01.12.2014 Views

Radiant Floor Heating S stems Radiant Floor Heating Systems

Radiant Floor Heating S stems Radiant Floor Heating Systems

Radiant Floor Heating S stems Radiant Floor Heating Systems

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Radiant</strong> <strong>Floor</strong> <strong>Heating</strong> Sy<strong>stems</strong><br />

PEX Piping i & Other Uses for PEX Pipe<br />

Lance MacNevin<br />

Rehau Unlimited Polymer Solutions<br />

1501 Edwards Ferry Road<br />

Leesburg, VA 20176<br />

703-777-5255<br />

Lance.MacNevin@rehau-na.com<br />

www.rehau-na.com<br />

<strong>Radiant</strong> <strong>Floor</strong> <strong>Heating</strong> Sy<strong>stems</strong><br />

Course Sponsor<br />

Please note: you will need to complete the conclusion quiz online at<br />

ronblank.com to receive credit<br />

An AIA Continuing Education Program<br />

Credit for this course is 1 AIA/CES HSW Learning Unit<br />

COURSE NUMBER: REH23A


Smart Solutions<br />

With Multiple Applications and Uses<br />

BUILDING ENVELOPE<br />

Windows and Doors<br />

Entrances and Storefronts<br />

Curtainwall<br />

Roller Shutters<br />

Rain Gutter Sy<strong>stems</strong><br />

BUILDING TECHNOLOGY<br />

<strong>Radiant</strong> <strong>Heating</strong> and Cooling<br />

Snow and Ice Melting<br />

Energy Transfer Piping<br />

PEX Plumbing<br />

Drain, Waste and Vent<br />

Fire Protection<br />

MUNICIPAL INFRASTRUCTURE<br />

Water Piping Sy<strong>stems</strong><br />

Water Service Line<br />

Sewer Piping Sy<strong>stems</strong><br />

INDUSTRIAL APPLICATIONS<br />

Fluid Processing<br />

Soil Conditioning<br />

Manufactured Housing<br />

Modular Housing


An American Institute of Architects (AIA)<br />

Continuing Education Program<br />

Approved Promotional Statement: t t<br />

Ron Blank & Associates, Inc. is a registered provider with The American<br />

Institute of Architects Continuing Education System. Credit earned upon<br />

completion of this program will be reported to CES Records for AIA members.<br />

Certificates of Completion are available for all course participants upon<br />

completion of the course conclusion quiz with +80%.<br />

Please note: you will need to complete the conclusion quiz online at ronblank.com to<br />

receive credit<br />

This program is registered with the AIA/CES for continuing<br />

professional education. As such, it does not include content that may<br />

be deemed or construed to be an approval or endorsement by the<br />

AIA or Ron Blank & Associates, Inc. of any material of construction or<br />

any method or manner of handling, using, distributing, or dealing in<br />

any material or product.


An American Institute of Architects (AIA)<br />

Continuing Education Program<br />

Course Format: This is astructured, t web-based, b self study course with a final<br />

exam.<br />

Course Credit: 1 Health Safety & Welfare (HSW) Learning Unit (LU)<br />

Completion Certificate: A confirmation is sent to you by email and you can<br />

print one upon successful completion of a course or from your RonBlank.com<br />

transcript. If you have any difficulties printing or receiving your Certificate<br />

please send requests to carol@ronblank.com<br />

Design professionals, please remember to print or save your<br />

certificate of completion after successfully completing a course<br />

conclusion quiz. Email confirmations will be sent to the email<br />

address you have provided in your RonBlank.com account.


Copyright Materials<br />

This presentation ti is protected t by U.S. and International<br />

ti copyright laws. Reproduction, distribution, display and use of<br />

the presentation without written permission of<br />

© Ron Blank & Associates, Inc. 2009<br />

and<br />

© Rehau 2009<br />

is prohibited.


Course Objectives<br />

Upon completion of this course, the design professional will be<br />

able to:<br />

• Explain the history and current marketplace for radiant floor<br />

heating technology.<br />

• Describe current radiant floor heating and its advances in<br />

technology that make it attractive.<br />

• Explain the advantages of installing a RFH system for the<br />

architect and the building owner.<br />

• Assess the appropriate uses and applications of RFH.<br />

• Express the typical installation procedures and review how to<br />

specify RFH for maximum benefits.


<strong>Radiant</strong> <strong>Floor</strong> <strong>Heating</strong><br />

“ The hydronics industry has seen steady growth over the last<br />

10 years. The potential market for hydronic heating during the<br />

next decade is staggering...”<br />

-- John Seigenthaler


<strong>Radiant</strong> <strong>Floor</strong> <strong>Heating</strong> Benefits<br />

• Comfort<br />

• Control<br />

• Flexibility<br />

• Efficiency


Homeowners’ Top 10 Pet Peeves<br />

• Inconsistent temperature<br />

• Dust, pet hair, and allergens<br />

• High utility bills<br />

• Dry air<br />

• Window condensation<br />

• Odors in the house<br />

• Outdated kitchen<br />

How many can<br />

• Damp basement<br />

be addressed<br />

• Stuffy Rooms/Inefficient floor plan (tie)<br />

with radiant floor<br />

• House not secure from break-ins<br />

heating?<br />

Source: The Honeywell “Your Home” Survey


Comfortable Room Temperature<br />

Hot<br />

Approximate<br />

Comfort Zone<br />

Cold<br />

Mean <strong>Radiant</strong> Temperature ( o F)<br />

C f t i hi d ith hi h MRT d l<br />

Comfort is achieved with higher MRT and lower<br />

air temperature.


Comfortable Temperature<br />

Distribution<br />

8 ft<br />

6 ft<br />

Optimal<br />

Temperature<br />

Distribution<br />

Forced Air <strong>Heating</strong><br />

6 in<br />

°F 60 68 75 <strong>Radiant</strong> <strong>Floor</strong> <strong>Heating</strong><br />

8 ft<br />

6 ft<br />

8 ft<br />

6 ft<br />

6 in<br />

6 in<br />

°F 60 68<br />

75<br />

°F 60 68<br />

75


Comfortable Environment<br />

The best heating system eliminates these sources of discomfort


RFH Controls Our Heat Loss<br />

• Cold floors are uncomfortable<br />

• Our feet are the bodies’ thermostats<br />

• RFH provides comfortable floor temperatures<br />

• Warm mean radiant temperature means less radiation from<br />

body<br />

• Still air means less loss to air flow


Health & System Maintenance<br />

• RFH Health Benefits<br />

• Cooler air has higher relative humidity<br />

• Influence of dust/pollen/allergens is minimized<br />

• System Maintenance Benefits<br />

• Zero maintenance for RFH


Control of Your Environment<br />

• Room-by-room temperature<br />

control optimizes comfort<br />

• Sophisticated water<br />

temperature mixing controls<br />

optimize comfort and<br />

efficiency


Flexibility in Applications<br />

• Stand alone<br />

• RFH as a primary heating system<br />

• Combination<br />

• With radiators or hydronic fan coils<br />

• Expandable hydronic capacity<br />

• Domestic water, hot tub, pool, melting snow and ice


Residential Applications<br />

Basements, slab-on-grade, suspended floors, garages


Commercial Applications<br />

Offices, restaurants, car dealerships


Institutional Applications<br />

• Day Care Facilities<br />

• Retirement Homes<br />

• Schools<br />

• Prisons


Industrial Applications<br />

• Fire/Bus Stations<br />

• Warehouses<br />

• Garages<br />

• Factories<br />

• Hangars


Agricultural Applications<br />

• Dairy<br />

• Hog<br />

• Ostrich<br />

• Chicken barns<br />

• Greenhouses


Flexibility with Heat Sources<br />

Virtually any type is acceptable<br />

Considerations:<br />

• Water temperature required is low<br />

• Total output (BTU) is usually lower<br />

• Return water temperature is low, boiler protection may be<br />

required through a mixing device<br />

• Water heat pumps are a good option


RFH Efficiency<br />

• Lower average air temperature<br />

• Saves 5% energy per degree with lower room<br />

temperature<br />

• Less heat loss<br />

• Air temperature cooler (68F), lower delta-T<br />

• No pressurization of rooms<br />

• More efficient use of boiler<br />

• Each 3 degrees F reduction saves 1% in fuel<br />

• Total savings can be up to 30% or more!


RFH Benefits - Summary<br />

• Comfort<br />

• Control<br />

• Flexibility<br />

• Efficiency


<strong>Radiant</strong> <strong>Heating</strong> Design Basics<br />

Heat Loss<br />

<strong>Radiant</strong> Panel Performance<br />

<strong>Floor</strong>, wall, or ceiling<br />

Hydronics:<br />

Flow Rate<br />

Head Loss<br />

Pumping


<strong>Radiant</strong> Design Process<br />

• Step 1: Heat Loss of space = Heat Requirement per ft 2<br />

• This also gives Heat Source sizing requirements<br />

• Step 2: Determine PEX pipe size, spacing, and water<br />

temperature (designer has several options)<br />

• Step 3: Determine Flow Rate for system and circuits<br />

• Step 4: Determine Head Loss requirements<br />

• Step 5: Choose circulator pump to meet Flow Rate and<br />

Head Loss requirements


<strong>Radiant</strong> <strong>Heating</strong> Requirement<br />

Formula:<br />

<strong>Radiant</strong> heating requirement = Total Heat Loss<br />

Available ft 2<br />

Example:<br />

50,000 BTU/hr = 20 BTU/hr-ft 2<br />

2,500 ft 2


<strong>Radiant</strong> Panels<br />

Heat output potential formula:<br />

(<strong>Floor</strong> surface temp - indoor air temp) x 2.0 = Output (BTU/hr-ft 2 )<br />

What is 2.0?


<strong>Radiant</strong> Panels<br />

2.0 represents combined <strong>Radiant</strong>/Convective Heat Output<br />

Coefficient<br />

Approximate values:<br />

• <strong>Radiant</strong> <strong>Floor</strong>s: 2.0 (35 - 40% convection)<br />

• <strong>Radiant</strong> Walls: 1.8 (less convection)<br />

• <strong>Radiant</strong> Ceiling: 1.6 (even en less convection)<br />

Not much warm air falls down from a heated ceiling


<strong>Radiant</strong> Panels - <strong>Floor</strong><br />

<strong>Radiant</strong> <strong>Floor</strong> Heat Output Potential Formula:<br />

(<strong>Floor</strong> Surface Temp - Indoor Air Temp) x 2.0 = Output (BTU/hr- ft 2 )<br />

Example:<br />

(85 º F floor - 68 º F Air) x 2.0 = 34 BTU/hr-ft 2<br />

An 85 º F floor will provide 34 BTU/hr-ft 2


<strong>Radiant</strong> Panels - <strong>Floor</strong><br />

<strong>Radiant</strong> <strong>Floor</strong> Temperature Formula:<br />

Output + Indoor Air Temp = <strong>Floor</strong> Surface Temp<br />

2.0<br />

Example:<br />

20 BTU/hr-ft 2 + 68 º F Air = 78 º F <strong>Floor</strong><br />

2.0


<strong>Radiant</strong> Panels - Wall<br />

<strong>Radiant</strong> Wall Panel Heat Output:<br />

(Wall Surface Temp - Indoor Air Temp) x 1.8= Output (BTU/hr- ft 2 )<br />

Example:<br />

(85 º F Wall - 68 º F Air) x 1.8 = 30.6 BTU/hr-ft 2<br />

An 85F wall will provide 30.6 BTU/hr-ft 2


<strong>Radiant</strong> Panels - Wall<br />

<strong>Radiant</strong> Wall Temperature Formula:<br />

Output + Indoor Air Temp = Wall Surface Temp<br />

1.8<br />

Example:<br />

20 BTU/hr-ft 2 + 68 º F Air = 79.1 º F Wall<br />

1.8


<strong>Radiant</strong> Panels - Ceiling<br />

<strong>Radiant</strong> Ceiling Panel Heat Output:<br />

(Ceiling Surface Temp - Indoor Air Temp) x 1.6= Output (BTU/hr- ft 2 )<br />

Example:<br />

(85 º F Ceiling - 68 º F Air) x 1.6 = 27.2 BTU/hr-ft 2<br />

An 85 º F ceiling will provide 27.2 BTU/hr-ft 2


<strong>Radiant</strong> Panels - Ceiling<br />

<strong>Radiant</strong> Ceiling Temperature Formula:<br />

Output + Indoor Air Temp = Ceiling Surface Temp<br />

1.6<br />

Example:<br />

20 BTU/hr-ft 2 + 68 º F Air = 80.5 º F Ceiling<br />

1.6


<strong>Radiant</strong> Panels: <strong>Floor</strong> Area Types<br />

• Perimeter - 3-foot area near outside walls<br />

• Occupied - Living area inside perimeter area<br />

• Distribution - Hallways<br />

• No <strong>Radiant</strong> <strong>Heating</strong> - Under kitchen islands, refrigerators<br />

and freezers, permanent cabinets<br />

• It is recommended to install PEX pipes under perimeter<br />

cupboards and cabinets


<strong>Radiant</strong> Panels: <strong>Floor</strong> Area Types<br />

Design Temperature Limits / Heat Output:<br />

• Perimeter 95ºF = 54 BTU/hr-ft 2<br />

• Occupied 85ºF = 34 BTU/hr-ft 2<br />

• Bathroom 91ºF = 46 BTU/hr-ft 2<br />

• Distribution 95ºF = 54 BTU/hr-ft 2


<strong>Radiant</strong> Panels: Hardwood<br />

Design Temperature Limits / Heat Output:<br />

• Solid hardwood:<br />

• Max 85ºF on bottom<br />

• R 0.68 068( (Table 3.1, ,pg. 3-2 <strong>Radiant</strong> <strong>Heating</strong> TM)<br />

• Max surface = 75ºF on top (Fig 4-2, Pg. 4-2, <strong>Radiant</strong><br />

<strong>Heating</strong> TM)<br />

• 75ºF = 14 BTU/hr-ft 2


Resultant <strong>Floor</strong> Surface Temperature


<strong>Radiant</strong> Panels: Hardwood<br />

Design Temperature Limits / Heat Output:<br />

• Solid hardwood is limited to 75ºF = 14 BTU/hr-ft 2<br />

• Better choice is engineered hardwood floors<br />

• More stable, slightly thinner, better heat transfer<br />

• Now very durable


Hydronics Flow Rate<br />

Flow Rate Formula:<br />

BTU/hr<br />

8.34 x 60 x 1 x T<br />

= USGPM<br />

Units:<br />

lb. x min x BTU x º F<br />

gal hour lb x º F


Hydronics Flow Rate<br />

Flow Rate Formula (simplified for water):<br />

BTU/hr<br />

500 x T<br />

Example:<br />

5,000 BTU/hr<br />

500 x 20<br />

5,000 BTU/hr<br />

10,000<br />

=<br />

= 0.5 USGPM


Hydronics Flow Rate<br />

Effect of Antifreeze:<br />

• Higher viscosity<br />

• Higher density<br />

• Lower specific heat<br />

= More flow will be required


Hydronics Flow Rate<br />

Example:<br />

50% glycol<br />

(8.86 lb/gal x 60 min/hr x 0.83 BTU/lb- º F x 20 º F)<br />

BTU/hr<br />

8,825<br />

= USGPM


Hydronics Flow Rate<br />

• Flow rate is used with head loss tables to determine<br />

pressure drop through pipes<br />

• With required flow rate and resulting head loss,<br />

pumps p can be sized correctly<br />

• This calculation is usually made by the engineer or<br />

the mechanical contractor


RFH Estimating<br />

Selecting the right system


The Estimating Process<br />

1. Design considerations<br />

2. Pipe selection and quantity take-off<br />

3. Fastener selection and quantities<br />

4. Manifold selection<br />

5. Controls selection<br />

6. Labor


Pipe Selection - Size<br />

• Consider flexibility and cost factors<br />

• Choose from 3/8”, 1/2", 5/8”, 3/4” or 1"<br />

• Pump must be sized to overcome head loss for required<br />

flow rate<br />

• Try to stay below 10 feet head loss<br />

• Weigh costs of bigger pipe vs. bigger pump (may be<br />

cheaper to upsize pipe)


Pipe Selection - Size<br />

Typical Maximum* Circuit Lengths:<br />

• 3/8” - 250 feet<br />

• 1/2” - 330 feet<br />

• 5/8” - 400 feet<br />

• 3/4” - 500 feet<br />

• 1” - 500+ feet<br />

*Based on Delta T = 20 0 F. Actual “maximum” depends on<br />

several factors...<br />

Check head loss for specific flow rates.


Estimating Pipe Quantities<br />

Example: 15 ft x 10 ft = 150 ft 2 Bedroom<br />

• 66 square feet perimeter @ 6" spacing<br />

• 84 square feet occupied @ 12" spacing<br />

• 15 feet from manifold connection<br />

10 ft.<br />

15 ft.<br />

Tails


Estimating Pipe Quantities<br />

Specific Pipe Requirements:<br />

• 12” spacing: 1.0 ft / ft 2 12”<br />

• 9” spacing: 1.3 ft / ft 2<br />

• 10” spacing: 1.2 ft / ft 2<br />

spacing”<br />

• 8” spacing: 1.5 ft / ft 2 Example:<br />

• 6” spacing: 2.0 ft / ft 2<br />

12”/6” = 2.0<br />

• 4” spacing: 3.0 ft / ft 2


Manifold Selection<br />

Considerations:<br />

• Number of circuits<br />

• Flow rates<br />

• Balancing<br />

• Control requirements<br />

• Actuators?<br />

Balance Manifold


One Manifold or Multiple?<br />

One:<br />

• Central location is good (but are there too many pipes<br />

in one place)<br />

• All wiring to one place<br />

Multiple:<br />

• Spread out RFH pipes better (but must run feed pipes to<br />

two places)<br />

• May use zone valves or pumps (and eliminate<br />

actuators)<br />

In all cases, manifolds must be located for access


Manifold Selection<br />

Examples:<br />

#1 - House with 8 circuits, 5 thermostats:<br />

• Choose a 8-outlet balancing manifold, 8 Actuators<br />

#2 - Basement with 5 circuits, 1 thermostat:<br />

• Choose a 5-outlet non-balancing manifold, 1 zone<br />

pump or valve<br />

#3 - Day care with separate play room:<br />

• Choose two non-balancing manifolds, 2 thermostats t t<br />

and 2 zone pumps or valves


Selecting a Control System<br />

Thermostatic Digital Outdoor Reset<br />

Mixing Valves Thermostats Control Sy<strong>stems</strong><br />

Principle:<br />

Offer the most appropriate control for customer<br />

satisfaction and system performance.


Controls Selection<br />

Considerations:<br />

• Owner preference • <strong>Floor</strong> covering impact<br />

• Specifications<br />

• Heat source considerations<br />

• Installer experience • Zoning<br />

• Operating simplicity • Cost


Outdoor Reset Control<br />

• Monitors outdoor air temperature<br />

• Resets water temperature to match heat loss<br />

F t t h i h t l<br />

• Fast response to changes in heat loss<br />

• Steady room temperature<br />

• Boiler protection<br />

• <strong>Floor</strong> protection<br />

• Less losses<br />

• Minimal thermal expansion noise


Outdoor Reset Control<br />

Outdoor Reset Mixing Control:<br />

• Highest comfort & efficiency, better control<br />

• Boiler protection (low water temperatures)<br />

• Can operate motorized mixing valves or a variable<br />

speed injection pump


Thermostatic Controls<br />

Thermostatic sy<strong>stems</strong>:<br />

• Easier to install, lower cost<br />

• Thermostatic mixing valves<br />

• Suitable for small sy<strong>stems</strong>, < 35,000 BTU/hr<br />

• Examples: Basement, room above<br />

garage


Zoning Controls<br />

Thermostats and Actuators:<br />

• One Thermostat is a “zone”<br />

• With 3 or more circuits per zone,<br />

consider splitting manifold<br />

• Four Thermostats per Pump Module


Control Recommendations<br />

Basement only:<br />

• 3-way TMV up to 35,000 BTU/h<br />

• 2-way Injection Valve up to 200,000 BTU/h<br />

• Thermostat(s) and zone valves or pumps<br />

Residential Overpour (whole house):<br />

• Outdoor Reset Mixing Control<br />

Outdoor Reset Mixing Control<br />

• Thermostats and actuators


Control Recommendations<br />

Joist space, no HT plates:<br />

• 3-way TMV up to 35,000 BTU/h<br />

• 2-way Injection Valve up to 200,000 BTU/h<br />

• Thermostats and actuators<br />

Joist space, with HT plates:<br />

• Outdoor Reset Mixing Control<br />

Outdoor Reset Mixing Control<br />

• Thermostats and actuators


Control Recommendations<br />

Slab-on-grade, workshop or garage:<br />

• 2-way Injection Valve up to 200,000 BTU/h<br />

M lti l if ld f i<br />

• Multiple manifolds for zoning<br />

• Thermostat(s) and zone valve(s) or pump(s)<br />

Slab-on-grade, living or business space:<br />

• Outdoor Reset Mixing Control<br />

• Thermostats and Actuators or zone valve(s) or pump(s)<br />

(depending on square footage)


• Pipe<br />

• Fasteners<br />

• Manifolds<br />

• Controls<br />

• Labor<br />

Estimating Summary


System Components<br />

Pipe<br />

Manifolds<br />

Fittings<br />

Controls<br />

Installation accessories<br />

Installation tools


Oxygen Barrier Non-Barrier<br />

Pipe


Oxygen Barrier Pipe<br />

• 3/8”, 1/2”, 5/8”, 3/4”, 1”, 1 1/4”, 1 1/2” & 2” coils<br />

• 1 1/4”, 1 1/2” & 2” 20-ft straight lengths<br />

• 100 psi @ 180 o F, 80 psi @ 200 o F continuous<br />

• CSA B 137.5, ASTM F 876, F 877, DIN 4726<br />

• <strong>Heating</strong> applications, cast iron boilers, ferrous components


Non-Barrier Pipe<br />

• 3/8” , 1/2” , 5/8” , 3/4” , 1” , 1 1/4” , 1 1/2” & 2” coils<br />

• 1/2”, 3/4”, 1”, 1 1/4”, 1 1/2” & 2” 20-ft straight lengths<br />

• 100 psi @ 180 o F, 80 psi @ 200 o F continuous<br />

• CSA B137.5, ASTM F 876, F 877, F 2023, NSF 14/61, PPI TR-3<br />

• <strong>Heating</strong> applications with s/s boilers, all non-ferrous components


Colored Plumbing Pipes<br />

• 3/8”, 1/2”, 3/4” & 1” coils<br />

• 1/2” , 3/4” & 1” 20-ft straight lengths<br />

• CSA B137.5, ASTM F 876, F 877, F 2023, NSF 14/61, PPI TR-3<br />

• Plumbing applications


Brass <strong>Heating</strong> Manifolds<br />

Balancing<br />

Manifolds<br />

with Gauges<br />

Non-balancing<br />

Manifolds


Copper Manifolds<br />

• 1", 1-1/4", 1-1/2", and 2" headers<br />

• 1/2”, 3/4” or 1” copper outlets<br />

t<br />

• Use with fittings and/or valves to assemble complete manifolds<br />

• Plumbing or <strong>Heating</strong> (lower-cost alternative to brass)


Fittings<br />

ASTM F 2080<br />

Compression-Sleeve<br />

<strong>Heating</strong> & Plumbing<br />

applications<br />

Compression Nut<br />

<strong>Heating</strong> only


Installation Accessories<br />

Fasteners to hold pipe in place<br />

on insulation, wire mesh, re-bar<br />

• Foam Screw Clips & Staples<br />

• Staples and Talons for wood<br />

• Support Bends & Guides<br />

• PE Pipe Protection Sleeve<br />

• Heat Transfer Plates<br />

• Pipe Fix<br />

• Nylon Ties


Installation Tools<br />

• Screw Clip tool<br />

• Staplers<br />

• PEX Cutters<br />

• Tacker Staple Tool<br />

• Air Pressure Tester<br />

• Un-coiler


Installation<br />

Installation Methods<br />

Placement Patterns<br />

Proper Practices<br />

Easier and Faster Installation<br />

Avoiding Difficulties


Poured (Wet) Construction<br />

• Slab or Overpour applications<br />

• Thermal mass is poured into place around installed pipe<br />

• Structural concrete mix (fibers)<br />

• “Lightweight” concrete: sand mix, dry pack<br />

• Gyp-Crete, Hacker floor system


Poured Construction Considerations<br />

• Coverage over pipe (minimum 3/4”)<br />

• <strong>Floor</strong> loading (13-18 lb/ft 2 dead load)<br />

• Entrained air is bad for heat transfer (don’t use concrete<br />

with vermiculite)<br />

• Screed thermal characteristics<br />

• Coordination of trades


Slab-on-Grade<br />

• Normal slab design<br />

• Pipe located within slab<br />

(midway) or at bottom<br />

(midway) or at bottom<br />

• Various fasteners


Slab-on-Grade<br />

• Industrial<br />

• Tied to rebar<br />

(nylon ties)


Importance of Insulation<br />

• For even radiation towards space<br />

• To minimize losses<br />

• Increase responsiveness<br />

Edge<br />

Insulation<br />

Exterior<br />

wall<br />

Bottom<br />

insulation<br />

Heated Space<br />

Thermal Mass<br />

Insulation<br />

Sub-Grade


Example: Styrofoam boards<br />

Importance of Insulation


• Nylon Pipe Ties - 50 lb. capacity<br />

• Ensure wire mesh has no sharp edges<br />

Slab-on-Grade<br />

with Nylon Pipe Ties


Slab-on-Grade<br />

with Screw Clips & Rail Fix<br />

Screw Clip<br />

Rail Fix


Slab-on-Grade<br />

Pipe Fix and Foam Tacker<br />

Pipe Fix<br />

Foam Tacker


Suspended Wood <strong>Floor</strong><br />

• Pipe fastened to subfloor<br />

• Thin thermal mass over pour<br />

(1 1/4” - 1 3/4”)<br />

• Minimum Coverage<br />

3/4” over PEX pipes


Suspended Wood <strong>Floor</strong><br />

• Cover with PE barrier or seal subfloor<br />

• Install baseplates to mark walls before laying pipe<br />

• Use extra wide baseplates<br />

• For leveling screed<br />

• For carpet tack strips<br />

• Install insulation<br />

on edges


Overpour with Staples<br />

• Very common<br />

installation technique<br />

• Freedom to lay pipe<br />

according to room<br />

design<br />

• Use proper tools<br />

• Don't crimp or<br />

dimple pipe


Overpour with Staples<br />

• Be sure to seal or cover subfloor first when using concrete<br />

to prevent bonding


Overpour with Staples<br />

• Gypsum cement goes directly onto plywood subfloor


Overpour with Sleepers<br />

• Common with solid hardwood<br />

• Benefits of thermal mass<br />

• Freedom to lay pipe according to room design<br />

• Sleepers opposite to orientation of hardwood


Joist Space (Dry, subfloor)<br />

• No screed involved (dry)<br />

• Air cavity (in joist space)<br />

and subfloor are the<br />

thermal mass<br />

• Insulation important<br />

underneath and at<br />

end of cavities<br />

i<br />

• Useful for retrofit


Joist Space (subfloor)<br />

• Heat Transfer Plates enhance heat transfer<br />

• Use 6 screws per plate<br />

• Insulation is important (foil face up for radiation)<br />

• Insulation should be 2” to 4" away y( (convection)<br />

• Be careful of sharp edges on heat transfer plates<br />

• Don’t cut


Joist Space (subfloor)<br />

Heat Transfer Plate<br />

Talon


Installation Technique<br />

• Use of uncoiler<br />

recommended<br />

• Install all pipe<br />

• Install plates<br />

• Install all pipe Pipe is<br />

free to<br />

• Add protection<br />

move<br />

at ends<br />

sleeving<br />

PE<br />

Protection<br />

ti<br />

Sleeve


Aluminum Panel <strong>Radiant</strong> <strong>Heating</strong> System (Dry)<br />

• Aluminum panels<br />

• Extruded for strength<br />

• Excellent conductivity<br />

• Low-profile, low weight<br />

• Use 3/8” PEX pipe<br />

• Fast response time


Advantages of Aluminum Panel System<br />

• Ideal for kitchens & baths<br />

• Can install anywhere<br />

• Low-profile<br />

• Lightweight<br />

• High performance<br />

• Fast response time<br />

• Efficient<br />

• Easy to install


Aluminum Panel System<br />

• Aluminum panels<br />

• 6” wide x 6’ long<br />

• Plywood return bends<br />

• 6” and 8” o-c spacing<br />

• Furring strips<br />

• 2” wide x 4’ long<br />

6”<br />

8”


• Components fit together as a system<br />

• Returns with notches<br />

• Furring strips<br />

Aluminum Panel System


• Pipe is walked in<br />

Aluminum Panel Installation


Aluminum Panel Installation<br />

For free-floating fl floors:<br />

• Fasten 3 times per side<br />

(total 6 per panel)<br />

• If fastening with screws,<br />

use fine-thread drywall<br />

screws<br />

• If fastening with nails, use<br />

roofing nails<br />

• Fasten return bends and<br />

furring strips


Aluminum Panel Installation<br />

Solid and free<br />

floating hardwood<br />

directly<br />

on top.


Aluminum Panel Installation<br />

Carpet and<br />

vinyl flooring<br />

with 1/4”<br />

plywood


Aluminum Panel Installation<br />

Tile with<br />

mortar board


Pipe Placement Patterns<br />

Three types of pipe layouts:<br />

• Serpentine (overpour, slab, joist, sleepers)<br />

• Counterflow Spiral (overpour, slab)<br />

• Helps with bends<br />

• Even temperature distribution<br />

• Combinations (overpour, slab)


• Install pipe the “long way” to minimize bends<br />

Serpentine


Serpentine<br />

• Simple layout, easy installation<br />

• Straight or in L-shape


Serpentine


• ‘U’-shape in some areas<br />

Serpentine


• Even floor temperature, easier bends<br />

Counterflow Spiral


• Use Staples or Talons for anchoring<br />

Counterflow Spiral


Counterflow Spiral


Combination<br />

• Corner rooms<br />

Outside<br />

Wall<br />

Supply<br />

Return<br />

Perimeter<br />

Area<br />

Occupied<br />

Area


• L-shaped Serpentine & Counterflow Spiral<br />

Combination


• Keep spacing consistent<br />

Combination


• In bathrooms, use more pipe, not less<br />

Other Shapes...


Other Shapes...<br />

• Be creative!<br />

• Note layout<br />

to prevent<br />

thermal mass<br />

falling through<br />

pipe holes


• Use creative patterns in tight areas<br />

Other Shapes...


• Arrange pipe to avoid passing through joints<br />

Construction Joints


Manifold Locations<br />

• Place near or above heat source so feed pipes can<br />

be shorter<br />

• Install in a central location so PEX pipes can branch<br />

out with ease


Manifold Locations<br />

• Locate in the back of a closet or cabinet for accessibility<br />

• Leave enough room for all pipes to connect to manifold


Manifold Locations


• Install sleeves at penetrations<br />

• Install sleeves at expansion joints<br />

• Joist space sleeving prevents noise<br />

Protection Sleeving


Couplings<br />

• Wrap couplings with two (2) layers of PVC tape<br />

or Heat shrink


Installing Thermal Mass<br />

Inspect prior to pour:<br />

• Pipe is free of kinks and punctures<br />

• Pipe is properly fastened<br />

• Wood is installed where required


Installing Thermal Mass<br />

Inspect prior to pour:<br />

• Protection sleeving is installed where needed<br />

• Pipe is pressurized and holding pressure<br />

• Nailing guards are installed where needed


Installing Thermal Mass<br />

Precautionary measures:<br />

• Prior to the pour, notify thermal mass installer that heating<br />

pipe is present<br />

• Maintain pressure on pipe during pour, and look for<br />

pressure drop on gauge


Installing Thermal Mass<br />

Precautionary measures:<br />

• Place wooden planks or plywood over pipe where<br />

wheelbarrows are filled and dumpedd<br />

• Note location of embedded fittings on plans<br />

• Keep couplings and tools on site for quick repairs


Summary<br />

• Plan out installation of system<br />

• Use proper equipment and tools<br />

• Follow designs and procedures<br />

• Take notes and photographs<br />

p


Course Summary<br />

The design professional will now be able to:<br />

• Explain the history and current marketplace for radiant floor<br />

heating technology.<br />

• Describe current radiant floor heating and its advances in<br />

technology that make it attractive.<br />

• Explain the advantages of installing a RFH system for the<br />

architect and the building owner.<br />

• Assess the appropriate a uses and applications of RFH.<br />

• Express the typical installation procedures and review how to<br />

specify RFH for maximum benefits.


<strong>Radiant</strong> <strong>Floor</strong> <strong>Heating</strong> Sy<strong>stems</strong><br />

PEX Piping i & Other Uses for PEX Pipe<br />

Lance MacNevin<br />

Rehau Unlimited Polymer Solutions<br />

1501 Edwards Ferry Road<br />

Leesburg, VA 20176<br />

703-777-5255<br />

Lance.MacNevin@rehau-na.com<br />

www.rehau-na.com<br />

<strong>Radiant</strong> <strong>Floor</strong> <strong>Heating</strong> Sy<strong>stems</strong><br />

Course Sponsor<br />

Please note: you will need to complete the conclusion quiz online at<br />

ronblank.com to receive credit<br />

An AIA Continuing Education Program<br />

Credit for this course is 1 AIA/CES HSW Learning Unit<br />

COURSE NUMBER: REH23A

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!