strong>and</strong> 10 pigs per<br />

inoculation group.<br />

For each inoculation group, pooled samples <strong>of</strong> 20 percent (w/v) suspensions <strong>of</strong><br />

lungs were made, inoculated on Columbia agar supplemented with 5 percent sheep<br />

blood (blood agar) <strong>and</strong> incubated at 37°C for 48 hours to check the presence <strong>of</strong><br />

secondary bacteriological organisms in the lungs. The plates were cross-streaked with<br />

Staphylococcus aureus for support <strong>of</strong> Actinobacillus pleuropneumoniae growth.<br />

M. hyopneumoniae isolation<br />

For each inoculation group, pooled samples <strong>of</strong> 20 percent (w/v) suspensions <strong>of</strong><br />

lungs in phosphate buffered saline solution were used for isolation <strong>of</strong> M.<br />

hyopneumoniae. Isolation <strong>and</strong> cultivation <strong>of</strong> M. hyopneumoniae was optimised using<br />

earlier reports (Friis 1971a,b; 1975; 1979). Briefly, lung suspensions were inoculated<br />

into selective Friis medium. A series <strong>of</strong> subcultures in broth media were performed,<br />

followed by growing M. hyopneumoniae colonies on solid media. The mycoplasma<br />

species (M. hyopneumoniae, M. hyorhinis or M. flocculare) growing in broth media or<br />

on solid media were identified using a species specific PCR (Mattsson et al., 1995;<br />

Caron et al., 2000). For identifying M. flocculare species following primers were used<br />

(Stakenborg et al., 2005):<br />

MYCO REV<br />

AGAGGCATGATGATTTGACGTC<br />

M FLOC 741FOR TTAGGTAGGGAATGATCTAATC<br />

Single M. hyopneumoniae colonies were picked up from plate <strong>and</strong> transferred<br />

to broth medium.<br />

Serology for M. hyopneumoniae<br />

A blood sample <strong>of</strong> every pig was taken at 0 <strong>and</strong> 28 DPI to detect antibodies<br />

against M. hyopneumoniae, using the DAKO ® Mh ELISA (DAKO, Glostrup,<br />

Denmark) (Feld et al., 1992). Sera with optical density (OD)-values


2.1.2 EVALUATION OF VIRULENCE OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

OD-values were considered doubtful <strong>and</strong> classified as negative in the statistical<br />

analysis.<br />

R<strong>and</strong>omly amplified polymorphic DNA (RAPD)<br />

RAPD analysis was performed on all M. hyopneumoniae isolates. The<br />

protocol used was mainly based on the article <strong>of</strong> Artiushin <strong>and</strong> Minion (1996).<br />

Briefly, 45 amplification cycles (1 min. at 95°C; 1 min. at 36°C; <strong>and</strong> 2 min. at 72°C)<br />

were run on a GeneAmp 2400 Thermal Cycler (Perkin Elmer, USA). The DNA <strong>of</strong> the<br />

M. hyopneumoniae isolates used was firstly purified using a DNA easy Kit<br />

(Westburg, The Netherl<strong>and</strong>s) to increase reproducibility. The 30 µl-reaction mixture<br />

was optimised containing 30 ng <strong>of</strong> purified genomic DNA, 2 mM MgCl 2 , 20 pmol <strong>of</strong><br />

OPA-3 primer, 120 uM dNTPs, 1x Amplitaq Buffer, 1x St<strong>of</strong>fel Buffer, 1.5 U<br />

AmpliTaq DNA polymerase <strong>and</strong> 0.75 U Amplitaq DNA polymerase St<strong>of</strong>fel Fragment<br />

(Perkin Elmer). The amplified fragments were seperated using st<strong>and</strong>ard gelelectrophoresis<br />

technique (90V, for 2 hours in TBE buffer). Smartladder (Eurogentec,<br />

Belgium) was used as size-marker. The b<strong>and</strong>s were visualized <strong>and</strong> analysed with<br />

Bionumerics s<strong>of</strong>tware (Applied Maths, Belgium).<br />

Statistical analyses<br />

Analysis <strong>of</strong> variance (ANOVA) was used to compare the results <strong>of</strong> the<br />

different inoculation groups <strong>and</strong> to link the presence or absence <strong>of</strong> a 5000bp fragment<br />

determined in RAPD to the results <strong>of</strong> the different M. hyopneumoniae inoculation<br />

groups. A Bonferroni correction was used to adjust the observed significance level for<br />

the fact that multiple comparisons were made. To estimate correlations between<br />

parameters, a bivariate analysis with Spearman’s correlation coefficient was used.<br />

The prevalence <strong>of</strong> pigs positive for the different parameters was compared<br />

between inoculation groups by logistic regression. Statistical results were considered<br />

to be significant when P-values were lower than 0.05 (two-tailed). Data were analyzed<br />

using the statistical package SPSS 10.0 for Windows (SPSS 10, SPSS Inc. Illinois<br />

60611 USA 1999).<br />

- 93 -


2.1.2 EVALUATION OF VIRULENCE OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

RESULTS<br />

Results are summarized in Table 1<br />

Clinical evaluation <strong>and</strong> performance parameters<br />

One <strong>of</strong> the pigs inoculated with isolate 6 died at 17 DPI because <strong>of</strong> a rupture<br />

<strong>of</strong> the urinary bladder. The average rectal temperatures were not significantly<br />

different between inoculation groups (individual temperatures ranged from 38.2-41.2<br />

°C). Rectal temperatures slowly decreased towards the end <strong>of</strong> the study in all groups.<br />

Coughing was present in all groups inoculated with M. hyopneumoniae but was rarely<br />

observed in the negative control group (Figure 1). Coughing started at approximately<br />

7 DPI <strong>and</strong> increased steadily towards the end <strong>of</strong> the study. The incubation period<br />

varied according to the isolate used. The average RDS was significantly higher<br />

(P


2.1.2 EVALUATION OF VIRULENCE OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

3<br />

2.5<br />

2<br />

Average RDS<br />

1.5<br />

1<br />

0.5<br />

0<br />

-2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28<br />

DPI<br />

Negative Control Positive Control 1<br />

2 3 4<br />

5 6<br />

Figure 1: Average respiratory disease Score (RDS) from -2 DPI until 28 days post<br />

inoculation (DPI) for pigs inoculated with sterile culture medium (negative control),<br />

strain MP143 (positive control) or Belgian M. hyopneumoniae field isolates (1-6).<br />

Macroscopic lung lesions <strong>and</strong> bacteriological examinations<br />

The lung lesion scores <strong>of</strong> pigs inoculated with strain MP143 or isolate 1, were<br />

significantly higher compared to the negative control group (P


2.1.2 EVALUATION OF VIRULENCE OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

Potential secondary pathogens as Pasteurella multocida, Bordetella<br />

bronchiseptica <strong>and</strong> Streptococcus suis were found in lungs <strong>of</strong> pigs in all inoculation<br />

groups, including the negative control group. The prevalences <strong>of</strong> pig lungs infected<br />

with potential secondary pathogens were 30%, 10%, 30%, 20%, 50%, 50%, 50% <strong>and</strong><br />

20% for the negative control group, positive control group <strong>and</strong> groups 1 to 6,<br />

respectively. Actinobacillus pleuropneumoniae was not isolated from any <strong>of</strong> the pig<br />

lungs. The proportions <strong>of</strong> pigs infected with secondary pathogens were not<br />

significantly different between the inoculation groups.<br />

Microscopic lung lesions<br />

Compared to the negative control group <strong>and</strong> groups inoculated with isolates 2,<br />

4 <strong>and</strong> 6, a significantly (P


2.1.2 EVALUATION OF VIRULENCE OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

Immun<strong>of</strong>luorescence (IF) <strong>and</strong> isolation<br />

M. hyopneumoniae organisms were not detected in the negative control group.<br />

The positive control group <strong>and</strong> the group inoculated with isolate 1 showed a<br />

significantly (P


2.1.2 EVALUATION OF VIRULENCE OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

the group inoculated with isolate 2 (P


2.1.2 EVALUATION OF VIRULENCE OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

- 99 -


2.1.2 EVALUATION OF VIRULENCE OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

Correlation <strong>of</strong> parameters<br />

The parameters used to compare the virulence <strong>of</strong> the different M.<br />

hyopneumoniae isolates correlated well (r > 0.56) (Table 2). Percentage air <strong>and</strong><br />

serology (OD-values) were negatively correlated with the other parameters (RDS,<br />

number <strong>of</strong> coughing days, lung lesions, lymphohistiocyte infiltration <strong>and</strong><br />

immun<strong>of</strong>luorescence).<br />

Table 2: Spearman’s correlation coefficients <strong>of</strong> parameters used to evaluate virulence<br />

<strong>of</strong> the M. hyopneumoniae field isolates<br />

Respiratory<br />

Disease<br />

Score<br />

Number<br />

<strong>of</strong><br />

coughing<br />

days<br />

Lymphohistiocytic<br />

infiltration<br />

Percentage<br />

air<br />

Immun<strong>of</strong>luorescence<br />

Lung<br />

lesions<br />

Respiratory<br />

1.000 0.991 0.662 - 0.643 0.755 0.804 - 0.736<br />

Disease Score<br />

Number <strong>of</strong><br />

1.000 0.644 - 0.636 0.769 0.811 - 0.735<br />

coughing days<br />

Lymphohistiocytic<br />

1.000 - 0.604 0.705 0.670 - 0.704<br />

infiltration<br />

Percentage air 1.000 - 0.604 - 0.604 0.564<br />

Serology<br />

(ODvalues)<br />

Immun<strong>of</strong>luorescence<br />

1.000 0.893 - 0.780<br />

Lung lesions 1.000 - 0.815<br />

Serology<br />

(OD-values)<br />

1.000<br />

All correlations were significant at the 0.01 level<br />

- 100 -


2.1.2 EVALUATION OF VIRULENCE OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

DISCUSSION<br />

This study proved the hypothesis that differences in virulence between<br />

circulating M. hyopneumoniae field isolates exist. This hypothesis was based on<br />

observed different clinical courses <strong>of</strong> the disease in the herds selected for isolation <strong>of</strong><br />

the isolates. Although the importance <strong>of</strong> management <strong>and</strong> housing conditions has<br />

been shown several times (Clark et al., 1991; Ross, 1999) <strong>and</strong> should never be<br />

underestimated, earlier field experiments performed at our department (Vicca et al.,<br />

2002) showed that additional factors different from housing <strong>and</strong> management<br />

conditions may determine the infection pattern <strong>of</strong> M. hyopneumoniae <strong>and</strong> the clinical<br />

course <strong>of</strong> the infection.<br />

It has been shown that a different number <strong>of</strong> in vitro passages can result in a<br />

different pathogenicity <strong>of</strong> M. hyopneumoniae isolates in pigs (Whittlestone, 1979;<br />

Zielinsky <strong>and</strong> Ross, 1990). In the present studies, the number <strong>of</strong> passages used to<br />

obtain pure cultures <strong>of</strong> isolates 1, 3, 4, 5 <strong>and</strong> 6 varied between 8 <strong>and</strong> 10,<br />

demonstrating that differences in virulence between these isolates were not due to<br />

different numbers <strong>of</strong> in vitro passages. Isolate 2 was passed 20 times in vitro. It<br />

cannot be excluded that the higher number <strong>of</strong> passages played a role in decreased<br />

virulence <strong>of</strong> this isolate.<br />

Performance parameters such as ADG <strong>and</strong> FCR were <strong>of</strong> little use in this study<br />

to evaluate differences in virulence. Although these parameters are very important to<br />

evaluate the economical results <strong>of</strong> a swine herd, the number <strong>of</strong> animals used <strong>and</strong> the<br />

duration <strong>of</strong> the study period were probably too limited to observe an effect <strong>of</strong> the M.<br />

hyopneumoniae inoculation on these performance parameters.<br />

The parameters RDS, lung lesion score, infiltration <strong>of</strong> lymphohistiocytes,<br />

percentage <strong>of</strong> air left in the lung, immun<strong>of</strong>luorescence <strong>and</strong> serology appeared to be<br />

important to evaluate the virulence <strong>of</strong> isolates during this study. A good correlation<br />

between the above-mentioned parameters was demonstrated (Table 2). Kobisch et al.<br />

(1993) <strong>and</strong> Morris et al. (1995) already found a positive correlation between coughing<br />

<strong>and</strong> lung lesion scores. In an earlier study from Zielinsky <strong>and</strong> Ross (1990), no<br />

consistent relation between microscopic lesions <strong>and</strong> the extent <strong>of</strong> macroscopic lesions<br />

was found; this is in contradiction with our results. Zielinsky <strong>and</strong> Ross (1990)<br />

suggested that the extent <strong>of</strong> macroscopic lesions was rather influenced by natural<br />

- 101 -


2.1.2 EVALUATION OF VIRULENCE OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

susceptibility (attributable to genetic components) <strong>of</strong> the pigs than by the action <strong>of</strong> the<br />

organism itself. All pigs used in our study were born in the same herd, a breeding herd<br />

that strives for genetic homogeneity. The genetic variability between pigs could not<br />

have been sufficiently large to be the only explanation for the observed variability in<br />

extent <strong>of</strong> macroscopic lesions between inoculation groups.<br />

Based on the outcomes <strong>of</strong> the clinical <strong>and</strong> pathological parameters, the isolates<br />

could roughly be divided into 3 groups: highly virulent isolates (strain MP143 <strong>and</strong><br />

isolate 1), moderately virulent isolates (3 <strong>and</strong> 5) <strong>and</strong> low virulent isolates (2, 4 <strong>and</strong> 6).<br />

For all parameters, highly virulent isolates differed significantly from the negative<br />

control group. Low virulent isolates did not show significant differences from the<br />

negative control group, but did show significant differences from the highly virulent<br />

isolates for the parameters: RDS, lung lesion score, percentage air, lymphohistiocytic<br />

infiltration (except isolate 2) <strong>and</strong> IF (except isolate 4). The isolates 3 <strong>and</strong> 5 could<br />

statistically not be distinguished clearly from the other groups: the results <strong>of</strong> RDS <strong>and</strong><br />

macroscopic lung lesions were more in accordance with the results <strong>of</strong> the low virulent<br />

isolates, the results from the microscopic lesions, IF <strong>and</strong> serology were more in<br />

accordance with the results <strong>of</strong> the highly virulent isolates. Therefore, these isolates<br />

were considered as moderately virulent. Since microscopic lesions due to M.<br />

hyopneumoniae infection are evident at an earlier time than macroscopic lesions, a<br />

longer study period (> 28 days) could have resulted in a more severe RDS <strong>and</strong> lung<br />

lesion score.<br />

The intensity <strong>of</strong> immun<strong>of</strong>luorescence was clearly higher in the lungs <strong>of</strong> pigs<br />

inoculated with the highly virulent isolates. This might indicate that the highly<br />

virulent isolates had a higher capacity to colonize or attach to the ciliated epithelium<br />

or were able to multiply faster resulting in more organisms causing an earlier <strong>and</strong><br />

more severe coughing, more severe macroscopic <strong>and</strong> microscopic lesions <strong>and</strong> more<br />

intense immun<strong>of</strong>luorescence. A difference in capability to attach to cilia between M.<br />

hyopneumoniae isolates has been demonstrated by Minion et al. (2000) <strong>and</strong> was<br />

correlated with the number <strong>of</strong> repeat regions in RR1 <strong>of</strong> the P97 protein <strong>of</strong> M.<br />

hyopneumoniae. A minimum <strong>of</strong> eight repeats was necessary to make the M.<br />

hyopneumoniae organisms able to attach to the cilia. Research on the P97 protein <strong>of</strong><br />

the different M. hyopneumoniae isolates used in this study could provide important<br />

information about the attachment capacities <strong>of</strong> the isolates <strong>and</strong> could partly explain<br />

the differences in virulence between isolates observed in this study.<br />

- 102 -


2.1.2 EVALUATION OF VIRULENCE OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

Piglets inoculated with a highly virulent isolate had a higher number <strong>of</strong> piglets<br />

seroconverted at 28 DPI compared to piglets inoculated with a low virulent isolate.<br />

An earlier seroconversion <strong>of</strong> 3 weeks was also seen in herds experiencing a clinical<br />

course <strong>of</strong> enzootic pneumonia compared to herds subclinically infected with M.<br />

hyopneumoniae (Vicca et al., 2002). The reason for this finding is not clear but it<br />

might be because <strong>of</strong> a higher immunogenicity or a faster multiplication <strong>of</strong> the highly<br />

virulent isolates. A difference in glycosylation <strong>of</strong> immunogenic proteins between M.<br />

hyopneumoniae isolates was described by Lin (2001), but no relation to virulence <strong>of</strong><br />

the isolates was made. Differences in immunogeneity between different M.<br />

hyopneumoniae isolates could be <strong>of</strong> special interest for future vaccine development.<br />

A 5000 bp RAPD b<strong>and</strong> was only present in highly <strong>and</strong> moderately virulent<br />

isolates <strong>and</strong> not in low virulent isolates. Further research is required to determine<br />

whether this b<strong>and</strong> can be used as a virulence marker for M. hyopneumoniae.<br />

CONCLUSION<br />

In the present study, variation in virulence between different field isolates <strong>of</strong><br />

M. hyopneumoniae was demonstrated in an experimental infection model. Further<br />

studies are required to determine the usefulness <strong>of</strong> the 5000 bp RAPD b<strong>and</strong> to predict<br />

virulence <strong>of</strong> M. hyopneumoniae isolates.<br />

ACKNOWLEDGEMENTS<br />

This research was financially supported by grant S-5940 (section II) <strong>of</strong> the<br />

Belgian Ministry <strong>of</strong> Small Enterprises, Trader <strong>and</strong> Agriculture, Research Foundation<br />

(Brussels). I am grateful to all the people who assisted me with the practical aspects <strong>of</strong><br />

this study.<br />

- 103 -


2.1.2 EVALUATION OF VIRULENCE OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

REFERENCES<br />

1. Artiushin, S. & Minion, F.C. (1996). Arbitrarily primed PCR analysis <strong>of</strong> Mycoplasma<br />

hyopneumoniae field isolates demonstrates genetic heterogeneity. International Journal <strong>of</strong><br />

Systemic Bacteriology 46, 324-328.<br />

2. Caron, J., Ouardani, M. & Dea, S. (2000). Diagnosis <strong>and</strong> differentiation <strong>of</strong> Mycoplasma<br />

hyopneumoniae <strong>and</strong> Mycoplasma hyorhinis infections in pigs by PCR amplification <strong>of</strong> the p36<br />

<strong>and</strong> p46 genes. Journal <strong>of</strong> Clinical Microbiology 38, 1390-1396.<br />

3. Clark, L., Armstrong, C., Knox, K. & Mayrose, V. (1991). The effect <strong>of</strong> all-in/all-out<br />

management on pigs from a herd with enzootic pneumonia. Veterinary Medicine 86, 946-951.<br />

4. Feld, N.C., Qvist, P., Ahrens, P., Friis, N.F. & Meyling, A. (1992). A monoclonal blocking<br />

ELISA detecting serum antibodies to Mycoplasma hyopneumoniae. Veterinary Microbiology 30,<br />

35-46.<br />

5. Frey, J., Haldimann, A. & Nicolet, J. (1992). Chromosomal heterogeneity <strong>of</strong> various<br />

Mycoplasma hyopneumoniae field strains. International Journal <strong>of</strong> Systemic Bacteriology 42,<br />

275-280.<br />

6. Friis, N.F. (1971ª). A selective medium for Mycoplasma suipneumoniae. Acta Veterinaria<br />

Sc<strong>and</strong>inavia 12, 454-456.<br />

7. Friis, N.F. (1971b). Mycoplasmas cultivated from the respiratory tract <strong>of</strong> Danish pigs. Acta<br />

Veterinaria Sc<strong>and</strong>inavia 12, 69-79.<br />

8. Friis, N.F. (1975). Some recommendations concerning primary isolation <strong>of</strong> Mycoplasma<br />

suipneumoniae <strong>and</strong> Mycoplasma flocculare. Nordisk Veterinaer Medicin 27, 337-339.<br />

9. Friis, N.F. (1979). Selective isolation <strong>of</strong> slowly growing acidifying mycoplasmas from swine<br />

<strong>and</strong> cattle. Acta Veterinaria Sc<strong>and</strong>inavia 20, 607-609.<br />

10. Halbur, P.G., Paul, P.S., Meng, X.J., Lum, M.A., Andrews, J.J. & Rathje, J.A. (1996).<br />

Comparative pathogenicity <strong>of</strong> nine US Porcine Reproductive <strong>and</strong> Respiratory Syndrome Virus<br />

(PRRSV) isolates in a five-week-old cesarean-derived, colostrum-deprived pig model. Journal <strong>of</strong><br />

Veterinary Diagnostic Investigation 8, 11-20.<br />

11. Hannan, P.C., Bhogal, B.S. & Fish, J.P. (1982). Tylosin tartrate <strong>and</strong> tiamutilin effects on<br />

experimental piglet pneumonia induced with pneumonic pig lung homogenate containing<br />

mycoplasmas, bacteria <strong>and</strong> viruses. Research in Veterinary Science 33, 76-88.<br />

12. Kobisch, M., Tillon, J.P., Vannier, Ph., Magueur, S. & Morvan, P. (1978). Pneumonie<br />

enzootique à Mycoplasma suipneumoniae chez le porc: diagnostic rapide et recherche<br />

d’anticorps. Recueil de Medecine Veterinaire 154, 847-852.<br />

13. Kobisch, M., Blanchard, B. & Le Potier, M.F. (1993). Mycoplasma hyopneumoniae infection<br />

in pigs: duration <strong>of</strong> the disease <strong>and</strong> resistance to reinfection. Veterinary Research 24, 67-77.<br />

14. Lin, B. (2001). Intraspecies differentiation <strong>of</strong> Mycoplasma hyopneumoniae field strains isolated<br />

in the United States. American Association <strong>of</strong> Swine Veterinarians, 225-235.<br />

15. Maes, D., Deluyker, H., Verdonck, M., Castryck, F., Miry, C., Vrijens, B. & de Kruif, A.<br />

(1999). Risk indicators for the seroprevalence <strong>of</strong> Mycoplasma hyopneumoniae, porcine<br />

Influenza viruses <strong>and</strong> Aujeszky’s disease virus in slaughter pigs from fattening pig herds.<br />

Journal <strong>of</strong> Veterinary Medicine, Series B 46, 341-352.<br />

- 104 -


2.1.2 EVALUATION OF VIRULENCE OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

16. Maes, D., Deluyker, H., Verdonck, M., Castryck, F., Miry, C., Vrijens, B. & de Kruif, A.<br />

(2000). <strong>Herd</strong> factors associated with the seroprevalences <strong>of</strong> four major respiratory pathogens in<br />

slaughter pigs from farrow-to-finish pig herds. Veterinary Research 31, 313-327.<br />

17. Mattsson, J.G., Bergström, K., Wallgren, P. & Johansson, K.E. (1995). Detection <strong>of</strong><br />

Mycoplasma hyopneumoniae in nose swabs from pigs by in vitro amplification <strong>of</strong> the 16s RNA<br />

gene. Journal <strong>of</strong> Clinical Microbiology 33, 893-897.<br />

18. Minion, F.C., Adams, C. & Hsu, T. (2000). R1 region <strong>of</strong> P97 mediates adherence <strong>of</strong><br />

Mycoplasma hyopneumoniae to swine cilia. Infection <strong>and</strong> Immunity 68, 3056-3060.<br />

19. Morris, C.R., Gardner, I.A., Hietala, S.K. & Carpenter, T.E. (1995). Enzootic pneumonia:<br />

comparison <strong>of</strong> cough <strong>and</strong> lung lesions as predictors <strong>of</strong> weight gain in swine. Canadian Journal <strong>of</strong><br />

Veterinary Research 59, 197-204.<br />

20. Ro, L.H. & Ross, R.F. (1983). Comparison <strong>of</strong> Mycoplasma hyopneumoniae strains by serologic<br />

methods. American Journal <strong>of</strong> Veterinary Research 11, 2087-2094.<br />

21. Ross, R.F. (1999). Mycoplasmal Diseases. In: Leman A.D., Straw B.E., Mengeling W.L.,<br />

Allaire S.D., Taylor D.J (Eds.), Diseases <strong>of</strong> Swine, 8th Edition, Iowa State University Press,<br />

Ames, pp. 537-551.<br />

22. Stakenborg, T., Vicca, J., Butaye, P., Imberechts, H., Peeters, J., de Kruif, A.,<br />

Haesebrouck, F., Maes, D. (2005). A multiplex PCR to identify mycoplasmas present in broth<br />

cultures. Veterinary Research Communications, In press.<br />

23. Vicca, J., Maes, D., Thermote, L., Peeters, J., Haesebrouck, F. & de Kruif, A. (2002).<br />

Patterns <strong>of</strong> Mycoplasma hyopneumoniae infections in Belgian farrow-to-finish pig herds with<br />

diverging disease-course. Journal <strong>of</strong> Veterinary Medicine, Series B 49, 349-353.<br />

24. Whittlestone, P. (1979). Porcine mycoplasmas. In: Tully, J.G. <strong>and</strong> Whitcomb, R.F. (Ed.), The<br />

Mycoplasmas II. Human <strong>and</strong> Animal Mycoplasmas, Academic press, Inc., New York, pp. 133-<br />

176.<br />

25. Zielinsky, G. & Ross, R. (1990). Effect <strong>of</strong> growth in cell cultures <strong>and</strong> strain on virulence <strong>of</strong><br />

Mycoplasma hyopneumoniae for swine. American Journal <strong>of</strong> Veterinary Research 51, 344-348.<br />

- 105 -


2.2 SUSCEPTIBILITY OF M. HYOPNEUMONIAE TO<br />

ANTIMICROBIAL AGENTS<br />

- 107 -


2.2.1 IN VITRO SUSCEPTIBILITY OF M. HYOPNEUMONIAE FIELD<br />

ISOLATES<br />

Modified from:<br />

IN VITRO SUSCEPTIBILITIES OF MYCOPLASMA HYOPNEUMONIAE FIELD ISOLATES<br />

J. VICCA, T. STAKENBORG, D. MAES, P. BUTAYE, J. PEETERS, A. DE KRUIF & F. HAESEBROUCK<br />

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY 2004, 48, 4470-4472<br />

- 109 -


2.2.1 IN VITRO SUSCEPTIBILITY OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

SUMMARY<br />

Mycoplasma hyopneumoniae causes enzootic pneumonia, a chronic<br />

respiratory disease in pigs. To control the infection, preventive <strong>and</strong> curative use <strong>of</strong><br />

antibiotics in feed or water is a common practice. Unfortunately, susceptibility <strong>of</strong> M.<br />

hyopneumoniae to different antimicrobials has rarely been determined. In this study, a<br />

broth microdilution technique was used to determine the in vitro susceptibilities <strong>of</strong> 21<br />

M. hyopneumoniae field isolates. Acquired resistance to spectinomycin,<br />

oxytetracycline, doxycycline, gentamicin, florfenicol <strong>and</strong> tiamulin was not observed.<br />

One isolate showed acquired resistance to lincomycin, tilmicosin <strong>and</strong> tylosin. This<br />

isolate was susceptible to all other antibiotics tested. The MIC-values <strong>of</strong> flumequine<br />

were > 16 µg/ml for 5 isolates, while the MIC 50 -value was 2 µg/ml. For these 5<br />

isolates, the MIC-values for enr<strong>of</strong>loxacin were ≥ 0.5 µg/ml, the MIC 50 being 0.06<br />

µg/ml. As far as we know, this is the first report <strong>of</strong> acquired resistance against<br />

macrolides, lincosamides <strong>and</strong> fluoroquinolones in M. hyopneumoniae field isolates.<br />

- 111 -


2.2.1 IN VITRO SUSCEPTIBILITY OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

INTRODUCTION<br />

Mycoplasma hyopneumoniae causes enzootic pneumonia, a chronic<br />

respiratory disease in pigs resulting in considerable economic losses. Although<br />

appropriate vaccines are available to reduce the consequences <strong>of</strong> infection, in feed or<br />

water medication with antimicrobials is still a common practice to treat or control the<br />

disease. The use <strong>of</strong> antimicrobials, however, results in the selection <strong>of</strong> resistant<br />

bacteria. Antimicrobial susceptibility <strong>of</strong> M. hyopneumoniae field isolates has rarely<br />

been determined <strong>and</strong> limited numbers <strong>of</strong> isolates have been considered in these<br />

studies (Hannan et al., 1989; Ter Laak et al., 1991; Tanner et al., 1993; Friis <strong>and</strong><br />

Szancer, 1994; Hannan et al., 1997a; Hannan et al., 1997b). This is mainly due to the<br />

fact that M. hyopneumoniae is a very fastidious <strong>and</strong> slowly growing micro-organism<br />

which makes it difficult to obtain large numbers <strong>of</strong> field isolates. In addition,<br />

susceptibility testing is more difficult for these organisms compared to other bacteria<br />

as there is no st<strong>and</strong>ardized procedure. Recently, guidelines <strong>and</strong> recommendations for<br />

MIC testing against veterinary mycoplasma species have been proposed on behalf <strong>of</strong><br />

the International Research Programme on Comparative Mycoplasmology (IRPCM)<br />

(Hannan, 2000).<br />

In the present study, antimicrobial susceptibility <strong>of</strong> M. hyopneumoniae<br />

isolates, recently obtained from swine in the field, was determined using these<br />

guidelines <strong>and</strong> recommendations. Also, antibiotic use on the herds where the isolates<br />

where obtained was monitored in order to try to find a possible link between antibiotic<br />

use <strong>and</strong> MIC results.<br />

MATERIALS AND METHODS<br />

M. hyopneumoniae isolates<br />

Twenty-one M. hyopneumoniae field isolates, obtained between 2000 <strong>and</strong><br />

2002 from the lungs <strong>of</strong> pigs from 21 different farrow-to-finish pig herds in Belgium,<br />

were used for MIC determination (Vicca et al., 2002; Vicca et al., 2003). All isolates<br />

were obtained from the lungs <strong>of</strong> slaughter pigs, except isolates 1, 4, 5 <strong>and</strong> 6 which<br />

were obtained from the lungs <strong>of</strong> 9-12 week old euthanized pigs which did not present<br />

- 112 -


2.2.1 IN VITRO SUSCEPTIBILITY OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

respiratory tract disease signs. The antibiotics used on the different herds in suckling<br />

piglets (0 - 4 weeks <strong>of</strong> age), nursery piglets (4 - 10 weeks <strong>of</strong> age) <strong>and</strong> growth -<br />

finishing pigs (10 weeks until slaughter) during the year before the M. hyopneumoniae<br />

isolates were obtained, are mentioned in Table 1.<br />

Isolation <strong>and</strong> cultivation <strong>of</strong> M. hyopneumoniae was optimized using earlier<br />

reports (Friis 1971a,b; 1975; 1979). Briefly, lung suspensions were inoculated into<br />

selective Friis medium. A series <strong>of</strong> subcultures in selective <strong>and</strong> non-selective Friis<br />

medium were carried out, followed by growing M. hyopneumoniae colonies on solid<br />

medium (agar mixed with non-selective Friis medium). M. hyopneumoniae was<br />

identified using a species specific PCR (Mattsson et al., 1995; Caron et al., 2000).<br />

Single M. hyopneumoniae colonies were picked up from plate <strong>and</strong> transferred<br />

to non-selective Friis medium. Isolates were stored at -70°C until used.<br />

The M. hyopneumoniae type strain ATCC 25634 (J-strain) was used as control strain.<br />

- 113 -


2.2.1 IN VITRO SUSCEPTIBILITY OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

Table 1: The antibiotics used during 1 year before isolation <strong>of</strong> M. hyopneumoniae on<br />

the herd<br />

<strong>Herd</strong> Isolate Antibiotics b used in<br />

Suckling piglets Nursery piglets Grow-finishing pigs<br />

A 1 ENRO 1, a ENRO 1 OXY 1<br />

B 2 DANO 1 COL 5 none<br />

C 4* ENRO 1 COL 5 TYL 4 or PEN 1<br />

D 5 AMK 2 AMK+COL 5 OXY 3 or DOX 3<br />

E 6 AMK 2 or PEN 2 TMP+SULF 3 TYL 3 or DOX 3<br />

F 7 ENRO 1 COL 4 , APR 4 , AMK 4 , None<br />

OXY 4 , ENRO 1<br />

G 8* PEN 2 , ENRO 1 , NEO 1 LIN 1 , OXY 6 , TYL 6 LIN 1 , OXY 6 , TYL 6<br />

H 9 AMK 2 LIN 1 , OXY 6 LIN 1 , OXY 6<br />

I 10 none COL 3 none<br />

J 11 none AMK 3 none<br />

K 12 none COL 5 none<br />

L 13<br />

AMK 1 , ENRO 1 , PEN 2 AMK 1 , APR 3 , COL 3 ,<br />

DOX 4 , ENRO 1 ,<br />

CEF 1 , TYL 1<br />

TMP+SULF 3 ,<br />

M 14* ENRO1, PEN+STR 1 , AMK 5 , COL 5 , ENRO 2 , OXY 5<br />

CEF 1 , AMK 1 CEF 1 , PEN+STR 1<br />

N 15 none none TMP+SULF 6<br />

O 16 TMP+SULF 1 , AMK 1 OXY 1 OXY 1<br />

P 17* AMK 1 , ENRO 1 AMK 5 , AMK 1 DOX 5 , FFN 1<br />

Q 18 CEF 1 , ENRO 1 COL 5 , TMP+SULF 4 none<br />

R 19** none none LIN 1<br />

S 20* ENRO 1 ENRO 1 , FLUM 3 ENRO 1 , PEN 1 , OXY 1<br />

T 21 none none DOX 4<br />

U 23 COL 1 , AMK 2 COL 5 TYL+DOX 5<br />

a :<br />

1 : injectable (some pigs injected in case <strong>of</strong> disease); 2 : injectable (all pigs injected, routine ); 3 :<br />

in feed medication (routine); 4 : in feed medication (in case <strong>of</strong> disease); 5 : in water medication<br />

(routine); 6 : in water medication (in case <strong>of</strong> disease)<br />

b<br />

: AMK, amoxicillin; APR, apramycin; CEF, cefquinome; COL, colistin; DANO, dan<strong>of</strong>loxacin;<br />

DOX, doxycycline; ENRO, enr<strong>of</strong>loxacin; FFN, florfenicol; FLUM, flumequine; LIN,<br />

lincomycin; OXY, oxytetracycline; PEN, penicillin; PEN+STR, penicillin <strong>and</strong> streptomycin;<br />

TMP+SULF, trimethoprim <strong>and</strong> sulfamides; TYL, tylosin<br />

*: High MIC values for flumequine <strong>and</strong> enr<strong>of</strong>loxacin<br />

**: High MIC values for tylosin, tilmicosin <strong>and</strong> lincomycin<br />

Minimal inhibitory concentration (MIC) determination<br />

Ninety-six well, round-bottom microtitre plates (Sensititre Ltd., Imberhorne<br />

Lane, East Grinstead, Sussex, Engl<strong>and</strong>) containing stabilized freeze-dried lincomycin<br />

(0.06 - 8 µg/ml), lincomycin / spectinomycin 1:2 ratio (0.06/0.12 - 8/16 µg/ml),<br />

spectinomycin (0.12 - 16 µg/ml), oxytetracycline (0.015 - 2 µg/ml), doxycycline<br />

(0.015 - 2 µg/ml), enr<strong>of</strong>loxacin (0.008 - 1 µg/ml), flumequine (0.12 - 16 µg/ml),<br />

gentamicin (0.12 - 16 µg/ml), florfenicol (0.12 - 16 µg/ml), tiamulin (0.015 - 1<br />

- 114 -


2.2.1 IN VITRO SUSCEPTIBILITY OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

µg/ml), tilmicosin (0.25 - 16 µg/ml) <strong>and</strong> tylosin tartrate (0.015 - 1 µg/ml) were used.<br />

Three wells on each plate were left antimicrobial-free as a positive growth control.<br />

M. hyopneumoniae isolates were removed from cryostorage (-70°C), allowed<br />

to thaw at room temperature <strong>and</strong> incubated during 1-2 hours in non-selective Friis<br />

medium at 36 ± 1 °C. Isolates were vortexed <strong>and</strong> diluted in non-selective Friis<br />

medium until the number <strong>of</strong> organisms reached 10 4 CCU/ml. Fifty µl <strong>of</strong> the diluted<br />

culture was transferred into each well <strong>of</strong> the Sensititre® plate. The J-strain was tested<br />

3 times in order to estimate reproducibility <strong>of</strong> the procedure. After inoculation, the<br />

microtiter plates were sealed using an adhesive foil <strong>and</strong> incubated at 36 ± 1 °C for 14<br />

days. Plates were observed daily. Growth <strong>of</strong> M. hyopneumoniae organisms was<br />

observed when the colour <strong>of</strong> the medium changed from red to yellow (phenol red<br />

indicator), corresponding with a decrease in pH from 7.4 to 6.8 by glucose<br />

fermentation. The initial <strong>and</strong> final MICs were recorded. The initial MIC was defined<br />

as the lowest antibiotic concentration to show no change in colour when the colour <strong>of</strong><br />

the growth control turned yellow. The final MIC was defined as the lowest antibiotic<br />

concentration to show no change in colour at 14 days after inoculation (Tanner <strong>and</strong><br />

Wu, 1992).<br />

RESULTS<br />

In Table 2, the initial <strong>and</strong> final MIC 50 , MIC 90 <strong>and</strong> MIC-range are presented<br />

for the 21 M. hyopneumoniae field isolates. Only for oxytetracycline, doxycycline <strong>and</strong><br />

gentamicin the initial <strong>and</strong> final MIC 50 differed from each other for more than one<br />

dilution. No clear differences were detected between initial <strong>and</strong> final MIC 90 values.<br />

The MIC-values for the 3 replicates <strong>of</strong> the J-strain are also given in Table 2. It can be<br />

seen that these values were equal or differed from each other for only one doubling<br />

dilution, indicating a good reproducibility <strong>of</strong> the test. The initial MIC-values for the J-<br />

strain were in agreement with the values reported in earlier studies (Hannan et al.,<br />

1989; Ter Laak et al., 1991; Tanner et al., 1993; Hannan et al., 1997a,b).<br />

In Table 3, frequency distributions <strong>of</strong> final MIC values <strong>of</strong> the different<br />

antibiotics for the 21 field isolates are presented.<br />

The MICs <strong>of</strong> oxytetracycline, doxycycline, tiamulin, spectinomycin,<br />

gentamicin, florfenicol <strong>and</strong> the lincomycin - spectinomycin combination did not show<br />

any indication <strong>of</strong> a bimodal frequency distribution range (Butaye et al., 2003). For<br />

- 115 -


2.2.1 IN VITRO SUSCEPTIBILITY OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

one isolate, obtained on farm R, the MICs <strong>of</strong> tylosin, tilmicosin <strong>and</strong> lincomycin were<br />

clearly higher than for the other isolates. Isolates number 4, 8, 14, 17 <strong>and</strong> 20 had a<br />

MIC value <strong>of</strong> > 16 µg/ml for flumequine while the final MIC 50 equals only 2 µg/ml,<br />

corresponding to the median <strong>of</strong> the first distribution. For the same isolates the MIC<br />

value <strong>of</strong> enr<strong>of</strong>loxacine was ≥ 0.5 µg/ml while the MIC 50 was 0.06 µg/ml.<br />

- 116 -


2.2.1 IN VITRO SUSCEPTIBILITY OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

Table 2: Initial <strong>and</strong> final MIC 50 , MIC 90 en MIC-range (µg/ml) <strong>of</strong> antimicrobials<br />

against Belgian M. hyopneumoniae field isolates. The MIC for the reference strain (Jstrain)<br />

was determined 3 times <strong>and</strong> the results are included is this table.<br />

Antimicrobial 1 Reading Field isolates (n=21) Reference strain:<br />

J-strain<br />

MIC 50 MIC 90 MIC-Range MIC-range<br />

LIN Initial ≤ 0.06 ≤ 0.06 ≤ 0.06 - > 8 8 0.25<br />

LIN/SPT Initial ≤ 0.06/0.12 ≤<br />

0.06/0.12<br />

≤ 0.06/0.12 -<br />

0.25/0.5<br />

Final ≤ 0.06/0.12 0.12/0.25 ≤ 0.06/0.12 -<br />

0.25/0.5<br />

2 1<br />

DOX Initial 0.12 0.5 0.03 - 1 0.06 - 0.12<br />

Final 0.5 1 0.12 - 2 0.5 - 1<br />

ENRO Initial 0.03 0.5 0.015 - > 1 0.015 - 0.03<br />

Final 0.06 0.5 0.03 - > 1 0.06<br />

FLUM Initial 1 > 16 0.25 - > 16 0.5 - 1<br />

Final 2 > 16 0.5 - > 16 2<br />

GEN Initial ≤ 0.12 0.5 ≤ 0.12 - 1 0.25 - 0.5<br />

Final 0.5 1 ≤ 0.12 - 1 0.5 - 1<br />

FFN Initial ≤ 0.12 0.25 ≤ 0.12 - 0.5 0.25<br />

Final 0.25 0.5 ≤ 0.12 - 1 1<br />

TIA Initial ≤ 0.015 0.12 ≤ 0.015 - 0.12 0.03<br />

Final 0.03 0.12 ≤ 0.015 - 0.12 0.06<br />

TIL Initial 0.25 0.5 ≤ 0.25 - > 16 0.25<br />

Final 0.5 0.5 ≤ 0.25 - > 16 0.5<br />

TYL Initial 0.03 0.06 ≤ 0.015 - > 1 1 0.12<br />

1 : LIN, lincomycin; SPT, spectinomycin; OXY, oxytetracycline; DOX, doxycycline; ENRO,<br />

enr<strong>of</strong>loxacin; FLUM, flumequine; GEN, gentamicin; FFN, florfenicol; TIA, tiamulin; TIL,<br />

tilmicosin; TYL, tylosin<br />

- 117 -


2.2.1 IN VITRO SUSCEPTIBILITY OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

Table 3: Frequency distribution <strong>of</strong> final minimal inhibitory concentrations (MICs) <strong>of</strong><br />

12 antibiotics on 21 Belgian M. hyopneumoniae field strains.<br />

Antimicrobial 1<br />

Number <strong>of</strong> stains with MIC (µg/ml) <strong>of</strong><br />

0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16<br />

Lincomycin 16 4 3 1** (>)*<br />

Lincomycin/<br />

17 4 3<br />

Spectinomycin<br />

Spectinomycin 3 (≤ ) 2 8 11<br />

Oxytetracycline 5 2 5 5 6, 1 (>)<br />

Doxycycline 5 3 5 9 2<br />

Enr<strong>of</strong>loxacin 5 13 1 4 1 (>)<br />

Flumequine 3 3 11 2 5 (>)<br />

Gentamicin 4 (≤ ) 4 10 6<br />

Florfenicol 7 (≤ ) 8 6 3<br />

Tiamulin 4 10 7 3<br />

Tilmicosin 10 (≤ ) 13 1 (>)<br />

Tylosin 2 5 6 10 1 (>)<br />

*: > : higher than MIC indicated<br />

≤: equal or lower than MIC indicated<br />

**: isolates considered to have acquired resistance are underlined<br />

DISCUSSION<br />

In the present study a bimodal frequency distribution <strong>of</strong> MICs for the<br />

macrolides tylosin <strong>and</strong> tilmicosin as well as for the lincosamide antibiotic, lincomycin<br />

was seen. The MICs <strong>of</strong> these antibiotics were clearly higher for one isolate, indicating<br />

acquired resistance. The MIC <strong>of</strong> tylosin for this isolate was also higher than the<br />

breakpoint proposed by Hannan et al. (1997a). Macrolides <strong>and</strong> lincosamides are<br />

chemically distinct but they have a similar mode <strong>of</strong> action <strong>and</strong>, moreover, overlapping<br />

binding sides on the 23S rRNA <strong>of</strong> the 50S subunit <strong>of</strong> the bacterial ribosome. They act<br />

by blocking protein synthesis on assembled <strong>and</strong> functioning 50S ribosomal subunits<br />

(Weisblum, 1995; Butaye 2000). Acquired resistance against these antibiotics has not<br />

been described before in M. hyopneumoniae <strong>and</strong> the mechanism <strong>of</strong> resistance is<br />

unknown. In M. pneumoniae, acquired resistance against macrolides has been<br />

associated with an alteration in the drug target side by point mutations in the 23s<br />

rRNA gene (Lucier et al., 1995).<br />

- 118 -


2.2.1 IN VITRO SUSCEPTIBILITY OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

Acquired resistance to macrolides <strong>and</strong> lincosamides in mycoplasmas has not<br />

been reported <strong>of</strong>ten, most probably due to a limited amount <strong>of</strong> isolates tested. Only 2<br />

M. pneumoniae, 1 Ureaplasma spp. <strong>and</strong> 2 M. hominis resistant strains were isolated<br />

from humans (Bébéar <strong>and</strong> Bébéar, 2002). In animal mycoplasmas, acquired resistance<br />

to tylosin has been described for M. gallisepticum (Levisohn, 1981), M. hyosynoviae<br />

(Kobayashi et al., 1996b; Aarestrup et al. 1998), M. hyorhinis (Kobayashi et al.,<br />

1996a,b) <strong>and</strong> M. bovis (Thomas et al., 2003). No co-resistance to lincomycin was<br />

observed for the tylosin resistant M. hyosynoviae isolates. Lincomycin was not<br />

evaluated by Levisohn (1981), <strong>and</strong> although tylosin <strong>and</strong> lincomycin resistant M. bovis<br />

isolates were found by Thomas et al. (2003), the existence <strong>of</strong> co-resistance was not<br />

reported. Ter Laak et al. (1993) found M. bovis isolates that were resistant to<br />

lincomycin, but they were susceptible to tylosin. The use <strong>of</strong> lincomycin in growfinishing<br />

pigs on the herd where our macrolide-lincosamide resistant M.<br />

hyopneumoniae isolate was obtained may have contributed to selection <strong>of</strong> antibiotic<br />

resistance.<br />

The MICs <strong>of</strong> flumequine <strong>and</strong> enr<strong>of</strong>loxacin also showed an extended frequency<br />

distribution range with a tendency towards bimodality. For 5 <strong>of</strong> the 21 isolates the<br />

MIC <strong>of</strong> flumequine was >16 µg/ml, which is higher than the breakpoint <strong>of</strong> ≥ 16 µg/ml<br />

proposed by Hannan et al. (1997a). For these isolates, the MIC <strong>of</strong> enr<strong>of</strong>loxacin was ≥<br />

0.5 µg/ml while the MIC 50 was 0.06 µg/ml. This rather high frequency <strong>of</strong> acquired<br />

resistance against fluoroquinolones is unusual. Although fluoroquinolone resistant M.<br />

hominis isolates have been reported (Bébéar et al., 1999), resistance against these<br />

antibiotics has been rarely reported in human associated mycoplasmas. Hannan et al.<br />

(1997a) described acquired resistance against flumequine in avian, porcine (but not M.<br />

hyopneumoniae), bovine, ovine <strong>and</strong> caprine mycoplasmas <strong>and</strong> Thomas et al. (2003)<br />

isolated enr<strong>of</strong>loxacin resistant strains from bovines. It has also been shown that in<br />

vitro passages <strong>of</strong> mycoplasmas in the presence <strong>of</strong> enr<strong>of</strong>loxacin results in the<br />

development <strong>of</strong> fluoroquinolone resistance (Gautier-Bouchardon et al., 2002;<br />

Reinhardt et al., 2002; Bébéar et al., 1997). A possible explanation for the high<br />

prevalence <strong>of</strong> fluoroquinolone resistance in the present study might be the frequent<br />

use <strong>of</strong> enr<strong>of</strong>loxacin to treat E. coli diarrhea in neonatal <strong>and</strong> recently weaned piglets. In<br />

all the herds with a fluoroquinolone resistant M. hyopneumoniae isolate, these<br />

antibiotics were used during the suckling period. On only 5 herds with a fully<br />

susceptible M. hyopneumoniae isolate, fluoroquinolones were sporadically used to<br />

- 119 -


2.2.1 IN VITRO SUSCEPTIBILITY OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

treat suckling piglets. The MIC <strong>of</strong> enr<strong>of</strong>loxacine <strong>of</strong> M. hyopneumoniae isolate 20 was<br />

>1. On the originating herd fluoroquinolones were used as well in suckling, nursery<br />

<strong>and</strong> grow-finishing pigs.<br />

The MICs <strong>of</strong> oxytetracycline <strong>and</strong> doxycycline did not show a clear bimodal<br />

frequency distribution range <strong>and</strong> the MICs <strong>of</strong> oxytetracycline were lower than the<br />

breakpoint proposed by Hannan et al. (1997a), indicating no acquired resistance<br />

against these antibiotics although 62 % <strong>of</strong> the herds selected for this study used<br />

tetracycline antibiotics to treat nursery <strong>and</strong> grow-finishing pigs. M. hyopneumoniae<br />

isolates with decreased oxytetracycline susceptibility have been isolated in Japan<br />

(Inamoto et al., 1994). Acquired resistance against chlortetracycline has been<br />

described by Yamamoto <strong>and</strong> Koshimizu (1984), Inamoto et al. (1994) <strong>and</strong> Etheridge<br />

et al. (1979). For tetracycline resistance we used the antibiotics oxytetracycline <strong>and</strong><br />

doxycycline since stability <strong>of</strong> chlortetracycline is rather poor (Ray <strong>and</strong> Newton, 1991)<br />

<strong>and</strong> due to the long incubation period necessary, one cannot be sure <strong>of</strong> the activity<br />

after this prolonged period <strong>of</strong> incubation.<br />

CONCLUSION<br />

This study is the first description <strong>of</strong> acquired resistance in M. hyopneumoniae<br />

field isolates to macrolides, lincosamides <strong>and</strong> fluoroquinolones. Resistance against<br />

other antimicrobials was not detected confirming that antimicrobial resistance does<br />

not yet pose a major problem for treatment <strong>of</strong> M. hyopneumoniae infections (Hannan<br />

et al., 1989; ter Laak et al., 1991; Inamoto et al., 1994; Hannan et al., 1997a,b).<br />

However, the rather high frequency <strong>of</strong> fluoroquinolone resistance is worrying <strong>and</strong><br />

warrants prudent use <strong>of</strong> these antibiotics.<br />

ACKNOWLEDGEMENTS<br />

This work was supported by the Federal Public Service <strong>of</strong> Public <strong>Health</strong>, Food<br />

Chain Security <strong>and</strong> Environment, Brussels, Belgium, grant no. S-6039.<br />

- 120 -


2.2.1 IN VITRO SUSCEPTIBILITY OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

REFERENCES<br />

1. Aarestrup, F.M. & Friis, N.F. (1998). Antimicrobial susceptibility testing <strong>of</strong> Mycoplasma<br />

hyosynoviae isolated from pigs during 1968-1971 <strong>and</strong> during 1995 <strong>and</strong> 1996. Veterinary<br />

Microbiology 61, 33-39.<br />

2. Bébéar, C. & Bébéar, C. (2002). Antimycoplasmal agents, p.545-566. In S. Razin <strong>and</strong> R.<br />

Herrmann (ed.), Molecular biology <strong>and</strong> pathogenicity <strong>of</strong> mycoplasmas. Kluwer Academic /<br />

Plenum publishers, New York.<br />

3. Bébéar, C.M., Bové, J. M., Bébéar, C. & Renaudin, J. (1997). Characterization <strong>of</strong><br />

Mycoplasma hominis mutations involved in resistance to fluoroquinolones. Antimicrobial<br />

Agents <strong>and</strong> Chemotherapy 41, 269-273.<br />

4. Bébéar, C.M., Renaudin, J., Charron, A., Renaudin, H., De Barbeyrac, B., Schaeverbeke,<br />

T. & Bébéar, C. (1999). Mutations in the gyrA, parC <strong>and</strong> parE genes associated with<br />

fluoroquinolone resistance in clinical isolates <strong>of</strong> Mycoplasma hominis. Antimicrobial Agents <strong>and</strong><br />

Chemotherapy 43, 954-956.<br />

5. Butaye, P. (2000). Antimicrobial resistance in Enterococcus faecium <strong>and</strong> Enterococcus faecalis<br />

strains from animals <strong>and</strong> animal-derived foods. Ph.D. thesis. Ghent University, Belgium.<br />

6. Butaye, P., Devriese, L.A. & Haesebrouck, F. (2003). Antimicrobial growth promotors used in<br />

animal feed: effects <strong>of</strong> less well known antibiotics on gram-positive bacteria. Clinical<br />

Microbiology Re<strong>view</strong>s 16, 175-188.<br />

7. Caron, J., Ouardani, M. & Dea, S. (2000). Diagnosis <strong>and</strong> differentiation <strong>of</strong> Mycoplasma<br />

hyopneumoniae <strong>and</strong> Mycoplasma hyorhinis infections in pigs by PCR amplification <strong>of</strong> the p36<br />

<strong>and</strong> p46 genes. Journal <strong>of</strong> Clinical Microbiology 38, 1390-1396.<br />

8. Etheridge, J.R., Lloyd, L.C. & Cottew, G.S. (1979). Resistance <strong>of</strong> Mycoplasma<br />

hyopneumoniae to chlortetracycline. Australian Veterinary Journal 55, 40.<br />

9. Friis, N.F. (1971ª). A selective medium for Mycoplasma suipneumoniae. Acta Veterinaria<br />

Sc<strong>and</strong>inavia 12, 454-456.<br />

10. Friis, N.F. (1971b). Mycoplasmas cultivated from the respiratory tract <strong>of</strong> Danish pigs. Acta<br />

Veterinaria Sc<strong>and</strong>inavia 12, 69-79.<br />

11. Friis, N.F. (1975). Some recommendations concerning primary isolation <strong>of</strong> Mycoplasma<br />

suipneumoniae <strong>and</strong> Mycoplasma flocculare. Nordisk Veterinaer Medicin 27, 337-339.<br />

12. Friis, N.F. (1979). Selective isolation <strong>of</strong> slowly growing acidifying mycoplasmas from swine<br />

<strong>and</strong> cattle. Acta Veterinaria Sc<strong>and</strong>inavia 20, 607-609.<br />

13. Friis, N.F. & Szancer, J. (1994). Sensitivity <strong>of</strong> certain porcine <strong>and</strong> bovine mycoplasmas to<br />

antimicrobial agents in a liquid medium test compared to a disc assay. Acta Veterinaria<br />

Sc<strong>and</strong>inavia 35, 389-394.<br />

14. Gautier-Bouchardon, A.V., Reinhardt, A.K., Kobisch, M. & Kempf, I. (2002). In vitro<br />

development <strong>of</strong> resistance to enr<strong>of</strong>loxacin, erythromycin, tylosin, tiamulin <strong>and</strong> oxytetracycline in<br />

Mycoplasma gallisepticum, Mycoplasma iowae <strong>and</strong> Mycoplasma synoviae. Veterinary<br />

Microbiology 88, 47-58.<br />

15. Hannan, P.C.T. (2000). Guidelines <strong>and</strong> recommendations for antimicrobial minimum inhibitory<br />

concentration (MIC) testing against veterinary mycoplasma species. Veterinary Research 31,<br />

373-395.<br />

- 121 -


2.2.1 IN VITRO SUSCEPTIBILITY OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

16. Hannan, P.C.T., O’Hanlon, P.J. & Rogers, N.H. (1989). In vitro evaluation <strong>of</strong> various<br />

quinolone antibacterial agents against veterinary mycoplasmas <strong>and</strong> porcine respiratory bacterial<br />

pathogens. Research in Veterinary Science 46, 202-211.<br />

17. Hannan, P.C.T., Windsor, H.M., de Jong A., Schmeer, N. & Stegemann, M. (1997a).<br />

Comparitive susceptibilities <strong>of</strong> various animal-pathogenic mycoplasmas to fluoroquinolones.<br />

Antmicrobial Agents <strong>and</strong> Chemotherapy 41, 2037-2040.<br />

18. Hannan, P.C.T., Windsor, H.M. & Ripley, P.H. (1997b). In vitro susceptibilities <strong>of</strong> recent<br />

field isolates <strong>of</strong> Mycoplasma hyopneumoniae <strong>and</strong> Mycoplasma hyosynoviae to valnemulin<br />

(Econor), tiamulin <strong>and</strong> enr<strong>of</strong>loxacin <strong>and</strong> the in vitro development <strong>of</strong> resistance to certain<br />

antimicrobial agents in Mycoplasma hyopneumoniae. Research in Veterinary Science 36, 157-<br />

160.<br />

19. Inamoto, T., Takahashi, K., Yamamoto, K., Nakai, Y. & Ogimoto, K. (1994). Antibiotic<br />

susceptibility <strong>of</strong> Mycoplasma hyopneumoniae isolated from swine. The Journal <strong>of</strong> Veterinary<br />

Medical Science 56, 393-394.<br />

20. Kobayashi, H., Morozumi, T., Munthali, G., Mitani, K., Ito, N. & Yamamoto, D. (1996a).<br />

Macrolide susceptibility <strong>of</strong> Mycoplasma hyorhinis isolated from pigs. Antimicrobial Agents <strong>and</strong><br />

Chemotherapy 40, 1030-1032.<br />

21. Kobayashi, H., Sonmez, N., Morozumi, T., Mitani, K., Ito, N., Shiono, H. & Yamamoto, K.<br />

(1996b). In vitro susceptibility <strong>of</strong> Mycoplasma hyosynoviae <strong>and</strong> M. hyorhinis to antimicrobial<br />

agents. The Journal <strong>of</strong> Veterinary Medical Science 58, 1107-1111.<br />

22. Léon, F.A., Madec, F., Taylor, N.M. & Kobisch M. (2001). Seroepidemiology <strong>of</strong> Mycoplasma<br />

hyopneumoniae in pigs from farrow-to-finish farms. Veterinary Microbiology 78, 331-341.<br />

23. Levisohn, S. (1981). Antibiotic sensitivity patterns in field isolates <strong>of</strong> Mycoplasma<br />

gallisepticum as a guide to chemotherapy. Israel Journal <strong>of</strong> Medical Sciences 17, 661-666.<br />

24. Lucier, T.S., Heitzman, K., Liu, S-K. & Hu, P-C. (1995). Transition mutations in the 23S<br />

rRNA <strong>of</strong> erythromycin resistant isolates <strong>of</strong> Mycoplasma pneumoniae. Antmicrobial Agents <strong>and</strong><br />

Chemotherapy 39, 2770-2773.<br />

25. Mattsson, J.G., Bergström, K., Wallgren, P. & Johansson, K.E. (1995). Detection <strong>of</strong><br />

Mycoplasma hyopneumoniae in nose swabs from pigs by in vitro amplification <strong>of</strong> the 16s RNA<br />

gene. Journal <strong>of</strong> Clinical Microbiology 33, 893-897.<br />

26. Ray, A. & Newton, V. (1991). Use <strong>of</strong> high-performance liquid chromatography to monitor<br />

stability <strong>of</strong> tetracycline <strong>and</strong> chlortetracycline in susceptibility determinations. Antimicrobial<br />

Agents <strong>and</strong> Chemotherapy 35, 1264-1266.<br />

27. Reinhardt, A.K., Bébéar, C.M., Kobisch, M., Kempf, I. & Gautier-Bouchardon, A.V.<br />

(2002). Characterization <strong>of</strong> mutations in DNA Gyrase <strong>and</strong> Topoisomerase IV involved in<br />

quinolone resistance <strong>of</strong> Mycoplasma gallisepticum mutants obtained in vitro. Antimicrobial<br />

Agents <strong>and</strong> Chemotherapy 46, 590-593.<br />

28. Tanner, A.C. & Wu, C.C. (1992). Adaptation <strong>of</strong> the Sensititre ® broth microdilution technique<br />

to antimicrobial susceptibility testing <strong>of</strong> Mycoplasma gallisepticum. Avian Diseases 36, 714-<br />

717.<br />

29. Tanner, A.C., Erickson, B.Z. & Ross, R.F. (1993). Adaptation <strong>of</strong> the Sensititre ® broth<br />

microdilution technique to antimicrobial susceptibility testing <strong>of</strong> Mycoplasma hyopneumoniae.<br />

Veterinary Microbiology 36, 301-306.<br />

30. Ter Laak, E.A., Noordergraaf, J.H. & Verschure, M.H. (1993). Susceptibilities <strong>of</strong><br />

Mycoplasma bovis, Mycoplasma dispar <strong>and</strong> Ureaplasma diversum strains to antimicrobial<br />

agents in vitro. Antimicrobial Agents <strong>and</strong> Chemotherapy 37, 317-321.<br />

- 122 -


2.2.1 IN VITRO SUSCEPTIBILITY OF M. HYOPNEUMONIAE FIELD ISOLATES<br />

31. Ter Laak, E.A., Pijpers, A., Noordergraaf, J.H., Schroevers, E.C. & Verheijden, J.H.M.<br />

(1991). Comparison <strong>of</strong> methods for in vitro testing <strong>of</strong> susceptibility <strong>of</strong> porcine mycoplasma<br />

species to antimicrobial agents. Antimicrobial Agents <strong>and</strong> Chemotherapy 35, 228-233.<br />

32. Thomas, A., Nicolas, C., Dizier, I., Mainil, J. & Linden, A. (2003). Antibiotic susceptibilities<br />

<strong>of</strong> recent Belgian Mycoplasma bovis isolates. The Veterinary Record 153, 428-431.<br />

33. Vicca, J., Maes, D., Thermote, L., Peeters, J., Haesebrouck, F. & de Kruif, A. (2002).<br />

Patterns <strong>of</strong> Mycoplasma hyopneumoniae infections in Belgian farrow-to-fiinish pig herds with<br />

diverging disease-course. Journal <strong>of</strong> Veterinary Medicine, Series B 49, 349-353.<br />

34. Vicca, J., Stakenborg, T., Maes, D., Butaye, P., Peeters, J., de Kruif, A. & Haesebrouck, F.<br />

(2003). Evaluation <strong>of</strong> virulence <strong>of</strong> Mycoplasma hyopneumoniae field isolates. Veterinary<br />

Microbiology 97, 177-190.<br />

35. Weisblum, B. (1995). Insights into erythromycin action from studies <strong>of</strong> its activity as inducer <strong>of</strong><br />

resistance. Antmicrobial Agents <strong>and</strong> Chemotherapy 39, 797-805.<br />

36. Yamamoto, K. & Koshimizu, K. (1984). In vitro susceptibility <strong>of</strong> Mycoplasma hyopneumoniae<br />

to antibiotics, p. 116. Proceedings <strong>of</strong> the 8 th International Pig Veterinary Society Congress,<br />

Ghent, Belgium.<br />

- 123 -


2.2.2 CHARACTERIZATION OF IN VIVO ACQUIRED<br />

RESISTANCE OF M. HYOPNEUMONIAE TO MACROLIDES<br />

AND LINCOSAMIDES<br />

Modified from:<br />

CHARACTERISATION OF IN VIVO ACQUIRED RESISTANCE OF MYCOPLASMA HYOPNEUMONIAE TO<br />

MACROLIDES AND LINCOSAMIDES<br />

T. STAKENBORG, J. VICCA, P. BUTAYE, D. MAES, F.C. MINION, J. PEETERS, A. DE KRUIF & F.<br />

HAESEBROUCK<br />

MICROBIAL DRUG RESISTANCE 2005, 11, 291-295<br />

- 125 -


2.2.2 RESISTANCE MECHANISM AGAINST MACROLIDES AND LINCOSAMIDES IN M. HYOPNEUMONIAE<br />

SUMMARY<br />

Macrolides <strong>and</strong> related antibiotics are used to control mycoplasma infections in<br />

the pig industry worldwide. Some porcine mycoplasmas, however, survive these<br />

treatments by acquiring resistance. The mechanism <strong>of</strong> acquired resistance to<br />

macrolides <strong>and</strong> lincosamides was studied in more detail for Mycoplasma<br />

hyopneumoniae (M. hyopneumoniae) by comparing both the phenotype <strong>and</strong> genotype<br />

<strong>of</strong> a resistant field isolate to 5 susceptible isolates. The minimal inhibitory<br />

concentrations (MICs) were significantly higher for the resistant isolate for all<br />

antibiotics tested. The MICs for the 16-membered macrolide tylosin ranged from 8 to<br />

16 µg for the resistant isolate <strong>and</strong> from 0.03 to 0.125 µg/ml for the 5 susceptible<br />

isolates. The MICs for the 15-membered macrolides <strong>and</strong> lincosamides were higher<br />

than 64 µg/ml for the resistant isolate while only 0.06 to 0.5 µg/ml for the susceptible<br />

isolates. M. hyopneumoniae isolates are intrinsically resistant to the 14-membered<br />

macrolides due to a G2057A transition (E. coli numbering) in their 23S rDNA.<br />

Therefore, high MICs were observed for all isolates, although the MICs for the<br />

resistant isolate were clearly increased. An additional, acquired A2058G point<br />

mutation was found in the 23S rRNA gene <strong>of</strong> the resistant isolate. No differences<br />

linked to resistance were found in the ribosomal proteins L4 <strong>and</strong> L22. The present<br />

study showed that 23S rRNA mutations resulting in resistance to macrolides <strong>and</strong><br />

lincosamides as described in other Mycoplasma spp. also occur under field conditions<br />

in M. hyopneumoniae.<br />

- 127 -


2.2.2 RESISTANCE MECHANISM AGAINST MACROLIDES AND LINCOSAMIDES IN M. HYOPNEUMONIAE<br />

INTRODUCTION<br />

Mycoplasmas are the smallest free-living organisms, carrying no cell wall. As<br />

a consequence, they are naturally resistant to antibiotics interfering with cell wall<br />

synthesis. Additionally, a number <strong>of</strong> reports indicate a decrease in susceptibility <strong>of</strong><br />

mycoplasmas against widely used antimicrobial agents, including the macrolides,<br />

lincosamides <strong>and</strong> streptogramins (MLS) (Hannan et al., 1997; Aarestrup <strong>and</strong> Friis,<br />

1998; Furneri et al., 2001; Okazaki et al., 2001; Thomas et al., 2003; Vicca et al.,<br />

2004). MLS antibiotics have overlapping binding sites on the 23S rRNA <strong>and</strong>, hence,<br />

related antimicrobial activities. By binding to domain V <strong>of</strong> the 23S rRNA, they inhibit<br />

protein synthesis by means <strong>of</strong> blocking the path through which nascent peptides exit<br />

the ribosome (Retsema <strong>and</strong> Fu, 2001; Tenson et al., 2003). Additional studies have<br />

mapped the recognition site <strong>of</strong> the 14-membered macrolide erythromycin <strong>and</strong> its<br />

derived ketolides to domain II <strong>and</strong> IV <strong>of</strong> the 23S rRNA as well (Vester <strong>and</strong><br />

Douthwaite, 2001; Berisio et al., 2003; Schlünzen et al., 2003).<br />

Bacterial species containing only 1 or 2 copies <strong>of</strong> rRNA genes, like all<br />

Mycoplasma species, tend to use mutations at bases 2057-2059 <strong>of</strong> the 23S rRNA as a<br />

way <strong>of</strong> acquiring resistance (Furneri et al., 2000; Hansen et al., 2002). Some<br />

mycoplasmas, like M. hyopneumoniae, are intrinsically resistant to 14-membered<br />

macrolides due to a G2057A transition in their 23S rDNA (Stemke et al., 1994;<br />

Ludwig et al., 1992; Furneri et al., 2000). Additional resistance to MLS antibiotics<br />

due to mutations at position 2609-2611 has been observed for several bacterial species<br />

(Garza-Ramos et al., 2001; Canu et al., 2002; Pereyre et al., 2002). A mutation at<br />

position 2062 was linked to resistance against josamycin, a 16-membered macrolide,<br />

in an in vitro selected M. hominis strain (Furneri et al., 2001; Hansen et al., 2002). For<br />

a number <strong>of</strong> other bacteria, mutations in the L4 <strong>and</strong> L22 binding proteins were linked<br />

to MLS resistance (Tait-Kamradt et al., 2000; Canu et al., 2002; Pihlajamaki et al.,<br />

2002; Jones et al., 2003; Schlünzen et al., 2003; Farrell et al., 2004; Franceschi et al.,<br />

2004; Pereyre et al., 2004). Nonetheless, acquired resistance to MLS in Mycoplasma<br />

species is rarely documented or is induced in vitro rather than observed in field<br />

isolates. The aim <strong>of</strong> this study was to fully characterize both phenotypically <strong>and</strong><br />

- 128 -


2.2.2 RESISTANCE MECHANISM AGAINST MACROLIDES AND LINCOSAMIDES IN M. HYOPNEUMONIAE<br />

genetically the in vivo acquired resistance to macrolides <strong>and</strong> lincosamides in a M.<br />

hyopneumoniae field isolate.<br />

MATERIALS AND METHODS<br />

Media, bacterial isolates <strong>and</strong> antibiotics<br />

The F2, F5, F6, F18 <strong>and</strong> F19 isolates were all Belgian M. hyopneumoniae<br />

field-isolates obtained from lung tissue <strong>of</strong> fattening pigs collected at slaughterhouses.<br />

The J-strain (ATCC 25934) was used as a control strain. The Friis’ broth (Friis, 1975)<br />

without added antibiotics was used to grow the M. hyopneumoniae isolates.<br />

Erythromycin, tylosin <strong>and</strong> clindamycin were obtained from Sigma (UK). The<br />

other antibiotics were obtained from the drug's manufacturer as reference powder:<br />

lincomycin <strong>and</strong> azithromycin were kindly supplied by Pfizer (NY, USA),<br />

clarithromycin by Abott (Il, USA).<br />

The Minimal inhibitory concentration (MIC) test was performed using a<br />

macro broth dilution technique. Antibiotic stock solutions <strong>of</strong> 1,000 µg/ml were freshly<br />

prepared the day <strong>of</strong> use according to guidelines described by the National Committee<br />

for Clinical Laboratory St<strong>and</strong>ards (NCCLS, 1999). Clarithromycin, erythromycin <strong>and</strong><br />

azithromycin were dissolved in a minimum amount <strong>of</strong> ethanol <strong>and</strong> further diluted in<br />

water. All other antibiotics were directly dissolved in water. For each antimicrobial,<br />

two-fold dilutions ranging from 0.015 µg/ml to 64 µg/ml were prepared <strong>and</strong> each<br />

strain was tested twice. Broths were inoculated with the M. hyopneumoniae isolates,<br />

resulting in approximately 10 5 colour-changing units (CCU) per ml in a final volume<br />

<strong>of</strong> 2 ml. An additional tube contained only medium <strong>and</strong> was used as a negative<br />

control, while a second tube without antibiotics served as a positive control. The MIC<br />

was defined as the lowest concentration <strong>of</strong> antimicrobial agent in which no growth <strong>of</strong><br />

M. hyopneumoniae was observed. Growth was detected by a colour change <strong>of</strong> the<br />

phenol red indicator from red to yellow due to glucose fermentation. The test was<br />

ended when no more colour change in the tubes was visible during two consecutive<br />

days.<br />

- 129 -


2.2.2 RESISTANCE MECHANISM AGAINST MACROLIDES AND LINCOSAMIDES IN M. HYOPNEUMONIAE<br />

DNA sequencing <strong>of</strong> the L4- <strong>and</strong> L22-genes <strong>and</strong> domain V <strong>of</strong> the 23S rDNA<br />

To sequence the L4 <strong>and</strong> L22 proteins, primers were designed based on the<br />

M. hyopneumoniae genome sequence <strong>of</strong> reference strain 232 (Minion et al., 2004).<br />

Primers for the amplification <strong>of</strong> domain V <strong>of</strong> the 23S rDNA were selected based on<br />

the M. hyopneumoniae ATCC 27719 strain (Genbank accession number X68421). All<br />

primers <strong>and</strong> reaction conditions used are listed in Table 1. After purification <strong>of</strong> the<br />

PCR product on Microcon 100 columns (Millipore, MA, USA), both str<strong>and</strong>s were<br />

sequenced on a CEQ8000 sequencer (Beckmann, UK) according to the<br />

manufacturer’s instructions. The sequences were aligned for further analysis using<br />

Clustal W (V1.82). The sequences <strong>of</strong> domain V <strong>of</strong> the 23S rDNA <strong>of</strong> the M.<br />

hyopneumoniae isolates were compared with sequences <strong>of</strong> E. coli <strong>and</strong> other<br />

Mycoplasma species extracted from Genbank (Figure 1).<br />

Table 1: Selected primers used for the amplification <strong>and</strong> sequencing <strong>of</strong> the 23S, L4<br />

<strong>and</strong> L22 genes <strong>of</strong> the M. hyopneumoniae J-reference <strong>and</strong> field strains.<br />

Primer name Primer Sequence (5’ → 3’) Number <strong>of</strong> cycles (Cycle conditions) 1<br />

L4 FOR AGCATTCAAAGTCAGAAAAC 25 (30” 94°C; 30” 47.6°C; <strong>and</strong> 1’ 72°C)<br />

L4 REV<br />

GATTCTCTTCTCCAAATTAG<br />

L22 FOR AGCAGTCGCTTCACTCAAAA 25 (30” 94°C; 30” 52.5°C; <strong>and</strong> 1’ 72°C)<br />

L22 REV<br />

ACCTCTTTTTCTTGCGCTAA<br />

23S FOR GGTAGCGAAATTCCTTGTCA 25 (30” 94°C; 30” 55.2°C; <strong>and</strong> 1’ 72°C)<br />

23S REV<br />

GAGCAGCTCTCATCAATATTCC<br />

1 : All PCRs, unless stated otherwise, were performed using 2U <strong>of</strong> recombinant Taq polymerase, 5 µl <strong>of</strong><br />

10X PCR buffer, 75 nmol MgCl2, 10 nmol <strong>of</strong> each dNTP <strong>and</strong> 10 pmol <strong>of</strong> both forward <strong>and</strong> reverse<br />

primer.<br />

- 130 -


2.2.2 RESISTANCE MECHANISM AGAINST MACROLIDES AND LINCOSAMIDES IN M. HYOPNEUMONIAE<br />

|2040 |2050 |2060 |2070 |2080 |2090 |2100<br />

E. coli a GTACCCGCGG CAAGACGGAA AGACCCCGTG AACCTTTACT ATAGCTTGAC ACTGAACATT GAGCCTTGATG<br />

M. hyopneumoniae b TTACCCGCAT CAAGACGAAA AGACCCCGTG GAGCTTTACT ATAACTTCGT ATTGAGAATT GGTTTATTATG<br />

M. hyopneumoniae F19 TTACCCGCAT CAAGACGAGA AGACCCCGTG GAGCTTTACT ATAACTTCGT ATTGAGAATT GGTTTATTATG<br />

M. hominis AGACCCGCAT CTAGACGAAA AGACCCCGTG GAGCTTTACT ATAACTTCAT ATTGGAGTTT GATTTAACATG<br />

M. fermentans GTACCCGCAT CAAGACGAAA AGACCCCATG GAGCTTTACT ACAGTTTCGT ATTGGAACTT GGTCTAACATG<br />

M. genitalium TTAGGCGCAA CGGGACGGAA AGACCCCGTG AAGCTTTACT GTAGCTTAAT ATTGATCAAA ACACCACCATG<br />

M. pneumoniae TTAGGCGCAA CGGGACGGAA AGACCCCGTG AAGCTTTACT GTAGCTTAAT ATTGATCAGG ACATTATCATG<br />

M. gallisepticum TTAGGCGCAA CGGGACGGAA AGACCCCATG AAGCTTTACT GTAACTTAAT ATTGGGCAGA GTTTAGACATA<br />

M. penetrans TTAGGTGCGG TTAGACAAAA AGACCCCATG AAGCTTTACT GTAGCTTAAT ATTGGAAAAA TTTATTTCATT<br />

M. flocculare TTACCCGCAT CAAGACGAAA AGACCCCGTG GACGTTTACT ATAACTTCGT ATTGAGAATT GGTTTATTATG<br />

M. hyorhinis CGAACCGTAG TACGCTAAAA AGTGCCCGGA TGACTTGTGG ATAGC----- GGTGAAATTC CAATCGA-ACC<br />

M. pulmonis c CGAACCGTAG TACGCTGAAA AGTGCCCGGA TGACTTGTGA ATAGC----- GGTGAAATTC CAATCGA-ACC<br />

* * * * ** *** ** * ** *<br />

a<br />

Sequences were extracted from Genbank. Accession numbers are: Escherichia coli, ECO278710; M.<br />

hominis, AF443617; M. fermentans, AF422142; M. genitalium, U39634; M. pneumoniae, AE000007;<br />

M. gallisepticum, AE016968; M. penetrans, AP004174; M. flocculare, MYC16SR; M. hyorhinis,<br />

AF121891; M. pulmonis, AL445565.<br />

b<br />

No differences in the 23S DNA <strong>of</strong> isolate F2, F5, F6, F18, F23 <strong>and</strong> J were observed.<br />

c<br />

Resistance due to A2062 point mutations have been described elsewhere 10<br />

Figure 1: Multiple sequence-alignment <strong>of</strong> the 23S rDNA <strong>of</strong> different Mycoplasma<br />

spp. compared to E. coli. Nucleotides related to resistance to macrolides are presented<br />

in bold. The G2058A transition <strong>of</strong> the resistant M. hyopneumoniae F19 isolate is<br />

underlined as well.<br />

RESULTS<br />

Because the isolates grew at different rates, not all MICs were read on the<br />

same day. The J-reference strain grew faster than the other isolates, <strong>and</strong> the MICs <strong>of</strong><br />

the antibiotics were reached after approximately 5 days, while for the other isolates it<br />

took up to one week.<br />

The MICs for the isolates are presented in Table 2. For each isolate, the MIC<br />

values <strong>of</strong> the replicates were equal to or differed from each other by only one dilution.<br />

The MICs for erythromycin <strong>and</strong> clarithromycin ranged from 8 – 32 µg/ml for all<br />

isolates tested, except for the resistant F19 isolate. For this isolate, the MIC values<br />

exceeded the highest concentration (64 µg/ml) tested. All isolates, except the F19<br />

isolate, were also susceptible to the other antibiotics tested. The MICs ranged from<br />

0.06 – 0.25 µg/ml for the 15-membered macrolide, azithromycin; from 0.03 – 0.125<br />

µg/ml for the 16-membered macrolide, tylosin; <strong>and</strong> from 0.125 – 0.5 µg/ml for the<br />

lincosamides, lincomycin <strong>and</strong> clindamycin. The MICs for the resistant isolate (F19)<br />

also exceeded the highest concentration <strong>of</strong> 64 µg/ml for these antibiotics, with the<br />

exception <strong>of</strong> tylosin (MICs ranging from 8-16 µg/ml).<br />

- 131 -


2.2.2 RESISTANCE MECHANISM AGAINST MACROLIDES AND LINCOSAMIDES IN M. HYOPNEUMONIAE<br />

Sequence analysis <strong>of</strong> the 23S rDNA as shown in Figure 1, demonstrates the<br />

intrinsic resistance <strong>of</strong> certain Mycoplasma spp. to 14-membered macrolides due to a<br />

G2057A transition. An acquired A2058G transition was found exclusively in the<br />

resistant M. hyopneumoniae isolate. Only a small number <strong>of</strong> differences were present<br />

in the L22 proteins (>97% identity at DNA level). Protein L4 proved very conserved<br />

(>99% identical at DNA level) since no amino acid substitutions were found between<br />

any <strong>of</strong> the isolates (data not shown).<br />

Table 2: MICs (µg/ml) <strong>of</strong> MLS-antimicrobial agents for Belgian M. hyopneumoniae<br />

field isolates <strong>and</strong> the M. hyopneumoniae J reference strain obtained by the broth<br />

dilution test carried out in tw<strong>of</strong>old.<br />

Isolate<br />

MIC (µg/ml)<br />

Azithromycin Tylosin Erythromycin Clarithromycin Clindamycin Lincomycin<br />

F2 0.125 a 0.03125 8 16 0.0625 0.25<br />

F5 0.125-0.25 0.03125 8 16 0.125-0.25 0.25<br />

F6 0.0625-0.125 0.03125 16 32 0.125 0.125<br />

F18 0.0625 0.0625 32 32 0.125-0.25 0.125<br />

F19 >64 8-16 >64 >64 >64 >64<br />

J 0.25 0.125 32 32 0.5 0.5<br />

a one value means that no difference between the repeated tests was observed.<br />

- 132 -


2.2.2 RESISTANCE MECHANISM AGAINST MACROLIDES AND LINCOSAMIDES IN M. HYOPNEUMONIAE<br />

DISCUSSION<br />

Since M. hyopneumoniae isolates are difficult to grow on agar plates <strong>and</strong><br />

colonies are hard to detect, a serial broth dilution technique using Friis’ medium was<br />

chosen to test for antibiotic resistance. This technique, based on an earlier report <strong>of</strong><br />

Ter Laak et al. (1991), was performed in duplicate <strong>and</strong> proved to be reproducible.<br />

The J-reference strain seemed better adapted to the Friis’ medium <strong>and</strong> grew<br />

faster than the other isolates. This may explain the higher MICs, up to one dilution,<br />

for this strain. Nevertheless, all individual MICs were very similar for the susceptible<br />

isolates <strong>and</strong> clearly differed from those <strong>of</strong> the resistant F19 isolate. Moreover, MICs<br />

for the sensitive isolates were consistent with previous reports (Ter Laak et al., 1991;<br />

Tanner et al., 1993; Inamoto et al., 1994).<br />

Although M. hyopneumoniae isolates are naturally resistant to 14-membered<br />

macrolides due to a G2057A transition <strong>of</strong> the 23S gene (Vester <strong>and</strong> Douthwaite,<br />

2001), even higher MICs were observed for the resistant isolate. This increased<br />

resistance may well be explained by the observed A2058G transition since<br />

footprinting patterns examining the drug binding sites in other bacteria identified<br />

these specific nucleotides (Hansen et al., 1999; Edelstein, 2004). Hence, a lower<br />

affinity <strong>of</strong> the drugs to the 23S rRNA, due to the acquired mutation, results in a<br />

decreased antimicrobial activity. Apart from this increased insensitivity to<br />

erythromycin <strong>and</strong> clarithromycin, the F19 field isolate proved also resistant to all<br />

other antibiotics tested. This is in agreement with earlier reports in other bacterial<br />

species where mutations at position 2058 lead to high MLS resistant isolates (Vester<br />

<strong>and</strong> Douthwaite, 2001; Edelstein, 2004). This A2058G transition may even be the<br />

most frequently observed substitution in vivo in association with MLS resistance<br />

(Vester <strong>and</strong> Douthwaite, 2001) <strong>and</strong> was also found for clinical isolates <strong>of</strong><br />

M. pneumoniae (Okazaki et al., 2001), although only limited data exist for in vivo<br />

acquired MLS resistance in Mycoplasma species.<br />

Recently, resistance to macrolides <strong>and</strong> lincosamides has been linked to<br />

modifications in the L4 <strong>and</strong> L22 rRNA-binding proteins (Gabashvili et al., 2001;<br />

O’Connor et al., 2004), especially in pneumococcal strains (Tait-Kamradt et al., 2000;<br />

Gabashvili et al., 2001; Canu et al., 2002; Pihlajamaki et al., 2002; Jones et al., 2003;<br />

- 133 -


2.2.2 RESISTANCE MECHANISM AGAINST MACROLIDES AND LINCOSAMIDES IN M. HYOPNEUMONIAE<br />

Franceschi et al., 2004; O’Connor et al., 2004). In the present studies, none <strong>of</strong> the<br />

variations in these proteins were uniquely present in the resistant M. hyopneumoniae<br />

field isolate F19, <strong>and</strong> it is therefore unlikely that they are associated with acquired<br />

resistance. This is in agreement with an earlier report <strong>of</strong> resistant clinical strains <strong>of</strong><br />

M. hominis <strong>and</strong> M. fermentans (Pereyre et al., 2002).<br />

In in vitro experiments, resistance to tylosin was obtained in M. hyopneumoniae<br />

isolates after only 7 or fewer passages in selective media (Hannan et al., 1997),<br />

indicating that acquired resistance due to mutations <strong>of</strong> the 23S RNA may occur quite<br />

fast for bacteria like M. hyopneumoniae, which only possess one copy <strong>of</strong> the rRNA<br />

operon (Stemke et al., 1994). The relation between the use <strong>of</strong> macrolides in pig<br />

rearing <strong>and</strong> the occurrence <strong>of</strong> acquired resistance has been indirectly demonstrated for<br />

M. hyosynoviae <strong>and</strong> other porcine bacteria (Aarestrup <strong>and</strong> Carstensen, 1998;<br />

Aarestrup <strong>and</strong> Friis, 1998; Butaye et al., 2001). In contrast, the prevalence <strong>of</strong> acquired<br />

resistance to macrolides for M. hyopneumoniae in the field is most likely low<br />

(Inamoto et al., 1994; Vicca et al., 2004). It is possible that resistant isolates do not<br />

spread easily <strong>and</strong> that occurrence <strong>of</strong> resistance remains localized in an area or even<br />

within a herd. Indeed, earlier RAPD data (Artiushin <strong>and</strong> Minion, 1996) <strong>and</strong> our own<br />

PFGE results (Stakenborg et al., 2005) show an enormous diversity between isolates<br />

from different farms, suggesting that clones do not readily spread in the environment,<br />

although further research on this issue is needed. Since the type <strong>of</strong> resistance<br />

described above is not encoded on a mobile element, <strong>and</strong> therefore not transferable<br />

between different isolates, the genetic stability <strong>of</strong> the mutation may also be an<br />

important factor. Although the A2058G transition has distinct advantages over the<br />

wild-type in the presence <strong>of</strong> macrolides, the situation may be different in the absence<br />

<strong>of</strong> the drugs (Vester <strong>and</strong> Douthwaite, 2001). In any event, the emergence <strong>of</strong> this<br />

resistance asks for a continuous monitoring, as it may have important therapeutic<br />

implications in the treatment <strong>of</strong> mycoplasma infections.<br />

ACKNOWLEDGEMENTS<br />

This work was supported by a grant <strong>of</strong> the Federal Agency <strong>of</strong> <strong>Health</strong>, Food<br />

Chain Security <strong>and</strong> Environment (Grant number S-6136).<br />

The authors thank Sara Tistaert for skilful technical assistance.<br />

- 134 -


2.2.2 RESISTANCE MECHANISM AGAINST MACROLIDES AND LINCOSAMIDES IN M. HYOPNEUMONIAE<br />

REFERENCES<br />

1 Aarestrup, FM. & Carstensen, B. (1998). Effect <strong>of</strong> tylosin used as a growth promoter on the<br />

occurrence <strong>of</strong> macrolide-resistant enterococci <strong>and</strong> staphylococci in pigs. Microbial Drug<br />

Resistance 4, 307-312.<br />

2 Aarestrup, FM. & Friis, N.F. (1998). Antimicrobial susceptibility testing <strong>of</strong> Mycoplasma<br />

hyosynoviae isolated from pigs during 1968 to 1971 <strong>and</strong> during 1995 <strong>and</strong> 1996. Veterinary<br />

Microbiology 61, 33-39.<br />

3 Artiushin, S. & Minion, F.C. (1996). Arbitrarily primed PCR analysis <strong>of</strong> Mycoplasma<br />

hyopneumoniae field isolates demonstrates genetic heterogeneity. International Journal <strong>of</strong><br />

Systemic Bacteriology 46, 324-328.<br />

4 Berisio, R., Harms, J., Schluenzen, F., Zarivach, R., Hansen, HA., Fucini, P. & Yonath, A.<br />

(2003). Structural insight into the antibiotic action <strong>of</strong> telithromycin against resistant mutants.<br />

Journal <strong>of</strong> Bacteriology 185, 4276-4279.<br />

5 Butaye, P., Devriese, LA. & Haesebrouck, F. (2001). Differences in antibiotic resistance<br />

patterns <strong>of</strong> Enterococcus faecalis <strong>and</strong> Enterococcus faecium strains isolated from farm <strong>and</strong> pet<br />

animals. Antimicrobial Agents <strong>and</strong> Chemotherapy 45, 1374-1378.<br />

6 Canu, A., Malbruny, B., Coquemont, M., Davies, T.A., Appelbaum, P.C. & Leclercq, R.<br />

(2002). Diversity <strong>of</strong> ribosomal mutations conferring resistance to macrolides, clindamycin,<br />

streptogramin, <strong>and</strong> telithromycin in Streptococcus pneumoniae. Antimicrobial Agents <strong>and</strong><br />

Chemotherapy 46, 125-131.<br />

7 Edelstein, PH. (2004). Pneumococcal resistance to macrolides, lincosamides, ketolides, <strong>and</strong><br />

streptogramin B agents: molecular mechanisms <strong>and</strong> resistance phenotypes. Clinical Infectious<br />

Diseases (Suppl). 38, S322-327.<br />

8. Farrell, D.J., Morrissey, I., Bakker, S., Buckridge, S., & Felmingham, D. (2004). In vitro<br />

activities <strong>of</strong> telithromycin, linezolid, <strong>and</strong> quinupristin-dalfopristin against Streptococcus<br />

pneumoniae with macrolide resistance due to ribosomal mutations. Antimicrobial Agents <strong>and</strong><br />

Chemotherapy 48, 3169-3171.<br />

9. Franceschi, F., Kanyo, Z., Sherer, E.C. & Sutcliffe, J. (2004). Macrolide resistance from the<br />

ribosome perspective. Current Drug Targets - Infectious Disorders 4, 177-91.<br />

10. Friis, NF. (1975). Some recommendations concerning primary isolation <strong>of</strong> Mycoplasma<br />

suipneumoniae <strong>and</strong> Mycoplasma flocculare a survey. Nordisk Veterinaer Medicin 27, 337-339.<br />

11. Furneri, PM., Rappazzo, G., Musumarra, M.P., Di Pietro, P., Catania, L.S. & Roccasalva,<br />

L.S. (2001). Two new point mutations at A2062 associated with resistance to 16-membered<br />

macrolide antibiotics in mutant strains <strong>of</strong> Mycoplasma hominis. Antimicrobial Agents <strong>and</strong><br />

Chemotherapy 45, 2958-2960.<br />

12. Furneri, PM., Rappazzo, G., Musumarra, M.P., Tempera, G. & Roccasalva, L.S. (2000).<br />

Genetic basis <strong>of</strong> natural resistance to erythromycin in Mycoplasma hominis. Journal <strong>of</strong><br />

Antimicrobial Chemotherapy 45, 547-548.<br />

13. Gabashvili, I. S., Gregory, S. T., Valle, M., Grassucci, R., Worbs, M., Wahl, M.C.,<br />

Dahlberg, A.E. & Frank, J. (2001). The polypeptide tunnel system in the ribosome <strong>and</strong> its<br />

gating in erythromycin resistance mutants <strong>of</strong> L4 <strong>and</strong> L22. Molecular Cell 8, 181-8.<br />

- 135 -


2.2.2 RESISTANCE MECHANISM AGAINST MACROLIDES AND LINCOSAMIDES IN M. HYOPNEUMONIAE<br />

14. Garza-Ramos, G., Xiong, L., Zhong, P., & Mankin, A. (2001). Binding site <strong>of</strong> macrolide<br />

antibiotics on the ribosome: new resistance mutation identifies a specific interaction <strong>of</strong> ketolides<br />

with rRNA. Journal <strong>of</strong> Bacteriology 183, 6898-6907.<br />

15. Hannan, PC., Windsor, H.M. & Ripley, P.H. (1997). In vitro susceptibilities <strong>of</strong> recent field<br />

isolates <strong>of</strong> Mycoplasma hyopneumoniae <strong>and</strong> Mycoplasma hyosynoviae to valnemulin (Econor),<br />

tiamulin <strong>and</strong> enr<strong>of</strong>loxacin <strong>and</strong> the in vitro development <strong>of</strong> resistance to certain antimicrobial<br />

agents in Mycoplasma hyopneumoniae. Research in Veterinary Science 63, 157-160.<br />

16. Hansen, JL., Ippolito, J.A., Ban, N., Nissen, P., Moore, P.B. & Steitz, T.A. (2002). The<br />

structures <strong>of</strong> four macrolide antibiotics bound to the large ribosomal subunit. Molecular Cell 10,<br />

117-128.<br />

17. Hansen, LH., Mauvais, P. & Douthwaite, S. (1999). The macrolide-ketolide antibiotic binding<br />

site is formed by structures in domains II <strong>and</strong> V <strong>of</strong> 23S ribosomal RNA. Molecular<br />

Microbiology 31, 623-631.<br />

18. Inamoto, T., Takahashi, H., Yamamoto, K., Nakai, Y. & Ogimoto, K. (1994). Antibiotic<br />

susceptibility <strong>of</strong> Mycoplasma hyopneumoniae isolated from swine. The Journal <strong>of</strong> Veterinary<br />

Medical Science 56, 393-394.<br />

19. Jones, RN., Farrell, D.J. & Morrissey, I. (2003). Quinupristin-dalfopristin resistance in<br />

Streptococcus pneumoniae: novel L22 ribosomal protein mutation in two clinical isolates from<br />

the SENTRY antimicrobial surveillance program. Antimicrobial Agents <strong>and</strong> Chemotherapy 47,<br />

2696-2698.<br />

20. Ludwig, W., G. Kirchh<strong>of</strong>, N. Klgubauer, M. Weizenegger, D. Betzl, M. Ehrmann, C.<br />

Hertel, S. Jilg, R. Tatzel, H. Zitzelsberger, S. Liebl, M. Hochberger, J. Shah, D. Lane, PR.<br />

Wallnöfer, <strong>and</strong> KH. Scheifer. (1992). Complete 23S ribosomal RNA sequences <strong>of</strong> Grampositve<br />

bacteria with a low DNA G+C content. System. Applied Microbiology 15, 487-501.<br />

21. Minion, FC., Lefkowitz, E.J., Madsen, M.L., Cleary, B.J., Swartzell, S.M. & Mahairas,<br />

G.G. (2004). The genome sequence <strong>of</strong> Mycoplasma hyopneumoniae strain 232, the agent <strong>of</strong><br />

swine mycoplasmosis. Journal <strong>of</strong> Bacteriology 186, 7123-7133.<br />

22. NCCLS. (1999). Performance st<strong>and</strong>ards for antimicrobial disk <strong>and</strong> dilution susceptibility tests<br />

for bacteria from animals. Approved st<strong>and</strong>ard M31-A. National Committee for Clinical<br />

Laboratory St<strong>and</strong>ards, Pennsylvania, USA, pp. 1-64.<br />

23. O'Connor, M., Gregory, S.T. & Dahlberg, A.E. (2004). Multiple defects in translation<br />

associated with altered ribosomal protein L4. Nucleic Acids Research 32, 5750-6.<br />

24. Okazaki, N., Narita, M., Yamada, S., Izumikawa, K., Umetsu, M., Kenri, T., Sasaki, Y.,<br />

Arakawa, Y. & Sasaki, T. (2001). Characteristics <strong>of</strong> macrolide-resistant Mycoplasma<br />

pneumoniae strains isolated from patients <strong>and</strong> induced with erythromycin in vitro. Microbiology<br />

<strong>and</strong> Immunology 45, 617-20.<br />

25. Pereyre, S., Gonzalez, P., De Barbeyrac, B., Darnige, A., Renaudin, H., Charron, A.,<br />

Raherison, S., Bébéar, C. & CM. Bébéar, C.M. (2002). Mutations in 23S rRNA account for<br />

intrinsic resistance to macrolides in Mycoplasma hominis <strong>and</strong> Mycoplasma fermentans <strong>and</strong> for<br />

acquired resistance to macrolides in M. hominis. Antimicrobial Agents Chemotherapy 46, 3142-<br />

3150.<br />

26. Pereyre, S., Guyot, C., Renaudin, H., Charron, A., Bébéar, C. & Bébéar, C.M. (2004). In<br />

vitro selection <strong>and</strong> characterization <strong>of</strong> resistance to macrolides <strong>and</strong> related antibiotics in<br />

Mycoplasma pneumoniae. Antimicrobial Agents <strong>and</strong> Chemotherapy 48, 460-465.<br />

27. Pihlajamaki, M., Kataja, J., Seppala, H., Elliot, J., Leinonen, M., Huovinen, P. & Jalava, J.<br />

(2002). Ribosomal mutations in Streptococcus pneumoniae clinical isolates. Antimicrobial<br />

Agents <strong>and</strong> Chemotherapy 46, 654-658.<br />

- 136 -


2.2.2 RESISTANCE MECHANISM AGAINST MACROLIDES AND LINCOSAMIDES IN M. HYOPNEUMONIAE<br />

28. Retsema, J. & Fu, W. (2001). Macrolides: structures <strong>and</strong> microbial targets. International<br />

Journal <strong>of</strong> Antimicrobial Agents (Suppl). 18, S3-10.<br />

29. Schlünzen, F., Harms, J.M., Franceschi, F., Hansen, H.A., Bartels, H., Zarivach, R. &<br />

Yonath, A. (2003). Structural basis for the antibiotic activity <strong>of</strong> ketolides <strong>and</strong> azalides. Structure<br />

(Cambridge) 11, 329-38.<br />

30. Stakenborg, T., Vicca, J., Butaye, P., Maes, D., Peeters, J., de Kruif, A., Haesebrouck, F.<br />

(2005). The diversity <strong>of</strong> Mycoplasma hyopneumoniae within <strong>and</strong> between herds using pulsedfield<br />

gel electrophoresis. Veterinary Microbiology 109, 29-36.<br />

31. Stemke, GW., Huang, Y., Laigret, F. & Bove, J.M. (1994). Cloning the ribosomal RNA<br />

operons <strong>of</strong> Mycoplasma flocculare <strong>and</strong> comparison with those <strong>of</strong> Mycoplasma hyopneumoniae.<br />

Microbiology 140, 857-860.<br />

32. Tait-Kamradt, A., Davies, T., Cronan, M., Jacobs, M.R., Appelbaum, P.C. & Sutcliffe, J.<br />

(2000). Mutations in 23S rRNA <strong>and</strong> ribosomal protein L4 account for resistance in<br />

pneumococcal strains selected in vitro by macrolide passage. Antimicrobial Agents <strong>and</strong><br />

Chemotherapy 44, 2118-2125.<br />

33. Tanner, AC., Erickson, B.Z. & Ross, R.F. (1993). Adaptation <strong>of</strong> the Sensititre broth<br />

microdilution technique to antimicrobial susceptibility testing <strong>of</strong> Mycoplasma hyopneumoniae.<br />

Veterinary Microbiology 36, 301-306.<br />

34. Tenson, T., Lovmar, M. & Ehrenberg, M. (2003). The mechanism <strong>of</strong> action <strong>of</strong> macrolides,<br />

lincosamides <strong>and</strong> streptogramin B reveals the nascent peptide exit path in the ribosome. Journal<br />

<strong>of</strong> Molecular Biology 330, 1005-1014.<br />

35. Ter Laak, EA., Pijpers, A., Noordergraaf, J.H., Schoevers, E.C. &. Verheijden, J.H. (1991).<br />

Comparison <strong>of</strong> methods for in vitro testing <strong>of</strong> susceptibility <strong>of</strong> porcine Mycoplasma species to<br />

antimicrobial agents. Antimicrobial Agents <strong>and</strong> Chemotherapy 35, 228-233.<br />

36. Thomas, A., Nicolas, C., Dizier, I., Mainil, J. & Linden, A. (2003). Antibiotic susceptibilities<br />

<strong>of</strong> recent isolates <strong>of</strong> Mycoplasma bovis in Belgium. The Veterinary Record 153, 428-431.<br />

37. Vester, B. & Douthwaite, S. (2001). Macrolide resistance conferred by base substitutions in<br />

23S rRNA. Antimicrobial Agents <strong>and</strong> Chemotherapy 45, 1-12.<br />

38. Vicca, J., Stakenborg, T., Maes, D., Butaye, P., Peeters, J., de Kruif, A. & Haesebrouck, F.<br />

(2004). In vitro susceptibilities <strong>of</strong> Mycoplasma hyopneumoniae field isolates. Antimicrobial<br />

Agents <strong>and</strong> Chemotherapy 48, 4470-4472.<br />

- 137 -


2.2.3 MECHANISM OF RESISTANCE AGAINST THE<br />

FLUOROQUINOLONES FLUMEQUINE AND ENROFLOXACIN IN<br />

MYCOPLASMA HYOPNEUMONIAE FIELD ISOLATES<br />

Modified from:<br />

MECHANISMS OF RESISTANCE AGAINST THE FLUOROQUINOLONES FLUMEQUINE AND<br />

ENROFLOXACIN IN MYCOPLASMA HYOPNEUMONIAE FIELD ISOLATES<br />

J. VICCA, D. MAES, T. STAKENBORG, P. BUTAYE, F.C. MINION, J. PEETERS, A. DE KRUIF & F.<br />

HAESEBROUCK<br />

IN PREPARATION<br />

139


2.2.3 MECHANISM OF RESISTANCE AGAINST FLUOROQUINOLONES OF M. HYOPNEUMONIAE ISOLATES<br />

SUMMARY<br />

Ten Mycoplasma hyopneumoniae field isolates that were either sensitive (5) or<br />

resistant (5) to the fluoroquinolones flumequine <strong>and</strong> enr<strong>of</strong>loxacin, two frequently used<br />

antibiotics in swine, were selected. Their quinolone resistance-determining regions<br />

(QRDR) <strong>of</strong> gyrA, gyrB, parC <strong>and</strong> parE were characterized. Parts <strong>of</strong> the DNA gyrase<br />

subunits, gyrA <strong>and</strong> gyrB, <strong>and</strong> the topoisomerase subunits, parC <strong>and</strong> parE, containing the<br />

QRDR, were sequenced. In all 5 resistant isolates one point mutation (C → A) in parC<br />

was found, resulting in an amino acid change from serine to tyrosine at position 80 (E.<br />

coli numbering). For 4 <strong>of</strong> these isolates, this was the only mutation found. These isolates<br />

had a MIC <strong>of</strong> enr<strong>of</strong>loxacin <strong>of</strong> 0.5 µg/ml, while for sensitive isolates the MIC <strong>of</strong><br />

enr<strong>of</strong>loxacin was ≤ 0.06 µg/ml. One resistant isolate (Mh 20) had an extra mutation (C →<br />

T) in gyrA resulting in an amino acid change from alanine to valine at position 83 (E. coli<br />

numbering), correlated with an increase in the MIC <strong>of</strong> enr<strong>of</strong>loxacin (> 1 µg/ml). No<br />

mutations resulting in an amino acid change were detected in the QRDR <strong>of</strong> the gyrB <strong>and</strong><br />

parE genes <strong>of</strong> the selected isolates. This is the first description <strong>of</strong> the mechanism <strong>of</strong><br />

resistance against fluoroquinolones in M. hyopneumoniae.<br />

141


2.2.3 MECHANISM OF RESISTANCE AGAINST FLUOROQUINOLONES OF M. HYOPNEUMONIAE ISOLATES<br />

INTRODUCTION<br />

Mycoplasma hyopneumoniae is a major swine pathogen causing enzootic<br />

pneumonia, a chronic respiratory disease in pigs resulting in considerable economic<br />

losses. In a previous study (Vicca et al., 2004) conducted to determine the in vitro<br />

susceptibility <strong>of</strong> M. hyopneumoniae field isolates to frequently used antimicrobials in<br />

swine, 5 out <strong>of</strong> 21 isolates were found to be less susceptible or resistant to flumequine<br />

<strong>and</strong> enr<strong>of</strong>loxacin. This rather high frequency was unexpected since fluoroquinolone<br />

resistance does not <strong>of</strong>ten occur in swine respiratory pathogens (Hannan et al., 1997;<br />

Martel et al., 2001; Wallmann et al., 2003).<br />

Fluoroquinolones are broad-spectrum antimicrobials. Their use depends on the<br />

country regulations; fluoroquinolones are not allowed for use in pigs in the US but are<br />

allowed in the EU (World <strong>Health</strong> Organization, 1998). In Belgian pig herds,<br />

fluoroquinolones are frequently used as a prophylactic antibiotic during the suckling<br />

period mainly to prevent neonatal diarrhea (Timmerman et al., 2005). In older pigs, these<br />

antimicrobials are mainly used to parenterally treat individual animals with diarrhea,<br />

arthritis, meningitis or respiratory symptoms. The most frequently used fluoroquinolones<br />

in large animal veterinary medicine are flumequine <strong>and</strong> enr<strong>of</strong>loxacin.<br />

Fluoroquinolones are known to have two enzyme targets in the bacterial cell<br />

belonging to the topoisomerases type 2, namely DNA gyrase <strong>and</strong> topoisomerase IV. The<br />

first enzyme catalyses ATP-dependent negative supercoiling <strong>of</strong> DNA, the latter enzyme<br />

is essential for chromosome segregation (Gellert, 1981; Hooper, 2000). DNA gyrase is a<br />

tetramer composed <strong>of</strong> 2 GyrA <strong>and</strong> 2 GyrB subunits. Topoisomerase IV is similarly<br />

structured <strong>and</strong> is composed <strong>of</strong> 2 ParC <strong>and</strong> 2 ParE subunits. ParC is homologous to GyrA<br />

<strong>and</strong> ParE is homologous to GyrB. The primary target for fluoroquinolones in Gramnegative<br />

bacteria is the DNA gyrase, whereas in Gram-positive, including mycoplasmas,<br />

it seems to be the topoisomerase IV (Gellert, 1981; Bell<strong>and</strong> et al., 1994; Khordusky et al.,<br />

1995; Georgiou et al., 1996; Deguchi et al., 1997; Bébéar et al., 1998; Hooper, 2000;<br />

Beaucheron et al., 2004). However, some exceptions to this rule were found in<br />

Streptococcus pneumoniae <strong>and</strong> Mycoplasma hominis isolates for newer fluoroquinolones,<br />

such as sparfloxacin <strong>and</strong> gatifloxacin (Fukuda <strong>and</strong> Hiramatsu, 1999; Bébéar et al., 2000).<br />

For Mycoplasma gallisepticum, the preferential target <strong>of</strong> enr<strong>of</strong>loxacin is DNA gyrase<br />

(Reinhardt et al., 2002b). In several bacteria, mutations responsible for an increase in<br />

142


2.2.3 MECHANISM OF RESISTANCE AGAINST FLUOROQUINOLONES OF M. HYOPNEUMONIAE ISOLATES<br />

MIC-value were found in the subunits <strong>of</strong> these target genes (Yoshida et al., 1990;<br />

Yoshida et al., 1993; Bébéar et al., 1998; Bébéar et al., 1999; Reinhardt et al., 2002a).<br />

Resistance to fluoroquinolones has recently been described in M. hyopneumoniae<br />

(Vicca et al., 2004). The resistance mechanism, however, was unknown. In this study, the<br />

quinolone resistance determining regions (QRDR) <strong>of</strong> gyrA, gyrB, parC <strong>and</strong> parE were<br />

examined for the existence <strong>of</strong> point mutations related to resistance to fluoroquinolones.<br />

MATERIALS AND METHODS<br />

M. hyopneumoniae isolates<br />

The ten M. hyopneumoniae field isolates selected for this study were obtained<br />

between 2000 <strong>and</strong> 2002 from slaughter pigs from 10 different Belgian farrow-to-finish<br />

pig herds <strong>and</strong> were previously used for MIC determination (Vicca et al., 2004). Isolate<br />

selection for this study was based on the MIC value: 5 isolates with the highest <strong>and</strong> 5<br />

isolates with the lowest MIC values for flumequine <strong>and</strong> enr<strong>of</strong>loxacin were retained. The<br />

MIC values <strong>of</strong> flumequine <strong>and</strong> enr<strong>of</strong>loxacin for 4 isolates (Mh 4, 8, 14 <strong>and</strong> 17) were > 16<br />

µg/ml <strong>and</strong> 0.5 µg/ml, respectively. For isolate Mh 20, the MIC <strong>of</strong> flumequine was > 16<br />

µg/ml <strong>and</strong> that <strong>of</strong> enr<strong>of</strong>loxacin > 1 µg/ml. The other five isolates (Mh 7, 10, 11, 15 <strong>and</strong><br />

19) were susceptible to flumequine (MIC ≤ 2 µg/ml) <strong>and</strong> enr<strong>of</strong>loxacin (MIC ≤ 0.06<br />

µg/ml).<br />

DNA extraction <strong>and</strong> PCR amplification<br />

The M. hyopneumoniae isolates were grown in non-selective Friis medium <strong>and</strong><br />

subsequently centrifuged at 5000 g for 10 minutes. DNA was extracted using the DNeasy<br />

Tissue kit (Qiagen, Westburg, Leusden, The Netherl<strong>and</strong>s), according to the<br />

manufacturers’ instructions. Without further purification, an aliquot <strong>of</strong> the supernatant<br />

containing DNA was used as a template for PCR amplification.<br />

To sequence parts <strong>of</strong> the DNA gyrase subunits, gyrA <strong>and</strong> gyrB, <strong>and</strong> the<br />

topoisomerase subunits, parC <strong>and</strong> parE, containing the QRDR, primers were designed<br />

based on the M. hyopneumoniae genome sequence <strong>of</strong> reference strain 232 (Minion et al.,<br />

2004). Oligonucleotides MhgyrAfor (5’-CTKCCRGATGTCCGWGATGG-3’)<strong>and</strong><br />

MhgyrArev (5’-GTSGGRAARTCYGGCYCCGG-3’) were used to amplify a 557-bp<br />

143


2.2.3 MECHANISM OF RESISTANCE AGAINST FLUOROQUINOLONES OF M. HYOPNEUMONIAE ISOLATES<br />

gyrA fragment between positions 487 to 1043 (E. coli coordinates). A 937-bp gyrB<br />

fragment between positions 1994 to 3437 (E. coli coordinates) was amplified with<br />

primers MhgyrBfor (5’-ACATTCATAACCCTGAAGGC-3’) <strong>and</strong> MhgyrBrev (5’-<br />

GTCTCTCAAAGTTGTTCCGG-3’). To amplify the QRDR <strong>of</strong> parC, primers<br />

MhparCfor (5’-ATTCAGTAATTAATTCCCGG-3’) <strong>and</strong> MhparCrev (5’-<br />

TCTTCAAGGTAAATTTGCTG-3’) were selected to amplify a 1309-bp fragment<br />

between positions 19 to 1313 (E. coli coordinates) <strong>and</strong> a 735-bp parE fragment between<br />

positions 1046 to 1765 (E. coli coordinates) was amplified using the primers MhparEfor<br />

(5’-ATTCTTGAATTTGTTGGGC-3’) <strong>and</strong> MhparErev (5’-<br />

CCCAAGTCCTTTATAGCGC-3’). DNA amplification was performed with a DNA<br />

thermal cycler (model 9600 GeneAmp PCR system, Perkin-Elmer, Zaventem, Belgium).<br />

Each 50 µl PCR mixture contained 25 µl Mastermix (Invitrogen, Belgium), 2 µM <strong>of</strong> both<br />

primers <strong>and</strong> 2.5 µl DNA sample. Water was added to a total volume <strong>of</strong> 50 µl. For all<br />

amplification reactions, the same PCR running conditions were used, consisting <strong>of</strong> an<br />

initial cycle <strong>of</strong> 5 min denaturation at 94°C, followed by 35 cycles <strong>of</strong> 1 min denaturation<br />

at 94°C, 1 min <strong>of</strong> annealing at 55°C <strong>and</strong> 1 min <strong>of</strong> elongation at 72°C. After amplification,<br />

5 µl amplicon was mixed with 3 µl sample buffer (50% glycerol, 1mM cresol red). This<br />

mixture was electrophoresed in a 1.5% agarose gel for 75 min at 175 V in 0.5 x TBE<br />

(0.45 M Tris-HCl, 0.45 M boric acid, 0.01 M EDTA).<br />

Sequencing<br />

After purification <strong>of</strong> the PCR product with the Qiaquick PCR purification kit<br />

(Qiagen, Westburg, Leusden, The Netherl<strong>and</strong>s), both str<strong>and</strong>s <strong>of</strong> the PCR product were<br />

sequenced using the Big Dye Terminator v3-1 cycle sequencing kit (Applied Biosystems,<br />

Lennik, Belgium) on a ABI Prism 310 Genetic Analyser. The electropherograms were<br />

exported <strong>and</strong> converted to the sequence analysis s<strong>of</strong>tware, Kodon ® (Applied Maths, Sint-<br />

Martens-Latem, Belgium). The nucleic acid sequences <strong>of</strong> the QRDR <strong>of</strong> gyrA, gyrB, parC<br />

<strong>and</strong> parE <strong>of</strong> the susceptible M. hyopneumoniae isolates were compared with those <strong>of</strong> the<br />

isolates with a MIC <strong>of</strong> > 16 µg/ml <strong>and</strong> ≥ 0.5 µg/ml for flumequine <strong>and</strong> enr<strong>of</strong>loxacin,<br />

respectively (Figure 1 <strong>and</strong> 2). The deduced amino acid sequences <strong>of</strong> susceptible isolate<br />

Mh 7 <strong>and</strong> resistant isolate Mh 20 isolate were compared with the sequences <strong>of</strong><br />

Staphylococcus aureus, Streptococcus pneumoniae, Escherichia coli <strong>and</strong> to date fully<br />

sequenced human <strong>and</strong> veterinary Mycoplasma species (Figure 3). The percentage <strong>of</strong><br />

144


2.2.3 MECHANISM OF RESISTANCE AGAINST FLUOROQUINOLONES OF M. HYOPNEUMONIAE ISOLATES<br />

identity between the susceptible Mh 7 isolate, the other organisms <strong>and</strong> the GenBank<br />

accession numbers are listed in Table 2.<br />

RESULTS<br />

PCR amplification <strong>and</strong> sequences <strong>of</strong> PCR products<br />

Each <strong>of</strong> the selected forward <strong>and</strong> reverse primer pairs amplified one PCR product. The<br />

deduced amino acid sequences <strong>of</strong> the partial gyrA, gyrB, parC, <strong>and</strong> parE region are<br />

presented in Figures 1 <strong>and</strong> 2. An acquired C264A transition (E. coli numbering) was<br />

found in the parC gene <strong>of</strong> all 5 isolates with MICs <strong>of</strong> > 16 µg/ml <strong>and</strong> ≥ 0.5 µg/ml for<br />

flumequine <strong>and</strong> enr<strong>of</strong>loxacin, respectively. This corresponds to an amino acid change<br />

from serine to tyrosine at position 80 (E. coli numbering). An additional transition was<br />

found in isolate Mh 20. The MIC <strong>of</strong> enr<strong>of</strong>loxacin for this isolate was > 1 µg/ml, while it<br />

was 0.5 µg/ml for the other resistant isolates. This additional transition, C635T, was<br />

found in gyrA, resulting in an amino acid change from alanine to valine at position 83 (E.<br />

coli numbering) (Table 1). In the same isolate, another substitution was found in gyrA:<br />

T630A. However, this substitution did not result in an amino acid change. Other silent<br />

substitutions in the QRDR <strong>of</strong> gyrA were found in isolate Mh 7 (G651A) <strong>and</strong> in isolates<br />

Mh 15, 19 <strong>and</strong> 20 (G759A). In the QRDR <strong>of</strong> gyrB, silent substitutions were found in<br />

isolates Mh 4, 8, 11, 14, 17 <strong>and</strong> 20 (T2529A) <strong>and</strong> isolates Mh 10 <strong>and</strong> 19 (G2577A). No<br />

silent substitutions were found in the QRDR <strong>of</strong> parC. In the QRDR <strong>of</strong> parE two silent<br />

substitutions were found: C315T in isolates Mh 7 <strong>and</strong> 15, <strong>and</strong> G345A in isolates Mh 7,<br />

11 <strong>and</strong> 15. The identity for the QRDR <strong>of</strong> the 4 fluoroquinolone target genes at DNA level<br />

was very high for all M. hyopneumoniae isolates; 96.30%, 98.80%, 98.78% <strong>and</strong> 97.53%<br />

for the QRDR <strong>of</strong> gyrA, gyrB, parC <strong>and</strong> parE, respectively.<br />

145


2.2.3 MECHANISM OF RESISTANCE AGAINST FLUOROQUINOLONES OF M. HYOPNEUMONIAE ISOLATES<br />

Table 1: MICs for flumequine <strong>and</strong> enr<strong>of</strong>loxacin <strong>and</strong> the amino acid mutations in gyrA<br />

<strong>and</strong> parC <strong>of</strong> the fluoroquinolone resistant field isolates <strong>of</strong> M. hyopneumoniae.<br />

MIC (µg/ml)<br />

Amino acid change (codon)<br />

Isolate Flumequine Enr<strong>of</strong>loxacin gyrA parC<br />

83 * 80<br />

Mh 7 2 0.06 - -<br />

Mh 10 2 0.06 - -<br />

Mh 11 1 0.03 - -<br />

Mh 15 2 0.06 - -<br />

Mh 19 2 0.06 - -<br />

Mh 4 > 16 0.5 - S(TCT)→Y(TAT)<br />

Mh 8 > 16 0.5 - S(TCT)→Y(TAT)<br />

Mh 14 > 16 0.5 - S(TCT)→Y(TAT)<br />

Mh 17 > 16 0.5 - S(TCT)→Y(TAT)<br />

Mh 20 > 16 > 1 A(GCT)→V(GTT) S(TCT)→Y(TAT)<br />

* : amino acid position according to E. coli numbering<br />

146


2.2.3 MECHANISM OF RESISTANCE AGAINST FLUOROQUINOLONES OF M. HYOPNEUMONIAE ISOLATES<br />

QRDR <strong>of</strong> gyrA<br />

Mh 4 517 GTCCACCGTCGAATTCTATATACAATGGCTGAACTCGGAATTACTTCGGGAACAAGTTATAAAAAATCCGCTAGAATTGTTGGTGATGTT<br />

Mh 7 GTCCACCGTCGAATTCTATATACAATGGCTGAACTCGGAATTACTTCGGGAACAAGTTATAAAAAATCCGCTAGAATTGTTGGTGATGTT<br />

Mh 8 GTCCACCGTCGAATTCTATATACAATGGCTGAACTCGGAATTACTTCGGGAACAAGTTATAAAAAATCCGCTAGAATTGTTGGTGATGTT<br />

Mh 10 GTCCACCGTCGAATTCTATATACAATGGCTGAACTCGGAATTACTTCGGGAACAAGTTATAAAAAATCCGCTAGAATTGTTGGTGATGTT<br />

Mh 11 GTCCACCGTCGAATTCTATATACAATGGCTGAACTCGGAATTACTTCGGGAACAAGTTATAAAAAATCCGCTAGAATTGTTGGTGATGTT<br />

Mh 14 GTCCACCGTCGAATTCTATATACAATGGCTGAACTCGGAATTACTTCGGGAACAAGTTATAAAAAATCCGCTAGAATTGTTGGTGATGTT<br />

Mh 15 GTCCACCGTCGAATTCTATATACAATGGCTGAACTCGGAATTACTTCGGGAACAAGTTATAAAAAATCCGCTAGAATTGTTGGTGATGTT<br />

Mh 17 GTCCACCGTCGAATTCTATATACAATGGCTGAACTCGGAATTACTTCGGGAACAAGTTATAAAAAATCCGCTAGAATTGTTGGTGATGTT<br />

Mh 19 GTCCACCGTCGAATTCTATATACAATGGCTGAACTCGGAATTACTTCGGGAACAAGTTATAAAAAATCCGCTAGAATTGTTGGTGATGTT<br />

Mh 20 GTCCACCGTCGAATTCTATATACAATGGCTGAACTCGGAATTACTTCGGGAACAAGTTATAAAAAATCCGCTAGAATTGTTGGTGATGTT<br />

Mh 4 607 CTTGGAAAATACCATCCTCATGGCGATGCTTCTGTCTATGAATCGATGGTGCGAATGGCTCAACCTTTTTCCTTACGTTATCCTTTAGTT<br />

Mh 7 CTTGGAAAATACCATCCTCATGGCGATGCTTCTGTCTATGAATCAATGGTGCGAATGGCTCAACCTTTTTCCTTACGTTATCCTTTAGTT<br />

Mh 8 CTTGGAAAATACCATCCTCATGGCGATGCTTCTGTCTATGAATCGATGGTGCGAATGGCTCAACCTTTTTCCTTACGTTATCCTTTAGTT<br />

Mh 10 CTTGGAAAATACCATCCTCATGGCGATGCTTCTGTCTATGAATCGATGGTGCGAATGGCTCAACCTTTTTCCTTACGTTATCCTTTAGTT<br />

Mh 11 CTTGGAAAATACCATCCTCATGGCGATGCTTCTGTCTATGAATCGATGGTGCGAATGGCTCAACCTTTTTCCTTACGTTATCCTTTAGTT<br />

Mh 14 CTTGGAAAATACCATCCTCATGGCGATGCTTCTGTCTATGAATCGATGGTGCGAATGGCTCAACCTTTTTCCTTACGTTATCCTTTAGTT<br />

Mh 15 CTTGGAAAATACCATCCTCATGGCGATGCTTCTGTCTATGAATCGATGGTGCGAATGGCTCAACCTTTTTCCTTACGTTATCCTTTAGTT<br />

Mh 17 CTTGGAAAATACCATCCTCATGGCGATGCTTCTGTCTATGAATCGATGGTGCGAATGGCTCAACCTTTTTCCTTACGTTATCCTTTAGTT<br />

Mh 19 CTTGGAAAATACCATCCTCATGGCGATGCTTCTGTCTATGAATCGATGGTGCGAATGGCTCAACCTTTTTCCTTACGTTATCCTTTAGTT<br />

Mh 20 CTTGGAAAATACCATCCTCATGGAGATGTTTCTGTCTATGAATCGATGGTGCGAATGGCTCAACCTTTTTCCTTACGTTATCCTTTAGTT<br />

* * *<br />

Mh 4 697 GATGGTCATGGAAATTTTGGATCAATTGATGGTGATGAAGCAGCAGCAATGCGTTATACAGAG 759<br />

Mh 7 GATGGTCATGGAAATTTTGGATCAATTGATGGTGATGAAGCAGCAGCAATGCGTTATACAGAG<br />

Mh 8 GATGGTCATGGAAATTTTGGATCAATTGATGGTGATGAAGCAGCAGCAATGCGTTATACAGAG<br />

Mh 10 GATGGTCATGGAAATTTTGGATCAATTGATGGTGATGAAGCAGCAGCAATGCGTTATACAGAG<br />

Mh 11 GATGGTCATGGAAATTTTGGATCAATTGATGGTGATGAAGCAGCAGCAATGCGTTATACAGAG<br />

Mh 14 GATGGTCATGGAAATTTTGGATCAATTGATGGTGATGAAGCAGCAGCAATGCGTTATACAGAG<br />

Mh 15 GATGGTCATGGAAATTTTGGATCAATTGATGGTGATGAAGCAGCAGCAATGCGTTATACAGAA<br />

Mh 17 GATGGTCATGGAAATTTTGGATCAATTGATGGTGATGAAGCAGCAGCAATGCGTTATACAGAG<br />

Mh 19 GATGGTCATGGAAATTTTGGATCAATTGATGGTGATGAAGCAGCAGCAATGCGTTATACAGAA<br />

Mh 20 GATGGTCATGGAAATTTTGGATCAATTGATGGTGATGAAGCAGCAGCAATGCGTTATACAGAA<br />

*<br />

QRDR <strong>of</strong> gyrB<br />

Mh 4 2431 GCCGAACTTTATATTGTTGAGGGGAATTCAGCCGGGGGCAGTGCAAAAATGGGGCGTGACCGACATTTTCAGGCTATTTTACCTTTGCGG<br />

Mh 7 GCCGAACTTTATATTGTTGAGGGGAATTCAGCCGGGGGCAGTGCAAAAATGGGGCGTGACCGACATTTTCAGGCTATTTTACCTTTGCGG<br />

Mh 8 GCCGAACTTTATATTGTTGAGGGGAATTCAGCCGGGGGCAGTGCAAAAATGGGGCGTGACCGACATTTTCAGGCTATTTTACCTTTGCGG<br />

Mh 10 GCCGAACTTTATATTGTTGAGGGGAATTCAGCCGGGGGCAGTGCAAAAATGGGGCGTGACCGACATTTTCAGGCTATTTTACCTTTGCGG<br />

Mh 11 GCCGAACTTTATATTGTTGAGGGGAATTCAGCCGGGGGCAGTGCAAAAATGGGGCGTGACCGACATTTTCAGGCTATTTTACCTTTGCGG<br />

Mh 14 GCCGAACTTTATATTGTTGAGGGGAATTCAGCCGGGGGCAGTGCAAAAATGGGGCGTGACCGACATTTTCAGGCTATTTTACCTTTGCGG<br />

Mh 15 GCCGAACTTTATATTGTTGAGGGGAATTCAGCCGGGGGCAGTGCAAAAATGGGGCGTGACCGACATTTTCAGGCTATTTTACCTTTGCGG<br />

Mh 17 GCCGAACTTTATATTGTTGAGGGGAATTCAGCCGGGGGCAGTGCAAAAATGGGGCGTGACCGACATTTTCAGGCTATTTTACCTTTGCGG<br />

Mh 19 GCCGAACTTTATATTGTTGAGGGGAATTCAGCCGGGGGCAGTGCAAAAATGGGGCGTGACCGACATTTTCAGGCTATTTTACCTTTGCGG<br />

Mh 20 GCCGAACTTTATATTGTTGAGGGGAATTCAGCCGGGGGCAGTGCAAAAATGGGGCGTGACCGACATTTTCAGGCTATTTTACCTTTGCGG<br />

Mh 4 2521 GGAAAAGTCATTAATTCCCAACGGTTTCAGCTTGAAAAAGTACTTAAAAATGAAGAGATTCTATCGATGATCACCGCTTTTGGAACAGGA<br />

Mh 7 GGAAAAGTTATTAATTCCCAACGGTTTCAGCTTGAAAAAGTACTTAAAAATGAAGAGATTCTATCGATGATCACCGCTTTTGGAACAGGA<br />

Mh 8 GGAAAAGTCATTAATTCCCAACGGTTTCAGCTTGAAAAAGTACTTAAAAATGAAGAGATTCTATCGATGATCACCGCTTTTGGAACAGGA<br />

Mh 10 GGAAAAGTTATTAATTCCCAACGGTTTCAGCTTGAAAAAGTACTTAAAAATGAAGAAATTCTATCGATGATCACCGCTTTTGGAACAGGA<br />

Mh 11 GGAAAAGTCATTAATTCCCAACGGTTTCAGCTTGAAAAAGTACTTAAAAATGAAGAGATTCTATCGATGATCACCGCTTTTGGAACAGGA<br />

Mh 14 GGAAAAGTCATTAATTCCCAACGGTTTCAGCTTGAAAAAGTACTTAAAAATGAAGAGATTCTATCGATGATCACCGCTTTTGGAACAGGA<br />

Mh 15 GGAAAAGTTATTAATTCCCAACGGTTTCAGCTTGAAAAAGTACTTAAAAATGAAGAGATTCTATCGATGATCACCGCTTTTGGAACAGGA<br />

Mh 17 GGAAAAGTCATTAATTCCCAACGGTTTCAGCTTGAAAAAGTACTTAAAAATGAAGAGATTCTATCGATGATCACCGCTTTTGGAACAGGA<br />

Mh 19 GGAAAAGTTATTAATTCCCAACGGTTTCAGCTTGAAAAAGTACTTAAAAATGAAGAAATTCTATCGATGATCACCGCTTTTGGAACAGGA<br />

Mh 20 GGAAAAGTCATTAATTCCCAACGGTTTCAGCTTGAAAAAGTACTTAAAAATGAAGAGATTCTATCGATGATCACCGCTTTTGGAACAGGA<br />

* *<br />

Mh 4 2611 GTTGGTCCT---GAATTTGATATTAGTAAAATCCGCTATCAAAAAATAATTATTATGACGGATGCTGAT 2679<br />

Mh 7 GTTGGTCCT---GAATTTGATATTAGTAAAATCCGCTATCAAAAAATAATTATTATGACGGATGCTGAT<br />

Mh 8 GTTGGTCCT---GAATTTGATATTAGTAAAATCCGCTATCAAAAAATAATTATTATGACGGATGCTGAT<br />

Mh 10 GTTGGTCCT---GAATTTGATATTAGTAAAATCCGCTATCAAAAAATAATTATTATGACGGATGCTGAT<br />

Mh 11 GTTGGTCCT---GAATTTGATATTAGTAAAATCCGCTATCAAAAAATAATTATTATGACGGATGCTGAT<br />

Mh 14 GTTGGTCCT---GAATTTGATATTAGTAAAATCCGCTATCAAAAAATAATTATTATGACGGATGCTGAT<br />

Mh 15 GTTGGTCCT---GAATTTGATATTAGTAAAATCCGCTATCAAAAAATAATTATTATGACGGATGCTGAT<br />

Mh 17 GTTGGTCCT---GAATTTGATATTAGTAAAATCCGCTATCAAAAAATAATTATTATGACGGATGCTGAT<br />

Mh 19 GTTGGTCCT---GAATTTGATATTAGTAAAATCCGCTATCAAAAAATAATTATTATGACGGATGCTGAT<br />

Mh 20 GTTGGTCCT---GAATTTGATATTAGTAAAATCCGCTATCAAAAAATAATTATTATGACGGATGCTGAT<br />

Figure 1: DNA sequence <strong>of</strong> the quinolone resistance determining region (QRDR) <strong>of</strong> the<br />

gyrA <strong>and</strong> gyrB subunit <strong>of</strong> DNA gyrase <strong>of</strong> 10 Mycoplasma hyopneumoniae field isolates.<br />

Silent mutations are underlined, substitutional mutations are underlined <strong>and</strong> bold. Nucleic<br />

acid position according to E. coli numbering.<br />

147


2.2.3 MECHANISM OF RESISTANCE AGAINST FLUOROQUINOLONES OF M. HYOPNEUMONIAE ISOLATES<br />

QRDR <strong>of</strong> parC<br />

Mh 4 146<br />

Mh 7<br />

Mh 8<br />

Mh 10<br />

Mh 11<br />

Mh 14<br />

Mh 15<br />

Mh 17<br />

Mh 19<br />

Mh 20<br />

GTTCAGAGGCGAATTCTTTATTCAATGTGACAGTTGGGGCTAAAAAATAGTAAAAATTACAAAAAATCTGCTAGAGTTGTCGGTGATGTA<br />

GTTCAGAGGCGAATTCTTTATTCAATGTGACAGTTGGGGCTAAAAAATAGTAAAAATTACAAAAAATCTGCTAGAGTTGTCGGTGATGTA<br />

GTTCAGAGGCGAATTCTTTATTCAATGTGACAGTTGGGGCTAAAAAATAGTAAAAATTACAAAAAATCTGCTAGAGTTGTCGGTGATGTA<br />

GTTCAGAGGCGAATTCTTTATTCAATGTGACAGTTGGGGCTAAAAAATAGTAAAAATTACAAAAAATCTGCTAGAGTTGTCGGTGATGTA<br />

GTTCAGAGGCGAATTCTTTATTCAATGTGACAGTTGGGGCTAAAAAATAGTAAAAATTACAAAAAATCTGCTAGAGTTGTCGGTGATGTA<br />

GTTCAGAGGCGAATTCTTTATTCAATGTGACAGTTGGGGCTAAAAAATAGTAAAAATTACAAAAAATCTGCTAGAGTTGTCGGTGATGTA<br />

GTTCAGAGGCGAATTCTTTATTCAATGTGACAGTTGGGGCTAAAAAATAGTAAAAATTACAAAAAATCTGCTAGAGTTGTCGGTGATGTA<br />

GTTCAGAGGCGAATTCTTTATTCAATGTGACAGTTGGGGCTAAAAAATAGTAAAAATTACAAAAAATCTGCTAGAGTTGTCGGTGATGTA<br />

GTTCAGAGGCGAATTCTTTATTCAATGTGACAGTTGGGGCTAAAAAATAGTAAAAATTACAAAAAATCTGCTAGAGTTGTCGGTGATGTA<br />

GTTCAGAGGCGAATTCTTTATTCAATGTGACAGTTGGGGCTAAAAAATAGTAAAAATTACAAAAAATCTGCTAGAGTTGTCGGTGATGTA<br />

Mh 4 236 ATCGGAAAATATCATCCTCATGGTGATTATTCAATCTATGATGCTCTTGTCAGACTTGCCCAGGAATGAAAAATGAACTCCCCGCTTGTG<br />

Mh 7 ATCGGAAAATATCATCCTCATGGTGATTCTTCAATCTATGATGCTCTTGTCAGACTTGCCCAGGAATGAAAAATGAACTCCCCGCTTGTG<br />

Mh 8 ATCGGAAAATATCATCCTCATGGTGATTATTCAATCTATGATGCTCTTGTCAGACTTGCCCAGGAATGAAAAATGAACTCCCCGCTTGTG<br />

Mh 10 ATCGGAAAATATCATCCTCATGGTGATTCTTCAATCTATGATGCTCTTGTCAGACTTGCCCAGGAATGAAAAATGAACTCCCCGCTTGTG<br />

Mh 11 ATCGGAAAATATCATCCTCATGGTGATTCTTCAATCTATGATGCTCTTGTCAGACTTGCCCAGGAATGAAAAATGAACTCCCCGCTTGTG<br />

Mh 14 ATCGGAAAATATCATCCTCATGGTGATTATTCAATCTATGATGCTCTTGTCAGACTTGCCCAGGAATGAAAAATGAACTCCCCGCTTGTG<br />

Mh 15 ATCGGAAAATATCATCCTCATGGTGATTCTTCAATCTATGATGCTCTTGTCAGACTTGCCCAGGAATGAAAAATGAACTCCCCGCTTGTG<br />

Mh 17 ATCGGAAAATATCATCCTCATGGTGATTATTCAATCTATGATGCTCTTGTCAGACTTGCCCAGGAATGAAAAATGAACTCCCCGCTTGTG<br />

Mh 19 ATCGGAAAATATCATCCTCATGGTGATTCTTCAATCTATGATGCTCTTGTCAGACTTGCCCAGGAATGAAAAATGAACTCCCCGCTTGTG<br />

Mh 20 ATCGGAAAATATCATCCTCATGGTGATTATTCAATCTATGATGCTCTTGTCAGACTTGCCCAGGAATGAAAAATGAACTCCCCGCTTGTG<br />

*<br />

Mh 4 326 GAAATGCACGGAAATAAAGGGTCAATTGATGA--CGATCCACCT-GCCGCGATGCGATATACAGAG 391<br />

Mh 7 GAAATGCACGGAAATAAAGGGTCAATTGATGA--CGATCCACCT-GCCGCGATGCGATATACAGAG<br />

Mh 8 GAAATGCACGGAAATAAAGGGTCAATTGATGA--CGATCCACCT-GCCGCGATGCGATATACAGAG<br />

Mh 10 GAAATGCACGGAAATAAAGGGTCAATTGATGA--CGATCCACCT-GCCGCGATGCGATATACAGAG<br />

Mh 11 GAAATGCACGGAAATAAAGGGTCAATTGATGA--CGATCCACCT-GCCGCGATGCGATATACAGAG<br />

Mh 14 GAAATGCACGGAAATAAAGGGTCAATTGATGA--CGATCCACCT-GCCGCGATGCGATATACAGAG<br />

Mh 15 GAAATGCACGGAAATAAAGGGTCAATTGATGA--CGATCCACCT-GCCGCGATGCGATATACAGAG<br />

Mh 17 GAAATGCACGGAAATAAAGGGTCAATTGATGA--CGATCCACCT-GCCGCGATGCGATATACAGAG<br />

Mh 20 GAAATGCACGGAAATAAAGGGTCAATTGATGA--CGATCCACCT-GCCGCGATGCGATATACAGAG<br />

QRDR <strong>of</strong> parE<br />

Mh 4 1298 CGCGAGCTTTTTTTGGTCGAAGGTGAATCGGCAGGTGGTTCTGCAAAGCTTGCAAGAAACCGTGAGTTTCAAGCAATTTTACCTTTAAAA<br />

Mh 7 CGCGAGCTTTTTTTGGTTGAAGGTGAATCGGCAGGTGGTTCTGCAAAACTTGCAAGAAACCGTGAGTTTCAAGCAATTTTACCTTTAAAA<br />

Mh 8 CGCGAGCTTTTTTTGGTCGAAGGTGAATCGGCAGGTGGTTCTGCAAAGCTTGCAAGAAACCGTGAGTTTCAAGCAATTTTACCTTTAAAA<br />

Mh 10 CGCGAGCTTTTTTTGGTCGAAGGTGAATCGGCAGGTGGTTCTGCAAAGCTTGCAAGAAACCGTGAGTTTCAAGCAATTTTACCTTTAAAA<br />

Mh 11 CGCGAGCTTTTTTTGGTCGAAGGTGAATCGGCAGGTGGTTCTGCAAAACTTGCAAGAAACCGTGAGTTTCAAGCAATTTTACCTTTAAAA<br />

Mh 14 CGCGAGCTTTTTTTGGTCGAAGGTGAATCGGCAGGTGGTTCTGCAAAGCTTGCAAGAAACCGTGAGTTTCAAGCAATTTTACCTTTAAAA<br />

Mh 15 CGCGAGCTTTTTTTGGTTGAAGGTGAATCGGCAGGTGGTTCTGCAAAACTTGCAAGAAACCGTGAGTTTCAAGCAATTTTACCTTTAAAA<br />

Mh 17 CGCGAGCTTTTTTTGGTCGAAGGTGAATCGGCAGGTGGTTCTGCAAAGCTTGCAAGAAACCGTGAGTTTCAAGCAATTTTACCTTTAAAA<br />

Mh 19 CGCGAGCTTTTTTTGGTCGAAGGTGAATCGGCAGGTGGTTCTGCAAAGCTTGCAAGAAACCGTGAGTTTCAAGCAATTTTACCTTTAAAA<br />

Mh 20 CGCGAGCTTTTTTTGGTCGAAGGTGAATCGGCAGGTGGTTCTGCAAAGCTTGCAAGAAACCGTGAGTTTCAAGCAATTTTACCTTTAAAA<br />

* *<br />

Mh 4 1388 GGTAAAATTGTAAACGCCCAAAAAACAAGATTAATTGATCTATTAAAAAATGAGGAAATTATCGCAATTATTAGTGCATTAGGAACTGGA<br />

Mh 7 GGTAAAATTGTAAACGCCCAAAAAACAAGATTAATTGATCTATTAAAAAATGAGGAAATTATCGCAATTATTAGTGCATTAGGAACTGGA<br />

Mh 8 GGTAAAATTGTAAACGCCCAAAAAACAAGATTAATTGATCTATTAAAAAATGAGGAAATTATCGCAATTATTAGTGCATTAGGAACTGGA<br />

Mh 10 GGTAAAATTGTAAACGCCCAAAAAACAAGATTAATTGATCTATTAAAAAATGAGGAAATTATCGCAATTATTAGTGCATTAGGAACTGGA<br />

Mh 11 GGTAAAATTGTAAACGCCCAAAAAACAAGATTAATTGATCTATTAAAAAATGAGGAAATTATCGCAATTATTAGTGCATTAGGAACTGGA<br />

Mh 14 GGTAAAATTGTAAACGCCCAAAAAACAAGATTAATTGATCTATTAAAAAATGAGGAAATTATCGCAATTATTAGTGCATTAGGAACTGGA<br />

Mh 15 GGTAAAATTGTAAACGCCCAAAAAACAAGATTAATTGATCTATTAAAAAATGAGGAAATTATCGCAATTATTAGTGCATTAGGAACTGGA<br />

Mh 17 GGTAAAATTGTAAACGCCCAAAAAACAAGATTAATTGATCTATTAAAAAATGAGGAAATTATCGCAATTATTAGTGCATTAGGAACTGGA<br />

Mh 19 GGTAAAATTGTAAACGCCCAAAAAACAAGATTAATTGATCTATTAAAAAATGAGGAAATTATCGCAATTATTAGTGCATTAGGAACTGGA<br />

Mh 20 GGTAAAATTGTAAACGCCCAAAAAACAAGATTAATTGATCTATTAAAAAATGAGGAAATTATCGCAATTATTAGTGCATTAGGAACTGGA<br />

Mh 4 1478 ATTGGTCAGAATTTTAACCTTAAGAACCTAAATTATGGCAAAATTATCATCATGACTGACGCTGAC 1540<br />

Mh 7 ATTGGTCAGAATTTTAACCTTAAGAACCTAAATTATGGCAAAATTATCATCATGACTGACGCTGAC<br />

Mh 8 ATTGGTCAGAATTTTAACCTTAAGAACCTAAATTATGGCAAAATTATCATCATGACTGACGCTGAC<br />

Mh 10 ATTGGTCAGAATTTTAACCTTAAGAACCTAAATTATGGCAAAATTATCATCATGACTGACGCTGAC<br />

Mh 11 ATTGGCCAGAATTTTAACCTTAAGAACCTAAATTATGGCAAAATTATCATTATGACTGACGCTGAC<br />

Mh 14 ATTGGTCAGAATTTTAACCTTAAGAACCTAAATTATGGCAAAATTATCATCATGACTGACGCTGAC<br />

Mh 15 ATTGGTCAGAATTTTAACCTTAAGAACCTAAATTATGGCAAAATTATCATCATGACTGACGCTGAC<br />

Mh 17 ATTGGTCAGAATTTTAACCTTAAGAACCTAAATTATGGCAAAATTATCATCATGACTGACGCTGAC<br />

Mh 19 ATTGGTCAGAATTTTAACCTTAAGAACCTAAATTATGGCAAAATTATCATCATGACTGACGCTGAC<br />

Mh 20 ATTGGTCAGAATTTTAACCTTAAGAACCTAAATTATGGCAAAATTATCATCATGACTGACGCTGAC<br />

*<br />

Figure 2: DNA sequence <strong>of</strong> the quinolone resistance determining region (QRDR) <strong>of</strong> the<br />

parC <strong>and</strong> parE subunit <strong>of</strong> topoisomerase IV <strong>of</strong> 10 Mycoplasma hyopneumoniae field<br />

isolates. Silent mutations are underlined, substitutional mutations are underlined <strong>and</strong><br />

bold. Nucleic acid position according to E. coli numbering.<br />

148


2.2.3 MECHANISM OF RESISTANCE AGAINST FLUOROQUINOLONES OF M. HYOPNEUMONIAE ISOLATES<br />

DISCUSSION<br />

Resistance in M. hyopneumoniae field isolates was first described in a previous<br />

study where 5 <strong>of</strong> 21 isolates were found to be resistant to flumequine <strong>and</strong> less susceptible<br />

or resistant to enr<strong>of</strong>loxacin (Vicca et al., 2004). This rather high prevalence <strong>of</strong><br />

fluoroquinolone resistance does not agree with the resistance rate found in other bacterial<br />

swine pathogens like Streptococcus suis (Martel et al., 2001; Aarestrup et al., 1998),<br />

Arcanobacterium pyogenes (Yoshimura et al., 2000), Pasteurella multocida <strong>and</strong><br />

Mannheimia haemolytica (Wallmann et al., 2003). Mycoplasma hyosynoviae <strong>and</strong><br />

Mycoplasma hyorhinis however, two other pathogenic mycoplasmas in swine, appear to<br />

exhibit a high resistance rate against flumequine (100% <strong>and</strong> 85% resistance, respectively)<br />

but are fully susceptible to enr<strong>of</strong>loxacin (Hannan et al., 1997).<br />

Several mechanisms for fluoroquinolone resistance have been described in<br />

different bacterial species. These include alterations in the two drug target enzymes,<br />

namely DNA gyrase <strong>and</strong> topoisomerase IV, changes in drug permeation through<br />

modifications in the outer membrane proteins, induction <strong>of</strong> active efflux systems,<br />

modifications in the peptidoglycan layer or the outer membrane proteins (Nikaido <strong>and</strong><br />

Thanassi, 1993; Kaatz et al., 2002) <strong>and</strong> plasmid-correlated quinolone resistance<br />

(Martinéz-Martinéz et al., 1998; Hawkey, 2003). Although the existence <strong>of</strong> energy<br />

dependent efflux systems has recently been described for M. hominis (Raherison et al.,<br />

2002), acquired resistance in mycoplasma species is usually due to alterations in the<br />

target enzymes. In the present study, the QRDR <strong>of</strong> the four target genes gyrA, gyrB, parC<br />

<strong>and</strong> parE were sequenced in fluoroquinolone susceptible <strong>and</strong> resistant M. hyopneumoniae<br />

isolates. The amino acid change at position 80 (E. coli numbering) in ParC, observed in<br />

all 5 resistant isolates, is the most common mutation related to fluoroquinolone resistance<br />

in Gram-positive bacteria (Ferrero et al., 1995; Ng et al., 1996; Yamagishi et al., 1996;<br />

Kanematsu et al., 1998), including M. hominis (Bébéar et al., 2003). For four <strong>of</strong> the M.<br />

hyopneumoniae isolates, this was the only mutation found <strong>and</strong> it resulted in at least an 8-<br />

fold increase in MIC <strong>of</strong> flumequine <strong>and</strong> enr<strong>of</strong>loxacin. Such isolates are considered to be<br />

resistant to flumequine (MIC > 16 µg/ml) (Hannan et al., 1997), while they are still<br />

considered to be susceptible to enr<strong>of</strong>loxacin (MIC = 0.5 µg/ml) (NCCLS, 2002).<br />

One isolate Mh 20 had an extra mutation (C → T) in gyrA at position 635,<br />

resulting in an amino acid change from alanine to valine at position 83 (E. coli<br />

149


2.2.3 MECHANISM OF RESISTANCE AGAINST FLUOROQUINOLONES OF M. HYOPNEUMONIAE ISOLATES<br />

numbering). This is associated with at least a 4-fold increase in MIC <strong>of</strong> enr<strong>of</strong>loxacin<br />

(MIC > 1 µg/ml) compared to isolates with only a mutation in parC. This location is<br />

another hot spot for fluoroquinolone resistance (Hooper, 1999).<br />

The occurrence <strong>of</strong> low-level resistance against fluoroquinolones after a single<br />

mutation in parC has earlier been described for Enterococcus faecalis, Staphylococcus<br />

aureus <strong>and</strong> Streptococcus pneumoniae, whereas high-level resistant isolates had<br />

mutations in both parC <strong>and</strong> gyrA (Kanematsu et al., 1998; Schmitz et al., 1998; Davies<br />

<strong>and</strong> Goldschmidt, 2002). In M. bovirhinis, however, a single mutation in parC (position<br />

80) resulted in different MIC pr<strong>of</strong>iles including low- <strong>and</strong> high-level resistant isolates<br />

(Hirose et al., 2004). The authors suggested that the differences in MIC might have been<br />

caused by the level <strong>of</strong> expression <strong>of</strong> the quinolone efflux transporter.<br />

As in fluoroquinolone resistant M. hominis, Ureaplasma urealyticum <strong>and</strong><br />

Acholeplasma laidlawii isolates, no mutations were found in the QRDR <strong>of</strong> gyrB in M.<br />

hyopneumoniae. Such mutations have been described in in vitro selected resistant M.<br />

gallisepticum isolates (Reinhardt et al., 2002a). Also, no mutations resulting in amino<br />

acid changes were found in the QRDR <strong>of</strong> parE <strong>of</strong> the M. hyopneumoniae isolates. In<br />

clinical isolates <strong>of</strong> M. hominis however, a mutation resulting in an amino acid<br />

substitution in parE was previously observed (Bébéar et al., 1999). The absence <strong>of</strong> amino<br />

acid changes in GyrB <strong>and</strong> ParE <strong>of</strong> fluoroquinolone resistant M. hyopneumoniae isolates is<br />

in agreement with other studies reporting that amino acid changes in GyrB or ParE occur<br />

less frequently than in GyrA <strong>and</strong> ParC (Hooper, 1999).<br />

CONCLUSION<br />

Topoisomerase IV <strong>of</strong> M. hyopneumoniae seems the primary target for fluoroquinolones<br />

(flumequine <strong>and</strong> enr<strong>of</strong>loxacin) with position 80 in parC as the hot spot. A single mutation<br />

in parC is sufficient to reach resistance to flumequine, while a second mutation in the<br />

secondary target, DNA gyrase (gyrA), is necessary to make M. hyopneumoniae resistant<br />

to enr<strong>of</strong>loxacin.<br />

ACKNOWLEDGEMENTS<br />

This work was supported by the Federal Public Service <strong>of</strong> Public <strong>Health</strong>, Food<br />

Chain Security <strong>and</strong> Environment, Brussels, Belgium, grant no. S-6039.<br />

150


2.2.3 MECHANISM OF RESISTANCE AGAINST FLUOROQUINOLONES OF M. HYOPNEUMONIAE ISOLATES<br />

151


GyrA<br />

Mh 7<br />

VHRRILYTMAELGITSGTSYKKSARIVGDVLGKYHPHGDASVYESMVRMAQPFSLRYPLVDGHGNFGSIDGDEAAAMRYTE<br />

Mh 20 VHRRILYTMAELGITSGTSYKKSARIVGDVLGKYHPHGDVSVYESMVRMAQPFSLRYPLVDGHGNFGSIDGDEAAAMRYTE<br />

Mhom<br />

VHRRILYGMSELGMFYTAPHKKSARIVGDVLGKYHPHGDSSVYEAMVRMAQDFSLRYPLIDGHGNFGSVDGDEAAAMRYTE<br />

Mgen<br />

VHRRVLYGAYIGGMHHDRPFKKSARIVGDVMSKFHPHGDMAIYDTMSRMAQDFSLRYLLIDGHGNFGSIDGDRPAAQRYTE<br />

Mgal<br />

PVTWVLYGAYTSGLTHDKPYRKSAQIVGHVMGKYHPHGDSAIYETMVRMAQPFSLRYMLIDGHGNFGSIDGDSAGAMRYTE<br />

Mmob<br />

VHRRILYGMTELGLFYNAQYKKSARVVGDVLGKYHPHGDSSVYEAMVRMAQDFSLRYPLIDGHGNFGSIDGDSAAAMRYTE<br />

Mmyc<br />

VHRRIIYAMNDLGITSDKPHKKSARIVGEVIGKYHPHGDSAVYETMVRMAQEFSYRYPLIDGHGNFGSIDGDGAAAMRYTE<br />

Mpen<br />

VHRRVLYAAYNMGMTHDKPYKKSARLVGEVIGKYHPHGDTAAYETMVRMAQDFSMRYMLVDGHGNFGSIDGDSAAAMRYTE<br />

Mpneu VHRRVLYGAYTGGMHHDRPFKKSARIVGDVMSKFHPHGDMAIYDTMSRMAQDFSLRYLLIDGHGNFGSIDGDRPAAQRYTE<br />

Mpul<br />

VHRRILYGMFDLGLHHSSAFKKSARIVGDVLGKYHPHGDASVYEAMVRMAQEFSMRYPLVDGHGNFGSIDGDPAAAMRYTE<br />

Saur<br />

VHRRILYGLNEQGMTPDKSYKKSARIVGDVMGKYHPHGDSSIYEAMVRMAQDFSYRYPLVDGQGNFGSMDGDGAAAMRYTE<br />

Spneu VHRRILYGMNELGVTPDKPHKKSARITGFVMGKYHPHGDSSIYEAMVRMAQWWSYRYMLVDGHGNFGSMDGDSAAAQRYTE<br />

Ecoli 44 VHRRVLYAMNVLGNDWNKAYKKSARVVGDVIGKYHPHGDSAVYDTIVRMAQPFSLRYMLVDGQGNFGSIDGDSAAAMRYTE<br />

124<br />

** * *** * * * ***** * **** * ** * ** ***** *** * ****<br />

GyrB<br />

Mh 7<br />

AELYIVEGNSAGGSAKMGRDRHFQAILPLRGKVINSQRFQLEKVLKNEEILSMITAFGTGVGP-EFDISKIRYQKIIIMTDAD<br />

Mh 20 AELYIVEGNSAGGSAKMGRDRHFQAILPLRGKVINSQRFQLEKVLKNEEILSMITAFGTGVGP-EFDISKIRYQKIIIMTDAD<br />

Mhom<br />

RELFIVEGNSAGGSAKMGRDRSIQAILPLRGKVINAEKNSFASVLSNKEIATMIHALGTGINT-EFDINKLKYHKIIIMTDAD<br />

Mgen<br />

SELYIVEGDSAGGTAKTGRDRYFQAILPLRGKILNVEKSNFEQIFNNAEISALVMAIGCGIKP-DFELEKLRYSKIVIMTDAD<br />

Mgal<br />

SELYIVEGDSAGGSAKSGRDRFYQAILPLRGKVLNVEKANHEKIFKNEEIRTLITAIGAGVNP-EFSLDKIRYNKIIIMTDAD<br />

Mmob<br />

SELYIVEGNSAGGSAKMGRDRETQAILPLRGKVINAEKANIVKVFENTEILSLITALGTGVGP-EFNINKLRYHKVVIMTDAD<br />

Mmyc<br />

AELYLVEGDSAGGSAKTGRNRKFQAILPLRGKVLNVERVTEARAFSNNEIKSIITAIGTGIKE-ELDLSKLRYKKIVIMTDAD<br />

Mpen<br />

SELYIVEGDSAGGSAKLGRDRIFQAILPLKGKIINVEKAKSDKIFSNEEIINLITAIGAGVGP-EFKIDKLRYNKIILMTDAD<br />

Mpneu SELYIVEGDSAGGTAKTGRDRYFQAILPLRGKILNVEKSHFEQIFNNVEISALVMAVGCGIKP-DFELEKLRYNKIIIMTDAD<br />

Mpul<br />

SELYIVEGNSAGGSAKMGRDREFQAILPLRGKVINAEKNNIEKVFNNEEIQSLIIALGTGIAE-EFNINKLRYHKIIIMTDAD<br />

Saur<br />

CEIFLVEGDSAGGSTKSGRDSRTQAILPLRGKILNVEKARLDRILNNNEIRQMITAFGTGIGG-DFDLAKARYHKIVIMTDAD<br />

Spneu TELFIVEGDSAGGSAKSGRNREFQAILPIRGKILNVEKASMDKILANEEIRSLFTAMGTGFGA-EFDVSKARYQKLVLMTDAD<br />

Ecoli 418 SELYLVEGDSAGGSAKQGRNRKNQAILPLKGKILNVEKARFDKMLSSQEVATLITALGCGIGRDEYNPDKLRYHSIIIMTDAD 500<br />

* *** **** * ** ****** ** * * * * ** *****<br />

ParC<br />

Mh 7<br />

VQRRILYSMWQLGLKNSKNYKKSARVVGDVIGKYHPHGDSSIYDALVRLAQEWKMNSPLVEMHGNKGSIDD-DPPAAMRYTE<br />

Mh 20 VQRRILYSMWQLGLKNSKNYKKSARVVGDVIGKYHPHGDYSIYDALVRLAQEWKMNSPLVEMHGNKGSIDD-DPPAAMRYTE<br />

Mhom<br />

VQRRILYSMWNLHLKNSEPFKKSARIVGDVIGRYHPHGDSSIYEALVRMAQDWKSNFPLIEMHGNKGSIDD-DPAAAMRYTE<br />

Mgen<br />

VQRRILYGMFQMGLKPTTPYKKSARAVGEIMGKYHPHGDSSIYDAIIRMSQSWKNNWTTVSIHGNNGSVDG-DNAAAMRYTE<br />

Mgal<br />

VQRRVLYGMYNLGLYYNKSYRKSAATVGEVIGKFHPHGDSSIYEALVRMTQSWKNNIPLIDMQGNNGSIDG-DNAAAMRYTE<br />

Mmob<br />

VQRRILYSMHELGLTSEKPFKKSARVVGDVIGKYHPHGDSSIYEAMVRMSQEWKMNVPLIQMHGNIGSIDD-DPAAAMRYTE<br />

Mmyc<br />

VQRRILYAMNQLNLTFDKPYKKSARVVGEVIGKYHPHGDSSIYDAMVRMSQWWKVNIPLVDMQGNNGSIDG-DSAAAMRYTE<br />

Mpen<br />

VQRRILHAMNELKIHHDKPYKKSARTVGEVIGKYHPHGDSSIYEAMVRMSQEWKNNLPLLDMQGNKGSIDG-DSPAAMRYTE<br />

Mpneu VQRRILYGMYQMGLKPTSPYKKSARAVGEIMGKYHPHGDASIYDAIVRMSQAWKNNLTTISIHGNNGSIDG-DNAAAMRYTE<br />

Mpul<br />

VQRRILYSMMDLKLWNDKPFKKSARIVGDVIGKYHPHGDSSIYEAMVRMAQDWKMNIPLIQMHGNIGSIDD-DPAAAMRYTE<br />

Saur<br />

VQRRILYAMYSSGNTHDKNFRKSAKTVGDVIGQYHPHGDSSVYEAMVRLSQDWKLRHVLIEMHGNNGSIDN-DPPAAMRYTE<br />

Spneu VQRRILYSMNKDSNTFDKSYRKSAKSVGNIMGNFHPHGDSSIYDAMVRMSQNWKNREILVEMHGNNGSMDG-DPPAAMRYTE<br />

Ecoli 41 VQRRIVYAMSELGLNASAKFKKSARTVGDVLGKYHPHGDSACYEAMVLMAQPFSYRYPLVDGQGNWGAPDDPKSFAAMRYTE<br />

122<br />

**** * *** ** * ***** * * * ** * *******<br />

ParE<br />

Mh 7<br />

Mh 20<br />

Mhom<br />

Mgen<br />

Mgal<br />

Mmob<br />

Mmyc<br />

Mpen<br />

Mpneu<br />

Mpul<br />

Saur<br />

Spneu<br />

Ecoli<br />

RELFLVEGESAGGSAKLARNREFQAILPLKGKIVNAQKTR-LIDLLKNEEIIAIISALGTGIGQNFNLKNLNYGKIIIMTDAD<br />

RELFLVEGESAGGSAKLARNREFQAILPLKGKIVNAQKTR-LIDLLKNEEIIAIISALGTGIGQNFNLKNLNYGKIIIMTDAD<br />

KELFLVEGDSAGGSAKLGRNRVTQAILPLRGKVINTDKAK-LSDVLANEEIATIINTIGAGIGEDFNLKNAQYHKIIIMTDAD<br />

KELFIVEGDSAGGTAKMGRDRIFQAILPLRGKVLNVEKINNKKEAITNEEILTLIFCIGTGILTNFNIKDLKYGKIIIMTDAD<br />

NEIFLVEGDSAGGTAKSGRDKRFQAILPLRGKVVNVEKSR-LQDLLKNEEILSIISCLGCGIGNNFNIKNLKYHKIIIMTDAD<br />

KELFLVEGDSAGGSAKLGRNSQFQAILPLKGKVINCEKTK-LIDVLKNEEISTIINTIGAGIGADFDLKKANYHKVVIMTDAD<br />

NELYLVEGDSAGGSAKTGRNRKFQAILPLRGKVINSEKAK-LVDLLKNEEIQSIINAIGAGVGKDFDISDINYGKIIIMTDAD<br />

TELFLVEGDSAGGSAKLGRDKRYQAILPLKGKVINVEKAM-LKDLLKNEEISTIISSIGGSIGSDFCLPDVKYSKIIIMTDAD<br />

RELFVVEGDSAGGTAKMGRDRFLQAILPLRGKVLNVEKINNKKEAINNEELLTLIFCIGTGIGNNFTIRDRKYDKIIIMTDAD<br />

NEIFLVEGDSAGGSAKSGRNRRFQAILPLRGKVINTEKSR-LIDILKNEEISTIINALNTGVGEDFEIKNLKYHKIIIMTDAD<br />

NELYLVEGDSAGGSAKLGRDRKFQAILPLRGKVINTEKAR-LEDIFKNEEINTIIHTIGAGVGTDFKIEDSNYNRVIIMTDAD<br />

NELYLVEGDSAGGSAKQGRDRKFQAILPLRGKVINTAKAK-MADILKNEEINTMIYTIGAGVGADFSIEDANYDKIIIMTDAD<br />

412 TELFLVEGDSAGGSAKQARDREYQAIMPLKGKILNTWEVS-SDEVLASQEVHDISVAIGIDPDSD-DLSQLRYGKICILADAD<br />

492<br />

* *** **** ** * *** ** ** * * * * ***<br />

Figure 3: Alignment <strong>of</strong> Mycoplasma hyopneumoniae GyrA, GyrB, ParC <strong>and</strong> ParE<br />

QRDR amino acid sequences <strong>of</strong> a susceptible isolate (Mh 7) with its counterpart from<br />

M. hyopneumoniae (resistant isolate, Mh 20), M. hominis (Mhom), M. genitalium<br />

(Mgen), M. gallisepticum (Mgal), M. mobile (Mmob), M. mycoides subsp. mycoides<br />

SC (Mmyc), M. penetrans (Mpen), M. pneumoniae (Mpneu), M. pulmonis (Mpul),<br />

Staphylococcus aureus (Saur), Streptococcus pneumoniae (Spneu) <strong>and</strong> Escherichia<br />

- 152 -


2.2.3 MECHANISM OF RESISTANCE AGAINST FLUOROQUINOLONES OF M. HYOPNEUMONIAE ISOLATES<br />

coli (Ecoli). GenBank accession numbers <strong>and</strong> percentage homology are listed in Table<br />

2. An asterisk indicates a residue identical in all 13 amino acid sequences. Dashes<br />

indicate gaps.<br />

- 153 -


2.2.3 MECHANISM OF RESISTANCE AGAINST FLUOROQUINOLONES OF M. HYOPNEUMONIAE ISOLATES<br />

REFERENCES<br />

1. Aarestrup, F.M., Jorsal, S.E. & Jensen, N.E. (1998). Serological characterization <strong>and</strong><br />

antimicrobial susceptibility <strong>of</strong> Streptococcus suis isolates from diagnostic samples in Denmark<br />

during 1995 <strong>and</strong> 1996. Veterinary Microbiology 60, 59-66.<br />

2. Baucheron, S., Chaslus-Dancla, E. & Cloekaert, A. (2004). Role <strong>of</strong> TolC <strong>and</strong> parC mutation<br />

in high-level fluoroquinolone resistance in Salmonella enterica serotype Typhimurium DT 204.<br />

Journal <strong>of</strong> Antimicrobial Chemotherapy 53, 657-659.<br />

3. Bébéar, C.M., Grau, O., Charron, A., Renaudin, H., Gruson, D. & Bébéar, C. (2000).<br />

Cloning <strong>and</strong> nucleotide sequence <strong>of</strong> the DNA Gyrase (gyrA) gene from Mycoplasma hominis<br />

<strong>and</strong> characterization <strong>of</strong> quinolone-resistant mutants selected in vitro with trov<strong>of</strong>loxacin.<br />

Antimicrobial Agents <strong>and</strong> Chemotherapy 44, 2719-2727.<br />

4. Bébéar, C.M., Renaudin, H., Charron, A., Bové, J.M., Bébéar, C. & Renaudin, J. (1998).<br />

Alterations in topoisomerase IV <strong>and</strong> DNA gyrase in quinolone-resistant mutants <strong>of</strong> Mycoplasma<br />

hominis obtained in vitro. Antimicrobial Agents <strong>and</strong> Chemotherapy 42, 2304-2311.<br />

5. Bébéar, C.M., Renaudin, J., Charron, A, Renaudin, H., De Barbeyrac, B., Schaeverbeke,<br />

T. & Bébéar, C. (1999). Mutations in the gyrA, parC <strong>and</strong> parE genes associated with<br />

fluoroquinolone resistance in clinical isolates <strong>of</strong> Mycoplasma hominis. Antimicrobial Agents<br />

<strong>and</strong> Chemotherapy 43, 954-956.<br />

6. Bébéar, C.M., Renaudin, H., Charron, A., Clerc, M., Pereyre, S. & Bébéar, C. (2003). DNA<br />

gyrase <strong>and</strong> topoisomerase IV mutations in clinical isolates <strong>of</strong> Ureaplasma spp. <strong>and</strong> Mycoplasma<br />

hominis resistant to fluoroquinolones. Antimicrobial Agents <strong>and</strong> Chemotherapy 47, 3323-3325.<br />

7. Bell<strong>and</strong>, R.J., Morrison, S.G., Ison, C. & Huang, W.M. (1994). Neisseria gonorrhoeae<br />

acquires mutations in analogous regions <strong>of</strong> gyrA <strong>and</strong> parC in fluoroquinolone-resistant isolates.<br />

Molecular Microbiology 14, 371-380.<br />

8. Davies, T.A. & Goldschmidt, R. (2002). Screening <strong>of</strong> large numbers <strong>of</strong> Streptococcus<br />

pneumoniae isolates for mutations associated with fluoroquinolone resistance using an<br />

oligonucleotide probe assay. FEMS Microbiology Letters 217, 219-224.<br />

9. Deguchi, T., Fukuoka, A., Yasuda, M., Nakano, M., Ozeki, S., Kanematsu, E., Nishino, Y.,<br />

Ishihara, S., Ban, Y. & Kawada, Y. (1997). Alterations in the GyrA subunit <strong>of</strong> DNA gyrase<br />

<strong>and</strong> the ParC subunit <strong>of</strong> topoisomerase IV in quinolone-resistant clinical isolates <strong>of</strong> Klebsiella<br />

pneumoniae. Antimicrobial Agents <strong>and</strong> Chemotherapy 41, 699-701.<br />

10. Ferrero, L., Cameron, B. & Crouzet, J. (1995). Analysis <strong>of</strong> gyrA <strong>and</strong> grlA mutations in<br />

stepwise-selected cipr<strong>of</strong>loxacin-resistant mutants <strong>of</strong> Staphylococcus aureus. Antimicrobial<br />

Agents <strong>and</strong> Chemotherapy 39, 1554-1558.<br />

11. Fukuda, H. & Hiramatsu, K. (1999). Primary targets <strong>of</strong> fluoroquinolones in Streptococcus<br />

pneumoniae. Antimicrobial Agents <strong>and</strong> Chemotherapy 43, 410-412.<br />

12. Gellert, M. (1981). DNA topoisomerases. Annual Re<strong>view</strong> <strong>of</strong> Biochemistry 50, 879-910.<br />

13. Georgiou, M., Muñoz, R., Román, F., Cantón, R., Gómez-Lus, R., Campos, J. & De La<br />

Campa, A.G. (1996). Cipr<strong>of</strong>loxacin-resistant Haemophilus influenzae strains possess mutations<br />

in analogous positions <strong>of</strong> GyrA <strong>and</strong> ParC. Antimicrobial Agents <strong>and</strong> Chemotherapy 40, 1741-<br />

1744.<br />

14. Hannan, P.C.T., Windsor, H.M., de Jong, A., Schmeer, N. & Stegemann, M. (1997).<br />

Comparitive susceptibilities <strong>of</strong> various animal-pathogenic mycoplasmas to fluoroquinolones.<br />

Antimicrobial Agents <strong>and</strong> Chemotherapy 41, 2037-2040.<br />

15. Hawkey, P.M. (2003). Mechanism <strong>of</strong> quinolone action <strong>and</strong> microbial response. Journal <strong>of</strong><br />

Antimicrobial Chemotherapy (Suppl. 1) 51, 29-35.<br />

- 154 -


2.2.3 MECHANISM OF RESISTANCE AGAINST FLUOROQUINOLONES OF M. HYOPNEUMONIAE ISOLATES<br />

16. Hirose, K., Kawasaki, Y. & Kotani, K. (2004). Characterization <strong>of</strong> a point mutation in the<br />

parC gene <strong>of</strong> Mycoplasma bovirhinis associated with fluoroquinolone resistance. Journal <strong>of</strong><br />

Veterinary Medicine, Series B 51, 169-75.<br />

17. Hooper, D.C. (1999). Mechanisms <strong>of</strong> fluoroquinolone resistance. Drug Resistance Updates 2,<br />

38-55.<br />

18. Hooper, D.C. (2000). Mechanism <strong>of</strong> action <strong>and</strong> resistance <strong>of</strong> older <strong>and</strong> newer fluoroquinolones.<br />

Clinical Infectious Diseases (Suppl. 2) 31, 24-28.<br />

19. Kaatz, G.W., Moudgal, V.V. & Seo, S.M. (2002). Identification <strong>and</strong> characterization <strong>of</strong> a novel<br />

efflux-related multidrug resistance phenotype in Staphylococcus aureus. Journal <strong>of</strong><br />

Antimicrobial Chemotherapy 50, 833-838.<br />

20. Kanematsu, E., Deguchi, T., Yasuda, M., Kawamura, T., Nishino, Y. & Kawada, Y. (1998).<br />

Alterations in the GyrA subunit <strong>of</strong> DNA gyrase <strong>and</strong> the ParC subunit <strong>of</strong> DNA topoisomerase IV<br />

associated with quinolone resistance in Enterococcus faecalis. Antimicrobial Agents <strong>and</strong><br />

Chemotherapy 42, 433-435.<br />

21. Khodursky, A.B., Zechiedrich, E.L. & Cozzarelli, N.R. (1995). Topoisomerase IV is a target<br />

<strong>of</strong> quinolones in Escherichia coli. Proceedings <strong>of</strong> the National Academy <strong>of</strong> Science <strong>of</strong> the<br />

United States <strong>of</strong> America 92, 11801-11802.<br />

22. Martel, A., Baele, M., Devriese, L. A., Goossens, H., Wisselink, H.J., Decostere, A. &<br />

Haesebrouck, F. (2001). Prevalence <strong>and</strong> mechanism <strong>of</strong> resistance against macrolides <strong>and</strong><br />

lincosamides in Streptococcus suis isolates. Veterinary Microbiology 83, 287-297.<br />

23. Martinéz-Martinéz, L., Pascual, A. & Jacoby, G. A. (1998). Quinolone resistance from a<br />

transferable plasmid. The Lancet 335, 797-99.<br />

24. Minion, F.C., Lefkowitz, E.J., Madsen, M.L., Cleary, B.J., Swartzell, S.M. & Mahairas,<br />

G.G. (2004). The genome sequence <strong>of</strong> Mycoplasma hyopneumoniae strain 232, the agent <strong>of</strong><br />

swine mycoplasmosis. Journal <strong>of</strong> Bacteriology 186, 7123-7133.<br />

25. National Committee for Clinical Laboratory St<strong>and</strong>ards (NCCLS). (2002). Performance<br />

st<strong>and</strong>ards for antimicrobial disk <strong>and</strong> dilution susceptibility tests for bacteria isolated from<br />

animals; approved st<strong>and</strong>ard, 2nd edn. NCCLS document M31-A2, Wayne, PA 19087, U.S.A.<br />

26. Ng, E.Y., Trucksis, M. & Hooper, D.C. (1996). Quinolone resistance mutations in<br />

topoisomerase IV: relationship <strong>of</strong> the flqA locus <strong>and</strong> genetic evidence that topoisomerase IV is<br />

the primary target <strong>of</strong> fluoroquinolones in Staphylococcus aureus. Antimicrobial Agents <strong>and</strong><br />

Chemotherapy 40, 1881-1888.<br />

27. Nikaido, H. & Thanassi, D.G. (1993). Penetration <strong>of</strong> lipophilic agents with multiple<br />

protonation sites into bacterial cells: tetracyclines <strong>and</strong> fluoroquinolones as examples.<br />

Antimicrobial Agents <strong>and</strong> Chemotherapy 37, 1393-1399.<br />

28. Raherison, S., Gonzales, P., Renaudin, H., Charron, A., Bébéar, C. & Bébéar, C.M. (2002).<br />

Evidence <strong>of</strong> active efflux in resistance to cipr<strong>of</strong>loxacin <strong>and</strong> to ethidium bromide by Mycoplasma<br />

hominis. Antimicrobial Agents <strong>and</strong> Chemotherapy 46, 672-679.<br />

29. Reinhardt, A.K., Bébéar, C.M., Kobisch, M., Kempf, I. & Gautier-Bouchardon, A.V.<br />

(2002a). Characterization <strong>of</strong> mutations in DNA gyrase <strong>and</strong> topoisomerase IV involved in<br />

quinolone resistance <strong>of</strong> Mycoplasma gallisepticum mutants obtained in vitro. Antimicrobial<br />

Agents <strong>and</strong> Chemotherapy 46, 590-593.<br />

30. Reinhardt, A.K., Kempf, I., Kobisch, M. & Gautier-Bouchardon, A.V. (2002b).<br />

Fluoroquinolone resistance in Mycoplasma gallisepticum: DNA gyrase as primary target <strong>of</strong><br />

enr<strong>of</strong>loxacin <strong>and</strong> impact <strong>of</strong> mutations in topoisomerases on resistance level. Journal <strong>of</strong><br />

Antimicrobial Chemotherapy 50, 589-592.<br />

31. Schmitz, F.J., Jones, M.E., H<strong>of</strong>mann, B., Scheuring, S., Lückefahr, M., Fluit, A., Verhoef,<br />

J., Hadding, U., Heinz, H-P. & Köhrer, K. (1998). Characterization <strong>of</strong> grlA, grlB, gyrA, <strong>and</strong><br />

- 155 -


2.2.3 MECHANISM OF RESISTANCE AGAINST FLUOROQUINOLONES OF M. HYOPNEUMONIAE ISOLATES<br />

gyrB mutations in 116 unrelated isolates <strong>of</strong> Staphylococcus aureus <strong>and</strong> effects <strong>of</strong> mutations on<br />

cipr<strong>of</strong>loxacin MIC. Antimicrobial Agents <strong>and</strong> Chemotherapy 42, 1249-1252.<br />

32. Yamagishi, J-I., Kojima, T., Oyamada, Y., Fujimoto, K., Hattori, H., Nakamura, S. &<br />

Inoue M. (1996). Alterations in the DNA topoisomerase IV grlA gene responsible for quinolone<br />

resistance in Staphylococcus aureus. Antimicrobial Agents <strong>and</strong> Chemotherapy 40, 1157-1163.<br />

33. Timmerman, T., Dewulf, J., Catry, B., Feyen, B., Opsomer, G., de Kruif, A. & Maes, D.<br />

(2005). Quantification <strong>and</strong> evaluation <strong>of</strong> antimicrobial-drug use in group treatments for fattening<br />

pigs in Belgium. Preventive Veterinary Medicine, accepted.<br />

34. Vicca, J., Stakenborg T., Maes, D., Butaye, P., Peeters, J., de Kruif, A. & Haesebrouck, F.<br />

(2004). In vitro susceptibility <strong>of</strong> Mycoplasma hyopneumoniae field isolates. Antimicrobial<br />

Agents <strong>and</strong> Chemotherapy 48, 4470-4472.<br />

35. Wallmann, J., Schröter, K., Wieler, L.H. & Kroker, R. (2003). National antibiotic resistance<br />

monitoring in veterinary pathogens from sick food-producing animals: the German programme<br />

<strong>and</strong> results from the 2001 pilot study. International Journal <strong>of</strong> Antimicrobial Agents 22, 420-<br />

428.<br />

36. World <strong>Health</strong> Organization. (1998). Use <strong>of</strong> Quinolones in Food Animals <strong>and</strong> Potential Impact<br />

on Human <strong>Health</strong>. [Online.] http://www.who.int/emcdocuments/zoonoses/docs/whoemczdi9810.html#Quinolone%20use%20in%20animals<br />

(15<br />

february 2005, date last accessed).<br />

37. Yoshida, H., Bogaki, M., Nakamura, M. & Nakamura, S. (1990). Quinolone resistancedeterming<br />

region in the DNA gyrase gyrA gene <strong>of</strong> Escherichia coli. Antimicrobial Agents <strong>and</strong><br />

Chemotherapy 34, 1271-1272.<br />

38. Yoshida, H., Nakamura, M., Bogaki, M., Ito, H., Kojima, T., Hattori, H. & Nakamura, S.<br />

(1993). Mechanism <strong>of</strong> action <strong>of</strong> quinolones against Escherichia coli DNA gyrase. Antimicrobial<br />

Agents <strong>and</strong> Chemotherapy 37, 839-845.<br />

39. Yoshimura, H., Kojima, A. & Ishimaru, M. (2000). Antimicrobial susceptibility <strong>of</strong><br />

Arcanobacterium pyogenes isolated from cattle <strong>and</strong> pigs. Journal <strong>of</strong> Veterinary Medicine Series<br />

B 47, 139-143.<br />

- 156 -


2.2.4 THE EFFICACY OF TYLOSIN PREMIX FOR THE<br />

TREATMENT AND CONTROL OF MYCOPLASMA<br />

HYOPNEUMONIAE INFECTIONS<br />

Modified from:<br />

EFFICACY OF IN-FEED MEDICATION WITH TYLOSIN FOR THE TREATMENT AND CONTROL OF<br />

MYCOPLASMA HYOPNEUMONIAE INFECTIONS<br />

J. VICCA, D. MAES, L. JONKER, A. DE KRUIF & F. HAESEBROUCK<br />

THE VETERINARY RECORD 2005, 156, 606-610<br />

- 157 -


2.2.4 EFFICACY OF TYLOSIN FOR TREATMENT AND CONTROL OF M. HYOPNEUMONIAE INFECTIONS<br />

SUMMARY<br />

The efficacy <strong>of</strong> in-feed medication with tylosin (Tylan ® Premix; Elanco<br />

Animal <strong>Health</strong>) for the treatment <strong>of</strong> enzootic pneumonia was examined in an<br />

experimental Mycoplasma hyopneumoniae infection model. Three groups <strong>of</strong> 10<br />

conventional M. hyopneumoniae-free piglets were inoculated intratracheally with a<br />

highly virulent M. hyopneumoniae field isolate (non-treated control (non-TP) group<br />

<strong>and</strong> tylosin premix (TP) group) or with sterile culture medium (non-infected <strong>and</strong> nontreated<br />

control (NC) group). Twelve days after infection, tylosin treatment <strong>of</strong> the TP<br />

group was initiated (100 mg/kg <strong>of</strong> feed for 21 days). Animals were daily examined for<br />

the presence <strong>of</strong> clinical signs <strong>and</strong> a respiratory disease score (RDS) was given per pig.<br />

Thirty-three days after infection, all pigs were euthanased <strong>and</strong> the lung lesions were<br />

quantified. Lung samples were processed for immun<strong>of</strong>luorescence testing for M.<br />

hyopneumoniae. Average RDS <strong>and</strong> lung lesion scores were significantly higher<br />

(P


2.2.4 EFFICACY OF TYLOSIN FOR TREATMENT AND CONTROL OF M. HYOPNEUMONIAE INFECTIONS<br />

INTRODUCTION<br />

Enzootic pneumonia, with Mycoplasma hyopneumoniae as the primary agent,<br />

remains an important health disorder in modern pig herds. Enzootic pneumonia has<br />

been demonstrated to affect animal welfare <strong>and</strong> to cause substantial economic losses,<br />

either directly or by potentiating <strong>and</strong> increasing the susceptibility <strong>of</strong> the lungs to<br />

secondary pathogens like Pasteurella multocida <strong>and</strong> Actinobacillus<br />

pleuropneumoniae (Maes et al., 1999a, 2000). M. hyopneumoniae also plays a key<br />

role in porcine respiratory disease complex, together with porcine reproductive <strong>and</strong><br />

respiratory syndrome virus, swine influenza virus <strong>and</strong> other pathogens.<br />

Control <strong>of</strong> enzootic pneumonia is largely based on good management<br />

practices, optimal housing conditions, vaccination <strong>and</strong> the use <strong>of</strong> antibiotics.<br />

Commercial M. hyopneumoniae vaccines are widely used <strong>and</strong> several studies have<br />

shown that vaccination has beneficial effects on daily weight gain (DWG) <strong>and</strong><br />

mycoplasmal pneumonia lesions (Dohoo <strong>and</strong> Montgomery, 1996; Maes et al., 1998,<br />

1999b). Compared to vaccination, the use <strong>of</strong> antibiotics in M. hyopneumoniae<br />

outbreaks has the advantage that they can be applied in a more flexible way <strong>and</strong> that<br />

they can also decrease infections with other (respiratory) bacterial pathogens.<br />

Across the European Union, tylosin is used for the treatment <strong>and</strong> control <strong>of</strong><br />

enzootic pneumonia in pigs through administration via the feed. Tylosin is a<br />

macrolide drug developed in 1961 <strong>and</strong> is exclusively used in veterinary medicine.<br />

Macrolides inhibit bacterial protein synthesis by reversibly binding to the 23 S<br />

ribosomal RNA in the 50 S subunit <strong>of</strong> the ribosome <strong>and</strong> bind at the donor site, thus<br />

preventing the translocation necessary to keep the peptide chain growing (Brisson-<br />

Noël et al., 1988). Tylosin, like other macrolides, is widely distributed throughout<br />

tissues <strong>and</strong> body fluids (Prats et al., 2002).<br />

Studies have demonstrated good efficacy <strong>of</strong> tylosin against M. hyopneumoniae<br />

in vitro (Ter Laak et al., 1991; Tanner et al., 1993; Wu et al., 1997) <strong>and</strong> in vivo<br />

(Hannan et al., 1982; Ueda et al., 1994). Previous in vivo studies were conducted with<br />

neonatal piglets inoculated with lung homogenate containing different Mycoplasma<br />

species or the preventive use <strong>of</strong> tylosin was examined. The current study was<br />

conducted in order to further examine the efficacy <strong>of</strong> tylosin when applied at the onset<br />

<strong>of</strong> clinical symptoms following infection with M. hyopneumoniae. Therefore, pigs<br />

- 160 -


2.2.4 EFFICACY OF TYLOSIN FOR TREATMENT AND CONTROL OF M. HYOPNEUMONIAE INFECTIONS<br />

were experimentally infected with a high dosis (7 ml <strong>of</strong> 10 7 CCU/ml) <strong>of</strong> a highly<br />

virulent M. hyopneumoniae field isolate. The currently licensed dosage <strong>of</strong> 100 mg <strong>of</strong><br />

tylosin per kg feed for 21 days was applied.<br />

MATERIALS AND METHODS<br />

M. hyopneumoniae isolate<br />

For the inoculation <strong>of</strong> the piglets, a Belgian M. hyopneumoniae field isolate<br />

was used. The isolate was obtained in 2000 from a pig herd experiencing clinical<br />

symptoms associated with enzootic pneumonia <strong>and</strong> could be filter cloned after 10<br />

passages in vitro. The isolate proved to be highly virulent during earlier comparative<br />

virulence studies (Vicca et al., 2003). The minimal inhibitory concentration <strong>of</strong> tylosin<br />

for this isolate was


2.2.4 EFFICACY OF TYLOSIN FOR TREATMENT AND CONTROL OF M. HYOPNEUMONIAE INFECTIONS<br />

piglets was housed in rooms equipped with absolute filters (HEPA U15) to avoid<br />

spread <strong>of</strong> M. hyopneumoniae-organisms between groups.<br />

Immediately after weighing <strong>and</strong> allocation to the treatment groups, all pigs<br />

were anaesthetized intramuscularly with 0.22 ml/kg <strong>of</strong> a mixture <strong>of</strong> xylazin (Xyl-M ®<br />

2%; VMD) <strong>and</strong> Zolazepam <strong>and</strong> Tiletamin (Zoletil ® 100; Virbac), ear tagged <strong>and</strong><br />

inoculated intratracheally with 7 x 10 7 CCU <strong>of</strong> the M. hyopneumoniae isolate in 7 ml<br />

inoculum (non-treated control (non-TP) group <strong>and</strong> tylosin premix (TP) group) or with<br />

7 ml sterile culture medium (non-infected <strong>and</strong> non-treated control (NC) group). The<br />

inoculation day was designated as day 0 after infection.<br />

The study was conducted after approval by the Ethical Committee for animal<br />

experiments <strong>of</strong> the Faculty <strong>of</strong> Veterinary Medicine, Ghent University.<br />

Tylosin treatment<br />

None <strong>of</strong> the groups received any antimicrobials during the premedication<br />

period (0-12 days after infection). Tylosin treatment started at 12 days after infection,<br />

the day after onset <strong>of</strong> the disease (11 days after infection) when 10% <strong>of</strong> the animals<br />

over the two M. hyopneumoniae inoculated groups showed coughing. The duration <strong>of</strong><br />

the medication period was 21 days (13-33 days after infection).<br />

Blank unmedicated feed was given to the non-TP <strong>and</strong> NC group. For the TP<br />

group, a commercial batch <strong>of</strong> Tylan ® 100 Premix (tylosin 10%, 100 g/kg premix;<br />

Elanco Animal <strong>Health</strong>) was used. One gram Tylan ® Premix was mixed per kg blank<br />

unmedicated feed, this was equivalent to approximately 3-6 mg tylosin/kg<br />

bodyweight. At the beginning <strong>of</strong> the study, the presence <strong>of</strong> the appropriate tylosin<br />

level in a pooled sample was confirmed to be 99.6 mg/kg feed.<br />

Clinical evaluation <strong>and</strong> performance parameters<br />

For a period <strong>of</strong> 33 days following challenge, pigs were observed daily for 25<br />

minutes, to evaluate demeanour, abdominal filling (gauntness), presence <strong>of</strong> dyspnoea<br />

<strong>and</strong> tachypnoea <strong>and</strong> behavioural changes. In addition, a clinical respiratory disease<br />

score (RDS) was assessed daily from 0 to 33 days after infection (Halbur et al., 1996).<br />

RDS scores could range from 0 to 6: 0 (no coughing), 1 (mild coughing after<br />

encouraged movement), 2 (mild coughing while leaving the pigs undisturbed), 3<br />

- 162 -


2.2.4 EFFICACY OF TYLOSIN FOR TREATMENT AND CONTROL OF M. HYOPNEUMONIAE INFECTIONS<br />

(moderate coughing after encouraged movement), 4 (moderate coughing while<br />

leaving the pigs undisturbed), 5 (severe coughing after encouraged movement), 6<br />

(severe coughing while leaving the pigs undisturbed). The number <strong>of</strong> coughing days<br />

was assessed as the total number <strong>of</strong> days on which at least one pig was coughing.<br />

Rectal temperatures were measured on a daily basis from 0-10 days after<br />

infection <strong>and</strong> every other day from 12-33 days after infection.<br />

To calculate average daily weight gain, the individual bodyweight <strong>of</strong> all<br />

animals was obtained on 0 days after infection, 7 days after infection, at the start <strong>of</strong><br />

the medication period (12 days after infection), 19 days after infection, 22 days after<br />

infection <strong>and</strong> 33 days after infection. To be able to calculate the feed intake <strong>and</strong> feed<br />

conversion ratio per treatment group, feed allocations were recorded daily from 0<br />

days after infection onwards throughout the duration <strong>of</strong> the study. Feed leftovers were<br />

removed <strong>and</strong> weighed on the mentioned pig weighing days.<br />

Post-mortem examinations<br />

All pigs were euthanased at 33 days after infection by deep anesthaesia with<br />

0.3 ml/kg <strong>of</strong> a mixture <strong>of</strong> xylazine (Xylm ® 2%; Intervet) <strong>and</strong> zolazepam <strong>and</strong> tiletamin<br />

(Zoletil ® 100; Virbac) followed by exsanguination. The lungs were removed <strong>and</strong><br />

macroscopic pneumonia lesions were quantified using a lung lesion score diagram<br />

(Hannan et al., 1982). Total lung lesion scores could vary between score 0 (no<br />

lesions) <strong>and</strong> a theoretical maximum <strong>of</strong> 35 (100% <strong>of</strong> the lung area affected by<br />

pneumonia). A digital picture (DSC-S50; Sony Cyber-shot) was taken from every<br />

lung for future reference.<br />

Two lung tissue samples were collected from every lung from sections with<br />

lesions typical for M. hyopneumoniae infection (preferably the cardiac lobes) or from<br />

healthy tissue when macroscopical lesions were not apparent. The 2 samples were<br />

processed in a semi-quantitative immun<strong>of</strong>luorescence assay (score 0-3) to detect the<br />

presence <strong>of</strong> M. hyopneumoniae (Kobisch et al., 1978); 0: (no immun<strong>of</strong>luorescence), 1,<br />

2 <strong>and</strong> 3 (limited, moderate <strong>and</strong> intense immun<strong>of</strong>luorescence, respectively). An<br />

additional lung tissue sample per pig was taken for bacteriological examination.<br />

Twenty percent (w/v) suspensions <strong>of</strong> lungs were made, inoculated on Columbia agar<br />

supplemented with 5 percent sheep blood (blood agar) <strong>and</strong> incubated at 37°C for 48<br />

hours to check the presence <strong>of</strong> secondary bacteria in the lungs. The plates were cross-<br />

- 163 -


2.2.4 EFFICACY OF TYLOSIN FOR TREATMENT AND CONTROL OF M. HYOPNEUMONIAE INFECTIONS<br />

streaked with Staphylococcus aureus for support <strong>of</strong> Actinobacillus pleuropneumoniae<br />

growth.<br />

To demonstrate the presence <strong>and</strong> localisation <strong>of</strong> tylosin in the lung, entire<br />

transverse sections from across the bottom <strong>of</strong> the diaphragmatic lobe <strong>of</strong> the right lung<br />

were collected. After sampling, the tissues were immersed in paraformaldehyde<br />

fixative for one month <strong>and</strong> sent to the Veterinary Laboratory Agency (VLA), New<br />

Haw, Addlestone, Surrey, UK for further processing. Each sample was cut into 4<br />

pieces <strong>and</strong> processed to paraffin wax embedded blocks. Immunostained sections were<br />

examined by light microscopy <strong>and</strong> subjectively assessed for specific cellular tylosin<br />

staining <strong>and</strong> diffuse non specific background staining. Digital photomicrographs<br />

(DX1200; Nikon Digital Camera, Nikon ACT-1 s<strong>of</strong>tware) <strong>of</strong> representative specific<br />

immunodetection in each experimental group were produced.<br />

Serology for M. hyopneumoniae<br />

A blood sample <strong>of</strong> every pig was taken at 0 <strong>and</strong> 33 days after infection to<br />

detect serum antibodies against M. hyopneumoniae, using the DAKO ® Mh ELISA<br />

(DAKO, Glostrup, Denmark) (Feld et al., 1992). Sera with optical density (OD)-<br />

values


2.2.4 EFFICACY OF TYLOSIN FOR TREATMENT AND CONTROL OF M. HYOPNEUMONIAE INFECTIONS<br />

test was used to compare the number <strong>of</strong> animals between groups with a positive M.<br />

hyopneumoniae serology result <strong>and</strong> with a positive IF score. Statistical analyses were<br />

performed using SAS 8 (SAS Institute, 1999).<br />

RESULTS<br />

Clinical <strong>and</strong> performance parameters<br />

One animal in the NC group, two animals in the non-TP group <strong>and</strong> three<br />

animals in the TP group were found with arthritis, presumably caused by<br />

Streptococcus suis. They were intramuscularly injected 3 times with amoxycillin,<br />

every other day. One animal in the negative control group died during blood sampling<br />

on the day <strong>of</strong> infection. No other animals were removed from study.<br />

During the pre-medication period, coughing was rarely observed in the 3<br />

groups. For the entire study period, coughing was present in both groups inoculated<br />

with M. hyopneumoniae but was rarely observed in the NC group (Figure 1).<br />

Coughing started at approximately 11 days after infection <strong>and</strong> increased steadily<br />

towards the end <strong>of</strong> the study. Average RDS were significantly higher (P


2.2.4 EFFICACY OF TYLOSIN FOR TREATMENT AND CONTROL OF M. HYOPNEUMONIAE INFECTIONS<br />

2.5<br />

2<br />

Average RDS<br />

1.5<br />

1<br />

0.5<br />

0<br />

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33<br />

DAI<br />

0 DAI<br />

infection<br />

13 DAI<br />

start tylosin treatment<br />

23 DAI<br />

33 DAI<br />

euthanasia<br />

pre-treatment period<br />

tylosin treatment period<br />

NC TP non-TP<br />

Figure 1: Average respiratory disease score (RDS) <strong>of</strong> the M. hyopneumoniae infected<br />

<strong>and</strong> tylosin treated group (TP) (n= 10 pigs), the M. hyopneumoniae infected <strong>and</strong> nontreated<br />

group (non-TP) (n= 10 pigs) <strong>and</strong> the non-infected <strong>and</strong> non-treated control<br />

(NC) group (n= 9 pigs), during the pre-treatment period (0-12 days after infection<br />

(DAI)) <strong>and</strong> the tylosin treatment period (13-33 DAI).<br />

The average rectal temperatures were not significantly different between the<br />

treatment groups (average temperatures were 39.5, 39.6 <strong>and</strong> 39.7 °C in the NC, non-<br />

TP <strong>and</strong> TP group, respectively). Rectal temperatures slowly decreased towards the<br />

end <strong>of</strong> the study in all groups.<br />

None <strong>of</strong> the performance parameters were significantly different between the<br />

study groups. The average weights (SD) for the NC, non-TP <strong>and</strong> TP group were 8.18<br />

(1.21), 8.07 (1.08) <strong>and</strong> 7.89 (1.42) kg at the beginning <strong>of</strong> the study, 8.85 (1.25), 9.70<br />

(1.38) <strong>and</strong> 9.42 (1.90) at 7 days after infection, 11.15 (1.55), 11.10 (1.54) <strong>and</strong> 11.10<br />

(2.30) at the start <strong>of</strong> the medication period (12 days after infection), 14.46 (1.95),<br />

- 166 -


2.2.4 EFFICACY OF TYLOSIN FOR TREATMENT AND CONTROL OF M. HYOPNEUMONIAE INFECTIONS<br />

15.44 (2.39) <strong>and</strong> 14.34 (3.36) at 19 days after infection, 16.38 (2.53), 17.14 (2.72) <strong>and</strong><br />

15.98 (3.74) at 22 days after infection <strong>and</strong> 23.87 (3.26), 23.19 (4.49) <strong>and</strong> 23.70 (5.05)<br />

kg at 33 days after infection, respectively. For the NC, non-TP <strong>and</strong> TP group, the<br />

ADG was 0.48 (0.08), 0.46 (0.11) <strong>and</strong> 0.48 (0.12) kg, the average daily feed intake<br />

per pig was 0.79, 0.80 <strong>and</strong> 0.78 kg <strong>and</strong> the FCR 1.64, 1.75 <strong>and</strong> 1.64, respectively.<br />

In the tylosin treatment group, the nominal intake <strong>of</strong> tylosin during the<br />

medication period was 5.7 mg/kg bodyweight, which was within the target intake<br />

range <strong>of</strong> 3-6 mg/kg bodyweight.<br />

Post-mortem examinations (Table 1)<br />

The proportion <strong>of</strong> animals with lung lesions was significantly higher (P


2.2.4 EFFICACY OF TYLOSIN FOR TREATMENT AND CONTROL OF M. HYOPNEUMONIAE INFECTIONS<br />

A<br />

B<br />

Figure 2: Digital photographs <strong>of</strong> immunostained, paraffin embedded lung tissue<br />

sections, magnification x400. A: section <strong>of</strong> a pig <strong>of</strong> the non-infected, non-treated<br />

control group. B: section <strong>of</strong> a pig <strong>of</strong> the infected, tylosin treated group. Infiltrating<br />

macrophages show cytoplasmic tylosin (arrows).<br />

- 168 -


2.2.4 EFFICACY OF TYLOSIN FOR TREATMENT AND CONTROL OF M. HYOPNEUMONIAE INFECTIONS<br />

Serology for M. hyopneumoniae (Table 1)<br />

None <strong>of</strong> the 30 pigs had a positive ELISA result at 0 days after infection. The<br />

proportion <strong>of</strong> animals that seroconverted at 33 days after infection was significantly<br />

higher (P


2.2.4 EFFICACY OF TYLOSIN FOR TREATMENT AND CONTROL OF M. HYOPNEUMONIAE INFECTIONS<br />

DISCUSSION<br />

In the swine industry, antibiotics are frequently used to prevent <strong>and</strong> treat<br />

diseases such as enzootic pneumonia, one <strong>of</strong> the most important respiratory diseases<br />

in swine worldwide. Outbreaks <strong>of</strong> enzootic pneumonia still occur frequently in<br />

intensive pig production systems <strong>and</strong> the onset cannot always be predicted. For those<br />

outbreaks, antibiotics are necessary to limit the number <strong>of</strong> diseased animals <strong>and</strong> the<br />

extent <strong>of</strong> the lesions <strong>and</strong> consequently to improve better animal welfare <strong>and</strong> limit the<br />

economical loss.<br />

Tylosin is one <strong>of</strong> the oldest antibiotics for veterinary medicine that is still<br />

frequently used (Chauvin et al., 2002). A previous study demonstrating the efficacy <strong>of</strong><br />

tylosin for the treatment <strong>of</strong> enzootic pneumonia was carried out with neonatal piglets<br />

inoculated intranasally with a lung homogenate containing different mycoplasma<br />

species. Treatment with tylosin tartrate was initiated at 14 days after infection <strong>and</strong><br />

lasted for 10 days (Hannan et al., 1982). In other studies, the preventive use <strong>of</strong> tylosin<br />

against M. hyopneumoniae infections was examined (Ueda et al., 1994). In our study,<br />

the efficacy <strong>of</strong> tylosin was evaluated at the onset <strong>of</strong> an enzootic pneumonia outbreak.<br />

Tylosin treatment only started at 12 days after infection, when approximately 10% <strong>of</strong><br />

the pigs were coughing. In this way, the study tried to simulate field conditions where<br />

a treatment is <strong>of</strong>ten initiated when 10-20% <strong>of</strong> the pigs are coughing.<br />

After oral treatment, tylosin has been shown to be widely distributed in pigs<br />

throughout body fluids <strong>and</strong> the drug also reaches peripheral tissues (Prats et al.,<br />

2002). In the present study, strong immunostaining was detected in the cytoplasm <strong>of</strong><br />

lung alveolar macrophages <strong>of</strong> pigs treated with tylosin, confirming that this antibiotic<br />

accumulates in these cells (Scorneaux <strong>and</strong> Shryock, 1998).<br />

Respiratory tract disease symptoms <strong>and</strong> lung lesions were less extensive <strong>and</strong><br />

less severe in the tylosin treated group than in the non-treated control group,<br />

demonstrating the efficacy <strong>of</strong> this antibiotic to treat enzootic pneumonia in swine<br />

inoculated with a high dose <strong>of</strong> a highly virulent M. hyopneumoniae isolate. The<br />

results <strong>of</strong> the semi-quantitative immun<strong>of</strong>luorescence indicated that tylosin treatment<br />

may decrease the number <strong>of</strong> M. hyopneumoniae organisms in the lungs, although<br />

average IF scores were not significantly different between the TP group <strong>and</strong> non-TP<br />

group. Kobisch et al., (1978) <strong>and</strong> Amanfu et al., (1984) showed that the intensity <strong>of</strong><br />

- 170 -


2.2.4 EFFICACY OF TYLOSIN FOR TREATMENT AND CONTROL OF M. HYOPNEUMONIAE INFECTIONS<br />

immun<strong>of</strong>luorescence has indeed been correlated with the number <strong>of</strong> organisms in the<br />

lungs. Secondary bacterial lung infections were only detected in 2 pigs <strong>of</strong> the nontreated<br />

positive control group. In severe field cases <strong>of</strong> enzootic pneumonia, the<br />

frequency <strong>of</strong> secondary bacterial infections is usually higher (Maes et al., 1998). The<br />

reason for this is not clear but may be due to different housing <strong>and</strong> management<br />

conditions (Clark et al., 1991). In our study, all pigs were simultaneously inoculated<br />

with a high dose <strong>of</strong> M. hyopneumoniae. In the field, the infection dose is not known<br />

but due to the chronic nature <strong>of</strong> the disease, repeated infections can be expected <strong>and</strong><br />

the infection <strong>of</strong> the pigs might be spread over time. Stocking density, ventilation <strong>and</strong><br />

hygienic measures may also differ substantially from the circumstances under<br />

experimental conditions. Nevertheless, experimental studies remain important to<br />

precisely evaluate the efficacy <strong>of</strong> antibiotics since in contrast with field studies,<br />

variables that are out <strong>of</strong> the control <strong>of</strong> the investigator are not likely to influence the<br />

results.<br />

CONCLUSION<br />

Tylosin administered via the feed at a level <strong>of</strong> 100 mg/kg feed for 21 days was<br />

efficacious for the treatment <strong>of</strong> established mycoplasmal disease. Even if M.<br />

hyopneumoniae vaccination is widely used in modern pig herds, it remains important<br />

to have effective, easily applicable antibiotics which can be used at the moment <strong>of</strong><br />

acute outbreaks <strong>of</strong> enzootic pneumonia.<br />

ACKNOWLEDGEMENTS<br />

This work was supported by a grant from Elanco Animal <strong>Health</strong> Benelux, a<br />

Divison <strong>of</strong> Eli Lilly <strong>and</strong> Co.<br />

The authors are grateful to Mrs. Y. Spencer from the VLA, New Haw,<br />

Addlestone, Surrey, UK, for providing the figures demonstrating the presence <strong>of</strong><br />

tylosin in the alveolar macrophages.<br />

- 171 -


2.2.4 EFFICACY OF TYLOSIN FOR TREATMENT AND CONTROL OF M. HYOPNEUMONIAE INFECTIONS<br />

REFERENCES<br />

1. Amanfu, W., Weng, C., Ross, R.F. & Barnes, H. (1984) Diagnosis <strong>of</strong> mycoplasmal<br />

pneumonia <strong>of</strong> swine: sequential study by direct immun<strong>of</strong>luorescence. American Journal <strong>of</strong><br />

Veterinary Research 45, 1349-1352.<br />

2. Brisson-Noël, A., Trieu-Cuot, P. & Courvalin, P. (1988) Mechanism <strong>of</strong> action <strong>of</strong> spiramycin<br />

<strong>and</strong> other macrolides. The Journal <strong>of</strong> Antimicrobial Chemotherapy 22, 13.23.<br />

3. Chauvin, C., Beloeil, P-A., Or<strong>and</strong>, J-P., S<strong>and</strong>ers, P. & Madec, F. (2002) A survey <strong>of</strong> grouplevel<br />

antibiotic prescriptions in pig production in France. Preventive Veterinary Medicine 55,<br />

109-120.<br />

4. Clark, L., Armstrong, C., Knox, K. & Mayrose, V. (1991) The effect <strong>of</strong> all-in/all-out<br />

management on pigs from a herd with enzootic pneumonia. Veterinary Medicine 86, 946-951.<br />

5. Dohoo, I., & Montgomery, M. (1996) A field trial to evaluate a Mycoplasma hyopneumoniae<br />

vaccine: effects on lung lesions <strong>and</strong> growth rates in swine. Canadian Veterinary Journal 37, 299-<br />

302.<br />

6. Feld, N.C., Qvist, P., Ahrens, P., Friis, N.F. & Meyling, A. (1992) A monoclonal blocking<br />

ELISA detecting serum antibodies to Mycoplasma hyopneumoniae. Veterinary Microbiology 30,<br />

35-46.<br />

7. Halbur, P.G., Paul, P.S., Meng, X.J., Lum, M.A., Andrews, J.J. & Rathje, J.A. (1996)<br />

Comparative pathogenicity <strong>of</strong> nine US Porcine Reproductive <strong>and</strong> Respiratory Syndrome Virus<br />

(PRRSV) isolates in a five-week-old cesarean-derived, colostrum-deprived pig model. Journal <strong>of</strong><br />

Veterinary Diagnostic Investigation 8, 11-20.<br />

8. Hannan, P.C., Bhogal, B.S. & Fish, J.P. (1982) Tylosin tartrate <strong>and</strong> tiamutilin effects on<br />

experimental piglet pneumonia induced with pneumonic pig lung homogenate containing<br />

mycoplasmas, bacteria <strong>and</strong> viruses. Research in Veterinary Science 33, 76-88.<br />

9. Kobisch, M., Tillon, J.P., Vannier, Ph., Magueur, S. & Morvan, P. (1978) Pneumonie<br />

enzootique à Mycoplasma suipneumoniae chez le porc: diagnostic rapide et recherche<br />

d’anticorps. Récueil de Médecine Vétérinaire 154, 847-852.<br />

10. Maes, D., Deluyker, H., Verdonck, M., Castryck, F., Miry, C., Lein, A., Vrijens, B. & de<br />

Kruif, A. (1998) Effect <strong>of</strong> vaccination against Mycoplasma hyopneumoniae in pig herds with a<br />

continuous production system. Journal <strong>of</strong> Veterinary Medicine B 45, 495-505.<br />

11. Maes, D., Deluyker, H., Verdonck, M., Castryck, F., Miry, C., Vrijens, B. & de Kruif, A.<br />

(1999a) Risk indicators for the seroprevalence <strong>of</strong> Mycoplasma hyopneumoniae, porcine<br />

influenza viruses <strong>and</strong> Aujeszky’s disease virus in slaughter pigs from fattening pig herds.<br />

Journal <strong>of</strong> Veterinary Medicine B 46, 341-352.<br />

12. Maes, D., Deluyker, H., Verdonck, M., Castryck, F., Miry, C., Vrijens, B., Verbeke, W.,<br />

Viaene, J. & de Kruif, A. (1999b) Effect <strong>of</strong> vaccination against Mycoplasma hyopneumoniae in<br />

pig herds with an all-in/all-out production system. Vaccine 17, 1024-34.<br />

13. Maes, D., Deluyker, H., Verdonck, M., Castryck, F., Miry, C., Vrijens, B. & de Kruif, A.<br />

(2000) <strong>Herd</strong> factors associated with the seroprevalences <strong>of</strong> four major respiratory pathogens in<br />

slaughter pigs from farrow-to-finish pig herds. Veterinary Research 31, 313-327.<br />

14. Prats, C., El Korchi, G., Francesch, R., Arboix, M. & Pérez, B. (2002) Disposition kinetics<br />

<strong>of</strong> tylosin administered intravenously <strong>and</strong> intramuscularly to pigs. Research in Veterinary<br />

Science 73, 141-144.<br />

- 172 -


2.2.4 EFFICACY OF TYLOSIN FOR TREATMENT AND CONTROL OF M. HYOPNEUMONIAE INFECTIONS<br />

15. SAS Institute, Statistical Analysis Systems (1999) SAS/STAT user’s guide, Version 8. SAS<br />

Institute Inc., Cary, NC, USA<br />

16. Scorneaux, B. & Shryock, T.R. (1998) Intracellular accumulation, subcellular distribution <strong>and</strong><br />

efflux <strong>of</strong> tilmicosin in swine phagocytes. Journal <strong>of</strong> Veterinary Pharmacology <strong>and</strong> Therapeutics<br />

21, 257-268.<br />

17. Tanner, A.C., Erickson, B.Z. & Ross, R.F. (1993) Adaptation <strong>of</strong> the Sensititre ® broth<br />

microdilution technique to antimicrobial susceptibility testing <strong>of</strong> Mycoplasma hyopneumoniae.<br />

Veterinary Microbiology 36, 301-306.<br />

18. Ter Laak, E.A., Pijpers, A., Noordergraaf, J.H., Schoevers, E.C. & Verheijden, J.H.M.<br />

(1991) Comparison <strong>of</strong> methods for in vitro testing <strong>of</strong> susceptibility <strong>of</strong> porcine mycoplasma<br />

species to antimicrobial agents. Antimicrobial Agents <strong>and</strong> Chemotherapy 35, 228-233.<br />

19. Ueda, Y., Oktsuki, S., Narukawa, N., Takeda K. (1994) Effect <strong>of</strong> terdecamycin on<br />

experimentally induced Mycoplasma hyopneumoniae-infection in pigs. Journal <strong>of</strong> Veterinary<br />

Medicine, Series B 41, 283-290.<br />

20. Vicca, J., Stakenborg, T., Maes, D., Butaye, P., de Kruif, A. & Haesebrouck, F. (2002)<br />

Antibiotic susceptibility <strong>of</strong> Belgian Mycoplasma hyopneumoniae field isolates. Proceedings <strong>of</strong><br />

the 14th international congress <strong>of</strong> the International Organisation for Mycoplasmology; Vienna,<br />

Austria, 61-62.<br />

21. Vicca, J., Stakenborg, T., Maes, D., Butaye, P., Peeters, J., de Kruif, A. & Haesebrouck, F.<br />

(2003) Evaluation <strong>of</strong> virulence <strong>of</strong> Mycoplasma hyopneumoniae field isolates. Veterinary<br />

Microbiology 97, 177-190.<br />

22. Wu, C.C., Shryock, T.R., Lin, T.L. & Veenhuizen, M.F. (1997) Testing antimicrobial<br />

susceptibility against Mycoplasma hyopneumoniae in vitro. Journal <strong>of</strong> Swine <strong>Health</strong> <strong>and</strong><br />

Production 5, 227-230.<br />

- 173 -


- 175 -<br />

3 GENERAL DISCUSSION


3 GENERAL DISCUSSION<br />

Infections with M. hyopneumoniae, the primary agent <strong>of</strong> enzootic pneumonia<br />

in pigs, are very common worldwide, especially in countries with intensive<br />

production systems. Enzootic pneumonia causes major economic losses to the pig<br />

industry due to decreased daily weight gain, increased feed conversion ratio, number<br />

<strong>of</strong> days to reach slaughter weight <strong>and</strong> medication costs. Losses in the Belgian pig<br />

industry are estimated to be at least 14 million euro each year. Studying the factors<br />

influencing the disease-course, which may evolve either subclinically or clinically, is<br />

essential to limit or reduce these losses. The best studied factor is the influence <strong>of</strong> the<br />

environment on the disease outcome. Poor management <strong>and</strong> housing conditions have<br />

been considered to be important deteriorating factors (Clark et al., 1991; Maes et al.,<br />

1996; Ross, 1999). The host susceptibility, in contrast, is not found to be a major<br />

contributing factor (Goodwin et al., 1969; Piffer <strong>and</strong> Ross, 1984; Kobisch et al., 1993;<br />

Wallgren et al., 1998). The third factor that may influence the disease-course is<br />

related to the organism causing the disease. Antigenic <strong>and</strong> genetic diversity <strong>of</strong> M.<br />

hyopneumoniae isolates has been reported earlier (Ro <strong>and</strong> Ross, 1983; Frey et al.,<br />

1992; Artiushin <strong>and</strong> Minion, 1996) but no correlation was made with the virulence. In<br />

this thesis, differences in virulence between M. hyopneumoniae field isolates were<br />

studied.<br />

In a first field study (chapter 2.1.1), herds with either poor housing <strong>and</strong><br />

management conditions but experiencing subclinical disease or herds with good<br />

housing <strong>and</strong> management conditions but with a clinical disease-course were selected.<br />

This selection procedure was used to increase the chance <strong>of</strong> isolating low <strong>and</strong> high<br />

virulence M. hyopneumoniae isolates.<br />

Six isolates obtained in the first study were used in an experimental infection<br />

model (chapter 2.1.2) to asses the virulence. This model proved to be highly<br />

reproducible <strong>and</strong> can be used to evaluate the efficacy <strong>of</strong> vaccins or antimicrobial<br />

treatment. It also allows classifying the isolates as low, moderately <strong>and</strong> highly<br />

virulent.<br />

Animals inoculated with a high virulence isolate developed more severe lung<br />

lesions. In the lungs <strong>of</strong> these animals, the immun<strong>of</strong>luorescence score was significantly<br />

higher than in the lungs <strong>of</strong> animals inoculated with a low virulence strain. This<br />

indicates that a higher number <strong>of</strong> M. hyopneumoniae organisms in the lungs results in<br />

more severe lung lesions. The higher immun<strong>of</strong>luorescence score can be due to a faster<br />

- 177 -


3 GENERAL DISCUSSION<br />

multiplication in the host, a better circumvention or modulation <strong>of</strong> the host immune<br />

response or a more efficient adherence <strong>of</strong> high virulence isolates. A difference in<br />

capability to attach to cilia between M. hyopneumoniae strains has been demonstrated<br />

by Minion et al. (2000) <strong>and</strong> was correlated with the number <strong>of</strong> repeat regions in RR1<br />

<strong>of</strong> the p97 protein <strong>of</strong> M. hyopneumoniae. In that study, a minimum <strong>of</strong> eight repeats<br />

was necessary to make the M. hyopneumoniae organisms able to attach to the cilia.<br />

Recently, a difference in the number <strong>of</strong> repeats in RR1 was detected in our isolates (T.<br />

Stakenborg, personal communication, 2005) but no correlation was found between the<br />

number <strong>of</strong> repeats <strong>and</strong> the virulence <strong>of</strong> the isolates.<br />

Using the OPA-3 primer (5’ AGTCAGCCAC 3’) (Artiushin <strong>and</strong> Minion,<br />

1996), a RAPD b<strong>and</strong> <strong>of</strong> about 5 kbp was only found in high <strong>and</strong> moderate virulence<br />

isolates, but not in low virulence isolates. In further studies, this RAPD b<strong>and</strong> was<br />

sequenced (accession n° AY551928) <strong>and</strong> shown to be 5319 bp in size. Specific<br />

primers were developed for amplification <strong>of</strong> this 5319 bp fragment. PCR with these<br />

primers resulted in amplification <strong>of</strong> the 5319 bp fragment in all M. hyopneumoniae<br />

isolates tested. Sequencing <strong>of</strong> the amplicons obtained in high, moderate <strong>and</strong> low<br />

virulence isolates revealed only minor differences in the OPA-3 binding sites. The<br />

observed differences were not consistent with the virulence <strong>of</strong> the isolates. It remains<br />

unclear why RAPD with the OPA-3 primers did not result in a 5 kbp b<strong>and</strong> in low<br />

virulence isolates. Possibly, some smaller b<strong>and</strong>s were preferentially amplified in low<br />

virulence isolates compared to isolates <strong>of</strong> higher virulence, inhibiting amplification <strong>of</strong><br />

the 5 kbp b<strong>and</strong> during RAPD analyses. It can be concluded that although RAPD with<br />

OPA-3 might be useful to predict virulence <strong>of</strong> M. hyopneumoniae isolates, it is clear<br />

that the b<strong>and</strong> itself does not carry any gene that may explain the differences in<br />

virulence <strong>of</strong> isolates observed in vivo.<br />

The fact that clear differences in virulence between isolates were observed<br />

may have important consequences at herd level. It is likely that herds infected with<br />

high virulence M. hyopneumoniae isolates will experience considerably higher<br />

economical losses than herds infected with low virulence isolates. A diagnostic test<br />

discriminating high <strong>and</strong> low virulence isolates would be very useful to implement the<br />

most appropriate control strategies.<br />

The availability <strong>of</strong> a collection <strong>of</strong> M. hyopneumoniae isolates <strong>of</strong> well<br />

determined virulence creates various possibilities for further research. Using our<br />

strains, Meyns et al. (2004) quantified the spread <strong>of</strong> high <strong>and</strong> low virulence isolates.<br />

- 178 -


3 GENERAL DISCUSSION<br />

Although a faster spread <strong>of</strong> high virulence isolates was observed, the adjusted<br />

reproduction ratio (R n ) values were not significantly different. Macrophages are found<br />

to be the dominant cells present in lungs infected with M. hyopneumoniae (Sarradell<br />

et al., 2003) <strong>and</strong> pro-inflammatory cytokines which are mainly produced by<br />

macrophages play a prominent role in the lesion development (Henderson et al.,<br />

1996). It would not be inconceivable that infections with high virulence isolates result<br />

in higher production <strong>of</strong> pro-inflammatory cytokines by macrophages compared to<br />

infections with low virulence isolates. A difference in macrophage stimulation was<br />

observed by Jungi et al. (1996) comparing different strains <strong>of</strong> Mycoplasma mycoides<br />

ssp. mycoides small colony type. In Mycoplasma fermentans, a lipoprotein called<br />

macrophage activating lipoprotein 2 kDa (MALP-2), was characterized <strong>and</strong> found to<br />

be responsible for the induction <strong>of</strong> pro-inflammatory cytokines (Seya <strong>and</strong> Matsumoto,<br />

2002). Further studies on lipoproteins present in M. hyopneumoniae might provide<br />

more insights in the pathogenesis <strong>of</strong> enzootic pneumonia.<br />

- 179 -


3 GENERAL DISCUSSION<br />

The second part <strong>of</strong> this PhD deals with in vitro <strong>and</strong> in vivo susceptibility <strong>of</strong> M.<br />

hyopneumoniae isolates to some groups <strong>of</strong> antimicrobials. This information is<br />

essential to avoid ineffective treatments. Since M. hyopneumoniae is a very fastidious<br />

organism that is difficult to isolate <strong>and</strong> cultivate, data on the prevalence <strong>of</strong> acquired<br />

resistance are very scarce in the literature. Also, susceptibility information from other<br />

countries may be misleading since the type <strong>of</strong> antimicrobials <strong>and</strong> the amount<br />

administered may differ substantially due to country regulations in antimicrobial use,<br />

eg. fluoroquinolones are not allowed for use in pigs in the US but are allowed in the<br />

EU (World <strong>Health</strong> Organization, 1998; American Veterinarian Medical Association,<br />

2005).<br />

Based on the literature (Hannan et al., 1989; Ter Laak et al., 1991; Tanner et<br />

al., 1993; Friis <strong>and</strong> Szancer, 1994; Hannan et al., 1997), a high prevalence <strong>of</strong> isolates<br />

with acquired resistance was not expected. Only Inamoto et al. (1994) found several<br />

M. hyopneumoniae isolates with decreased susceptibility to oxytetracycline. In our<br />

studies, acquired resistance to tetracyclines was not detected in spite <strong>of</strong> the frequent<br />

use <strong>of</strong> these antibiotics in swine herds. One <strong>of</strong> the 21 Belgian M. hyopneumoniae<br />

isolates tested was found to have decreased susceptibility to macrolides <strong>and</strong><br />

lincosamides, while in 5 isolates the susceptibility towards fluoroquinolones was<br />

decreased. Macrolides <strong>and</strong> lincosamides are frequently used for the treatment <strong>of</strong> M.<br />

hyopneumoniae infections in Western Europe, while fluoroquinolones are only<br />

occasionally used (Chauvin et al., 2002; Timmerman et al., 2005).<br />

Acquired resistance to an antimicrobial is the result <strong>of</strong> an alteration <strong>of</strong> the<br />

genome <strong>of</strong> a microorganism. It may arise because <strong>of</strong> a mutation in a gene or through<br />

horizontal transfer <strong>of</strong> resistance genes. Transfer-resistance has been described in M.<br />

pulmonis (Teachman et al., 2002) but no other reports on horizontal transfer <strong>of</strong><br />

resistance genes exist. In chapter 2.2.2, it was shown that resistance to macrolides <strong>and</strong><br />

lincosamides in our M. hyopneumoniae isolate was due to a A2058G mutation in the<br />

23S rRNA gene. A C264A mutation in parC <strong>and</strong> a C635T mutation in gyrA were<br />

found to be responsible for decreased susceptibility to enr<strong>of</strong>loxacin <strong>and</strong> flumequine<br />

(chapter 2.2.3). These mutations result in a modification <strong>of</strong> the target site for these<br />

antimicrobials. Resistance against fluoroquinolones might also be efflux mediated as<br />

has been described in M. hominis where reduced cipr<strong>of</strong>loxacin accumulation was<br />

related to the overexpression <strong>of</strong> two genes encoding a putative ABC type efflux<br />

(Raherison et al., 2002). However, it has been demonstrated that mutations in genes<br />

- 180 -


3 GENERAL DISCUSSION<br />

encoding the target sites <strong>of</strong> fluoroquinolones are the major cause <strong>of</strong> the increase in<br />

MIC <strong>and</strong> efflux mediated resistance is only supplementary (Poole, 2005). Whether<br />

efflux-mechanisms contribute to the increased MIC-values <strong>of</strong> fluoroquinolones for M.<br />

hyopneumoniae needs further investigation.<br />

Several factors influence the development <strong>and</strong> spread <strong>of</strong> antimicrobial<br />

resistant micro-organisms. The antimicrobial use is one factor gaining much attention.<br />

The selection pressure exerted by antimicrobials is influenced by the drug regimen,<br />

which includes the dose, the treatment interval, the duration <strong>of</strong> treatment <strong>and</strong> the<br />

formulation (Catry et al., 2003). A theoretical explanation <strong>of</strong> the influence <strong>of</strong> these<br />

factors on the development <strong>of</strong> de novo resistance is the “mutant selection window”<br />

(Catry et al., 2003; Drlica, 2003; Epstein et al., 2004). The mutant selection window<br />

is an antimicrobial concentration range extending from the MIC 99 to the mutant<br />

prevention concentration (MPC) which can be defined as the antimicrobial<br />

concentration required for blocking the growth <strong>of</strong> the least susceptible, single-step<br />

mutant. Antimicrobial concentrations fitted within this window enrich subpopulations<br />

selectively. Traditional dosing recommendations to exceed MICs are likely to place<br />

drug concentrations inside the selection window. In our study (chapter 2.2.1), the use<br />

<strong>of</strong> enr<strong>of</strong>loxacin in suckling piglets was striking. This drug was at least used in the<br />

farrowing unit on all herds where a resistant isolate was obtained. Delsol et al. (2004<br />

a;b) demonstrated that administration <strong>of</strong> registered doses <strong>of</strong> enr<strong>of</strong>loxacin for 5 days to<br />

weaned piglets selected for enr<strong>of</strong>loxacin resistant Campylobacter coli isolates <strong>and</strong> for<br />

quinolone (but not fluoroquinolone) resistant Salmonella enterica serovar<br />

Typhimurium isolates. The use <strong>of</strong> enr<strong>of</strong>loxacin in suckling piglets may have selected<br />

low level resistant strains due to a mutation in parC. This low level resistant<br />

population may have been sustained on the herd by the use <strong>of</strong> a drug dose within the<br />

mutant selection window possibly resulting in selection <strong>of</strong> a population with higher<br />

level resistance on one herd due to an additional mutation in gyrA. The same<br />

hypothesis could be raised concerning the use <strong>of</strong> lincomycin which on one herd may<br />

have resulted in spread <strong>of</strong> mutants in the 23S rRNA gene. Experimental studies<br />

designed to substantiate this hypothesis may provide practical evidence for future<br />

treatment regimens.<br />

In a final study, our experimental infection model was used to evaluate in vivo<br />

effectiveness <strong>of</strong> tylosin (chapter 2.2.4). It was shown that this antimicrobial,<br />

belonging to the 16-membered macrolides, can be used to limit the extent <strong>of</strong><br />

- 181 -


3 GENERAL DISCUSSION<br />

macroscopic lung lesions <strong>and</strong> consequently to reduce the clinical signs. Macrolide<br />

antibiotics accumulate in many tissues such as the epithelial lining fluid <strong>and</strong> it has<br />

been shown that the macrolide concentration in respiratory tract tissues <strong>and</strong><br />

extracellular fluids is higher than simultaneously measured serum concentrations (Jain<br />

<strong>and</strong> Danzinger, 2004). Results <strong>of</strong> immun<strong>of</strong>luorescence studies demonstrated that<br />

although tylosin treatment is able to reduce the number <strong>of</strong> M. hyopneumoniae<br />

organisms in the lungs, not all bacteria are eliminated. The reason for the latter<br />

finding is not clear but narrowing <strong>of</strong> small blood vessels in the lungs due to<br />

accumulation <strong>of</strong> inflammatory cells around small airways <strong>and</strong> blood vessels may play<br />

a role. Diffusion <strong>of</strong> the drug from the blood to the lung tissue might be delayed or<br />

hampered resulting in diposition <strong>of</strong> the drug mainly at places with lower numbers <strong>of</strong><br />

organisms. Additionally, the location <strong>of</strong> M. hyopneumoniae on the apex <strong>of</strong> the cilia<br />

<strong>and</strong> microvilli may also be a disadvantage for the accessiblity by the drug.<br />

- 182 -


3 GENERAL DISCUSSION<br />

REFERENCES<br />

1. American Veterinary Medical Association. (2005). Judicious use <strong>of</strong> antimicrobials for swine<br />

veterinarians (Online). http://www.avma.org/scienact/jtua/swine/jtuaswine.asp.<br />

2. Artiushin, S. & Minion, F.C. (1996). Arbitrarily primed PCR analysis <strong>of</strong> Mycoplasma<br />

hyopneumoniae field isolates demonstrates genetic heterogeneity. International Journal <strong>of</strong><br />

Systemic Bacteriology 46, 324-328.<br />

3. Catry, B., Laevens, H., Devriese, L.A., Opsomer, G. & de Kruif, A. (2003). Antimicrobial<br />

resistance in livestock. Journal <strong>of</strong> Veterinary Pharmacology <strong>and</strong> Therapy 26, 81-93.<br />

4. Chauvin, C., Beloeil, P-A., Or<strong>and</strong>, J-P., S<strong>and</strong>ers, P. & Madec, F. (2002). A survey <strong>of</strong> grouplevel<br />

antibiotic prescriptions in pig production in France. Preventive Veterinary Medicine<br />

55,109-120.<br />

5. Clark, L., Armstrong, C., Knox, K. & Mayrose, V. (1991). The effect <strong>of</strong> all-in/all-out<br />

management on pigs from a herd with enzootic pneumonia. Veterinary Medicine 86, 946-951.<br />

6. Delsol, A.A., Sunderl<strong>and</strong>, J., Woodward, M.J., Pumbwe, L., Piddock, L.J. & Roe, J.M.<br />

(2004b). Emergence <strong>of</strong> fluoroquinolone resistance in the native Campylobacter coli population<br />

<strong>of</strong> pigs exposed to enr<strong>of</strong>loxacin. Journal <strong>of</strong> Antimicrobial Chemotherapy 53, 872-874.<br />

7. Delsol, A.A., Woodward, M.J. & Roe, J.M. (2004a). Effect <strong>of</strong> a 5 day enr<strong>of</strong>loxacin treatment<br />

on Salmonella enterica serotype Typhimurium DT104 in the pig. Journal <strong>of</strong> Antimicrobial<br />

Chemotherapy 53, 396-398.<br />

8. Drlica, K. (2003). The mutant selection window <strong>and</strong> antimicrobial resistance. Journal <strong>of</strong><br />

Antimicrobial Chemotherapy 52, 11-17.<br />

9. Epstein, B.J., Gums, J.G. & Drlica, K. (2004). The changing face <strong>of</strong> antibiotic prescribing: the<br />

mutant selection window. The Annals <strong>of</strong> Pharmacotherapy, 38, 1675-1682.<br />

10. Frey, J., Haldimann, A. & Nicolet, J. (1992). Chromosomal heterogeneity <strong>of</strong> various<br />

Mycoplasma hyopneumoniae field strains. International Journal <strong>of</strong> Systemic Bacteriology 42,<br />

275-280.<br />

11. Friis, N.F. & Szancer, J. (1994). Sensitivity <strong>of</strong> certain porcine <strong>and</strong> bovine mycoplasmas to<br />

antimicrobial agents in a liquid medium test compared to a disc assay. Acta Veterinaria<br />

Sc<strong>and</strong>inavia 35, 389-394.<br />

12. Goodwin, R., Hodgson, R., Wittlestone, P. & Woodhams, R. (1969). Immunity in<br />

experimentally induced enzootic pneumonia <strong>of</strong> pigs. Journal <strong>of</strong> Hygiene (London) 67, 193-208.<br />

13. Hannan, P.C.T., O’Hanlon, P.J. & Rogers, N.H. (1989). In vitro evaluation <strong>of</strong> various<br />

quinolone antibacterial agents against veterinary mycoplasmas <strong>and</strong> porcine respiratory bacterial<br />

pathogens. Research in Veterinary Science 46, 202-211.<br />

14. Hannan, P.C.T., Windsor, H.M. & Ripley, P.H. (1997). In vitro susceptibilities <strong>of</strong> recent field<br />

isolates <strong>of</strong> Mycoplasma hyopneumoniae <strong>and</strong> Mycoplasma hyopsynoviae to valnemulin<br />

(Econor ® ), tiamulin <strong>and</strong> enr<strong>of</strong>loxacin <strong>and</strong> the in vitro development <strong>of</strong> resistance to certain<br />

antimicrobial agents in Mycoplasma hyopneumoniae. Research in Veterinary Science 63, 157-<br />

160.<br />

15. Henderson, B., Poole, S. & Wilson, M. (1996). Bacterial modulins: a novel class <strong>of</strong> virulence<br />

factors which cause host tissue pathology by inducing cytokine synthesis. Microbiological<br />

re<strong>view</strong>s 60, 316-341.<br />

- 183 -


3 GENERAL DISCUSSION<br />

16. Inamoto, T., Takahashi, H., Yamamoto, K., Nakai, Y. & Ogimoto, K. (1994). Antibiotic<br />

susceptibility <strong>of</strong> Mycoplasma hyopneumoniae isolated from swine. Journal <strong>of</strong> Veterinary<br />

Medical Science 56, 393-394.<br />

17. Jain, R. & Danzinger, L.H. (2004). The macrolide antibiotics: a pharmacokinetic <strong>and</strong><br />

pharmacodinamic over<strong>view</strong>. Current Pharmaceutical Design 10, 3045-3053.<br />

18. Jungi, T.W., Krampe, M., Sileghem, M., Griot, C. & Nicolet, J. (1996). Differential <strong>and</strong><br />

strain-specific triggering <strong>of</strong> bovine alveolar macrophage effector functions by mycoplasmas.<br />

Microbial Pathogenesis 21, 487-498.<br />

19. Kobisch, M., Blanchard, B., Portier, M. & Le Potier, M. (1993). Mycoplasma<br />

hyopneumoniae infection in pigs: duration <strong>of</strong> the disease <strong>and</strong> resistance to reinfection.<br />

Veterinary Research 24, 67-77.<br />

20. Maes, D., Verdonck, M., Deluyker, H., de Kruif, A. (1996). Enzootic pneumonia in pigs: a<br />

re<strong>view</strong>. The Veterinary Quarterly 18, 104-109.<br />

21. Meyns, T., Maes, D., Dewulf, J., Vicca, J., Haesebrouck, F. & de Kruif, A. (2004).<br />

Quantification <strong>of</strong> the spread <strong>of</strong> Mycoplasma hyopneumoniae in nursery pigs using transmission<br />

experiments. Preventive Veterinary Medicine 66, 265-275.<br />

22. Minion, F.C., Adams, C. & Hsu, T. (2000). R& region <strong>of</strong> P97 mediates adherence <strong>of</strong><br />

Mycoplasma hyopneumoniae to swine cilia. Infection <strong>and</strong> Immunity 68, 3056-3060.<br />

23. Negri, M.C., Lipsitch, M., Blazquez, J., Levin, B.R. & Baquero, F. (2000). Concentrationdependent<br />

selection <strong>of</strong> small phenotypic difference in TEM β-lactamase-mediated antibiotic<br />

resistance. Antimicrobial Agents <strong>and</strong> Chemotherapy 44, 2485-2491.<br />

24. Piffer, I. & Ross, R. (1984). Effect <strong>of</strong> age on susceptibility <strong>of</strong> pigs to Mycoplasma<br />

hyopneumoniae pneumonia. American Journal <strong>of</strong> Veterinary Research 45, 478-481.<br />

25. Poole, K. (2005). Efflux-mediated antimicrobial resistance. Journal <strong>of</strong> Antimicrobial<br />

Chemotherapy 56, 20-51.<br />

26. Raherison, S., Gonzales, P., Renaudin, H., Charron, A., Bébéar, C. & Bébéar, C.M. 2002.<br />

Evidence <strong>of</strong> active efflux in resistance to cipr<strong>of</strong>loxacin <strong>and</strong> to ethidium bromide by Mycoplasma<br />

hominis. Antimicrobial Agents <strong>and</strong> Chemotherapy, 46, 672-679.<br />

27. Ro, L. & Ross, R.F. (1983). Comparison <strong>of</strong> Mycoplasma hyopneumoniae strains by serologic<br />

methods. American Journal <strong>of</strong> Veterinary Research 44, 2087-2094.<br />

28. Ross, R.F. (1999): Mycoplasmal diseases. In: Leman A.D., Straw B.E., Mengeling W.L.,<br />

Allaire S.D., Taylor D.J (Editors), Diseases <strong>of</strong> Swine, 8th Edition, Iowa State University Press,<br />

Ames, pp. 495-509.<br />

29. Sarradell, J., Andrada, M., Ramírez, A.S., Fernández, A., Gómez-Villam<strong>and</strong>os, J.C., Jover,<br />

A., Lorenzo, H., Herráez, P. & Rodríguez, F. (2003). A morphological <strong>and</strong><br />

immunohistochemical study <strong>of</strong> the bronchus-associated lymphoid tissue <strong>of</strong> pigs naturally<br />

infected with Mycoplasma hyopneumoniae. Veterinary Pathology 40, 395-404.<br />

30. Seya, T. & Matsumoto, M. (2002). A lipoprotein family from Mycoplasma fermentans confers<br />

host immune activation through Toll-like receptor 2. The International Journal <strong>of</strong> Biochemistry<br />

& Cell Biology 34, 901-906.<br />

31. Tanner, A.C., Erickson, B.Z. & Ross, R.F. (1993). Adaptation <strong>of</strong> the Sensititre ® broth<br />

microdilution technique to antimicrobial susceptibility testing <strong>of</strong> Mycoplasma hyopneumoniae.<br />

Veterinary Microbiology 36, 301-306.<br />

- 184 -


3 GENERAL DISCUSSION<br />

32. Ter Laak, E.A., Pijpers, A., Noordergraaf, J.H., Schoevers, E.C. & Verheijden, J.H.M.<br />

(1991). Comparison <strong>of</strong> methods for in vitro testing <strong>of</strong> susceptibility <strong>of</strong> porcine Mycoplasma<br />

species to antimicrobial agents. Antimicrobial Agents <strong>and</strong> Chemotherapy 35, 228-233.<br />

33. Teachman, A.M., French, C.T., Yu, H., Simmons, W.L. & Dybvig, K. (2002). Gene transfer<br />

in Mycoplasma pulmonis. Journal <strong>of</strong> Bacteriology 184, 947-951.<br />

34. Timmerman T., Dewulf J., Catry B., Feyen B., Opsomer G., de Kruif A. & Maes D. (2005).<br />

Quantification <strong>and</strong> evaluation <strong>of</strong> antimicrobial-drug use in group treatments for fattening pigs in<br />

Belgium. Preventive Veterinary Medicine, accepted.<br />

35. Wallgren, O., Bolske, G., Gustafsson, S., Mattsson, S., Fossum, C. (1998). Humoral immune<br />

responses to Mycoplasma hyopneumoniae in sows <strong>and</strong> <strong>of</strong>fspring following an outbreak <strong>of</strong><br />

mycoplasmosis. Veterinary Microbiology 60, 193-205.<br />

36. World <strong>Health</strong> Organization. (1998). Use <strong>of</strong> quinolones in food animals <strong>and</strong> potential impact<br />

on human health. (Online). http:www.who.int/emcdocuments/zoonoses/docs/whoemczdi9810.html#Quinolone%20use%20in%animals.<br />

- 185 -


- 187 -<br />

4 SUMMARY


4 SUMMARY<br />

Mycoplasma hyopneumoniae is the primary cause <strong>of</strong> enzootic pneumonia in<br />

pigs, a chronic disease which is responsible for major economic losses in the pig<br />

industry worldwide. The mean factors influencing the disease-course <strong>and</strong> economic<br />

losses mentioned in the literature are environmental factors <strong>and</strong> herd management.<br />

A re<strong>view</strong> <strong>of</strong> the literature focussing on the pathogenesis <strong>of</strong> enzootic<br />

pneumonia is given in chapter 1.1.1 <strong>of</strong> this PhD thesis. In chapter 1.1.2, an over<strong>view</strong><br />

<strong>of</strong> antimicrobial agents <strong>and</strong> their in vitro <strong>and</strong> in vivo activity against M.<br />

hyopneumoniae is presented. Development <strong>of</strong> resistance in Mycoplasma spp. to<br />

circumvent the antibiotic action <strong>and</strong> the related resistance mechanisms are<br />

summarized. Control <strong>of</strong> enzootic pneumonia can be achieved using preventive<br />

medication or vaccination. Advantages <strong>and</strong> disadvantages <strong>of</strong> both strategies are<br />

discussed. Finally, M. hyopneumoniae eradication strategies developed <strong>and</strong> applied in<br />

some countries are described.<br />

The general aims <strong>of</strong> this thesis were to evaluate the virulence <strong>of</strong> M.<br />

hyopneumoniae field isolates <strong>and</strong> to study their antimicrobial susceptibility.<br />

In chapter 2.1.1, the patterns <strong>of</strong> M. hyopneumoniae infections were<br />

investigated in five herds with clinical evidence <strong>of</strong> enzootic pneumonia <strong>and</strong> in five<br />

herds subclinically infected with M. hyopneumoniae. In the clinically infected herds,<br />

housing <strong>and</strong> management conditions were good whereas these conditions were poor<br />

in the subclinically infected herds. In each herd, serum antibodies against M.<br />

hyopneumoniae were determined in pigs <strong>of</strong> different ages <strong>and</strong> nasal swabs were taken<br />

for M. hyopneumoniae detection using nested PCR (nPCR). The percentage <strong>of</strong><br />

seropositive pigs in the clinically infected herds increased from 8% in pigs <strong>of</strong> 9 weeks<br />

to 52% in pigs <strong>of</strong> 18 weeks <strong>and</strong> seroconversion was most frequently observed<br />

between 12 <strong>and</strong> 15 weeks <strong>of</strong> age. In the subclinically infected herds, the percentages<br />

increased from 2 to 24% <strong>and</strong> most <strong>of</strong> the pigs became seropositive between 15 <strong>and</strong> 18<br />

weeks. The percentage <strong>of</strong> nPCR positive pigs at 6 weeks was 16% <strong>and</strong> 0% in the<br />

clinically <strong>and</strong> subclinically infected herds, respectively. The results demonstrate that<br />

the seroprevalences were higher in the clinically infected herds <strong>and</strong> that most <strong>of</strong> the<br />

pigs became infected with M. hyopneumoniae at a younger age. It can be concluded<br />

that additional factors different from housing <strong>and</strong> management, like differences in<br />

- 189 -


4 SUMMARY<br />

virulence among M. hyopneumoniae isolates, may determine the infection pattern <strong>of</strong><br />

M. hyopneumoniae <strong>and</strong> the clinical course <strong>of</strong> the infection.<br />

The next chapter (chapter 2.1.2) investigates the virulence <strong>of</strong> M.<br />

hyopneumoniae isolates under experimental conditions. These isolates were obtained<br />

from the herds selected as described in chapter 2.1.1. This study also aimed to link<br />

genetic characteristics, as determined by r<strong>and</strong>omly amplified polymorphic DNA<br />

(RAPD), with the virulence <strong>of</strong> the isolates. Ninety conventional M. hyopneumoniaefree<br />

piglets were inoculated intratracheally with a field isolate, a reference strain <strong>of</strong><br />

high virulence or sterile culture medium. The animals were examined daily for the<br />

presence <strong>of</strong> disease signs <strong>and</strong> a respiratory disease score (RDS) was assessed for<br />

every pig. Twenty-eight days post infection, pigs were euthanized, blood sampled <strong>and</strong><br />

a lung lesion score was given per pig. Lung samples were processed for<br />

histopathology, immun<strong>of</strong>luorescence testing for M. hyopneumoniae <strong>and</strong> isolation <strong>of</strong><br />

M. hyopneumoniae. RAPD analysis was performed on all M. hyopneumoniae isolates.<br />

Significant differences between isolates were found for the RDS, lung lesion<br />

score, histopathology, immun<strong>of</strong>luorescence <strong>and</strong> serology. Based on the results <strong>of</strong> the<br />

different parameters, isolates were divided into three “virulence” groups: low,<br />

moderate <strong>and</strong> high virulence isolates. Typically, a 5000 bp RAPD fragment was<br />

associated with the high <strong>and</strong> moderate virulence isolates whereas it was absent in low<br />

virulence isolates. It was concluded that high variation in virulence exists between M.<br />

hyopneumoniae isolates obtained from different pig herds <strong>and</strong> that further studies are<br />

required to determine whether the 5000 bp b<strong>and</strong> obtained in the RAPD analysis can<br />

be used as a virulence marker.<br />

In the second part <strong>of</strong> this thesis, the susceptibility <strong>of</strong> M. hyopneumoniae to<br />

antimicrobial agents is described. Chapter 2.2.1 reports the in vitro susceptibilities <strong>of</strong><br />

21 M. hyopneumoniae isolates obtained between 2000 <strong>and</strong> 2002. This study was<br />

conducted because information about in vitro susceptibilities <strong>of</strong> M. hyopneumoniae is<br />

scarce. A broth microdilution technique was used to determine the susceptibilities for<br />

12 antimicrobials frequently used in pig herds in Belgium. Acquired resistance to<br />

spectinomycin, oxytetracycline, doxycycline, gentamicin, florfenicol <strong>and</strong> tiamulin<br />

was not observed. One isolate showed acquired resistance to lincomycin, tilmicosin<br />

<strong>and</strong> tylosin. This isolate was susceptible to all other antibiotics tested. The Minimal<br />

Inhibitory Concentration (MIC)-values <strong>of</strong> flumequine were > 16 µg/ml for 5 isolates,<br />

- 190 -


4 SUMMARY<br />

while the MIC 50 -value was 2 µg/ml. For these 5 isolates, the MIC-values for<br />

enr<strong>of</strong>loxacin were ≥ 0.5 µg/ml, the MIC 50 being 0.06 µg/ml. As far as we know, this<br />

is the first report <strong>of</strong> acquired resistance against macrolides, lincosamides <strong>and</strong><br />

fluoroquinolones in M. hyopneumoniae field isolates.<br />

In the following two chapters (2.2.2 <strong>and</strong> 2.2.3), the mechanisms <strong>of</strong> acquired<br />

resistance <strong>of</strong> M. hyopneumoniae isolates against macrolides, lincosamides <strong>and</strong><br />

streptogramins (MLS) <strong>and</strong> fluoroquinolones were elucidated.<br />

To study the acquired resistance to MLS antibiotics (chapter 2.2.2), the<br />

phenotype <strong>and</strong> the genotype <strong>of</strong> the resistant M. hyopneumoniae field isolate were<br />

compared to 5 susceptible isolates. Additional MICs were determined for other<br />

members <strong>of</strong> the MLS group, eg. erythromycin, clindamycin, azithromycin <strong>and</strong><br />

clarithromycin. The MICs <strong>of</strong> all antibiotics tested were significantly higher for the<br />

resistant isolate. The MICs <strong>of</strong> the 16-membered macrolide tylosin ranged from 8 to 16<br />

µg/ml for the resistant isolate <strong>and</strong> from 0.03 to 0.125 µg/ml for the 5 susceptible<br />

isolates. The MICs for the 15-membered macrolides <strong>and</strong> lincosamides were higher<br />

than 64 µg/ml for the resistant isolate while only 0.06 to 0.5 µg/ml for the susceptible<br />

isolates. M. hyopneumoniae isolates are intrinsically resistant to the 14-membered<br />

macrolides due to a G2057A mutation (E. coli numbering) in their 23S rDNA.<br />

Therefore, high MICs were observed for all isolates, although the MICs for the<br />

resistant isolate were clearly increased. An additional, acquired A2058G point<br />

mutation was found in the 23S rRNA gene <strong>of</strong> the resistant isolate. No differences<br />

linked to resistance were found in the ribosomal proteins L4 <strong>and</strong> L22. The present<br />

study showed that 23S rRNA mutations, resulting in resistance to macrolides <strong>and</strong><br />

lincosamides as described in other Mycoplasma spp., also occur under field conditions<br />

in M. hyopneumoniae.<br />

The mechanism <strong>of</strong> acquired resistance to fluoroquinolones in 5 M.<br />

hyopneumoniae field isolates was studied in chapter 2.2.3. Therefore, the genotypes<br />

<strong>of</strong> the 5 resistant isolates were compared to the genotypes <strong>of</strong> 5 susceptible isolates as<br />

determined in the study described in chapter 2.2.1. Their quinolone resistancedetermining<br />

regions (QRDR) <strong>of</strong> gyrA, gyrB, parC <strong>and</strong> parE were characterized. Parts<br />

<strong>of</strong> the DNA gyrase subunits, gyrA <strong>and</strong> gyrB, <strong>and</strong> the topoisomerase subunits, parC<br />

<strong>and</strong> parE, containing the QRDR, were sequenced. In all 5 resistant isolates, one point<br />

mutation (C → A) in parC was found, resulting in an amino acid change from serine<br />

- 191 -


4 SUMMARY<br />

to tyrosine at position 80 (E. coli numbering). For 4 <strong>of</strong> these isolates, this was the only<br />

mutation found. These isolates had a MIC <strong>of</strong> enr<strong>of</strong>loxacin <strong>of</strong> 0.5 µg/ml, while for<br />

sensitive isolates the MIC <strong>of</strong> enr<strong>of</strong>loxacin was ≤ 0.06 µg/ml. One resistant isolate (Mh<br />

20) had an extra mutation (C → T) in gyrA resulting in an amino acid change from<br />

alanine to valine at position 83 (E. coli numbering). This mutation was correlated with<br />

an increase in the MIC <strong>of</strong> enr<strong>of</strong>loxacin (> 1 µg/ml). No mutations resulting in an<br />

amino acid change were detected in the QRDR <strong>of</strong> the gyrB <strong>and</strong> parE genes <strong>of</strong> the<br />

selected stains. This is the first description <strong>of</strong> the mechanism <strong>of</strong> resistance against<br />

fluoroquinolones in M. hyopneumoniae.<br />

In the last chapter (chapter 2.2.4), the efficacy <strong>of</strong> in-feed medication with<br />

tylosin (Tylan® Premix; Elanco Animal <strong>Health</strong>) for the treatment <strong>of</strong> enzootic<br />

pneumonia was examined in an experimental M. hyopneumoniae infection model.<br />

Three groups <strong>of</strong> 10 conventional M. hyopneumoniae-free piglets were inoculated<br />

intratracheally with a highly virulent M. hyopneumoniae field isolate (non-treated<br />

control (non-TP) group <strong>and</strong> tylosin premix (TP group)) or with sterile culture medium<br />

(non-infected <strong>and</strong> non-treated control (NC) group). Twelve days after infection when<br />

10% <strong>of</strong> the animals were coughing, tylosin treatment <strong>of</strong> the TP group was initiated<br />

(100 mg/kg <strong>of</strong> feed for 21 days). Animals were daily examined for the presence <strong>of</strong><br />

clinical signs <strong>and</strong> a respiratory disease score (RDS) was given per pig. Thirty-three<br />

days after infection, all pigs were euthanized <strong>and</strong> the lung lesions were quantified.<br />

Lung samples were processed for immun<strong>of</strong>luorescence testing for M. hyopneumoniae.<br />

Average RDS <strong>and</strong> lung lesion scores were significantly higher (P


4 SUMMARY<br />

In conclusion, the most important findings <strong>of</strong> this research are that:<br />

- apart from management <strong>and</strong> housing conditions, the virulence <strong>of</strong> the M.<br />

hyopneumoniae isolate strongly influences the disease-course<br />

- antimicrobial resistance is not a major problem in M. hyopneumoniae isolates<br />

but it does occur in the field <strong>and</strong> careful use <strong>of</strong> antimicrobial agents is<br />

warranted<br />

- the mechanism <strong>of</strong> resistance in M. hyopneumoniae against MLS <strong>and</strong><br />

fluoroquinolones is based on mutations in genes encoding the drug target site<br />

- tylosin (100 ppm) administered in the feed 12 days after experimental<br />

infection is efficient in reducing clinical signs <strong>and</strong> lung lesions<br />

These findings are generally discussed in chapter 3 <strong>and</strong> possibilities for future<br />

research are also indicated.<br />

- 193 -


- 195 -<br />

5 SAMENVATTING


5 SAMENVATTING<br />

Mycoplasma hyopneumoniae is de primaire oorzaak van enzoötische<br />

pneumonie bij varkens, een chronische ziekte die wereldwijd verantwoordelijk is voor<br />

grote economische verliezen in de intensieve varkenshouderij. In de literatuur wordt<br />

vermeld dat het ziekteverloop en de economische verliezen voornamelijk beïnvloed<br />

worden door de omgevingsfactoren en het bedrijfsmanagement.<br />

In ho<strong>of</strong>dstuk 1.1.2 wordt een overzicht gegeven van de beschikbare<br />

antimicrobiële middelen en hun in vivo en in vitro activiteit tegen M. hyopneumoniae.<br />

Ontwikkeling van antimicrobiële resistentie door Mycoplasma spp. en de gerelateerde<br />

resistentiemechanismen worden samengevat. Voor het bestrijden van enzoötische<br />

pneumonie worden in de praktijk zowel preventieve medicatie als vaccinatie gebruikt.<br />

De voordelen en nadelen van beide strategieën worden bediscussieerd. Tot slot<br />

worden eradicatiestrategieën voor M. hyopneumoniae, die ontwikkeld en toegepast<br />

werden in een aantal l<strong>and</strong>en, besproken.<br />

De voornaamste doelstellingen van deze doctoraatsthesis waren het evalueren<br />

van de virulentie van M. hyopneumoniae veldisolaten en het bestuderen van hun<br />

antimicrobiële gevoeligheid.<br />

In ho<strong>of</strong>dstuk 2.1.1 werden de infectiepatronen van M. hyopneumoniae<br />

onderzocht op 5 bedrijven met een klinisch beeld van enzoötische pneumonie en op 5<br />

subklinisch geïnfecteerde bedrijven. Op de klinisch geïnfecteerde bedrijven waren de<br />

huisvesting en het management goed terwijl deze onvoldoende waren op de<br />

subklinisch geïnfecteerde bedrijven. Op elk bedrijf werd van een aantal<br />

leeftijdscategorieën bloed genomen voor het opsporen van antist<strong>of</strong>fen tegen M.<br />

hyopneumoniae en werden neusswabs verzameld waarin de kiem werd opgezocht<br />

d.m.v. nested PCR (nPCR). Het percentage seropositieve dieren op klinisch<br />

geïnfecteerde bedrijven steeg van 8% bij biggen van 9 weken oud tot 52% bij varkens<br />

van 18 weken. De meeste dieren seroconverteerden tussen 12 en 15 weken leeftijd.<br />

Op de subklinisch geïnfecteerde bedrijven stegen de percentages van 2 naar 24%. De<br />

meeste dieren seroconverteerden tussen 15 en 18 weken. Het percentage nPCR<br />

positieve biggen van 6 weken was 16% op de klinisch geïnfecteerde bedrijven en 0%<br />

op de subklinisch geïnfecteerde bedrijven. Deze resultaten tonen aan dat de<br />

seroprevalenties hoger zijn op klinisch geïnfecteerde bedrijven en dat op deze<br />

bedrijven de meeste biggen geïnfecteerd worden op een jongere leeftijd. Hieruit<br />

- 197 -


5 SAMENVATTING<br />

kunnen we concluderen dat niet alleen de huisvesting en het management invloed<br />

hebben op het infectiepatroon van M. hyopneumoniae en op het klinisch verloop van<br />

de ziekte. Mogelijks bestaan er ook verschillen in virulentie tussen M. hyopneumoniae<br />

isolaten.<br />

In het volgende ho<strong>of</strong>dstuk (ho<strong>of</strong>dstuk 2.1.2) werd de virulentie van zes M.<br />

hyopneumoniae veldisolaten onderzocht onder experimentele omst<strong>and</strong>igheden. Deze<br />

isolaten werden bekomen op de bedrijven beschreven in ho<strong>of</strong>dstuk 2.1.1. In deze<br />

studie werd ook het verb<strong>and</strong> nagegaan tussen genetische verschillen van de isolaten,<br />

bepaald met behulp van r<strong>and</strong>omly amplified polymorphic DNA (RAPD), en de<br />

virulentie van de isolaten. Negentig conventionele M. hyopneumoniae-vrije biggen<br />

werden intratracheaal geïnoculeerd met een veldisolaat, een hoog-virulente<br />

referentiestam <strong>of</strong> steriel cultuurmedium. Dagelijks werden de klinische symptomen<br />

van de dieren beoordeeld door middel van een “respiratory disease score” (RDS).<br />

Achtentwintig dagen na de infectie werden alle biggen geëuthanaseerd, werd er bloed<br />

genomen en werden de longlesies per varken gescoord. Longstalen werden verwerkt<br />

voor histopathologisch onderzoek, immun<strong>of</strong>luorescentie en isolatie van M.<br />

hyopneumoniae. RAPD analyse werd uitgevoerd op alle M. hyopneumoniae isolaten.<br />

Significante verschillen tussen de isolaten werden waargenomen voor de RDS, de<br />

longlesies, de histopathologie, de immun<strong>of</strong>luorescentie en de serologie. Gebaseerd op<br />

de resultaten van deze parameters werden de isolaten in 3 groepen verdeeld: hoog-,<br />

matig- en laagvirulente isolaten. Opvallend was de aanwezigheid van een 5000 bp<br />

RAPD fragment bij alle hoog- en matig-virulente isolaten. Dit fragment was afwezig<br />

bij laagvirulente isolaten. Uit dit onderzoek kon besloten worden dat er een grote<br />

variatie is in de virulentie van M. hyopneumoniae isolaten die geïsoleerd werden op<br />

de verschillende bedrijven. Bijkomende studies zijn nodig om de 5000 bp b<strong>and</strong> verder<br />

te karakteriseren en om na te gaan <strong>of</strong> deze kan gebruikt worden als virulentiemerker.<br />

In het tweede deel van deze thesis werd ingegaan op de gevoeligheid van M.<br />

hyopneumoniae tegen antimicrobiële agentia. In ho<strong>of</strong>dstuk 2.2.1 werd de gevoeligheid<br />

bepaald van 21 M. hyopneumoniae isolaten, die verzameld werden tussen 2000 en<br />

2002, voor 12 antibiotica die in de Belgische varkenshouderij frequent worden<br />

gebruikt. Hierbij werd gebruik gemaakt van een bouillon microdilutie techniek.<br />

Verworven resistentie tegen spectinomycine, oxytetracycline, doxycycline,<br />

gentamicine, florfenicol en tiamulin werd niet waargenomen. Eén isolaat was resistent<br />

- 198 -


5 SAMENVATTING<br />

tegen lincomycine, tilmicosine en tylosine, maar gevoelig voor alle <strong>and</strong>ere geteste<br />

antibiotica. De Minimale Inhibitorische Concentratie (MIC)-waarden van flumequine<br />

waren > 16 µg/ml voor 5 isolaten, terwijl de MIC 50 2 µg/ml bedroeg. De MICwaarden<br />

voor enr<strong>of</strong>loxacine waren ≥ 0,5 µg/ml voor deze 5 isolaten, terwijl de MIC 50<br />

0,06 µg/ml bedroeg. Dit is de eerste melding van verworven resistentie tegen<br />

macroliden, lincosamiden en fluoroquinonoles voor M. hyopneumoniae isolaten.<br />

In de volgende twee ho<strong>of</strong>dstukken (2.2.2 en 2.2.3) werden de mechanismen<br />

die verantwoordelijk zijn voor deze verworven resistentie bepaald.<br />

Voor het bestuderen van de verworven resistentie tegen macroliden en<br />

lincosamiden (ho<strong>of</strong>dstuk 2.2.2) werden het fenotype en het genotype van de resistente<br />

M. hyopneumoniae stam vergeleken met 5 gevoelige isolaten. MICs werden bepaald<br />

voor de 14-ring macroliden erythromycine en clarythromycine, het 15-ring macrolide<br />

azithromycine, het 16-ring macrolide tylosine en de lincosamiden lincomycine en<br />

clindamycine. De MIC was voor alle antibiotica significant hoger voor de resistente<br />

stam. De MICs van tylosine varieerden van 8 tot 16 µg/ml voor de resistente stam en<br />

van 0,03 tot 0,125 µg/ml voor de 5 gevoelige isolaten. De MICs van azithromycine en<br />

de lincosamiden waren hoger dan 64 µg/ml voor de resistente stam, maar bedroegen<br />

slechts 0,06 tot 0,5 µg/ml voor de gevoelige isolaten. M. hyopneumoniae isolaten zijn<br />

intrinsiek resistent tegen 14-ring macroliden omwille van een G2057A transitie (E.<br />

coli nummering) in hun 23S rDNA. De MICs van erythromycine waren voor alle<br />

isolaten 8-32 µg/ml. Voor de resistente stam was de MIC nog duidelijk hoger dan<br />

voor de <strong>and</strong>ere isolaten, namelijk >64 µg/ml. Een bijkomende, verworven A2058G<br />

puntmutatie werd gevonden in het 23S rRNA gen van de resistente stam. In de<br />

ribosomale proteïnes L4 en L22 werden geen verschillen teruggevonden die gelinkt<br />

konden worden aan resistentie. Dit onderzoek toont aan dat een mutatie in het 23S<br />

rRNA resulteert in resistentie tegen macroliden en lincosamiden zoals eerder<br />

beschreven voor <strong>and</strong>ere Mycoplasma spp. en dat deze mutatie voorkomt onder<br />

praktijkomst<strong>and</strong>igheden.<br />

Het mechanisme voor verworven resistentie van 5 M. hyopneumoniae isolaten<br />

tegen fluoroquinolones werd verder bestudeerd in ho<strong>of</strong>dstuk 2.2.3. Hiertoe werd het<br />

genotype van de 5 resistente isolaten vergeleken met het genotype van 5 gevoelige<br />

isolaten. De quinolone resistentie bepalende regio’s (“Quinolone resistancedetermining<br />

region: QRDR) van de genen gyrA, gyrB, parC en parE werden<br />

- 199 -


5 SAMENVATTING<br />

gekarakteriseerd. Hiervoor werden delen van de DNA gyrase subunits, gyrA en gyrB,<br />

en de topoisomerase subunits, parC en parE, die de QRDR bevatten, gesequeneerd. In<br />

de 5 resistente isolaten werd een puntmutatie (C → A) in parC gevonden. De<br />

puntmutatie resulteerde in een aminozuurwijziging van serine naar tyrosine op positie<br />

80 (E. coli nummering). Voor 4 van deze isolaten was dit de enige mutatie die<br />

gevonden werd. De MIC van enr<strong>of</strong>loxacine voor deze isolaten was 0,5 µg/ml terwijl<br />

de MIC van de gevoelige isolaten ≤ 0,06 µg/ml bedroeg. Eén resistente stam met een<br />

MIC van >1 µg/ml voor enr<strong>of</strong>loxacine had een extra mutatie (C → T) in gyrA die<br />

resulteerde in een aminozuurwijziging van alanine naar valine op positie 83 (E. coli<br />

nummering). Mutaties die resulteren in een aminozuurwijziging werden niet<br />

waargenomen in de QRDR van de gyrB en parE genen van de geselecteerde isolaten.<br />

Dit onderzoek beschrijft voor het eerst het mechanisme van fluoroquinoloneresistentie<br />

van M. hyopneumoniae isolaten.<br />

In het laatste ho<strong>of</strong>dstuk (ho<strong>of</strong>dstuk 2.2.4) werd het onderzoek beschreven naar<br />

het effect van voedermedicatie met tylosine (Tylan® Premix; Elanco Animal <strong>Health</strong>)<br />

op het verloop van een experimentele M. hyopneumoniae infectie. Drie groepen van<br />

10 conventionele M. hyopneumoniae-vrije biggen werden intratracheaal geïnoculeerd<br />

met een hoogvirulente M. hyopneumoniae stam die in vitro gevoelig was voor<br />

tylosine (niet-beh<strong>and</strong>elde controle groep (non-TP) en tylosine premix groep (TP)) <strong>of</strong><br />

met steriel cultuurmedium (niet-geïnfecteerde en niet-beh<strong>and</strong>elde controle (NC)<br />

groep). Twaalf dagen na de infectie, op het moment dat 10% van die dieren hoestte,<br />

werd de beh<strong>and</strong>eling met tylosine gestart (100 mg/kg voeder gedurende 21 dagen). De<br />

dieren werden dagelijks gecontroleerd op de aanwezigheid van klinische symptomen<br />

en aan iedere big werd een “respiratory disease score” (RDS) gegeven. Drieëndertig<br />

dagen na inoculatie werden alle biggen geëuthanaseerd en werden de longen<br />

onderzocht op de aanwezigheid van letsels. De gemiddelde RDS en longlesiescores<br />

waren significant hoger in de beide geïnfecteerde groepen vergeleken met de NC<br />

groep. De gemiddelde RDS op 23 tot 33 dagen na infectie was significant hoger<br />

(P


5 SAMENVATTING<br />

De belangrijkste bevindingen van dit doctoraatsonderzoek zijn dat:<br />

- behalve het management en de huisvesting ook de virulentie van de M.<br />

hyopneumoniae stam een sterke invloed heeft op het ziekteverloop van<br />

enzoötische pneumonie<br />

- antibioticumresistentie nog geen groot probleem vormt voor M.<br />

hyopneumoniae isolaten maar wel aanwezig is. Daarom is voorzichtig<br />

omspringen met antimicrobiële middelen noodzakelijk<br />

- het mechanisme voor verworven resistentie van M. hyopneumoniae isolaten<br />

tegen macroliden - lincosamiden en fluoroquinolones berust op mutaties in de<br />

genen die coderen voor de doelwitplaats van deze antimicrobiële middelen<br />

- voerdermedicatie met tylosine (100 ppm) de klinische symptomen en de<br />

longlesies te wijten aan een M. hyopneumoniae infectie, efficiënt reduceert.<br />

Deze bevindingen worden verder bediscussieerd in ho<strong>of</strong>dstuk 3 en<br />

mogelijkheden voor verder onderzoek worden aangegeven.<br />

- 201 -


- 203 -<br />

DANKWOORD


DANKWOORD<br />

Het heeft behoorlijk wat moeite gekost om dit werk te voltooien en op sommige<br />

momenten was een stevige dosis koppigheid hard nodig. Maar nu het zover is, ben ik<br />

bijzonder blij dat ik toch heb volgehouden, want een doctoraat opent wegen waarvan<br />

ik <strong>and</strong>ers maar zou kunnen dromen.<br />

Het is onmogelijk om een doctoraat op je eentje te maken. De vele mensen die hierbij<br />

een groot <strong>of</strong> klein h<strong>and</strong>je hebben bijgedragen wil ik dan ook uitdrukkelijk bedanken.<br />

Allereerst zijn er mijn promotoren, Pr<strong>of</strong>. Haesebrouck en Pr<strong>of</strong>. Maes. Pr<strong>of</strong>.<br />

Haesebrouck, alhoewel ik tijdens de eerste jaren met een klein hartje bij u langs kwam<br />

om door u verbeterde teksten op te halen, heb ik deze verbeteringen en opmerkingen<br />

steeds meer weten te appreciëren. Ze bleken steeds correct en terecht. Soms vraag ik<br />

me af waar u de moed en tijd v<strong>and</strong>aan haalt om telkens weer teksten van verschillende<br />

personen zo nauwgezet te lezen en verbeteren. Daarnaast waardeer ik uw inzicht in en<br />

realistische kijk op het onderzoek, een absolute noodzaak om de experimenten<br />

relevant en uitvoerbaar te houden. Pr<strong>of</strong>. Maes, Dominiek, jij was de persoon bij wie ik<br />

al eens sneller binnen liep met allerh<strong>and</strong>e vragen. Samen met Nathalie en Tim zijn we<br />

de eerste doctor<strong>and</strong>i met u als promotor, en we verdedigen ons doctoraat dan nog in<br />

dezelfde ma<strong>and</strong>. Dominiek, bedankt voor het discussiëren, meedenken, lezen van<br />

teksten,....<br />

Pr<strong>of</strong>. de Kruif, bedankt dat u mij de kans hebt gegeven om aan uw vakgroep te<br />

werken. De vrijheid die u uw assistenten geeft, is zeer stimulerend! Ondanks uw<br />

drukke agenda vond u toch steeds de tijd om interesse te tonen voor mijn onderzoek<br />

en de artikels en ten slotte om dit doctoraat na te lezen. Bedankt ook Pr<strong>of</strong>. em.<br />

Verdonck, Marc, als bezieler van de varkenssektor in deze vakgroep en voor je<br />

interesse in het varkensonderzoek.<br />

Bedankt ook leden van de begeleidings- en examencommissie (Pr<strong>of</strong>. J. Mainil, Pr<strong>of</strong>.<br />

P. Deprez, Pr<strong>of</strong>. P. De Backer, Dr. P. Butaye, Pr<strong>of</strong>. H. Nauwynck en Pr<strong>of</strong>. P.<br />

Wallgren) voor het kritisch lezen van dit doctoraat. Uw opmerkingen droegen zeker<br />

bij tot de kwaliteit ervan.<br />

Dit doctoraat was niet mogelijk zonder de financiële steun van de FOD<br />

Volksgezondheid, Veiligheid van de Voedselketen en Leefmilieu. Ik wil in het<br />

bijzonder Dr. X. Van Huffel en Ir. J. Weerts bedanken voor hun vertrouwen in dit<br />

- 205 -


DANKWOORD<br />

onderzoek en voor de stimulerende opmerkingen tijdens de begeleiding van dit<br />

project.<br />

Voor dit onderzoek was er een nauwe samenwerking met het CODA. Deze<br />

samenwerking werd mogelijk gemaakt door Dr. J. Peeters. Mijn eerste collega in het<br />

CODA was Lies Thermote. Lies, het was heel aangenaam om met u samen te werken.<br />

We voelden elkaar goed aan. Het speet me erg toen je vertelde dat je van werk ging<br />

ver<strong>and</strong>eren, maar ik begreep je redenen wel. Gelukkig hebben we contact gehouden.<br />

Het is spijtig dat je er v<strong>and</strong>aag niet kan zijn (het is wat moeilijk om snel even langs te<br />

komen vanuit Vietnam) want jou bijdrage in dit mycoplasma onderzoek is niet gering,<br />

jij bent er immers in geslaagd de eerste M. hyopneumoniae stammen in België te<br />

isoleren. Inge, jij hebt mee dit project uit de grond gestampt en me in de beginfase<br />

mijn weg helpen vinden in de mycoplasma diagnostiek, bedankt. Ook Katrien, en<br />

daarna Saar wil ik bedanken voor hun technische assistentie, vooral voor het<br />

aanmaken van liters NHS20 medium. Tim, jij nam het werk van Lies over en plaatste<br />

het op een sneltrein, alhoewel je eerste ervaringen met het mycoplasma onderzoek<br />

behoorlijk frustrerend waren (5kb...), hoe kan het ook <strong>and</strong>ers als je met M.<br />

hyopneumoniae werkt. Maar je bent er door je dynamiek toch in geslaagd op korte tijd<br />

een mooi doctoraat klaar te krijgen. Ik hoop dat je je weg in het onderzoek kan verder<br />

zetten! Patrick, bedankt om mij wegwijs te maken in het in vitro antibiotica<br />

onderzoek, uw stokpaardje. En nogmaals bedankt voor de tijd die je willen spenderen<br />

hebt in het lezen en bespreken van dit doctoraat.<br />

Een bijzonder woordje van dank wil ik ook richten aan alle varkenshouders die<br />

meegewerkt hebben aan dit onderzoek. Die ons toelieten om stalen te nemen op hun<br />

bedrijven, stalen die noodzakelijk waren voor de isolatie van M. hyopneumoniae, de<br />

basis van dit onderzoek. Ook de familie Malfait ben ik bijzonder dankbaar omdat zij<br />

steeds bereid waren om ons M. hyopneumoniae-vrije biggen te leveren, noodzakelijk<br />

voor de experimentele studies. Daarnaast waren hun slachtvarkens de leveranciers van<br />

bloed, nodig voor het bereiden van medium voor de isolatie van M. hyopneumoniae.<br />

Omdat ik zowel aan de vakgroep Voortplanting, Verloskunde en<br />

Bedrijfsdiergeneeskunde als de vakgroep Pathologie, Bacteriologie en<br />

Pluimveeziekten werkte, had ik veel collega’s. Te veel om hier op te noemen, met het<br />

- 206 -


DANKWOORD<br />

risico dat ik bepaalde personen zou vergeten. Bedankt collega’s om er te zijn, voor de<br />

steun, voor de hulp, voor het plezier dat we samen hadden, voor het ondergaan van<br />

lastige buien,... En.... badmintonners en lopers, hou vol! Een gezonde geest in een<br />

gezond lichaam zeggen ze toch altijd, hier zit veel waarheid in. Blijf fruit eten....<br />

Een extra woordje van dank aan het ATP van beide vakgroepen, jullie zijn een<br />

onmisbare hulp geweest voor mij.<br />

Marc Coryn, bedankt voor het zeer nauwgezet lezen van dit doctoraat en het<br />

uitfilteren van typ- en spellingsfouten.<br />

Nathalie, met jou heb ik een “samen uit, samen thuis” gevoel. We begonnen samen<br />

aan onze opleiding diergeneeskunde en erna aan ons doctoraat en we verdedigen het<br />

in dezelfde ma<strong>and</strong>. Vanaf nu gaan we <strong>and</strong>ere richtingen uit. Veel succes en plezier,<br />

geniet van je baby! Ook bedankt om gedurende 6 jaar mijn bureaugenootje te zijn.<br />

Tom en Dries, jullie gaan verder met het mycoplasma onderzoek. Veel succes ermee<br />

en laat je niet teveel frustreren.<br />

Sommige aspecten van het werk waren in tegenstelling tot wie ik ben. Zo is uren aan<br />

een computer <strong>of</strong> flow blijven zitten niet echt aan mij besteed. De proefvarkens voeren,<br />

hokken kuisen en eikels voor ze rapen in het bos, om ze toch maar een zo aangenaam<br />

mogelijk leven te geven, ging mij stukken beter af. Maar dan moet je weer afscheid<br />

nemen van dieren, intelligenter dan honden, waarmee je ondertussen een b<strong>and</strong> hebt<br />

opgebouwd. Het werken met Mycoplasma hyopneumoniae vereiste immers<br />

langdurige proeven van minstens 5 weken. Toen ik op het einde van de eerste proef de<br />

varkens moest euthanaseren en hierdoor nogal ongelukkig rondliep was de<br />

boodschap: “de eerste keer voel je je slecht als je je proefdieren moet doden, maar het<br />

went en de 2 de keer gaat het al veel makkelijker”. Bij mij wende dat nooit.<br />

Dirk Lips en Chris De Pauw, ik ben jullie ongelo<strong>of</strong>lijk dankbaar dat jullie me de kans<br />

geven om te werken aan de hogeschool KaHo St.-Lieven in St. Niklaas. Geert<br />

(H<strong>of</strong>lack), jij hebt hier ook een belangrijke rol gespeeld, bedankt! Een reden waarom<br />

ik op mijn t<strong>and</strong>en gebeten heb en dit doctoraat heb afgewerkt, is omdat ik inzag dat<br />

het hebben van een doctoraat een noodzaak zou worden om te kunnen lesgeven aan<br />

een hogeschool. Ik kijk er naar uit om bij jullie te beginnen en hoop dat ik aan jullie<br />

verwachtingen zal kunnen voldoen.<br />

- 207 -


DANKWOORD<br />

Siegrid, Gwen, Kaat, Ilse, Liesbet, jullie kunnen hier v<strong>and</strong>aag niet zijn omwille van<br />

piepjonge babies (van een babyboom gesproken!). Nu wij nog hé An. “Meiden van<br />

Gent”, ondertussen ben ik nog de enige Gentse, ik hoop dat we er toch nog in slagen<br />

gezellige avondjes en misschien af en toe een weekendje te organiseren. Ik zie jullie<br />

graag.<br />

Lieve, je bent een bijzondere vrouw. Ik heb veel respect voor je!<br />

Cathy en Griet, jullie zijn van onschatbare waarde voor mij. Ik hoop dat jullie dat<br />

beseffen!<br />

Jef, we hebben elkaar dankzij het werk leren kennen en zijn ondertussen vrienden<br />

geworden. Je was een ongelo<strong>of</strong>lijke steun voor mij, ik ben blij dat ik je ken.<br />

Marc en Nicole, we moeten Maarten missen, maar gelukkig hebben we elkaar.<br />

Bedankt voor jullie nimmer aflatende interesse en steun.<br />

Joris, het is dan uiteindelijk toch niet gelukt tussen ons. Een moeilijke beslissing in<br />

een moeilijke periode. Maar het was de moeite waard, een mens groeit in zijn relaties<br />

en in die met jou ben ik veel gegroeid.<br />

En dan mama en papa en Nele en Ward, wat zou ik zijn zonder jullie Jullie merken<br />

het wel hé aan de frequentie dat ik thuis verschijn dat ik niet zonder jullie kan.<br />

Trouwens, thuis is nog steeds Kapellen. Gent is mijn huis.<br />

Jo<br />

- 208 -


- 209 -<br />

CURRICULUM VITAE


CURRICULUM VITAE<br />

Jo Vicca werd geboren op 31 december 1974 te Tienen. In 1992 beëindigde zij<br />

haar secundaire opleiding aan het Sint-Jozefsinstituut te Tienen in de richting<br />

Wetenschappelijke B. Na 1 jaar de opleiding graduaat chemie te hebben gevolgd aan<br />

de Katholieke Hogeschool Limburg, begon zij in 1993 aan de opleiding tot dierenarts<br />

aan de Faculteit Diergeneeskunde van de Universiteit Gent. Het diploma dierenarts<br />

werd in 1999 behaald met grote onderscheiding. Hierna was zij werkzaam als<br />

wetenschappelijk medewerker in het kader van een onderzoeksproject van de FOD<br />

Volksgezondheid, Veiligheid van de Voedselketen en Leefmilieu. Dit project dat<br />

h<strong>and</strong>elde over “de studie van diversiteit van Mycoplasma hyopneumoniae in het kader<br />

van de bestrijding van enzoötische pneumonie” en werd uitgevoerd in samenwerking<br />

met de vakgroepen voortplanting, verloskunde en bedrijfsdiergeneeskunde en<br />

pathologie, bacteriologie en pluimveeziekten van de Faculteit Diergeneeskunde,<br />

Universiteit Gent en het Centrum voor Onderzoek in Diergeneeskunde en<br />

Agrochemie. Het onderzoek uitgevoerd tijdens dit project heeft geleid tot deze<br />

doctoraatsthesis. Jo Vicca is auteur en medeauteur van meerdere wetenschappelijke<br />

publicaties, nam deel aan verschillende wetenschappelijke congressen en gaf<br />

verschillende voordrachten aan dierenartsen en <strong>and</strong>ere onderzoekers.<br />

- 211 -


- 213 -<br />

PUBLICATIONS


ARTICLES<br />

• Vicca, J., Maes, D.,Thermote, L., Peeters, J.,Haesebrouck, F. & de Kruif, A.<br />

(2002). Patterns <strong>of</strong> Mycoplasma hyopneumoniae infections in Belgian Farrowto-Finish<br />

pig herds with diverging disease course. Journal <strong>of</strong> Veterinary<br />

Medicine, Series B 49, 349-353.<br />

• Maes, D.,Verbeke, W.,Vicca, J.,Verdonck, M. & de Kruif, A. (2003). Benefit to<br />

cost <strong>of</strong> vaccination against Mycoplasma hyopneumoniae in pig herds under<br />

Belgian market conditions from 1996 to 2000. Livestock Production Science<br />

83, 85-93.<br />

• Vicca, J., Stakenborg, T., Maes, D., Butaye, P., Peeters, J., de Kruif, A. &<br />

Haesebrouck, F. (2003). Evaluation <strong>of</strong> virulence <strong>of</strong> Belgian Mycoplasma<br />

hyopneumoniae field isolates. Veterinary Microbiology. 97, 177-190.<br />

• Vicca, J., Stakenborg, T., Maes, D., Butaye, P., de Kruif, A. & Haesebrouck, F.<br />

(2004). In vitro susceptibilities <strong>of</strong> Mycoplasma hyopneumoniae field isolates.<br />

Antimicrobial Agents <strong>and</strong> Chemotherapy 48, 4470-4472.<br />

• Meyns, T., Maes, D., Dewulf, J., Vicca, J., Haesebrouck, F. & de Kruif, A.<br />

(2004). Quantification <strong>of</strong> the spread <strong>of</strong> Mycoplasma hyopneumoniae in<br />

nursery pigs using transmission experiments. Preventive Veterinary Medicine<br />

66, 265-275.<br />

• Vicca, J., Maes, D., Jonker, L., de Kruif, A. & Haesebrouck, F. (2005). Efficacy<br />

<strong>of</strong> in-feed medication with tylosin for the treatment <strong>and</strong> control <strong>of</strong><br />

Mycoplasma hyopneumoniae infections. The Veterinary Record 156, 606-610.<br />

• Stakenborg, T., Vicca, J., Butaye, P., Maes, D., De Baere, T., Verhelst, R.,<br />

Peeters, J., de Kruif, A., Haesebrouck, F. & Vaneechoutte, M. (2005).<br />

Evaluation <strong>of</strong> amplified rDNA restriction analysis (ARDRA) for the<br />

identification <strong>of</strong> Mycoplasma species.BMC Infectious Diseases 5, 46.<br />

• Stakenborg, T., Vicca, J., Butaye, P., Maes, D., Peeters, J., de Kruif, A. &<br />

Haesebrouck, F. (2005). The diversity <strong>of</strong> Mycoplasma hyopneumoniae within<br />

<strong>and</strong> between herds using Pulsed-Field Gel Electrophoresis. Veterinary<br />

Microbiology 10, 29-36.<br />

• Stakenborg, T., Vicca, J., Butaye, P., Imberechts, H., Peeters, J., de Kruif, A.,<br />

Haesebrouck, F. & Maes, D. (2005). A multiplex PCR to identify porcine<br />

- 215 -


mycoplasmas present in broth cultures. Veterinary Research Communications,<br />

In Press.<br />

• Stakenborg, T., Vicca, J., Butaye, P., Maes, D., Minion, F.C., Peeters, J., de<br />

Kruif, A. & Haesebrouck, F. (2005). Characterization <strong>of</strong> in vivo acquired<br />

resistance <strong>of</strong> Mycoplasma hyopneumoniae to macrolides <strong>and</strong> lincosamides.<br />

Microbial Drug Resistance, 11, 291-295.<br />

• Stakenborg, T., Vicca, J., Verhelst, R., Butaye, P., Maes, D., Naessens, A.,<br />

Claeys, G., De Ganck, C., Haesebrouck, F. & Vaneechoutte, M. (2005).<br />

Evaluation <strong>of</strong> tDNA-PCR for the identification <strong>of</strong> Mollicutes. Journal <strong>of</strong><br />

Clinical Microbiology, 43, 4558-4566.<br />

- 216 -


POSTERS ON NATIONAL AND INTERNATIONAL CONGRESSES<br />

• Vicca, J., Maes, D., Thermote, L., Peeters, J., Haesebrouck, F. & de Kruif, A.<br />

Patterns <strong>of</strong> Mycoplasma hyopneumoniae infection in Belgian farrow-to-finish<br />

pig herds. 17 th Congress <strong>of</strong> the International Pig Veterinary Society, Ames,<br />

Iowa, USA, 02-05 June 2002.<br />

• Vicca, J., T. Stakenborg, D. Maes, P. Butaye, J. Peeters, A. de Kruif, <strong>and</strong> F.<br />

Haesebrouck. Evaluation <strong>of</strong> virulence <strong>of</strong> Belgian Mycoplasma hyopneumoniae<br />

Field Isolates. 17 th Congress <strong>of</strong> the International Pig Veterinary Society;<br />

Ames, Iowa, USA, 02-05 June 2002.<br />

• Vicca, J., Stakenborg, T., Maes, D., Butaye, P., Peeters, J., de Kruif, A. &<br />

Haesebrouck, F. Evaluation <strong>of</strong> virulence <strong>of</strong> Belgian Mycoplasma<br />

hyopneumoniae field isolates. 14th international congress <strong>of</strong> the International<br />

Organisation for Mycoplasmology; Vienna, Austria, 07-12 July 2002.<br />

• Vicca, J., Stakenborg, T., Maes, D., Butaye, P., Peeters, J., de Kruif, A.,<br />

Devriese, L. & Haesebrouck, F. Antibiotic susceptibility <strong>of</strong> Belgian<br />

Mycoplasma hyopneumoniae Field Isolates. 14th international congress <strong>of</strong> the<br />

International Organisation for Mycoplasmology; Vienna, Austria, 07-12 July<br />

2002.<br />

• Stakenborg, T., Vicca, J., Butaye, P., Maes, D., de Kruif, A. & Haesebrouck, F.<br />

RAPD analysis <strong>of</strong> Belgian Mycoplasma hyopneumoniae strains. 14th<br />

international congress <strong>of</strong> the International Organisation for Mycoplasmology;<br />

Vienna, Austria, 07-12 July 2002.<br />

• Stakenborg, T., Vicca, J., Butaye, P., Maes, D., de Kruif, A. & Haesebrouck, F.<br />

Development <strong>of</strong> a multiplex PCR to detect Mycoplasmas present in the lungs<br />

<strong>of</strong> pigs. 14th international congress <strong>of</strong> the International Organisation for<br />

Mycoplasmology; Vienna, Austria, 07-12 July 2002.<br />

• Vicca, J., Stakenborg, T., Maes, D., Butaye, P., de Kruif, A. & Haesebrouck, F.<br />

Antimicrobial susceptibilities <strong>of</strong> Mycoplasma hyopneumoniae field isolates.<br />

11 th annual meeting <strong>of</strong> the Flemish society for veterinary epidemiology <strong>and</strong><br />

economics; Torhout, Belgium, 11 December 2003.<br />

• Vicca, J., Stakenborg, T., Maes, D., Butaye, P., Peeters, J., de Kruif, A. &<br />

Haesebrouck, F. In vitro susceptibility <strong>of</strong> Mycoplasma hyopneumoniae field<br />

- 217 -


isolates. 18 th Congress <strong>of</strong> the International Pig Veterinary Society; Hamburg,<br />

Germany, 27 June-1 July 2004.<br />

• Meyns, T., Maes, D., Vicca, J., Dewulf, J., Haesebrouck, F. & de Kruif, A. Use<br />

<strong>of</strong> transmission experiments to quantify the spread <strong>of</strong> Mycoplasma<br />

hyopneumoniae in nursery pigs. 18 th Congress <strong>of</strong> the International Pig<br />

Veterinary Society, Hamburg, Germany, 27 June-1 July 2004.<br />

• Stakenborg, T., Vicca, J., Butaye, P., Maes, D., de Kruif, A. & Haesebrouck, F.<br />

Optimisation <strong>of</strong> a Pulsed Field Gel Electrophoresis (PFGE) technique for<br />

Mycoplasma hyopneumoniae. 15th international congress <strong>of</strong> the International<br />

Organisation for Mycoplasmology; Athens, Georgia, USA, 11-16 July 2004.<br />

• Stakenborg, T., Vicca, J., Butaye, P., Maes, D., de Kruif, A. & Haesebrouck, F.<br />

Characterization <strong>of</strong> a Mycoplasma hyopneumoniae field isolate resistant to<br />

MLS antibiotics. 15th international congress <strong>of</strong> the International Organisation<br />

for Mycoplasmology; Athens, Georgia, USA, 11-16 July 2004.<br />

• Stakenborg, T., Vicca, J., Butaye, P., Maes, D., de Kruif, A. & Haesebrouck, F.<br />

Amplified Fragment Length Polymorphism (AFLP) <strong>of</strong> three porcine<br />

Mycoplasma spp. 15th international congress <strong>of</strong> the International Organisation<br />

for Mycoplasmology; Athens, Georgia, USA, 11-16 July 2004.<br />

• Stakenborg, T., Vicca, J., Verhelst, R., Butaye, P., Maes, D., Naessens, A.,<br />

Clays, G., De Ganck, C., Haesebrouck, F. & Vaneechoutte, M.. Evaluation <strong>of</strong><br />

tDNA-PCR for the identification <strong>of</strong> Mollicutes. Belgian Society <strong>of</strong><br />

Microbiology, Brussels, 3 rd December 2004.<br />

- 218 -


ORAL PRESENTATIONS<br />

• Vicca, J. Mycoplasma hyopneumoniae infectiepatronen in gesloten<br />

varkensbedrijven, gebruik makende van serologie en nested PCR op<br />

neusswabs. Symposium: Mycoplasma hyopneumoniae, inzichten in<br />

epidemiologie en immunologie, georganiseerd door Groep Geneeskunde van<br />

het Varken en Pfizer Animal <strong>Health</strong>, Ede, Nederl<strong>and</strong>, 20 December 2000.<br />

• Vicca, J. Evaluation <strong>of</strong> virulence <strong>of</strong> Belgian Mycoplasma hyopneumoniae field<br />

isolates. 17 th Congress <strong>of</strong> the International Pig Veterinary Society, Ames,<br />

Iowa, USA, 02-05 June 2002.<br />

• Vicca, J. Onderzoek naar verschillen tussen Belgische Mycoplasma<br />

hyopneumoniae veldisolaten. International Pig Veterinary Society, Belgian<br />

branch studienamiddag, Faculteit Diergeneeskunde, Merelbeke, 22 november<br />

2002.<br />

• Vicca J. La broncho-pneumonie enzootique. Les voor 2de proef,<br />

longa<strong>and</strong>oeningen bij varkens, Faculté de Médécine Vétérinaire, Sart-Tilman,<br />

10 December 2002.<br />

• Vicca, J. Ronde tafel gesprekken Boehringer Ingelheim: infectiepatronen van<br />

Mycoplasma hyopneumoniae. 9x June 2003.<br />

• Vicca, J. Evaluation <strong>of</strong> virulence <strong>of</strong> Belgian Mycoplasma hyopneumoniae field<br />

isolates. Swine <strong>and</strong> wine (vereniging varkensdierenartsen), Roermond,<br />

Nederl<strong>and</strong>, 27 September 2003.<br />

• Vicca, J. Virulentieverschillen en vroege spreiding van M. hyopneumoniae. Post<br />

Academisch Onderwijs in de Diergeneeskunde (PAOD), Houten, Nederl<strong>and</strong>, 1<br />

December 2004.<br />

• Vicca, J. Infecties met Mycoplasma hyopneumoniae. Vakdierenarts varken,<br />

Faculteit Diergeneeskunde, UGent, 8 december 2004.<br />

• Vicca, J. Virulentieverschillen en vroege spreiding van M. hyopneumoniae. Post<br />

Academisch Onderwijs in de Diergeneeskunde (PAOD), Houten, Nederl<strong>and</strong>, 1<br />

december 2004.<br />

• Vicca, J. Virulentieverschillen en vroege spreiding van M. hyopneumoniae. Post<br />

Academisch Onderwijs in de Diergeneeskunde (PAOD), Houten, Nederl<strong>and</strong>, 9<br />

december 2004.<br />

- 219 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!