02.12.2014 Views

Annual Report 2000 - WIT

Annual Report 2000 - WIT

Annual Report 2000 - WIT

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

§<br />

¦<br />

¦<br />

¦<br />

¢¢¢<br />

§<br />

Ë<br />

Ê<br />

Ë<br />

¨š›óò ÐÐ<br />

’<br />

ò<br />

¢¢¢<br />

Ë<br />

Ë<br />

Ù<br />

¢¢¢<br />

¦<br />

Í » •<br />

ê Í<br />

›Nõ ÐOô ò ’ Ù<br />

ò<br />

Ù<br />

§<br />

æ<br />

¢¢¢<br />

<br />

Ù<br />

Ë<br />

<br />

223<br />

instead of an expansion into reference surfaces. The procedure of determining the corresponding<br />

3-D slowness ¦ Æ<br />

vectors ¦ Æ¿<br />

and and matrices<br />

¦ Ê ‘ ¦¦ Ë<br />

and ¦ ¦ §<br />

from multi-fold<br />

traveltime data sampled on a coarse cartesian grid is described in detail in (Vanelle<br />

¦<br />

¦ ¦ Ê ‘ ¦¦ Ë ¦ §<br />

2è<br />

Ê ‘é¦ § ¦<br />

Š<br />

and Gajewski, <strong>2000</strong>a) as well as in (Gajewski, 1998). Once and are known,<br />

the desired 2 matrices and can be computed by projecting them from the<br />

cartesian coordinates into the reference surfaces. Since we assume a velocity model to<br />

compute traveltimes, we can also make use of this to extract the reflector position and<br />

geometry from it.<br />

In a situation with a 2.5-D symmetry as considered in the numerical examples the<br />

components of the slowness vectors<br />

and ¦<br />

simplify.<br />

Let the out-of-plane direction have index 2 – coincinding with<br />

Æ ‘<br />

Š<br />

Æ ¿<br />

and second order derivative matrices ¦ Ê ‘–¦ Ë<br />

ê the -axis of the cartesian system used for the determination of<br />

¦ Ê ‘ ¦¦<br />

and ¦ ¦ § ¦<br />

¾ë•$Ü ’ ¾ì•íÝ ’ ¾ì•+Þ ’ ¾<br />

the ê -position of the sources and receiver line. Then we have<br />

ê<br />

¦ § ’’î ï Ñ • ¦¦ § ïïHî ï Ñ ‘ ¦ Ë ’’Aî ï Ñ • ¦¦ Ë ïïHî ï Ñ<br />

£ ¦ Ê ’’Aî ï Ñ • ¦¦ Ê ïï#î ï Ñ<br />

– with<br />

(B-1)<br />

ØÙ<br />

From the symmetry we can easily see that ê the -components of the slownesses vanish<br />

ê ¾<br />

at :<br />

• Í »<br />

(B-2)<br />

» Í<br />

ê ž ¢ Í ï Ñ<br />

From this follows that the matrices ¦ Ê ‘ ¦<br />

and ¦<br />

¢¢¢¢<br />

Furthermore, for ê^ê the - or -components we get<br />

ÉAÉ<br />

Í ê<br />

¢ ¢¢¢¢<br />

ï Ñ<br />

consist only of diagonal elements.<br />

¢¢¢¢¢<br />

ï Ñ<br />

§ ’’ ¦<br />

ï Ñ<br />

• ¦ Ë ’’<br />

ï Ñ<br />

•ÌÃ ¦ Ê ’’<br />

ï Ñ<br />

(B-3)<br />

and the<br />

§ §<br />

ï ¦<br />

sign of is<br />

’’Aî ï ’’<br />

Ñ “Z• «<br />

Ç positive; i.e., .<br />

Ñ ›ð<br />

If the source-receiver line is equal to the -direction of the cartesian system from the<br />

input traveltimes, the 11-components are computed as follows:<br />

½<br />

§ ÚÚñ• ¦¦<br />

à ¦¦ §<br />

Ë ÚÚö• ¦¦<br />

Ã É ¦¦ Ë<br />

« ¦¦<br />

ŸšA› ô÷ô ›õ ÐOô ›Nõ òø¨šA›óò<br />

ÐÐ<br />

ÚÚö• ¦¦ ÐÐ ‘ Ê<br />

(B-4)<br />

ò where is the inclination angle of the reflector's tangent plane against the sourcereceiver<br />

line ( -coordinate).<br />

½<br />

APPENDIX C<br />

Equation (5) contains the geometrical spreading u which we will now express in terms<br />

of traveltime derivatives. Equation (A-1) is equivalent to the paraxial ray approxima-

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!