02.12.2014 Views

Annual Report 2000 - WIT

Annual Report 2000 - WIT

Annual Report 2000 - WIT

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

â<br />

Í<br />

ð<br />

Í<br />

^<br />

g<br />

ð<br />

Í<br />

[f} Í’»<br />

^<br />

g<br />

^<br />

g<br />

¸<br />

¸<br />

¸<br />

<br />

g<br />

ð<br />

Í<br />

Í<br />

ð<br />

^<br />

g<br />

u<br />

g<br />

g<br />

g<br />

Í<br />

Í<br />

â<br />

h<br />

Í<br />

¿<br />

Í<br />

h<br />

<br />

Í’»€ Ú þ Ö Ú þ%<br />

h<br />

Í<br />

[f} Í’»<br />

¸<br />

<br />

¿<br />

ˆ<br />

^<br />

g<br />

‰<br />

ð<br />

Í<br />

¸<br />

h<br />

<br />

ð<br />

h<br />

<br />

‰ g <br />

Í<br />

Í<br />

Í<br />

¿<br />

ð<br />

â<br />

`<br />

ð<br />

h<br />

Í<br />

Í<br />

ð<br />

g<br />

§<br />

` Í<br />

[f} Í’»<br />

h<br />

<br />

Ë<br />

Í<br />

2<br />

h<br />

<br />

Í<br />

[f} Í’»<br />

` Í<br />

[f} Í’»<br />

` Í<br />

[ Í¡»<br />

<<br />

Ü<br />

§<br />

78<br />

The derivations of<br />

» [ are given by<br />

^ ¸<br />

dif<br />

Ø Ú Ûir s[Ü<br />

dif knmpoEq<br />

Þ (6)<br />

ö][ ¼ih'¾<br />

with respect to the components of ¹<br />

` §<br />

ö][ ¼ih'¾S¿<br />

ÏS hj <br />

¨ ÃÉÄ_ Ä 0<br />

Since<br />

[f} Í’»<br />

[ , we observe that<br />

»<br />

[ is not a function of ¹<br />

dif<br />

âfe<br />

âf~<br />

¼<br />

(7)<br />

where we have used the notation for the diffraction-traveltime function along rays<br />

connecting an arbitrary source-receiver pair defined by to an arbitrary point on the<br />

reflector ¹<br />

. Fermat's principle states then that<br />

\<br />

[} Í¡»<br />

â~<br />

Í’» [f}<br />

Í’» [f}<br />

âf~<br />

¿ ¤ Þ (8)<br />

Differentiating equation (6) a second time yields<br />

âf~<br />

âf~<br />

` §<br />

ÏN hj‚<br />

ö][ ¼ih'¾›¿<br />

¨ êÄ_ Ä :<br />

Í¡» [} Í’» [ <br />

Í’» [f} Í’» [ <br />

âf~<br />

âf~<br />

âf~<br />

Ø Ú Ûr s[Ü ¼ dif (9)<br />

mpoEq k<br />

§ ¸<br />

` §<br />

h'¾<br />

Í¡» [ <br />

Í’» [f} Í’» [ <br />

Í’» [ <br />

where we have again used equation (7).<br />

Í’» [ƒ}<br />

In high-frequency approximation, equations (6) and (9) are dominated by âf~ the<br />

highest-order non-vanishing terms in . ö|[ At , the first derivative of vanishes<br />

due to Fermat's principle, equation (8). Thus, we find in this approximation,<br />

h<br />

ö|[ ¼ih'¾S¿c¤<br />

(10)<br />

and<br />

â~<br />

h'¾<br />

¸ Ë ¼ ` ؃Ú<br />

¾iknm„o…q<br />

¹ Ûr s<br />

dif ö|[<br />

Þ (11)<br />

öA[ ¼ih'¾S¿<br />

ÏS hj<br />

Í’» [f} Í’» [ <br />

Í’» [f} Í¡» [ <br />

The asymptotic evaluation of equation (11) is completely parallel to that of integral (2)<br />

and yields<br />

âf~<br />

¨ Ã<br />

Ä_ Ä<br />

hj‡y ¸ ¹ Ë ¼ öA[ ¾<br />

(12)<br />

φ<br />

Here, we recognize the Hessian ˆ matrix<br />

thus write in matrix form,<br />

as defined by Hubral et al. (1992). We<br />

Í¡» [} Í’» [ <br />

Í’» [f} Í’» [ <br />

[ ¿<br />

hjŠy ¸ ¹ Ë ¼ öA[ ¾ Þ (13)<br />

φ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!