01.12.2014 Views

Impact of electrified clouds to the GEC - University of Colorado at ...

Impact of electrified clouds to the GEC - University of Colorado at ...

Impact of electrified clouds to the GEC - University of Colorado at ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A Short Review <strong>of</strong> Thunders<strong>to</strong>rm<br />

Electrific<strong>at</strong>ion<br />

<strong>Impact</strong> <strong>of</strong> <strong>electrified</strong> <strong>clouds</strong> <strong>to</strong><br />

<strong>the</strong> <strong>GEC</strong><br />

Wiebke Deierling


Thunders<strong>to</strong>rm Electrific<strong>at</strong>ion<br />

Strong field, labora<strong>to</strong>ry and modeling evidence suggests th<strong>at</strong><br />

precipit<strong>at</strong>ion-based charging is <strong>the</strong> primary candid<strong>at</strong>e for<br />

thunders<strong>to</strong>rm electrific<strong>at</strong>ion.<br />

Precipit<strong>at</strong>ion-based charging can be divided in<strong>to</strong>:<br />

‣ Inductive charging<br />

‣ Non inductive charging<br />

2


Thunders<strong>to</strong>rm Electrific<strong>at</strong>ion<br />

Inductive charging mechanisms:<br />

‣ Rebounding collisions between hydrometeors th<strong>at</strong> became<br />

polarized by an existing vertical electric field.<br />

‣ Role <strong>of</strong> inductive<br />

charging not entierly<br />

known but it is<br />

hypo<strong>the</strong>sized th<strong>at</strong> it can<br />

intensify electrific<strong>at</strong>ion<br />

once it is initially achieved<br />

by o<strong>the</strong>r mechanisms.<br />

From MacGorman and Rust, 1998<br />

3


Non inductive charging<br />

mechanism:<br />

‣ Independent <strong>of</strong> an ambient<br />

electric field<br />

‣ Charging occurs in strong<br />

updraft within mixed phase<br />

region<br />

Thunders<strong>to</strong>rm Electrific<strong>at</strong>ion<br />

‣ Rebounding collisions<br />

between riming ice particles<br />

(e.g. graupel pellets) and ice<br />

crystals in presence <strong>of</strong><br />

supercooled liquid w<strong>at</strong>er<br />

From Dye 2011;<br />

‣ Sign and magnitude <strong>of</strong> charge transfer depends on effective liquid<br />

w<strong>at</strong>er content, temper<strong>at</strong>ure, size <strong>of</strong> ice, impact velocity, growth regime<br />

(diffusion or sublim<strong>at</strong>ion), contaminants in ice<br />

4


Thunders<strong>to</strong>rm Electrific<strong>at</strong>ion<br />

‣ Inductive charging can generally explain <strong>the</strong> thunders<strong>to</strong>rm charge<br />

structure<br />

In situ<strong>at</strong>ions where<br />

LWC = 1 g/m 3 , <strong>the</strong>n:<br />

- graupel becomes<br />

neg<strong>at</strong>ively charged<br />

around -15C and<br />

ice crystals become<br />

positively charged<br />

- reverse occurs between<br />

0 <strong>to</strong> -5C<br />

Gravit<strong>at</strong>ional sorting <strong>of</strong> hydrometeors<br />

leads <strong>to</strong> charge separ<strong>at</strong>ion<br />

Saunders (1993)<br />

5


NASA’s Airborne Field Mill Project 2000-01<br />

Charging without liquid w<strong>at</strong>er in thunders<strong>to</strong>rm anvils<br />

Flight<br />

track <strong>at</strong><br />

10 km<br />

dBZ <strong>at</strong> FL<br />

Total lightning<br />

Reflectivity curtain along<br />

A/C track.<br />

Electric Field (kV/m)<br />

Total Field == bold line<br />

Vertical E == light line<br />

The abrupt increase <strong>of</strong> electric field <strong>at</strong> ~10 dBZ!<br />

N<strong>at</strong>ional Security Applic<strong>at</strong>ions Program<br />

Research Applic<strong>at</strong>ions Labora<strong>to</strong>ry<br />

ATEC-4DWX Forecasters’ Training<br />

Courtesy: 29-31 March 2011, Jim Boulder, Dye <strong>Colorado</strong> 6


Thunders<strong>to</strong>rm Electrific<strong>at</strong>ion<br />

From:http://www.nssl.noaa.gov/primer/lightni<br />

ng/ltg_basics.html<br />

From Encyclopedia Britannica<br />

7


Thunders<strong>to</strong>rm Electrific<strong>at</strong>ion<br />

from Krehbiel, 1986<br />

MCS<br />

Charge structures<br />

can be more<br />

complic<strong>at</strong>ed….<br />

Height <strong>of</strong> charge<br />

layers vary by s<strong>to</strong>rm<br />

type and during<br />

lifecycle <strong>of</strong> s<strong>to</strong>rm<br />

Inverted polarity<br />

s<strong>to</strong>rms, as observed<br />

<strong>at</strong> Tibetean Pl<strong>at</strong>eau<br />

and High Plains<br />

8


Thunders<strong>to</strong>rm Electrific<strong>at</strong>ion<br />

Cloud Type<br />

Inside thunders<strong>to</strong>rms<br />

Initi<strong>at</strong>ion <strong>of</strong> n<strong>at</strong>ural lightning<br />

Breakdown in clear air<br />

Shower <strong>clouds</strong> (no ltg)<br />

Anvil and debris <strong>clouds</strong><br />

Layered Clouds (e.g.<br />

Nimbostr<strong>at</strong>us, Stra<strong>to</strong>cumulus)<br />

Fair wea<strong>the</strong>r electric field close<br />

<strong>to</strong> surface, no <strong>clouds</strong><br />

Typical Electric Field Value<br />

~ 70-200 kV/m<br />

~ 200 kV/m<br />

~ 3000 kV/m<br />

~ 0.1-100 kV/m<br />

~ 10 - 100 kV/m<br />

~ 1-30 kV/m<br />

~ 0.1 kV/m<br />

9


The Role <strong>of</strong> Electrified Clouds in <strong>the</strong> Global<br />

Electric Circuit<br />

Wiebke Deierling, Tina Kalb<br />

10


Thunders<strong>to</strong>rms & Global Electric Circuit<br />

Beginning <strong>of</strong> 20 th Century<br />

- Global electric field measurements<br />

- Daily vari<strong>at</strong>ions <strong>of</strong> fair wea<strong>the</strong>r<br />

electric field with universal time<br />

- Thunders<strong>to</strong>rm activity similar trend<br />

<strong>to</strong> Carnegie curve<br />

- Assume th<strong>at</strong> fair wea<strong>the</strong>r field is<br />

proportional <strong>to</strong> current genera<strong>to</strong>r in<br />

<strong>GEC</strong> and th<strong>at</strong> current genera<strong>to</strong>r is<br />

supplied by thunders<strong>to</strong>rms<br />

11


Thunders<strong>to</strong>rms & Global Electric Circuit<br />

Thunders<strong>to</strong>rms thought <strong>to</strong> play a major role as genera<strong>to</strong>rs <strong>of</strong><br />

<strong>the</strong> earth’s fair wea<strong>the</strong>r circuit.<br />

From:http://thunder.msfc.nasa.gov/primer/primer3.html<br />

12


Global Lightning Map<br />

D<strong>at</strong>a from space-based optical sensors reveal <strong>the</strong><br />

distribution <strong>of</strong> worldwide lightning strikes.<br />

Units: flashes/km 2 /yr. Image credit: NASA/MSFC.<br />

13


Thunders<strong>to</strong>rms & Global Electric Circuit<br />

Diurnal vari<strong>at</strong>ion <strong>of</strong> <strong>the</strong> fair wea<strong>the</strong>r field (blue curve) derived from ocean measurements<br />

(Carnegie curve), thunder day st<strong>at</strong>istics (green curve) from Whipple and Scrase [1936], and<br />

diurnal vari<strong>at</strong>ion <strong>of</strong> flash r<strong>at</strong>es (red curve) derived from Lightning Imaging Sensor (LIS) and<br />

Optical Transient Detec<strong>to</strong>r (OTD) d<strong>at</strong>a. Note th<strong>at</strong> <strong>the</strong> phase and shape <strong>of</strong> <strong>the</strong> three plots are very<br />

14<br />

similar, but <strong>the</strong> amplitudes are quite different. Figure 1 out <strong>of</strong> Mach et al. 2011.


Thunders<strong>to</strong>rms & Global Electric Circuit<br />

15


Current Flow in Thunders<strong>to</strong>rms<br />

Conduction currents<br />

from cloud <strong>to</strong>ps, net<br />

positive current <strong>to</strong>ward<br />

electrosphere<br />

Transient currents<br />

Precipit<strong>at</strong>ion, Corona (or point-discharge)<br />

and Lightning current, neg<strong>at</strong>ive & positive<br />

current measured <strong>at</strong> ground<br />

Convection current<br />

16


Thunders<strong>to</strong>rms & Global Electric Circuit<br />

Krider and Muser (1982) propose <strong>to</strong> measure <strong>to</strong>tal current flow in a<br />

thunders<strong>to</strong>rm by determining <strong>the</strong> Maxwell current density, proposing<br />

th<strong>at</strong> it is directly coupled <strong>to</strong> <strong>the</strong> meteorological structure and/or <strong>the</strong><br />

kinem<strong>at</strong>ics <strong>of</strong> <strong>the</strong> cloud. Three regions: Below, inside and above a s<strong>to</strong>rm<br />

Maxwell current density in thunders<strong>to</strong>rm: J M =J point_discharge + J convection +<br />

J precipit<strong>at</strong>ion + J lightning + J conduction + e deltaE/delt<strong>at</strong>(displacement current)<br />

ER2 conductivity and electric field measurement above T-s<strong>to</strong>rm yielded<br />

average conduction current estim<strong>at</strong>es 1.7A (Blakeslee et al. 1989)<br />

Muehleisen 1977, Williams and Sa<strong>to</strong>ri (2004) suggested th<strong>at</strong> this<br />

number is <strong>to</strong>o large because o<strong>the</strong>r non-thunders<strong>to</strong>rm genera<strong>to</strong>rs such<br />

as rain <strong>clouds</strong> contribute as well<br />

Still open question: Specific contributions <strong>of</strong> different types <strong>of</strong> <strong>clouds</strong><br />

<strong>to</strong> <strong>GEC</strong><br />

17


Thunders<strong>to</strong>rms & Global Electric Circuit<br />

Recent conduction current estim<strong>at</strong>es from Mach et al.2009,2010 and<br />

2011, 850 overflights <strong>of</strong> <strong>electrified</strong> <strong>clouds</strong> were obtained from both<br />

<strong>the</strong> NASA ER‐2 aircraft and <strong>the</strong> Altus unmanned aerial vehicle (<strong>at</strong> 15-<br />

20 km altitude)<br />

18


Thunders<strong>to</strong>rms & Global Electric Circuit<br />

The mean <strong>to</strong>tal conduction current for <strong>the</strong> global electric circuit is 2.0 kA. Mach et al. 2011<br />

19


Thunders<strong>to</strong>rms & Global Electric Circuit<br />

- Mach et al. [2009, 2010] found th<strong>at</strong> land s<strong>to</strong>rms had gre<strong>at</strong>er lightning r<strong>at</strong>es<br />

than ocean s<strong>to</strong>rms but smaller mean conduction (Wilson) currents.<br />

- Mach et al. [2009, 2010] also found th<strong>at</strong> <strong>electrified</strong>, nonlightning‐producing<br />

s<strong>to</strong>rms do make a measureable contribution <strong>to</strong> <strong>the</strong> global electric circuit.<br />

- The results <strong>of</strong> Mach et al. [2010] indic<strong>at</strong>e th<strong>at</strong> using a single global mean<br />

for s<strong>to</strong>rm current and lightning r<strong>at</strong>e (i.e., one th<strong>at</strong> does not account for land<br />

and ocean differences), will not likely be able <strong>to</strong> duplic<strong>at</strong>e <strong>the</strong> Carnegie<br />

curve.<br />

20


Thunders<strong>to</strong>rms & Global Electric Circuit<br />

Diurnal vari<strong>at</strong>ion <strong>of</strong> <strong>the</strong> fair wea<strong>the</strong>r field (blue curve) derived from ocean measurements<br />

(Carnegie curve), thunder day st<strong>at</strong>istics (green curve) from Whipple and Scrase [1936], and<br />

diurnal vari<strong>at</strong>ion <strong>of</strong> flash r<strong>at</strong>es (red curve) derived from Lightning Imaging Sensor (LIS) and<br />

Optical Transient Detec<strong>to</strong>r (OTD) d<strong>at</strong>a. Note th<strong>at</strong> <strong>the</strong> phase and shape <strong>of</strong> <strong>the</strong> three plots are very<br />

21<br />

similar, but <strong>the</strong> amplitudes are quite different. Figure 1 out <strong>of</strong> Mach et al. 2011.


Thunders<strong>to</strong>rms & Global Electric Circuit<br />

Mach et al. 2010: “Cloud <strong>to</strong>p heights and flash r<strong>at</strong>es are not<br />

sufficient <strong>to</strong> characterize <strong>the</strong> s<strong>to</strong>rm’s Wilson current. More<br />

complic<strong>at</strong>ed rules and analyses, such as those using updraft and<br />

mixed-phase region characteristics [e.g., Williams et al., 1992;<br />

Zipser and Lutz, 1994; Hood et al., 2006; Deierling and Petersen,<br />

2008] are more likely <strong>to</strong> find strong rel<strong>at</strong>ionships <strong>to</strong> s<strong>to</strong>rm currents<br />

and lightning r<strong>at</strong>es.”<br />

Recall th<strong>at</strong> lightning clima<strong>to</strong>logy did not represent Carnegie Curve<br />

fully<br />

ER-2 and Altus Wilson current estim<strong>at</strong>es not global<br />

To get better global represent<strong>at</strong>ion Mach et al. 2011 combines LIS-<br />

OTD lightning clima<strong>to</strong>logies and Wilson current estim<strong>at</strong>es from<br />

overflights


Thunders<strong>to</strong>rms & Global Electric Circuit<br />

Figure 8. Global electric circuit <strong>to</strong>tal genera<strong>to</strong>r current. The curves are calcul<strong>at</strong>ed by<br />

combining <strong>the</strong> LIS‐OTD d<strong>at</strong>a and our s<strong>to</strong>rm overflight d<strong>at</strong>a. The mean current for land<br />

ESCs is 0.04 kA. The mean currents for ocean ESCs and thunders<strong>to</strong>rms are 0.22 and<br />

0.65 kA, respectively. The mean current for land thunders<strong>to</strong>rms is 1.13 kA, and <strong>the</strong><br />

<strong>to</strong>tal mean current is 2.04 kA. From Mach et al. 2011<br />

23


Thunders<strong>to</strong>rms & Global Electric Circuit<br />

Combined Overflight d<strong>at</strong>a and OTD/LIS d<strong>at</strong>a : Mach et al. 2011<br />

S<strong>to</strong>rms with lightning<br />

S<strong>to</strong>rms with and without lightning<br />

24


Thunders<strong>to</strong>rms & Global Electric Circuit<br />

Fraction differences from Carnegie curve, Mach et al. 2011<br />

25


Thunders<strong>to</strong>rms & Global Electric Circuit<br />

Underrepresent<strong>at</strong>ion <strong>of</strong> inverted dipole thunders<strong>to</strong>rms, MCS’s (larger<br />

scale than 10-30 km, more like 100-200km with two parts <strong>to</strong> it), winter<br />

s<strong>to</strong>rms, non-lightning producing cloud distribution (some may be larger<br />

scale <strong>to</strong>o?)?<br />

Conduction currents computed in Mach et al. around active T-s<strong>to</strong>rm part<br />

(30 km)<br />

Mach et al. suggest looking <strong>at</strong> better distribution <strong>of</strong> non-lightning<br />

producing <strong>clouds</strong><br />

Can we have a better represent<strong>at</strong>ion <strong>of</strong> <strong>the</strong>m <strong>to</strong> ultim<strong>at</strong>ely get a better<br />

estim<strong>at</strong>es <strong>of</strong> sources <strong>of</strong> conduction currents?


Thunders<strong>to</strong>rms & Global Electric Circuit<br />

Part <strong>of</strong> NCAR Activities and Plans:<br />

-Develop model parameteriz<strong>at</strong>ions for conduction currents for different<br />

<strong>electrified</strong> cloud types,<br />

- Be involved in valid<strong>at</strong>ing output with available observ<strong>at</strong>ions and<br />

- Investig<strong>at</strong>e how <strong>the</strong> sp<strong>at</strong>ial-temporal variability <strong>of</strong> <strong>electrified</strong> <strong>clouds</strong><br />

transl<strong>at</strong>e <strong>to</strong> <strong>GEC</strong> characteristics.<br />

27


Thunders<strong>to</strong>rms & Global Electric Circuit<br />

Current work:<br />

- Extend Doug Mach’s study in collabor<strong>at</strong>ion with Doug and compare<br />

coincident s<strong>to</strong>rm microphysical and dynamical properties derived<br />

from radar d<strong>at</strong>a with his estim<strong>at</strong>ed conduction currents <strong>to</strong> investig<strong>at</strong>e<br />

if we can improve characteriz<strong>at</strong>ions for various <strong>electrified</strong> <strong>clouds</strong><br />

- Link with CU work th<strong>at</strong> focuses on more global d<strong>at</strong>a sets from<br />

TRMM and model reanalysis d<strong>at</strong>a<br />

28


Thunders<strong>to</strong>rms & Global Electric Circuit<br />

Future work:<br />

-Produce a 2D global map <strong>of</strong> current sources from <strong>electrified</strong> <strong>clouds</strong>,<br />

following Mach et al. [2010, 2011], for use in <strong>the</strong> 3DGSM.<br />

-WRF- cloud resolving model: investig<strong>at</strong>e <strong>the</strong> ability <strong>of</strong> several model<br />

cloud parameters, such as ice mass fluxes, updraft characteristics, ice<br />

mass and cloud <strong>to</strong>p height <strong>to</strong> represent <strong>the</strong> <strong>to</strong>tal electric currents<br />

-Global non-cloud-resolving model: Investig<strong>at</strong>e <strong>the</strong> prediction <strong>of</strong> electric<br />

currents by a reduced set <strong>of</strong> model variables and compare <strong>the</strong>m <strong>to</strong><br />

electric currents from <strong>the</strong> cloud-resolving model (coincident d<strong>at</strong>a<br />

available)<br />

29

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!