23.12.2014 Views

The Hardening Soil model with small strain stiffness - Zace Services ...

The Hardening Soil model with small strain stiffness - Zace Services ...

The Hardening Soil model with small strain stiffness - Zace Services ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong><br />

<strong>with</strong> <strong>small</strong> <strong>strain</strong> <strong>stiffness</strong><br />

in Zsoil v2011<br />

Rafal OBRZUD<br />

GeoMod Ing. SA, Lausanne<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne


Content<br />

Introduction<br />

Framework of the <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong><br />

<strong>Hardening</strong> <strong>Soil</strong> SmallStrain<br />

<strong>Hardening</strong> <strong>Soil</strong> Standard<br />

Model parameters<br />

Parameter Identification<br />

Assistance in Parameter Selection<br />

Practical applications<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne


Why do we need advanced constitutive <strong>model</strong>s<br />

Approximation of soil behaviour for reliable simulations of practical cases<br />

450<br />

Triaxial drained compression test<br />

Deviatoric stress [kPa] q= σ 1 -σ 3<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Plasticity (yielding) before<br />

reaching the ultimate state<br />

0<br />

0,00% 2,00% 4,00% 6,00% 8,00% 10,00% 12,00% 14,00%<br />

Axial Strain ε 1<br />

Experiment: Texas sand<br />

Simulation: <strong>Hardening</strong> <strong>Soil</strong><br />

Simulation: Mohr-Coulomb<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Introduction


Why do we need advanced constitutive <strong>model</strong>s<br />

ENGINEERING<br />

CALCULATIONS<br />

LIMIT STATE ANALYSIS<br />

DEFORMATION ANALYSIS<br />

Bearing capacity<br />

Slope stability<br />

Pile, retaining wall deflection<br />

Supported deep excavations<br />

Tunnel excavations<br />

Consolidation problems<br />

Basic <strong>model</strong>s e.g. Mohr-Coulomb<br />

Advanced soil <strong>model</strong>s<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Introduction


Basic differences between implemented soil <strong>model</strong>s<br />

Mohr-Coulomb<br />

q<br />

yield<br />

surface<br />

K 0 -line<br />

q<br />

q<br />

E<br />

Linear<br />

elastic<br />

domain<br />

p’<br />

K 0 -<br />

unloading<br />

p’<br />

E ur<br />

E = E ur<br />

ε 1<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Introduction


Practical applications of the <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong><br />

Tunneling<br />

Standard Mohr-Coulomb<br />

<strong>Hardening</strong>-<strong>Soil</strong><br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Introduction


Basic differences between implemented soil <strong>model</strong>s<br />

Mohr-Coulomb<br />

Volumetric cap<br />

<strong>model</strong>s<br />

q<br />

yield<br />

surface<br />

K 0 -line<br />

q<br />

isotropic<br />

hardening<br />

mechanism<br />

q<br />

Linear<br />

elastic<br />

domain<br />

p’<br />

Linear<br />

elastic<br />

domain<br />

p’<br />

σ 1 ’<br />

constant<br />

q<br />

E=E ur<br />

q<br />

Stiffness<br />

degradation<br />

E E ur<br />

ε 1<br />

E<br />

p’<br />

E ur<br />

E < E ur<br />

ε 1<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Introduction


Practical applications of the <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong><br />

Berlin sand excavation<br />

Standard Mohr-Coulomb<br />

<strong>Hardening</strong>-<strong>Soil</strong><br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Introduction


Basic differences between implemented soil <strong>model</strong>s<br />

Mohr-Coulomb<br />

Volumetric cap<br />

<strong>model</strong>s<br />

<strong>Hardening</strong> <strong>Soil</strong><br />

<strong>model</strong>s<br />

q<br />

yield<br />

surface<br />

K 0 -line<br />

q<br />

isotropic<br />

hardening<br />

mechanism<br />

q<br />

+ shear<br />

hardening<br />

mechanism<br />

q<br />

Linear<br />

elastic<br />

domain<br />

E=E ur<br />

p’<br />

q<br />

elastic<br />

domain<br />

Stiffness<br />

degradation<br />

E E ur<br />

ε 1<br />

Linear<br />

E<br />

E ur<br />

E


Small <strong>strain</strong> <strong>stiffness</strong> in geotechnical practice<br />

e.g. Atkinson, Jardine and many others<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Introduction


Stiffness in different <strong>model</strong>s<br />

Deviatoric Stress q [kPa]<br />

160<br />

140<br />

B<br />

120<br />

100<br />

80<br />

Mohr-Coulomb<br />

60<br />

Modified Cam Clay<br />

40<br />

Cap <strong>model</strong><br />

20 A<br />

HS-Standard<br />

HS-Small<br />

0<br />

-3,61E-16 0,05 0,1 0,15 0,2<br />

Axial Strain ε 1 [-]<br />

Normalized soil <strong>stiffness</strong> G/G 0 [-]<br />

1<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

Non-linear<br />

elasticity at<br />

very <strong>small</strong><br />

<strong>strain</strong>s<br />

Linear elasticity at<br />

very <strong>small</strong> <strong>strain</strong>s<br />

0<br />

1E-06 1E-05 0,0001 0,001 0,01 0,1<br />

Axial Strain ε 1 [-]<br />

Linear<br />

elasticity<br />

at <strong>small</strong><br />

<strong>strain</strong>s<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Introduction


Perceived application of Z<strong>Soil</strong> <strong>model</strong>s<br />

ULS - Ulitmate Limit State analysis<br />

SLS - Serviceability Limit State analysis<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Introduction


Content<br />

Introduction<br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> framework<br />

<strong>Hardening</strong> <strong>Soil</strong> SmallStrain<br />

<strong>Hardening</strong> <strong>Soil</strong> Standard<br />

Model parameters<br />

Parameter Identification<br />

Assistance in Parameter Selection<br />

Practical applications<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne


<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong><br />

to describe macroscopic phenomena exhibited by soils<br />

HS-Standard<br />

Densification (decrease of voids volume in soil due to plastic deformations)<br />

<strong>Soil</strong> stress history (accounting for preconsolidation effects)<br />

Plastic yielding (irreversible <strong>strain</strong>s <strong>with</strong> reaching a yield criterion)<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Framework of HS <strong>model</strong>


<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong><br />

to describe macroscopic phenomena exhibited by soils<br />

HS-Standard<br />

Densification (decrease of voids volume in soil due to plastic deformations)<br />

<strong>Soil</strong> stress history (accounting for preconsolidation effects)<br />

Plastic yielding (irreversible <strong>strain</strong>s <strong>with</strong> reaching a yield criterion)<br />

Stress dependent <strong>stiffness</strong> (increasing <strong>stiffness</strong> moduli <strong>with</strong> increasing<br />

depth or stress level)<br />

1200<br />

Triaxial drained compression test - Texas sand<br />

Deviatoric stress [kPa] q= σ 1 -σ 3<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

E (3)<br />

E (1) E (2)<br />

SIG3 = 34.5kPa<br />

SIG3 = 138kPa<br />

SIG3 = 345kPa<br />

0<br />

0.00% 5.00% 10.00% 15.00%<br />

Axial Strain ε 1<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Framework of HS <strong>model</strong>


<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong><br />

to describe macroscopic phenomena exhibited by soils<br />

HS-Standard<br />

Densification (decrease of voids volume in soil due to plastic deformations)<br />

<strong>Soil</strong> stress history (accounting for preconsolidation effects)<br />

Plastic yielding (irreversible <strong>strain</strong>s <strong>with</strong> reaching a yield criterion)<br />

Stress dependent <strong>stiffness</strong> (increasing <strong>stiffness</strong> moduli <strong>with</strong> increasing<br />

depth or stress level)<br />

<br />

Dilatation (occurrence of negative volumetric <strong>strain</strong>s during shearing)<br />

+ HS-SmallStrain for handling <strong>stiffness</strong> in a <strong>small</strong> <strong>strain</strong> range<br />

Stiffness variation (degradation of G 0 modulus <strong>with</strong> increasing shear <strong>strain</strong><br />

amplitudes between γ ≈ 0.0001 – 0.1%)<br />

Hysteretic, non-linear stress-<strong>strain</strong> relationship applicable in the<br />

range of <strong>small</strong> <strong>strain</strong>s *<br />

* HS-SmallStrain can be used to some extent to <strong>model</strong> hysteretic behavior under cycling loadings <strong>with</strong><br />

the exception of gradual softening for increasing number of cycles.<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Framework of HS <strong>model</strong>


<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> in Z<strong>Soil</strong><br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Framework of HS <strong>model</strong>


<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> framework<br />

Activation of G 0 degradation<br />

in the <strong>small</strong> <strong>strain</strong> range<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Framework of HS <strong>model</strong>


<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> framework<br />

Triaxial test simulation<br />

Secant <strong>stiffness</strong> in <strong>small</strong> <strong>strain</strong>s<br />

zoom<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Framework of HS <strong>model</strong>


<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> framework<br />

Triaxial test simulation <strong>with</strong> the unloading/reloading cycle<br />

E 0<br />

E ur<br />

E ur<br />

1000<br />

1000<br />

zoom<br />

900<br />

900<br />

800<br />

800<br />

Deviatoric stress q [kPa]<br />

700<br />

600<br />

500<br />

400<br />

300<br />

Deviatoric stress q [kPa]<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

HS-SmallStrain<br />

HS-Standard<br />

200<br />

100<br />

HS-SmallStrain<br />

HS-Standard<br />

0<br />

0 0,01 0,02 0,03 0,04 0,05<br />

Axial <strong>strain</strong> ε 1 [-]<br />

0<br />

0,019 0,02 0,021 0,022 0,023 0,024<br />

Axial <strong>strain</strong> ε 1 [-]<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Framework of HS <strong>model</strong>


Main mechanical features of HS <strong>model</strong><br />

HS-Standard<br />

Smooth hyperbolic approximation of the stress-<strong>strain</strong> curve of soil<br />

(Duncan-Chang concept)<br />

Two plastic mechanisms:<br />

isotropic (to handle important plastic volumetric <strong>strain</strong>s observed in<br />

normally-consolidated soils)<br />

deviatoric (to handle domination of plastic shear <strong>strain</strong>s which are<br />

observed in coarse materials and heavily consolidated cohesive soils)<br />

Ultimate state described by Mohr-Coulomb criterion<br />

Rowe’s dilatancy<br />

+ HS-SmallStrain<br />

Nonlinear elasticity which includes hysteretic effects (Hardin-Drnevich<br />

concept)<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Framework of HS <strong>model</strong>


Content<br />

Introduction<br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> framework<br />

<strong>Hardening</strong> <strong>Soil</strong> SmallStrain<br />

<strong>Hardening</strong> <strong>Soil</strong> Standard<br />

Model parameters<br />

Parameter Identification<br />

Assistance in Parameter Selection<br />

Practical applications<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne


Non-linear elasticity for very <strong>small</strong> <strong>strain</strong>s<br />

Hyperbolic Hardin-Drnevich relation<br />

to describe S-shaped <strong>stiffness</strong><br />

a = 0.385<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- HS SmallStrain


Content<br />

Introduction<br />

<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> framework<br />

<strong>Hardening</strong> <strong>Soil</strong> SmallStrain<br />

<strong>Hardening</strong> <strong>Soil</strong> Standard<br />

Model parameters<br />

Parameter Identification<br />

Assistance in Parameter Selection<br />

Practical applications<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne


Hyperbolic approximation of the stress-<strong>strain</strong> curve<br />

E 0 – tangent initial <strong>stiffness</strong> modulus<br />

E 50 – secant <strong>stiffness</strong> modulus corresponding to 50% of the ultimate<br />

deviatoric stress q f described by Mohr-Coulomb criterion<br />

E ur – unloading/reloading modulus (parameter corresponding to in Modified Cam Clay)<br />

For most soils R f falls between 0.75 and 1<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- HS Standard


Hyperbolic approximation of the stress-<strong>strain</strong> curve<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- HS Standard


Stress <strong>stiffness</strong> dependency<br />

1200<br />

Triaxial drained compression test - Texas sand<br />

Deviatoric stress [kPa] q= σ 1 -σ 3<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

E (3)<br />

E (1) E (2)<br />

SIG3 = 34.5kPa<br />

SIG3 = 138kPa<br />

SIG3 = 345kPa<br />

0<br />

0,00% 5,00% 10,00% 15,00%<br />

Axial Strain ε 1<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- HS Standard


Stress <strong>stiffness</strong> dependency<br />

E 0<br />

ref<br />

, E 50<br />

ref,<br />

, E ur<br />

ref<br />

correspond to reference minor stress σ ref<br />

where<br />

i.e. <strong>stiffness</strong> degrades <strong>with</strong> decreasing σ 3<br />

up to the limit minor stress σ L which can<br />

be assumed by default σ L =10kPa<br />

In natural soils: m = 0.3 - 1.0<br />

e.g.<br />

Norwegian Sands and silts ≈0.5 (Janbu, 1963)<br />

Soft clays m=0.38 - 0.84 (Kempfert, 2006)<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- HS Standard


Stiffness stress dependency parameter m<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

1. Find three values of E 50<br />

(i)<br />

corresponding σ 3<br />

(i)<br />

to<br />

respectively<br />

2. Find a trend line y = ax + b by assigning variables<br />

y =<br />

x =<br />

3. <strong>The</strong>n the determined slope of the trendline a is the<br />

parameter m<br />

- HS Standard


Stress <strong>stiffness</strong> dependency at initial state<br />

E [kPa]<br />

E [kPa]<br />

E [kPa]<br />

0,0<br />

0 50000 100000 150000 200000<br />

0,0<br />

0 50000 100000 150000 200000<br />

0,0<br />

0 50000 100000 150000 200000<br />

2,0<br />

4,0<br />

m = 0.4<br />

m = 0.6<br />

m = 0.8<br />

2,0<br />

4,0<br />

phi = 20<br />

phi = 30<br />

phi = 40<br />

2,0<br />

4,0<br />

c = 0<br />

c = 15<br />

c = 30<br />

6,0<br />

6,0<br />

6,0<br />

z [m]<br />

8,0<br />

10,0<br />

12,0<br />

14,0<br />

16,0<br />

18,0<br />

20,0<br />

Level of<br />

reference stress<br />

z [m]<br />

8,0<br />

10,0<br />

12,0<br />

14,0<br />

16,0<br />

18,0<br />

20,0<br />

z [m]<br />

8,0<br />

10,0<br />

12,0<br />

14,0<br />

16,0<br />

18,0<br />

20,0<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- HS Standard


Stiffness exponent m<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- HS Standard


Unloading/reloading Poisson’s ratio ν ur<br />

Experimental measurements from local <strong>strain</strong> gauges show that the initial values of<br />

Poisson’s ratio in terms of <strong>small</strong> mobilized stress levels q/q max varies between 0.1 and 0.2 for<br />

clays, sands.<br />

Typically elastic domain<br />

0,5<br />

Poisson's ratio ν [-]<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0,0<br />

after Mayne et al. (2009)<br />

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1<br />

Mobilized stress level q / q max<br />

Toyoura Sand (Dr=56%) Ticino Sand (Dr=77%)<br />

Pisa Clay (Drained Triaxial) Sagamihara soft rock<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- HS Standard


Unloading/reloading Poisson’s ratio ν ur<br />

<strong>The</strong>refore, the characteristic value for the elastic unloading/reloading Poisson’s ratio of ν ur = 0.2<br />

can be adopted for most soils.<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- HS Standard


160,0<br />

140,0<br />

120,0<br />

Asymptote q a =1/b<br />

E 50 = 2a<br />

Failure ratio R f<br />

0,0<br />

q = σ 1 -σ 3<br />

100,0<br />

80,0<br />

60,0<br />

1<br />

40,0<br />

20,0<br />

1,8E-03<br />

1,6E-03<br />

1,4E-03<br />

0 0,05 0,1 0,15 0,2<br />

Identification of R f<br />

R f = q f / q a = b·q f<br />

1,2E-03<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

ε 1 /q<br />

- HS Standard<br />

1,0E-03<br />

8,0E-04<br />

6,0E-04<br />

4,0E-04<br />

2,0E-04<br />

0,0E+00<br />

1<br />

a =1/2E 50<br />

0 0,05 0,1 0,15 0,2<br />

ε 1 [-]<br />

b=1/q a


Double hardening <strong>model</strong><br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

r(θ) – follows van Ekelen’s formula in order<br />

to assure a smooth and convex yield<br />

surface (cf. Modified Cam clay <strong>model</strong>)<br />

- HS Standard


Double hardening <strong>model</strong><br />

σ 1<br />

p’<br />

σ 2<br />

cap yield<br />

surfaces<br />

described <strong>with</strong><br />

van Ekelen’s formula<br />

Mohr-Coulomb<br />

failure surface<br />

p’-q section through shear and cap yield surfaces<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

σ 3<br />

- HS Standard


Dilatancy<br />

sinϕ m [-]<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0,0<br />

-0,1<br />

-0,2<br />

Contractancy cut-off<br />

for<br />

φ m < φ cs<br />

Rowe's dilatancy<br />

for<br />

φ m ≥ φ cs<br />

Rowe's<br />

dilatancy<br />

-0,3<br />

-0,4<br />

Contractancy<br />

domain<br />

0 10 20 30 40<br />

φ m [deg]<br />

Dilatancy<br />

domain<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- HS Standard


Dilatancy<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- HS Standard


Dilatancy in HS-SmallStrain<br />

Contractancy<br />

domain<br />

Dilatancy<br />

domain<br />

Since the cut-off for the contractancy domain could yield too <strong>small</strong> volumetric <strong>strain</strong>, the<br />

scaling parameter D is introduced.<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- HS Standard


Parameters M and H<br />

Evolution of the hardening<br />

parameter p c :<br />

H controls the rate of volumetric<br />

plastic <strong>strain</strong>s<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- HS Standard


Parameters M and H<br />

M and H must fulfil two conditions:<br />

1. K 0<br />

NC<br />

produced by the <strong>model</strong> in oedometric<br />

conditions is the same as K 0<br />

NC<br />

specified by<br />

the user<br />

2. E oed generated by the <strong>model</strong> is the same<br />

E oed<br />

ref<br />

specified by the user<br />

Typical stress path in the oedometric test<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- HS Standard


Parameters M and H<br />

ASSUMPTIONS:<br />

1. At given σ oed<br />

ref<br />

which is located at post-yield plastic curve, both shear an volumetric<br />

mechanism are active<br />

2. Initial stress point<br />

3. A <strong>strain</strong> driven oedometer test is run <strong>with</strong> vertical <strong>strain</strong> amplitude ∆ε=10 -5 and the<br />

tangent oedometric modulus is computed as E oed = δσ/δε ≅ ∆σ/∆ε<br />

4. Optimisation of M and H must fulfil two conditions:<br />

K 0<br />

NC<br />

produced by the <strong>model</strong> in oedometric conditions = K 0<br />

NC<br />

specified by the user<br />

E oed generated by the <strong>model</strong> = E oed<br />

ref<br />

specified by the user<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- HS Standard


Initial state variables - OCR<br />

Notion of overconsolidation ratio:<br />

σ‘ vc<br />

OCR =<br />

σ‘v0<br />

Typical oedometer test<br />

0<br />

Vertical preconsolidation<br />

pressure σ‘ vc<br />

σ‘ v0 – current in situ stress<br />

σ‘ vc – past vertical preconsolidation<br />

pressure<br />

NB. In natural soils, overconsolidation<br />

may stem from mechanical unloading<br />

such as erosion, excavation, changes in<br />

ground water level, or due to other<br />

phenomena such as desiccation,<br />

melting of ice cover, compression and<br />

cementation.<br />

Volumetric <strong>strain</strong> ε v [-]<br />

0,02<br />

0,04<br />

0,06<br />

0,08<br />

0,1<br />

0,12<br />

Simulation<br />

Experiment<br />

1 10 100 1000<br />

Vertical stress σ v ' [ kPa]<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- HS Standard


Initial state variables – OCR and K 0<br />

Normally-conslidated soil (OCR=1)<br />

Overconslidated soil (OCR>1)<br />

Why does it appear and what should be inserted<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- HS Standard


Initial state variables – K 0 and K 0<br />

NC<br />

A<br />

B<br />

Excavation<br />

σ’ v<br />

σ’ v<br />

σ’ h<br />

Vertical effective stress<br />

B<br />

A<br />

σ’ h<br />

A<br />

q<br />

B<br />

Horizontal effective stress<br />

p’<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- HS Standard


Initial state variables – K 0 and K 0<br />

NC<br />

σ’ SR<br />

Preconsolidation stress configuration corresponding to K 0<br />

NC<br />

σ’ 0<br />

- HS Standard<br />

Current in situ stress configuration corresponding to K 0<br />

(at the beginning of numerical simulation)<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne


Initial state variables – K 0 vs. OCR<br />

Estimation of earth pressure at rest<br />

Normally-consolidated soils<br />

0,9<br />

1-sin(phi')<br />

Brooker&Ireland(1965)<br />

0,8<br />

Simpson(1992)<br />

Overconsolidated soils<br />

2,5<br />

2,0<br />

K 0<br />

NC<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0 20 40 60<br />

φ' [deg]<br />

K 0<br />

1,5<br />

1,0<br />

0,5<br />

0,0<br />

0 5 10 15 20<br />

OCR [-]<br />

phi=20deg<br />

phi=30deg<br />

phi=40deg<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- HS Standard


Initial state variables – K 0 and K 0<br />

NC<br />

For most cases when soil was subject to “natural” consolidation before unloading<br />

K 0<br />

NC<br />

K 0<br />

K 0<br />

SR<br />

= K 0<br />

NC<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- HS Standard


Initial state variables – K 0 and K 0<br />

NC<br />

In the case of simulating the triaxial<br />

compression test after isotropic<br />

loading/unloading:<br />

K 0<br />

SR<br />

≠ K 0<br />

NC<br />

q<br />

but<br />

K 0<br />

SR<br />

=1<br />

C<br />

B<br />

isotropic loading/unloading<br />

A<br />

p’<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- HS Standard


Initial state variables<br />

1. User specifies initial stress conditions σ’ 0<br />

2. Zsoil at the beginning of a FE analysis calculates<br />

σ’ SR <strong>with</strong><br />

and the horizontal stress components<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

3. <strong>The</strong>n the hardening parameter p c0 is computed<br />

- HS Standard


Setting initial state variables<br />

1. Through K 0<br />

σ y = γ • “depth”<br />

σ x = σ x •K 0 (x)<br />

2. Through Initial Stress<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- HS Standard


Setting initial state variables<br />

If the <strong>model</strong> does not converge at Initial State<br />

for the specified K 0<br />

1. try to start Initial State analysis from a <strong>small</strong><br />

Initial loading Fact. and Increment<br />

2. otherwise, define initial conditions through<br />

Initial Stress<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- HS Standard


Initial state variables - preconsolidation<br />

1. through OCR (gives constant OCR profile)<br />

At the beginning of FE analysis, Zsoil sets the<br />

stress reversal point (SR) <strong>with</strong>:<br />

2. through q POP (gives variable OCR profile)<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- HS Standard


Stress history through OCR<br />

Deposits <strong>with</strong> constant OCR over the depth (typically deeply bedded soil layers)<br />

OCR [-]<br />

Effective stress [kPa]<br />

Ko [-]<br />

0<br />

1 3 5 7 9 11 13<br />

0<br />

0 500 1000 1500<br />

0,00 0,50 1,00 1,50<br />

0<br />

2<br />

2<br />

2<br />

4<br />

4<br />

4<br />

6<br />

6<br />

6<br />

Depth [m]<br />

8<br />

10<br />

Depth [m]<br />

8<br />

10<br />

Depth [m]<br />

8<br />

10<br />

12<br />

12<br />

12<br />

14<br />

14<br />

14<br />

16<br />

16<br />

16<br />

18<br />

18<br />

18<br />

SigEff vertical<br />

SigEff preconsolidation<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- HS Standard


Deposits <strong>with</strong> varying OCR over the depth (typically superficial soil layers)<br />

Profiles for Bothkennar clay<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- HS Standard


Stress history through q POP<br />

Deposits <strong>with</strong> varying OCR over the depth (typically superficial soil layers)<br />

0<br />

Effective stress [kPa]<br />

0 200 400 600<br />

0<br />

OCR [-]<br />

1 3 5 7 9 11 13<br />

0<br />

Ko [-]<br />

0 0,5 1 1,5<br />

2<br />

2<br />

2<br />

4<br />

4<br />

4<br />

6<br />

q POP<br />

6<br />

6<br />

Depth [m]<br />

8<br />

10<br />

Depth [m]<br />

8<br />

10<br />

Depth [m]<br />

8<br />

10<br />

12<br />

12<br />

12<br />

14<br />

16<br />

18<br />

SigEff vertical<br />

SigEff preconsolidation<br />

14<br />

16<br />

18<br />

14<br />

16<br />

18<br />

Variable K 0 can<br />

be introduced<br />

merely through<br />

Initial Stress<br />

option<br />

K 0<br />

OC<br />

= K 0<br />

NC<br />

√OCR<br />

K 0<br />

OC<br />

= K 0<br />

NC<br />

OCR sin(φ) (Mayne&Kulhawy 1982)<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- HS Standard


Content<br />

Introduction<br />

<strong>Hardening</strong> <strong>Soil</strong> - SmallStrain<br />

<strong>Hardening</strong> <strong>Soil</strong> – Standard<br />

Model Parameters<br />

Parameter Identification<br />

Assistance in Parameter Selection<br />

Practical applications<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne


<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong><br />

List of parameters to be provided by the user (page 1)<br />

Small <strong>stiffness</strong> (HS-SmallStrain only)<br />

1. E 0<br />

ref<br />

kPa SCPT, SDMT, geophysical methods<br />

2. γ 0.7 - Triaxial test <strong>with</strong> local gauges, geotechnical evidence<br />

3. E<br />

ref<br />

50 kPa Triaxial test<br />

4. E<br />

ref<br />

ur kPa Triaxial test<br />

5. ν ur - Triaxial test<br />

6. m - Triaxial test<br />

7. σ<br />

ref<br />

3 kPa Triaxial test<br />

Elastic constants<br />

Auxiliary variable<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Model parameters


<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong><br />

List of parameters to be provided by the user (page 2)<br />

Shear mechanism<br />

8. c kPa Triaxial test, in situ test<br />

9. φ ˚ Triaxial test, in situ test<br />

10. (R f ) - Triaxial test or the default value 0.9<br />

11. ψ ˚ Triaxial test<br />

12. e max<br />

˚ Triaxial test on dense granular or overconsildated cohesive soil<br />

13. E oed<br />

ref<br />

kPa Oedometric test<br />

14. σ oed<br />

ref<br />

kPa Oedometric test<br />

15. OCR /<br />

q POP - /<br />

kPa<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

Volumetric (cap) mechanism<br />

Initial state variable<br />

Oedometric test or in situ tests<br />

16. K 0<br />

SR<br />

- K 0<br />

SR<br />

= 1-sin φ (or Ko-consolidation triaxial test)<br />

17. σ 0<br />

kPa Init. stress conditions accounting for K 0 = K<br />

SR<br />

0 (for normallyconsolidated<br />

soil), K 0 = K<br />

OC<br />

0 (for overconsolidated soil)<br />

- Model parameters


<strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong><br />

Comparison of corresponding soil parameters for selected Z<strong>Soil</strong> <strong>model</strong>s<br />

Corresponding soil<br />

parameters<br />

<strong>Hardening</strong>-<strong>Soil</strong> Cap Mohr-Coulomb<br />

Small <strong>strain</strong> <strong>stiffness</strong> E 0 and γ 0.7 none none<br />

Elastic constants<br />

E ur and ν ur<br />

E 50 and m<br />

E and ν<br />

E and ν<br />

Failure criterion φ and c φ and c φ and c<br />

Dilatancy ψ and e max ψ ψ and e max<br />

Cap surface<br />

parameters<br />

E oed (can be<br />

determined from λ)<br />

OCR , K 0 and K 0<br />

SR<br />

λ<br />

OCR , K 0<br />

None<br />

K 0<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Model parameters


Content<br />

Introduction<br />

<strong>Hardening</strong> <strong>Soil</strong> - SmallStrain<br />

<strong>Hardening</strong> <strong>Soil</strong> – Standard<br />

Model Parameters<br />

Parameter Identification<br />

Assistance in Parameter Selection<br />

Practical applications<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne


Parameter identification<br />

Report<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Parameter identification


<strong>The</strong> HS <strong>model</strong> – a practical guidebook<br />

Contents:<br />

<strong>The</strong>ory<br />

Parameter identification<br />

Parameter estimation<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Parameter identification


Parameter identification<br />

Stiffness parameters<br />

Determination of G 0 from geophysical tests SCPT, SDMT and others<br />

<strong>with</strong> ρ denoting density of sol and V s shear wave velocity. (ν=0.15..0.25 for <strong>small</strong> <strong>strain</strong>s)<br />

In situ tests <strong>with</strong> seismic sensors:<br />

• seismic piezocone testing (SCPTU)<br />

(Campanella et al. 1986)<br />

• seismic flat dilatometer test (SDMT)<br />

(Mlynarek et al. 2006, Marchetti et al. 2008)<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

Geophysical tests: (see review by Long 2008)<br />

• continuous surface waves (CSW)<br />

• spectral analysis of surface waves (SASW)<br />

• multi channel analysis of surface waves (MASW)<br />

• frequency wave number (f-k) spectrum method<br />

- Parameter identification


Parameter identification<br />

Stiffness parameters<br />

Determination of G 0 for sands from CPT<br />

after Robertson and Campanella (1983)<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Parameter identification


Parameter identification<br />

Stiffness parameters Estimation of E 0 from E 50<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Parameter identification


Parameter identification<br />

Stiffness parameters Estimation of E 0 from E 50<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Parameter identification


Parameter identification<br />

Stiffness parameters<br />

Estimation of E 0 from E ur<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Parameter identification


HS-SmallStrain<br />

Non-linear elasticity for <strong>small</strong> <strong>strain</strong>s<br />

Cohesionless soils<br />

Influence of voids ratio Influence of confining stress p’<br />

after Wichtmann & Triantafyllidis<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Parameter identification


HS-SmallStrain<br />

Non-linear elasticity for <strong>small</strong> <strong>strain</strong>s<br />

Cohesive soils<br />

Influence of soil plasticity<br />

after Vucetic and Dobry<br />

(from Benz, 2007)<br />

approximation proposed by Stokoe et al.<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Parameter identification


Parameter identification<br />

Stiffness parameters<br />

Determination of E 50 for sands from CPT<br />

after Robertson and Campanella (1983)<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Parameter identification


Parameter selection<br />

Stiffness parameters<br />

Undrained vs drained moduli – theoretical relationship<br />

Since the shear modulus is not affected by the drainage conditions<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Parameter identification


Parameter identification<br />

Oedometric modulus E oed<br />

where C c is the compression index<br />

Since we look for tangent E oed , ∆σ’0, and<br />

σ * =2.303σ oed<br />

ref<br />

If λ is known<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Parameter identification


Parameter selection - oedometric modulus E oed<br />

E oed<br />

ref<br />

≈ E 50<br />

ref<br />

but<br />

E oed<br />

ref<br />

E 50<br />

ref<br />

σ oed<br />

ref<br />

= σ ref / K 0<br />

NC<br />

σ ref<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Parameter identification


Parameter identification<br />

Preconsolidation pressure and OCR<br />

Laboratory:<br />

- Oedometer test (Casagrande’s method, Pacheco Silva method (1970))<br />

Field tests:<br />

- Static piezocone penetration (CPTU)<br />

(see reports by Mayne)<br />

- Marchetti flat dilatometer (DMT)<br />

(correlations by Marchetti (1980),<br />

Lacasse and Lunne, 1988) )<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Parameter identification


Parameter identification<br />

Preconsolidation pressure and OCR<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

(from Lunne et al. 1997)<br />

- Parameter identification


Parameter identification<br />

Preconsolidation pressure and OCR<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Parameter identification


Parameter identification<br />

Other information from DMT<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Parameter identification


Parameter identification<br />

Strength parameters<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Parameter identification


Parameter identification<br />

Strength parameters<br />

Friction angle φ for granular soils from in situ tests<br />

SPT<br />

CPTU<br />

(Robertson & Campanella, 1983)<br />

DMT<br />

Upper bound<br />

Lower bound<br />

(Totani et al., 1999)<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Parameter identification


Content<br />

Introduction<br />

<strong>Hardening</strong> <strong>Soil</strong> - SmallStrain<br />

<strong>Hardening</strong> <strong>Soil</strong> – Standard<br />

Model Parameters<br />

Parameter Identification<br />

Assistance in Parameter Selection<br />

Practical applications<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne


<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Assistance in parameter selection


Initialization menu<br />

Empty field reserved for numeric data (basic soil properties,<br />

specific soil properties, in situ test data) in Zsoil v2012<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Assistance in parameter selection


Non-cohesive soil setup<br />

Initialization menu<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Assistance in parameter selection


Initialization menu<br />

Cohesive soil setup<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Assistance in parameter selection


Initialization menu<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Assistance in parameter selection


HS Menu<br />

Scroll<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Assistance in parameter selection


<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Assistance in parameter selection


Parameter selection – secant modulus E ur<br />

Typical values of the <strong>stiffness</strong> modulus which are provided in<br />

most textbooks are referred to as the "static" <strong>stiffness</strong> modulus E s<br />

It can be assumed that they represent the values of the<br />

unloading/reloading modulus E ur<br />

In the basic parameter selection, typical E ur is taken as E s and the<br />

reference pressure is assumed σ ref =100kPa<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Assistance in parameter selection


Parameter selection – secant modulus E 50<br />

In most practical cases:<br />

In toolbox - ranges: = 2 to 4<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Assistance in parameter selection


Parameter selection - oedometric modulus E oed<br />

E oed<br />

ref<br />

≈ E 50<br />

ref<br />

but<br />

E oed<br />

ref<br />

E 50<br />

ref<br />

σ oed<br />

ref<br />

= σ ref / K 0<br />

NC<br />

σ ref<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Assistance in parameter selection


Parameter selection – friction angle φ<br />

Multi-criterion selection depending on quantity of provided<br />

input data (“soil keywords”)<br />

Keyword:<br />

Density<br />

Keyword:<br />

<strong>Soil</strong> type,<br />

Density,<br />

Gradation<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Assistance in parameter selection


Content<br />

Introduction<br />

<strong>Hardening</strong> <strong>Soil</strong> - SmallStrain<br />

<strong>Hardening</strong> <strong>Soil</strong> – Standard<br />

Model Parameters<br />

Parameter Identification<br />

Assistance in Parameter Selection<br />

Practical applications<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne


Practical applications – Excavation in Berlin sand<br />

Engineering draft and the sequence of excavation<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Practical applications


Practical applications – Excavation in Berlin sand<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Practical applications


Practical applications – Excavation in Berlin sand<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Practical applications


Practical applications – Excavation in Berlin sand<br />

Berlin sand excavation<br />

Standard Mohr-Coulomb<br />

<strong>Hardening</strong>-<strong>Soil</strong><br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Practical applications


Practical applications – Excavation in Berlin sand<br />

Berlin sand excavation<br />

0<br />

-5<br />

-10<br />

Distance from surface Y [m]<br />

-15<br />

-20<br />

-25<br />

HS-<strong>small</strong><br />

HS-Std<br />

MC<br />

Measurements<br />

-30<br />

-0.04 -0.03 -0.02 -0.01 0<br />

Horizontal displacement Ux [m]<br />

-35<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Practical applications


Practical applications – Shallow footing<br />

Texas sand benchmark<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Practical applications


Practical applications – Shallow footing Texas sand benchmark<br />

1. DMT data 2. OCR interpreted form DMT data<br />

0<br />

1<br />

K D [-]<br />

OCR [-]<br />

0 5 10 15 20<br />

0 10 20 30 40 50<br />

0<br />

DMT-1<br />

DMT-2<br />

1<br />

2<br />

3<br />

2<br />

3<br />

DMT-1<br />

DMT-2<br />

Depth [m]<br />

4<br />

5<br />

Depth [m]<br />

4<br />

5<br />

Variable<br />

profile<br />

6<br />

6<br />

7<br />

7<br />

8<br />

8<br />

9<br />

9<br />

10<br />

10<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Practical applications


Practical applications – Shallow footing<br />

Texas sand benchmark<br />

0<br />

Vertical stress[kPa]<br />

0 200 400 600 800<br />

0<br />

OCR [-]<br />

0 10 20 30 40 50<br />

1<br />

1<br />

2<br />

q POP<br />

2<br />

DMT-1<br />

DMT-2<br />

FE Model<br />

3<br />

3<br />

4<br />

4<br />

Depth [m]<br />

5<br />

Depth [m]<br />

5<br />

3. Selecting q POP 4. OCR based on q POP Variable<br />

profile<br />

6<br />

6<br />

7<br />

7<br />

8<br />

8<br />

9<br />

10<br />

vertical effectivve stress<br />

preconsolidation pressure<br />

9<br />

10<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Practical applications


Practical applications – Shallow footing<br />

Texas sand benchmark<br />

5. Interpreting and Setting K 0<br />

0<br />

1<br />

K 0 [-]<br />

0 0.5 1 1.5 2 2.5<br />

DMT-1<br />

DMT-2<br />

FE Model<br />

2<br />

3<br />

4<br />

Depth [m]<br />

5<br />

6<br />

7<br />

8<br />

9<br />

Variable K 0 can be<br />

introduced<br />

merely through<br />

Initial Stress option<br />

10<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Practical applications


Practical applications – Shallow footing<br />

Texas sand benchmark<br />

Load [kN]<br />

0<br />

-0.01<br />

-0.02<br />

-0.03<br />

-0.04<br />

0 2000 4000 6000 8000 10000<br />

Experiement<br />

<strong>Hardening</strong> <strong>Soil</strong> SmallStrain<br />

Standard Mohr-Coulomb<br />

Settlement [m]<br />

-0.05<br />

-0.06<br />

-0.07<br />

-0.08<br />

-0.09<br />

-0.1<br />

-0.11<br />

-0.12<br />

-0.13<br />

-0.14<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Practical applications


Summary<br />

<strong>Hardening</strong> <strong>Soil</strong>-SmallStrain <strong>model</strong>:<br />

<br />

<br />

<br />

<br />

<br />

correctly reproduces a strong reduction of soil <strong>stiffness</strong> <strong>with</strong><br />

increasing shear <strong>strain</strong> amplitudes<br />

is recommended for Serviceability Limit State analyses as it<br />

generally predicts soil behavior and field measurements more<br />

precisely than basic linear-elasticity <strong>model</strong>s<br />

is essential for the engineering problems <strong>with</strong> unloading/reloading<br />

modes such as excavations, tunneling<br />

accounts for stress stress history which is crucial for problems such<br />

as footing, consolidation, water fluctuation<br />

is applicable to most soils as it accounts for pre-failure<br />

nonlinearities for both sand and clay type materials regardless of the<br />

overconsolidation state<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> is not as difficult in practical use as you may<br />

think. When you run a simulation <strong>with</strong> the M-C <strong>model</strong>, as an exercise,<br />

try to run the <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> as well.<br />

<strong>The</strong> <strong>Hardening</strong> <strong>Soil</strong> <strong>model</strong> <strong>with</strong> <strong>small</strong> strian <strong>stiffness</strong><br />

Rafal Obrzud, GeoMod SA<br />

30.08.2011, Lausanne<br />

- Practical applications

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!