24.12.2014 Views

Lecture 5 - Mechanical Engineering

Lecture 5 - Mechanical Engineering

Lecture 5 - Mechanical Engineering

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Energy from Biomass<br />

4S610<br />

<strong>Lecture</strong> 5<br />

Rob Bastiaans


Contents this lecture: Particles<br />

• Different modes of conversion<br />

• Time scale of particle conversion<br />

• Dependence on physics<br />

• Drying<br />

• Gasification<br />

• Combustion<br />

• Based on equations of lecture 4<br />

• Simplifications<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong><br />

29-11-2012 PAGE 1


Energy from biomass<br />

Course outline<br />

1.Biomass macro systems<br />

2.Biomass micro systems<br />

3.Practical work<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong><br />

29-11-2012 PAGE 2


Summary previous lecture<br />

Basic equations<br />

• Conservation<br />

• Peculiarities of species conversion<br />

• Simplifications<br />

• Steady<br />

• One-dimensional<br />

• Model flow reactors PSR, PFR<br />

• Important: no model gives you exact answers!<br />

• Still much research<br />

• You always have to think<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong><br />

29-11-2012 PAGE 3


Particle conversion: what happens<br />

• Heating up and drying by convection/radiation<br />

• Evaporation and pyrolysis<br />

• Volatile products: water vapour, hydrocarbons,<br />

carbon oxides, H, S and N compounds, residual<br />

char<br />

• Mixing/diffusion of ambient oxidizer with<br />

combustibles<br />

• Ignition, needs high temperature<br />

• Combustion of volatiles (homogeneous reaction)<br />

• Combustion of residual char (heterogeneous<br />

reaction)<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 PAGE 4


Time scales and temperatures for<br />

pulverized fuel<br />

• Input fuel particles of 10-100 m<br />

• Preheating: 200 – 300 o C, < 1 ms<br />

• Pyrolysis: 300 – 1000 o C, 1-10 ms<br />

• Combustion of volatile matter: 1200 – 1500 o C, 5 -<br />

50 ms<br />

• Char burnout: 1500 – 2000 o C, 50 - 5000 ms<br />

• Particles fall apart<br />

• Resulting fly ash, 0.1 – 50 m, coagulation,<br />

sintering<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 5


Particle heating in different reactors<br />

• Pulverized fuel (entrained flow reactor): mixing of<br />

hot flue gas in near burner zone<br />

• Fluidized bed: heat transferred by particles (sand)<br />

• Grate furnaces: radiation important heat transfer<br />

• Fixed bed: convection, conduction and internal<br />

radiation<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 6


Partial processes of coal combustion in<br />

firing systems<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 7


Pulverized fuel combustion<br />

8 / <strong>Mechanical</strong> <strong>Engineering</strong><br />

29-11-2012


Particle conversion: mechanical integrity<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 9


Modeling conversion of spherical<br />

particles<br />

a. Liquid particles<br />

b. Solid particles<br />

• Quiescent medium (for validation of<br />

models g is used)<br />

• Laminar flow<br />

• Turbulent flow<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong><br />

29-11-2012 PAGE 10


Modes of particle combustion<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 11


Modes of particle conversion<br />

• Shrinking sphere: particle surface combustion,<br />

products leave particle as they are produced<br />

• Shrinking core: combustion on a reaction core,<br />

with build up of an ash/char layer<br />

• Shrinking density: uniform combustion inside the<br />

particle, conserved particle size, decrease of<br />

density<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 12


Conversion rate<br />

(log –scale)<br />

Process regimes: Arrhenius plot<br />

Boundary<br />

Layer<br />

Diffusion<br />

Pore diffusion<br />

Chemical reaction<br />

High T<br />

High<br />

reaction<br />

rate<br />

Low T, limits<br />

Conversion rate<br />

III II I<br />

1/T<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 13


I Shrinking density particle combustion<br />

• Determine dimensionless numbers<br />

• Find correct regimes of combustion<br />

• Mass transfer to particle versus diffusion in the<br />

particle (Biot number)<br />

• Chars give Bi < 4 → high external resistance to<br />

oxidizer diffusion into the particle<br />

• Reaction controlled by internal diffusion or<br />

reaction rate (Thiele number)<br />

• Low Thiele numbers -> low reaction rates -><br />

reaction controlled -> shrinking density valid<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 14


Porous particle:<br />

• Diffusion coefficient<br />

‣ Outside particle:<br />

‣ Inside particle:<br />

Deff D Ox<br />

D<br />

eff<br />

<br />

<br />

2<br />

D<br />

Ox<br />

• Steady state<br />

• One step conversion of carbon to carbon<br />

dioxide: equimolar, no gas flow<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 15


Particle conversion<br />

Looking at oxygen concentration:<br />

1 <br />

t r r<br />

2<br />

( YOx<br />

) ( r uY<br />

)<br />

2<br />

Ox<br />

<br />

1<br />

<br />

Y<br />

r D S<br />

2<br />

Ox<br />

( )<br />

2<br />

eff<br />

r r r<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 16


Particle conversion<br />

What would be the equation for the carbon<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 17


Particle conversion<br />

Equimolar conditions, no flow<br />

What about density<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 18


Particle conversion<br />

Result:<br />

1 Y<br />

r D S<br />

r r r<br />

2<br />

Ox<br />

0 ( )<br />

2<br />

eff<br />

Inside particle:<br />

S k Y<br />

Ox<br />

Ox<br />

Dimensionless coordinate<br />

and fraction:<br />

r/ Rp<br />

Y<br />

Ox<br />

/ Y<br />

Ox,<br />

<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 19


Particle conversion<br />

• Results in the equation:<br />

• With the Thiele modulus:<br />

1 <br />

0 ( ) Th<br />

<br />

2 2<br />

2<br />

<br />

Th Rp kOx / Deff<br />

• Th>>1 conversion controlled by diffusion<br />

• Th


Boundary conditions<br />

• Boundary condition at centre<br />

• At the surface:<br />

<br />

<br />

<br />

0<br />

YOx<br />

Deff ( YOx YOx<br />

, )<br />

r<br />

• With beta a mass transfer coefficient<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 21


Solution<br />

• This yields:<br />

• With A, B:<br />

1<br />

Aexp( Th ) Bexp( Th<br />

)<br />

<br />

<br />

A<br />

B<br />

<br />

Bim<br />

( Bi Th 1)exp( Th) ( Th 1 Bi )exp( Th)<br />

m<br />

m<br />

• And Biot number<br />

Bi R / D<br />

m p eff<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 22


Solution: Bi<br />

Bi R / D<br />

m p eff<br />

Bi>>1 pore diffusion limited<br />

Bi=1 limited boundary layer transport<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 23


Solution: Th<br />

Th R k /<br />

p<br />

Ox<br />

D<br />

eff<br />

Th>>1 diffusion controlled (front)<br />

Th


Evaluation<br />

• Porosity not constant<br />

• Function of t<br />

• Therefore also function of r<br />

• Change in gas-density<br />

• Temporal effects<br />

• When is the stationary solution relevant<br />

• Temporal simulations can be done (validate latter)<br />

• Valid for shrinking sphere as well<br />

• Change position of boundary condition as function of<br />

depletion of the boundary<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 25


Summary<br />

• Typical time scales and particle sizes<br />

• Arrhenius plot<br />

• Typical conversion modes<br />

• Shrinking core<br />

• Shrinking sphere<br />

• Shrinking density<br />

• Understanding present model and assumptions<br />

• Meaning of dimensionless numbers and what<br />

happens for a certain combination<br />

• Thiele<br />

• Biot<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 26


Break<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong><br />

29-11-2012 PAGE 27


II Shrinking sphere model for liquid<br />

particle combustion<br />

flamefront<br />

T<br />

Y Ox<br />

droplet<br />

Y F<br />

r d<br />

r f<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 28


<strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 29


Combustion of liquid particles:<br />

Spalding model (1953)<br />

• Spherical symmetry<br />

• Isolated droplet in infinite medium<br />

• Isobaric process<br />

• Infinitely fast chemical reaction (vs. diffusion)<br />

• Constant gas phase transport properties and c p<br />

• Gas phase quasi-steadiness<br />

• Constant, uniform droplet temperature (no droplet<br />

heating)<br />

• No radiation, Soret, Dufour effects<br />

• Unity Lewis numbers for all gaseous species<br />

• No buoyancy<br />

vD<br />

/ c p<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 30


General form for different processes<br />

• Evaporation of liquid droplets<br />

• Burning of liquid droplets<br />

• One film model for burning of solid particles<br />

• Two film model for burning of solid particles<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 31


Droplet evaporation (shrinking sphere)<br />

T<br />

<br />

<br />

T b<br />

T d<br />

Heat up time neglected!<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 32


Evaporation time<br />

• Determined by<br />

dm d<br />

dt<br />

m<br />

• With the initial droplet mass<br />

• Giving:<br />

md<br />

<br />

1 D 6<br />

3<br />

dD<br />

dt<br />

3<br />

<br />

<br />

6<br />

m<br />

<br />

dD<br />

dt<br />

<br />

2<br />

D<br />

2<br />

m<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 33


Evaporation time:D square law<br />

• Or<br />

dD<br />

dt<br />

2<br />

<br />

<br />

4<br />

D<br />

m<br />

K<br />

• With K the evaporation constant, integrating:<br />

• Giving:<br />

D<br />

<br />

<br />

D<br />

2<br />

2<br />

0<br />

dD<br />

2<br />

t<br />

0<br />

Kdt<br />

D<br />

2<br />

( t)<br />

D<br />

2 0<br />

<br />

Kt<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 34


Droplet evaporation<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 35


What is K, the mass conversion rate<br />

• Continuity (outside particle)<br />

m<br />

<br />

v4r<br />

2<br />

<br />

C<br />

• Energy:<br />

d dT d<br />

<br />

Lec dr dr dr<br />

p<br />

2 2<br />

r r vT<br />

<br />

<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 36


Solution strategy<br />

• Integrate the energy equation twice<br />

• Find integration constants with B.C.’s:<br />

• T(r=r s )=T boil<br />

• T(r->)=T <br />

• Now T(r) is known<br />

• Use a heat balance at the droplet surface:<br />

4r<br />

2<br />

s<br />

dT<br />

dr<br />

r<br />

s<br />

m h<br />

evap<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 37


What is K<br />

• After some math:<br />

4r<br />

8<br />

m ln( Bq<br />

1)<br />

K ln( Bq<br />

1)<br />

c<br />

cp<br />

p<br />

• With Spalding number for evaporation:<br />

B<br />

q<br />

<br />

c<br />

p<br />

<br />

T<br />

<br />

h<br />

T<br />

evap<br />

b<br />

<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 38


Droplet evaporation<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 39


Droplet evaporation: exercise<br />

• Consider a 500 m diameter droplet of n-hexane<br />

(C 6 H 14 ), evaporating in hot (850 K) nitrogen. The<br />

boiling point is 342 K.<br />

• What is the lifetime<br />

• Try this at home…<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 40


Droplet burning: Temperature profile<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 41


Droplet burning: species profiles<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 42


Spalding transfer number fot liquid<br />

droplet combustion<br />

• Relative energy excess scaled with heat of<br />

vaporization<br />

B<br />

0, q<br />

<br />

h<br />

comb<br />

/ <br />

h<br />

c<br />

p<br />

evap<br />

<br />

T<br />

<br />

T<br />

b<br />

<br />

• Typical for combustion of liquid fuels in air, B=1 - 10<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 43


Important results<br />

• Burn out time, d-square –law<br />

2<br />

t D /<br />

0<br />

K<br />

• Flame front distance<br />

• Flame temperature<br />

T<br />

f<br />

<br />

T<br />

b<br />

r<br />

r<br />

f<br />

s<br />

<br />

<br />

c<br />

h<br />

p<br />

<br />

<br />

<br />

<br />

ln 1<br />

B0,<br />

q<br />

ln 1 /<br />

<br />

evap<br />

B<br />

1<br />

0,<br />

q<br />

<br />

1<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 44


Droplet burning<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 45


Droplet burning experiments<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 46


Droplet combustion: exercise<br />

• Consider a 100 m diameter droplet of n-heptane<br />

(C 7 H 16 ), combusting at atmospheric pressure and<br />

at T=300 K<br />

• What is the mass burning rate<br />

• Flame temperature<br />

• Stand-off distance relative to the droplet radius<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 47


Evaluation<br />

• Constant burning rate, flame stand off distance<br />

and flame temperature<br />

• Single component droplets: good qualitative<br />

agreement<br />

• Quantitative agreement by tuning<br />

• Flame stand off ratio: over-predicted (difficult to<br />

tune)<br />

• Solid particles exhibit a d 2 -law as well<br />

• Conclusion: some errors, improvements over the<br />

years, but still frequently used<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 48


Spalding transfer number for solid<br />

particle combustion<br />

• Surface burning:<br />

B ....<br />

• Off-surface burning (two film)<br />

B ....<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 49


Modes of particle evaporation &<br />

combustion<br />

• Shrinking density: uniform combustion inside the<br />

particle, conserved particle size, decrease of<br />

density Thiele modulus (Th), Biot number (Bi m )<br />

• Shrinking sphere: particle surface combustion,<br />

ash leaves particle as it is produced Spalding<br />

transfer number (B)<br />

• Shrinking core: combustion on a reaction core,<br />

with build up of an ash layer Solid particles<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 50


Application in turbulent systems<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 51


Application in turbulent systems: factors<br />

• Particle density important<br />

• Ratio of inter-particle spacing/flame standoff<br />

distance<br />

• Single particle burning – group burning<br />

• Length scale ratio of turbulent eddies and single<br />

particles/groups<br />

• Standard CFD uses some correlations on basis of<br />

Spalding transfer number<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 52


Application in turbulent systems<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 53


Different modes<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 54


Turbulent vaporization systems<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 55


Turbulent (group) combustion<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong> 29-11-2012 56


Next lecture: Marcel Cremers of Kema<br />

and emissions<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong><br />

29-11-2012 PAGE 57


Questions<br />

/ <strong>Mechanical</strong> <strong>Engineering</strong><br />

29-11-2012 PAGE 58

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!