24.12.2014 Views

Plate Tectonic Evolution and Mineral Resource Potential of the ...

Plate Tectonic Evolution and Mineral Resource Potential of the ...

Plate Tectonic Evolution and Mineral Resource Potential of the ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Klaus Heppe:<br />

<strong>Plate</strong> <strong>Tectonic</strong> <strong>Evolution</strong> <strong>and</strong> <strong>Mineral</strong> <strong>Resource</strong> <strong>Potential</strong> <strong>of</strong> <strong>the</strong><br />

Lancang River Zone, Southwestern Yunnan, People's Republic<br />

<strong>of</strong> China<br />

2006. 159 pages, 55 figures, 12 tables, 30x21cm, 560 g<br />

Language: English<br />

(Sonderhefte Reihe D - Geol. Jahrb., Heft 7)<br />

ISBN 978-3-510-95950-1, paperback<br />

Beschreibung/Abstract<br />

A re-evaluation <strong>of</strong> <strong>the</strong> existing data <strong>and</strong> an integrated tectono-sedimentological<br />

geochronological <strong>and</strong> geochemical approach has led to a new perception <strong>of</strong> <strong>the</strong> Late<br />

Paleozoic <strong>and</strong> early Mesozoic geodynamic evolution <strong>of</strong> <strong>the</strong> Lancang River Zone<br />

(Yangtze Platform, SW Yunnan):<br />

[1] A near-shore continental rift or back-arc basin with strong bathymetric variation<br />

must have existed from <strong>the</strong> Upper Devonian to <strong>the</strong> middle Lower Permian along <strong>the</strong><br />

present Lancang River Zone. The extension phase, which led to <strong>the</strong> creation <strong>of</strong> <strong>the</strong><br />

basin, is in time <strong>and</strong> facies related to <strong>the</strong> exp<strong>and</strong>ing continental margin <strong>of</strong> <strong>the</strong><br />

Yangtze Platform in <strong>the</strong> Devonian <strong>and</strong> Lower Carboniferous. During <strong>the</strong> rifting phase,<br />

basic to acid volcanic rocks were extruded in a submarine environment to form smallscale<br />

Kuroko-type volcanic-hosted massive sulfide (VHMS) deposits.<br />

[2] Characterized by an eastward progressing deformation front, closure <strong>of</strong> <strong>the</strong> basin<br />

began in <strong>the</strong> Upper Carboniferous <strong>and</strong> progressed from present west to east. This<br />

closure was associated with <strong>the</strong> formation <strong>of</strong> an accretionary wedge on <strong>the</strong> west side,<br />

in which <strong>the</strong> volcanogenic-hosted massive sulfide deposits were sheared. From this<br />

belt to <strong>the</strong> present west, <strong>the</strong> deformation increases parallel to <strong>the</strong> gradual change<br />

from greenschist- (Phyllite Belt) to lower blueschist facies (Lancang Group)<br />

documenting a large-scale thrust belt or accretionary wedge. The closure <strong>of</strong> <strong>the</strong> basin<br />

led to <strong>the</strong> exhumation <strong>of</strong> <strong>the</strong> blueschist- <strong>and</strong> greenschist- metamorphosed rocks <strong>and</strong><br />

<strong>the</strong> formation <strong>of</strong> a l<strong>and</strong> area on <strong>the</strong> western edge <strong>of</strong> <strong>the</strong> Yangtze Platform up to <strong>the</strong><br />

Middle Permian.<br />

[3] Late Paleozoic orogenesis was followed by marine ingressions, post-orogenic<br />

bimodal rift volcanism <strong>and</strong> continental sedimentation. The continental volcanism is an<br />

expression <strong>of</strong> a regional <strong>the</strong>rmal event causing crustal anatexis <strong>and</strong> <strong>the</strong> formation <strong>of</strong><br />

<strong>the</strong> Lincang Granite. The petrology <strong>and</strong> geochemistry <strong>of</strong> <strong>the</strong> Permo-Triassic basalts<br />

along <strong>the</strong> Lancang River correspond to <strong>the</strong> continental flood basalts <strong>of</strong> <strong>the</strong> Emeishan<br />

Large Igneous Province (LIP), which are probably mantle-plume related. Hence, <strong>the</strong><br />

new plate tectonic model excludes a Mesozoic isl<strong>and</strong>-arc setting <strong>and</strong> expectations <strong>of</strong><br />

finding large-scale Au-bearing porphyry copper deposits cannot be met.<br />

Never<strong>the</strong>less, a close correlation between <strong>the</strong> volcanic rocks along <strong>the</strong> Lancang<br />

River <strong>and</strong> <strong>the</strong> Emeishan flood basalts (<strong>and</strong> rhyolites) opens up a new perspective:<br />

Ore deposits in relation to large scale continental rifting, such as i] Native Cudeposits<br />

<strong>of</strong> Keweenaw-type (Keweenaw rift, Precambrian, Superior Province,


Canada), ii] Ni-Cu-PGE deposits <strong>of</strong> Norilsk-Talnakh-type, Siberian Traps, or iii]<br />

Volcanic red-bed Cu-deposits.<br />

[4] In <strong>the</strong> Upper Triassic, weak compression <strong>and</strong> basin inversion took place along <strong>the</strong><br />

Lancang River Zone. The cause <strong>of</strong> this compression is unclear but could be<br />

associated with <strong>the</strong> collision <strong>of</strong> <strong>the</strong> Tengchong micro-continent fur<strong>the</strong>r to <strong>the</strong> west.<br />

[5] A regional extensional phase took place from <strong>the</strong> Upper Jurassic to <strong>the</strong><br />

Paleogene, <strong>and</strong> <strong>the</strong> exhumation <strong>of</strong> <strong>the</strong> Lincang Metamorphic Core Complex<br />

controlled <strong>the</strong> deposition <strong>of</strong> massive sequences <strong>of</strong> continental red-beds in <strong>the</strong> Simao<br />

Basin.<br />

[6] If <strong>the</strong> mechanics forming <strong>the</strong> Simao Basin are fundamentally correct, <strong>the</strong> local<br />

consequence for western Yunnan is that a middle Cenozoic inversion <strong>of</strong> <strong>the</strong> +Simao<br />

Basin must have been largely accommodated by <strong>the</strong> readjustment <strong>of</strong> formerly<br />

extensional allochthons, which progressively led to a complex interplay <strong>of</strong> thrusting,<br />

folding, faulting <strong>and</strong> rotation. During this period a whole spectrum <strong>of</strong> mineralization<br />

developed as a result <strong>of</strong> <strong>the</strong> high fluid flow in <strong>the</strong> transtensional settings <strong>of</strong> <strong>the</strong> India-<br />

Asia collision in West Yunnan. Copper porphyries occur in addition to polymetallic<br />

vein mineralization <strong>and</strong> Au-quartz veins.<br />

Plattentektonische und metallogenetische Entwicklung der Lancang River-Zone,<br />

Südwest-Yunnan, Volksrepublik China Die zentralen Bereiche SW-Yunnans bilden<br />

spätestens seit dem Oberkarbon den aktiven Kontinentalr<strong>and</strong> der Yangtze-Plattform.<br />

Dieser Kontinentalr<strong>and</strong> zeigt die typische Entwicklung einer Kordillere, die durch das<br />

Andocken von Mikrokontinenten (heutiger westlichster Teil Yunnans, Myanmar)<br />

modifiziert wurde. Die geologische Entwicklung der Lancang River-Zone kann wie<br />

folgt zusammengefasst werden: [1] Der Zeitraum vom Oberdevon bis zum Unterperm<br />

ist durch ein bathymetrisch stark strukturiertes, l<strong>and</strong>nahes Backarc-Becken innerhalb<br />

der Yangtze-Plattform gekennzeichnet. Unterkarbonische Massivsulfiderz-<br />

Lagerstätten des Kuroko-Typs sind mit dazitischem Vulkanismus (inkl. spilitisierter<br />

Basalt, Rhyolit, Granitporphyr-Intrusionen) assoziiert. [2] Durch eine ostwärtsfortschreitende<br />

Deformationsfront gekennzeichnet, erfolgt vom Oberkarbon bis zum<br />

Unterperm der Zuschub des Beckens, eine intensive Zerscherung der Lagerstätten<br />

und die Hebung des Gebietes über den Meeresspiegel. [3] An die spätpaläozische<br />

Orogenese schliesst zwischen Oberperm und mittlerer Trias eine Phase der<br />

Extension an, die durch die kursorische Ingression von R<strong>and</strong>meeren, bimodalen<br />

Riftvulkanismus und kontinentale Rotsedimente gekennzeichnet ist. Der Vulkanismus<br />

steht im Zusammenhang mit der Genese der Emeishan Large Igneous Province und<br />

einem regionalen, <strong>the</strong>rmischen Ereignis, welches zur Aufschmelzung der Kruste und<br />

zur Entstehung der Lincang-Granite führte. Der Riftvulkanismus und dessen mafischultramafische<br />

führte. Der Riftvulkanismus und dessen mafisch-ultramafische<br />

Intrusionen/Feeders bietet bisher nicht untersuchtes <strong>Potential</strong> für Cu-Lagerstätten<br />

des Keweenaw-Typs, Ni-Cu-PGE-Lagerstätten des Norilsk-Talnakh-Typs und Red<br />

bed-Kupferlagerstätten. Die Lincang-Granite sind den S-Typ-Graniten der Main<br />

Range in Nord-Thail<strong>and</strong> ähnlich und zeigen ökonomisch wenig bedeutsame<br />

Wolfram-Vererzungen. [4] Die extensionale Entwicklung der Yangtze-Plattform wird<br />

zwischen Obertrias und Unterjura durch eine Phase der Inversion unterbrochen. Die<br />

Ursache dieser Kompression ist noch unklar, könnte aber im Zusammenhang mit<br />

dem Andocken eines Mikrokontinents (Tengchong Block, Myanmar) im Westen der


Kordillere gesehen werden. [5] Ab dem mittleren Jura setzt sich die Extension fort,<br />

und die Exhumation des Lincang Metamorphic Core Complex entlang einer nach<br />

Westen einfallenden Basisabscherung kontrolliert die Entwicklung des Simao-<br />

Beckens (Wernicke-Modell). Die Sedimentation ist durch eine mächtige Sequenz aus<br />

roten, kontinentalen Klastika geprägt, die die Erosion eines im Westen gelegenen<br />

Abtragungsgebietes (Doi-Inthanon Unit) der Kordillere anzeigt. Typische Lagerstätten<br />

sind sedimentäre Kupfer- und Salzlagerstätten. [6] Durch die Kollision Indiens kommt<br />

es ab dem Eozän/Oligozän zu einer Reaktivierung der regionalen Schwächezonen<br />

und zu einer Inversion des Beckens. Diese Inversion erfolgt in einem<br />

transpressionalen tektonischen Regime, welches die einzelnen geologischen<br />

Einheiten entlang von Seitenverschiebungen versetzt und teilweise überschiebt.<br />

Kleine tertiäre Intrusionskörper (Granite bis Syenite) an transkrustalen strike slip-<br />

Störungen mit wechselndem Bewegungssinn sind mit Copper porphyry-Lagerstätten,<br />

polymetallischen Gangvererzungen und Goldvorkommen assoziiert.<br />

Contents<br />

1 Introduction 9<br />

1.1 Study Objectives 9<br />

1.2 Preliminary Work by <strong>the</strong> Research Group in Yunnan 9<br />

1.3 Location <strong>of</strong> <strong>the</strong> Study Area, Morphology, Vegetation <strong>and</strong><br />

Climate 10<br />

2 Geodynamic <strong>Evolution</strong> <strong>of</strong> Southwestern Yunnan 12<br />

2.1 Introduction 12<br />

2.1.1 Model A: Large-scale Nappe <strong>Tectonic</strong>s 12<br />

2.1.2 Model B: "Two-Tethys Ocean System" <strong>and</strong> "Archipelagic-<br />

Ocean Model" 14<br />

2.1.3 Model C: Permo-Triassic (Late Variscan) Cordillera with<br />

Exotic<br />

Terranes 15<br />

2.2 Major <strong>Tectonic</strong> Elements in Southwestern Yunnan 16<br />

2.2.1 Tengchong Block 20<br />

2.2.2 Nujiang Fault Zone 20<br />

2.2.3 Baoshan Block 21<br />

2.2.4 Changning-Menglian Zone 21<br />

2.2.5 Lincang Region 22<br />

2.2.6 Lancangjiang Fault Zone 22<br />

2.2.7 Lanping-Simao Block 23<br />

2.2.8 Ailaoshan-Red River Zone 23<br />

2.2.9 Yangtze Paraplatform 23<br />

2.3 Integration within <strong>the</strong> Geodynamic <strong>Evolution</strong> <strong>of</strong> Sou<strong>the</strong>ast<br />

Asia 24<br />

3 The Lancang River Zone (LRZ) 27<br />

3.1 Introduction 27<br />

3.2 Metamorphic <strong>Evolution</strong> 29<br />

3.2.1 Damenglong <strong>and</strong> Chongshan Group 29<br />

3.2.2 Lancang Group 37<br />

3.2.3 Lancang River Phyllite Belt 47<br />

3.3 Magmatic <strong>Evolution</strong> 49<br />

3.3.1 Lincang Granite 49<br />

3.3.2 Lancang River Volcanic Rocks 56


3.4 Sedimentary <strong>Evolution</strong> 65<br />

3.4.1 Pr<strong>of</strong>iles along <strong>the</strong> Lancang River (North to South) 65<br />

3.4.1.1 Wennai, East <strong>of</strong> Lancang River <strong>and</strong> Nanguan Pr<strong>of</strong>iles 65<br />

3.4.2 Pr<strong>of</strong>iles parallel to <strong>the</strong> Lancang River (West to East) 69<br />

3.4.2.1 Dapingzhang Pr<strong>of</strong>ile 69<br />

3.4.2.2 Yunxian Pr<strong>of</strong>ile 69<br />

3.4.2.3 Manbie Pr<strong>of</strong>ile 71<br />

3.4.2.4 East <strong>of</strong> Jinghong Pr<strong>of</strong>ile 72<br />

3.4.2.5 Outcrop East <strong>of</strong> Xiaodingxi 73<br />

3.4.2.6 Outcrop at Reshuitang Village 73<br />

3.4.3 Jurassic to Paleogene <strong>Evolution</strong> <strong>of</strong> <strong>the</strong> Simao Basin 75<br />

3.5 Discussion 89<br />

3.5.1 K-Ar Geochronology along <strong>the</strong> Lancang River Zone 89<br />

3.5.2 The Lancang Paired-metamorphic Belts 96<br />

3.5.3 A Note on Terrane Analysis 101<br />

3.5.4 Mountain Building Processes 102<br />

3.6 Summary <strong>of</strong> <strong>the</strong> New Geodynamic Model <strong>and</strong> <strong>Mineral</strong> Deposit<br />

<strong>Potential</strong> 105<br />

3.6.1 Devonian-Lower Carboniferous Marginal Basin <strong>Evolution</strong><br />

105<br />

3.6.2 Late Paleozoic Accretionary Wedge <strong>Tectonic</strong>s 105<br />

3.6.3 Upper Permian-Triassic post-collisional Rifting 106<br />

3.6.4 Late Triassic-Early Jurassic Basin Inversion 109<br />

3.6.5 Late Jurassic to Paleogene MCC <strong>Evolution</strong> <strong>and</strong> Basin<br />

Formation 109<br />

3.6.6 Himalayan Adjustment 111<br />

4 Acknowledgements 112<br />

5 References 114<br />

6 Appendix 129<br />

A Analytical Techniques 129<br />

A-1 Major- <strong>and</strong> Trace Elements by XRF <strong>and</strong> ICPMS 129<br />

A-2 Sm-Nd / Rb-Sr Isotope Geochemistry 129<br />

A-3 K-Ar Geochronology <strong>and</strong> Illite Crystallinity (IC)<br />

Measurements 130<br />

A-4 Ar-Ar Geochronology 131<br />

A-5 Electron Microprobe Analysis 131<br />

B Tables 133<br />

C Stereonets 147<br />

D Stratigraphic Table 157<br />

E List <strong>of</strong> Abbreviations 159

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!