23.12.2014 Views

SM_Snow_DroughtQuiring.ppt [Read-Only] - Drought Research ...

SM_Snow_DroughtQuiring.ppt [Read-Only] - Drought Research ...

SM_Snow_DroughtQuiring.ppt [Read-Only] - Drought Research ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

What Causes <strong>Drought</strong><br />

An Examination of the Role of<br />

Land Surface Conditions<br />

Steven Quiring<br />

DRI Workshop<br />

January 12, 2007<br />

Consul, Saskatchewan (April, 2002)<br />

Ted Banks


Motivation<br />

Koster et al. (2004)


<strong>Research</strong> Objectives<br />

I. Examine the importance of land<br />

surface conditions (snowfall and soil<br />

moisture) in initiating and/or<br />

exacerbating drought conditions in<br />

the Northern Great Plains (NGP)<br />

II.<br />

Can we use snowfall and soil<br />

moisture conditions prior to the<br />

growing season to forecast drought


Evaporation<br />

3) Increased Precipitation<br />

Recycling<br />

Transpiration<br />

<strong>Snow</strong>fall-Soil<br />

moisture-<br />

Precipitation<br />

Feedback<br />

2b) Increased E + T (ET)<br />

POSITIVE<br />

2a) Increased soil<br />

moisture recharge<br />

1) High Winter/Spring <strong>Snow</strong>fall<br />

(or Fall precipitation)


3) Decreased Precipitation<br />

Recycling<br />

Transpiration<br />

<strong>Snow</strong>fall-Soil<br />

moisture-<br />

Precipitation<br />

Feedback<br />

“<strong>Drought</strong> begets drought”<br />

Namias (1960)<br />

Evaporation<br />

2b) Decreased E + T (ET)<br />

2a) Decreased soil<br />

moisture recharge<br />

NEGATIVE<br />

1) Low Winter/Spring <strong>Snow</strong>fall<br />

(or Fall precipitation)


Study Region<br />

55°0'0"N<br />

110°0'0"W<br />

105°0'0"W<br />

100°0'0"W<br />

95°0'0"W<br />

55°0'0"N<br />

•NGP = encompasses<br />

portions of Manitoba,<br />

Saskatchewan, Alberta & 12<br />

US States<br />

50°0'0"N<br />

50°0'0"N<br />

45°0'0"N<br />

40°0'0"N<br />

Moisture Anomaly<br />

< -3<br />

-2 to -3<br />

-1 to -2<br />

0 to -1<br />

0 to 1<br />

1 to 2<br />

2 to 3<br />

> 3<br />

110°0'0"W<br />

105°0'0"W<br />

100°0'0"W<br />

95°0'0"W<br />

Summer (JJA) moisture<br />

anomalies associated<br />

with the 5 driest between<br />

1929 and 1999<br />

45°0'0"N<br />

40°0'0"N<br />

•<strong>Drought</strong> data based on<br />

Palmer’s Moisture Anomaly<br />

Index calculated from station<br />

and climate division data<br />

(interpolated to a 1 by 1<br />

grid)<br />

•Monthly data (1929-1999),<br />

only summer (JJA) moisture<br />

anomalies were analyzed


<strong>Snow</strong>fall Data<br />

•North American gridded<br />

(1 by 1 ) snowfall and<br />

snow cover developed by<br />

T. Mote (Univ. Georgia)<br />

•Interpolated from U.S.<br />

National Weather Service<br />

(NWS) cooperative stations<br />

and the Canadian daily<br />

surface observations<br />

•Daily data (1900-2000)


Soil Moisture<br />

•Variable Infiltration Capacity<br />

(VIC) macroscale hydrological<br />

model<br />

•Developed by Lettenmaier’s<br />

hydrology group at University<br />

of Washington<br />

•3 layer soil water model that<br />

utilizes a soil-vegetationatmosphere<br />

transfer scheme to<br />

account for land-atmosphere<br />

interactions<br />

•Daily simulation over CONUS<br />

at (0.5 by 0.5 ) (1915-2005)


1) Does decreased snowfall lead to<br />

decreased soil moisture recharge<br />

Climatic Water Budget for Northern Minnesota


NGP <strong>Snow</strong>fall & June 1 Soil Moisture<br />

r = 0.43 (similar correlation between seasonal snowfall and May 1 <strong>SM</strong>)


NGP Soil Moisture Composite


2) Are droughts associated with<br />

reduced precipitation recycling<br />

• Recycled precipitation = water from ET that falls<br />

again as rain within the same area (strongly<br />

influenced by size of region)<br />

• Estimates of summer recycling ratios in the NGP<br />

vary (L = 500 km):<br />

– 12% (Trenberth, 1999)<br />

– 14-17% (Dominguez et al., 2006)<br />

– 21% (Raddatz, 2006)<br />

• Local ET provides water vapor and CAPE, linked to<br />

increased convection


Dominguez et al. (2006)


0.19 0.16 0.16 0.13<br />

0.14 0.12<br />

0.16 0.14<br />

Dominguez et al. (2006)


Recycled Precipitation (1980–1999)<br />

r = 0.73


Recycling Ratio (1980–1999)<br />

Compare to Raddatz (2006):<br />

r = 0.43<br />

<strong>Drought</strong> = 0.17<br />

Pluvial = 0.24


3) Are snowfall/SWE anomalies related<br />

to drought


<strong>Snow</strong>fall Composites<br />

Winter<br />

Spring<br />

Dry<br />

Wet<br />

-67 mm -63 mm


NGP <strong>Drought</strong> Composites


NGP April-May <strong>Snow</strong>fall & <strong>Drought</strong><br />

<strong>Snow</strong>fall (blue)<br />

Summer drought (red)<br />

r = 0.22


Temporal Variability<br />

Winter (DJF) (blue line) and April-May (green line) snowfall anomalies and<br />

summer moisture anomalies (Z-index) calculated for all 15 yr time periods<br />

between 1929 and 1999. Dashed lines indicate the 95% significance level.


Summary & Conclusions<br />

• Below (above) normal snowfall in winter/spring is<br />

generally associated with anomalously dry (wet) soil<br />

moisture in May through July and lower (higher)<br />

than normal summer precipitation<br />

• The strength of the relationship between<br />

winter/spring snowfall and summer moisture<br />

anomalies varies significantly over space and time<br />

• Lack of spatial and temporal stability in the snowfalldrought<br />

and soil moisture-drought relationships<br />

have significant implications for understanding and<br />

forecasting these events


Acknowledgements:<br />

T. Mote (University of Georgia)<br />

D. Kluver (University of Delaware)<br />

F. Dominguez (University of Illinois)<br />

E. Wood (University of Washington)<br />

Consul, Saskatchewan (April, 2002)<br />

Ted Banks


4) Can we use soil moisture data to<br />

forecast drought<br />

r = 0.51


Future <strong>Research</strong><br />

• Further analysis of snow and soil moisture<br />

data<br />

• Examine causes of spatial and temporal<br />

variability<br />

• Modeling land-atmosphere interactions<br />

using regional climate model<br />

• Developing hindcast and predictive drought<br />

models for the NGP

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!