30.11.2014 Views

Chapter 4B. Friction and Equilibrium

Chapter 4B. Friction and Equilibrium

Chapter 4B. Friction and Equilibrium

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Chapter</strong> <strong>4B</strong>. <strong>Friction</strong> <strong>and</strong><br />

<strong>Equilibrium</strong><br />

A PowerPoint Presentation by<br />

Paul E. Tippens, Professor of Physics<br />

Southern Polytechnic State University<br />

© 2007


<strong>Equilibrium</strong>: Until motion<br />

begins, all forces on the mower<br />

are balanced. <strong>Friction</strong> in wheel<br />

bearings <strong>and</strong> on the ground<br />

oppose the lateral motion.


Objectives: After completing this<br />

module, you should be able to:<br />

• Define <strong>and</strong> calculate the coefficients of<br />

kinetic <strong>and</strong> static friction, <strong>and</strong> give the<br />

relationship of friction to the normal force.<br />

• Apply the concepts of static <strong>and</strong> kinetic<br />

friction to problems involving constant<br />

motion or impending motion.


<strong>Friction</strong> Forces<br />

When two surfaces are in contact, friction forces<br />

oppose relative motion or impending motion.<br />

P<br />

<strong>Friction</strong> forces are parallel to<br />

the surfaces in contact <strong>and</strong><br />

oppose motion or impending<br />

motion.<br />

Static <strong>Friction</strong>: No<br />

relative motion.<br />

Kinetic <strong>Friction</strong>:<br />

Relative motion.


<strong>Friction</strong> <strong>and</strong> the Normal Force<br />

4 N<br />

n<br />

2 N<br />

8 N<br />

n<br />

4 N<br />

12 N<br />

n<br />

6 N<br />

The force required to overcome static or kinetic<br />

friction is proportional to the normal force, n.<br />

ff s s<br />

= n s s<br />

ff k k<br />

= n k k


<strong>Friction</strong> forces are independent of area.<br />

4 N 4 N<br />

If the total mass pulled is constant, the same<br />

force (4 N) is required to overcome friction<br />

even with twice the area of contact.<br />

For this to be true, it is essential that ALL<br />

other variables be rigidly controlled.


<strong>Friction</strong> forces are independent of<br />

temperature, provided no chemical or<br />

structural variations occur.<br />

4 N 4 N<br />

Heat can sometimes cause surfaces to become<br />

deformed or sticky. In such cases, temperature<br />

can be a factor.


<strong>Friction</strong> forces are independent of speed.<br />

5 m/s 20 m/s<br />

2 N<br />

2 N<br />

The force of kinetic friction is the same at<br />

5 m/s as it is for 20 m/s. . Again, we must<br />

assume that there are no chemical or<br />

mechanical changes due to speed.


The Static <strong>Friction</strong> Force<br />

When an attempt is made to move an<br />

object on a surface, static friction slowly<br />

increases to a MAXIMUM value.<br />

f s<br />

n<br />

W<br />

P<br />

In this module, when we use the following<br />

equation, we refer only to the maximum<br />

value of static friction <strong>and</strong> simply write:<br />

f<br />

s<br />

<br />

s<br />

n<br />

ff s s<br />

= n s s


Constant or Impending Motion<br />

For motion that is impending <strong>and</strong> for<br />

motion at constant speed, the resultant<br />

force is zero <strong>and</strong> F F = 0. (<strong>Equilibrium</strong>)<br />

Constant Speed<br />

P<br />

P<br />

f s<br />

Rest<br />

P – f s = 0<br />

f k<br />

P – f k = 0<br />

Here the weight <strong>and</strong> normal forces are<br />

balanced <strong>and</strong> do not affect motion.


<strong>Friction</strong> <strong>and</strong> Acceleration<br />

When P is greater than the maximum f s<br />

the resultant force produces acceleration.<br />

a<br />

f k P<br />

Constant Speed<br />

This case will be<br />

discussed in a<br />

later chapter.<br />

f k = n k<br />

Note that the kinetic friction force remains<br />

constant even as the velocity increases.


EXAMPLE 1: If k = 0.3 <strong>and</strong> s = 0.5,<br />

what horizontal pull P is required to<br />

just start a 250-N block moving?<br />

f s<br />

n<br />

W<br />

P<br />

+<br />

1. Draw sketch <strong>and</strong> free-<br />

body diagram as shown.<br />

2. List givens <strong>and</strong> label<br />

what is to be found:<br />

k = 0.3; s = 0.5; W = 250 N<br />

Find: P = ? to just start<br />

3. Recognize for impending motion: P – f s = 0


EXAMPLE 1(Cont.): s = 0.5, W = 250 N. Find<br />

P to overcome f s (max). . Static friction applies.<br />

f s<br />

n<br />

P<br />

+<br />

For this case: P – f s = 0<br />

4. To find P we need to<br />

know f s , which is:<br />

250 N<br />

f s = n n = ?<br />

s<br />

5. To find n:<br />

F y = 0 n – W = 0<br />

W = 250 N<br />

250 N n = 250 N<br />

(Continued)


EXAMPLE 1(Cont.): s = 0.5, W = 250 N. Find P<br />

to overcome f s (max). . Now we know n = 250 N. N<br />

6. Next we find f s from:<br />

f s = n s = 0.5 (250 N)<br />

7. For this case: P – f s = 0<br />

P = f s = 0.5 (250 N)<br />

P = 125 N<br />

f s<br />

n<br />

250 N<br />

P<br />

s = 0.5<br />

+<br />

This force (125(<br />

N) is needed to just start motion.<br />

Next we consider P needed for constant speed.


EXAMPLE 1(Cont.): If k = 0.3 <strong>and</strong> s = 0.5,<br />

what horizontal pull P is required to move with<br />

constant speed? ? (Overcoming kinetic friction)<br />

F y = mam<br />

y = 0<br />

k = 0.3<br />

f k<br />

mg<br />

n<br />

P<br />

+<br />

n - W = 0<br />

n = W<br />

Now: f k = n k = k W<br />

F x = 0; P - f k = 0<br />

P = f k = k W<br />

P = (0.3)(250 N) P = 75.0 N


The Normal Force <strong>and</strong> Weight<br />

The normal force is NOT always equal to<br />

the weight. The following are examples:<br />

W<br />

n<br />

m<br />

P<br />

30 0<br />

Here the normal force is<br />

less than weight due to<br />

upward component of P.<br />

n<br />

<br />

W<br />

P<br />

Here the normal force is<br />

equal to only the component<br />

of weight perpendicular<br />

to the plane.


Review of Free-body Diagrams:<br />

For <strong>Friction</strong> Problems:<br />

• Read problem; draw <strong>and</strong> label sketch.<br />

• Construct force diagram for each object,<br />

vectors at origin of x,y axes. Choose x or y<br />

axis along motion or impending motion.<br />

• Dot in in rectangles <strong>and</strong> label x <strong>and</strong> y compo-<br />

nents opposite <strong>and</strong> adjacent to angles.<br />

• Label all components; choose positive<br />

direction.


For <strong>Friction</strong> in <strong>Equilibrium</strong>:<br />

• Read, draw <strong>and</strong> label problem.<br />

• Draw free-body diagram for for each body.<br />

• Choose x or or y-axis y<br />

along motion or or impending<br />

motion <strong>and</strong> choose direction of of motion as as positive.<br />

• Identify the normal force <strong>and</strong> write one of<br />

of<br />

following:<br />

f s = s n or f k = k n<br />

f s = s n or f k = k n<br />

• For equilibrium, we write for for each axis:<br />

F F x = x 0 F F y = y 0<br />

• Solve for for unknown quantities.


Example 2. A force of 60 N drags a 300-N<br />

block by a rope at an angle of 40 0 above the<br />

horizontal surface. If u k = 0.2, what force P<br />

will produce constant speed?<br />

W = 300 N<br />

n<br />

f k<br />

m<br />

W<br />

P = ?<br />

40 0<br />

The force P is to be<br />

replaced by its com-<br />

ponents P x <strong>and</strong> P y .<br />

1. Draw <strong>and</strong> label a sketch<br />

of the problem.<br />

2. Draw free-body diagram.<br />

P sin 40 0<br />

n<br />

P y<br />

40 0 P<br />

P x<br />

P y<br />

f k P cos 40 0<br />

W +


Example 2 (Cont.). P = ?; W = 300 N; u k = 0.2.<br />

3. Find components of P:<br />

P x = P cos 40 0 = 0.766P<br />

P y = P sin 40 0 = 0.643P<br />

P x = 0.766P; P y = 0.643P<br />

P sin 40 0<br />

n<br />

40 0 P<br />

f k<br />

mg +<br />

P cos 40 0<br />

Note: Vertical forces are balanced, <strong>and</strong> for<br />

constant speed, horizontal forces are balanced.<br />

Fx<br />

0 Fy<br />

0


Example 2 (Cont.). P = ?; W = 300 N; u k = 0.2.<br />

P x = 0.766P<br />

P y = 0.643P<br />

4. Apply <strong>Equilibrium</strong> con-<br />

ditions to vertical axis.<br />

F y y<br />

= 0<br />

0.643P<br />

n<br />

300 N<br />

40 0 P<br />

f k<br />

+<br />

0.766P<br />

n + 0.643P – 300 N N= 0 [P y <strong>and</strong> n are up (+)](<br />

n = 300 N – 0.643P;<br />

Solve for n in terms of P<br />

n = 300 N – 0.643P


Example 2 (Cont.). P = ?; W = 300 N; u k = 0.2.<br />

n = 300 N – 0.643P<br />

5. Apply F x = 0 to con-<br />

stant horizontal motion.<br />

F x x<br />

= 0.766P – ff k k<br />

= 0<br />

0.643P<br />

n<br />

300 N<br />

40 0 P<br />

f k<br />

+<br />

0.766P<br />

f k = n k = (0.2)(300 N - 0.643P)<br />

f k = (0.2)(300 N - 0.643P) ) = 60 N – 0.129P<br />

0.766P – f k = 0;<br />

0.766P – (60 N – 0.129P) = 0


Example 2 (Cont.). P = ?; W = 300 N; u k = 0.2.<br />

0.643P<br />

n<br />

300 N<br />

40 0 P<br />

f k 0.766P<br />

+<br />

0.766P – (60 N – 0.129P )=0<br />

6. Solve for unknown P.<br />

0.766P – 60 N + 0.129P =0<br />

0.766P + 0.129P = 60 N If P = 67 N, the<br />

block will be<br />

0.766P + 0.129P = 60 N dragged at a<br />

0.895P = 60 N<br />

constant speed.<br />

P = 67.0 N<br />

P = 67.0 N


Example 3: What push P up the incline is<br />

needed to move a 230-N block up the<br />

incline at constant speed if k = 0.3?<br />

P<br />

Step 1: Draw free-body<br />

including forces, angles<br />

<strong>and</strong> components.<br />

y<br />

W sin 60 0<br />

f k<br />

n<br />

P<br />

60 0<br />

x<br />

W cos 60 0<br />

60 0<br />

W =230 N<br />

Step 2: F y = 0<br />

n –W cos 60 0 = 0<br />

n = (230 N) cos 60 0<br />

230 N<br />

n = 115 N


Example 3 (Cont.): Find<br />

Find P to give<br />

move up the incline (W = 230 N).<br />

60 0<br />

y n x<br />

P n = 115 N W = 230 N<br />

f Step 3. Apply F x = 0<br />

k W cos 60 0<br />

W sin 60 0 60 0 P - f k - W sin 60 0 = 0<br />

W<br />

f k = n k = 0.2(115 N)<br />

f k = 23 N, P = ?<br />

P - 23 N - (230 N)sin 60 0 = 0<br />

P - 23 N - 199 N N= 0 P = 222 N


Summary: Important Points to Consider<br />

When Solving <strong>Friction</strong> Problems.<br />

• The maximum force of static friction is<br />

the force required to just start motion.<br />

f s<br />

n<br />

W<br />

P<br />

f<br />

s<br />

<br />

s<br />

n<br />

<strong>Equilibrium</strong> exists at that instant:<br />

F<br />

0; F<br />

0<br />

x<br />

y


Summary: Important Points (Cont.)<br />

• The force of kinetic friction is that force<br />

required to maintain constant motion.<br />

f k<br />

n<br />

W<br />

P<br />

f<br />

k<br />

<br />

k<br />

n<br />

• <strong>Equilibrium</strong> exists if speed is constant,<br />

but f k does not get larger as the<br />

speed is increased.<br />

F<br />

0; F<br />

0<br />

x<br />

y


Summary: Important Points (Cont.)<br />

• Choose an x or y-axis along the direction<br />

of motion or impending motion.<br />

k = 0.3<br />

f k<br />

W<br />

n<br />

P<br />

+<br />

The F will be zero<br />

along the x-axis<br />

<strong>and</strong><br />

along the y-axis.<br />

In this figure, we have:<br />

F<br />

0; F<br />

0<br />

x<br />

y


Summary: Important Points (Cont.)<br />

• Remember the normal force n is not<br />

always equal to the weight of an object.<br />

P<br />

n It is necessary to draw<br />

30 0<br />

m the free-body diagram<br />

W<br />

<strong>and</strong> sum forces to solve<br />

for the correct n<br />

P<br />

value.<br />

n<br />

<br />

F<br />

0; F<br />

0<br />

W x<br />

y


Summary<br />

Static <strong>Friction</strong>: No<br />

relative motion.<br />

ff ss ≤ n s s<br />

Kinetic <strong>Friction</strong>:<br />

Relative motion.<br />

ff k k<br />

= n k k<br />

Procedure for solution of equilibrium<br />

problems is the same for each case:<br />

F<br />

0 F<br />

0<br />

x<br />

y


CONCLUSION: <strong>Chapter</strong> <strong>4B</strong><br />

<strong>Friction</strong> <strong>and</strong> <strong>Equilibrium</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!