30.11.2014 Views

Nucleosynthesis in low and intermediate mass stars

Nucleosynthesis in low and intermediate mass stars

Nucleosynthesis in low and intermediate mass stars

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Nucleosynthesis</strong> <strong>in</strong> <strong>low</strong> <strong>and</strong><br />

<strong>in</strong>termediate <strong>mass</strong> <strong>stars</strong><br />

Am<strong>and</strong>a Karakas<br />

Mt Stromlo Observatory<br />

The Australian National University<br />

Canberra, Australia


Introduction<br />

• Stars with <strong>mass</strong>es ~0.8 to 8M sun will become asymptotic giant<br />

branch (AGB) <strong>stars</strong> near the end of their life<br />

• It is estimated that ~50% of the gas <strong>and</strong> dust <strong>in</strong> the Galaxy<br />

comes from red giants <strong>in</strong>clud<strong>in</strong>g AGB <strong>stars</strong><br />

• They are important factories for produc<strong>in</strong>g many elements<br />

(e.g. carbon, nitrogen, 19 F, elements heavier than Fe)<br />

• Models of AGB <strong>stars</strong> can help expla<strong>in</strong> the unusual composition<br />

of very metal-poor <strong>stars</strong>, <strong>and</strong> of pre-solar gra<strong>in</strong>s<br />

• Do <strong>mass</strong>ive AGB <strong>stars</strong> play a role <strong>in</strong> the globular cluster<br />

abundance anomalies?<br />

• In this talk I will focus on a couple of examples that test our<br />

knowledge of AGB <strong>stars</strong> <strong>and</strong> stellar nucleosynthesis


Basic Stellar Evolution<br />

Z = 0.02 or [Fe/H] = 0.0 , metallicity refers to both Z,<br />

total metals, or [Fe/H] = log 10 (Fe/H) star - log 10 (Fe/H) sun<br />

Ma<strong>in</strong> sequence:<br />

H to Helium<br />

τ ~ 10 10 yrs for 1<br />

~ 10 8 yrs for 5<br />

Red Giant Branch:<br />

core contracts<br />

outer layers exp<strong>and</strong><br />

E-AGB phase:<br />

a-er core He-burn<strong>in</strong>g<br />

star becomes a red giant<br />

for the second time


Gett<strong>in</strong>g processed matter out<br />

• For <strong>mass</strong>ive <strong>stars</strong>, explosions end the star’s life <strong>and</strong><br />

releases matter <strong>in</strong>to the <strong>in</strong>terstellar medium<br />

• For <strong>low</strong>-<strong>mass</strong> <strong>stars</strong>, there are no explosions<br />

• Instead, <strong>mass</strong> loss s<strong>low</strong>ly removes the envelope<br />

• Mix<strong>in</strong>g between the core <strong>and</strong> the envelope takes<br />

place to change the surface composition<br />

• There are st<strong>and</strong>ard mix<strong>in</strong>g events:<br />

– First dredge-up: hydrogen-fusion processed material<br />

– Second dredge-up: H-burn<strong>in</strong>g<br />

– Third dredge-up: Products of He-fusion<br />

AGB{ – Hot bottom burn<strong>in</strong>g: H-burn<strong>in</strong>g


Where mix<strong>in</strong>g takes place<br />

HBB, TDU<br />

SDU<br />

FDU


Asymptotic Giant Branch <strong>stars</strong><br />

H-rich envelope<br />

Mass scale:<br />

Total <strong>mass</strong> = 3Msun,<br />

Core <strong>mass</strong> = 0.6Msun<br />

Envelope <strong>mass</strong> = 2.4Msun<br />

Radial scale:<br />

If we scale the core to the size of a<br />

marble (few cms) then to reach the<br />

outer layers we have to travel ~<br />

500 metres!<br />

H-exhausted core


Example: 3Msun, Z = 0.02


Zoom <strong>in</strong> on first few thermal pulses<br />

Time is scaled: (t-4.23 x 10 8 /1x 10 5 )<br />

White = radiated lum<strong>in</strong>osity<br />

Green = he-burn<strong>in</strong>g lum<strong>in</strong>osity, <strong>and</strong> Red = H-burn<strong>in</strong>g lum<strong>in</strong>osity


AGB lifecycle <strong>in</strong> more detail<br />

Deep convective<br />

envelope<br />

H-burn<strong>in</strong>g shell<br />

He-rich <strong>in</strong>tershell<br />

He-burn<strong>in</strong>g shell<br />

C-O core


AGB lifecycle <strong>in</strong> more detail<br />

Deep convective<br />

envelope<br />

H-burn<strong>in</strong>g shell<br />

He-rich <strong>in</strong>tershell<br />

He-burn<strong>in</strong>g shell<br />

C-O core


AGB lifecycle <strong>in</strong> more detail<br />

Deep convective<br />

envelope<br />

H-burn<strong>in</strong>g shell<br />

He-rich <strong>in</strong>tershell<br />

He-burn<strong>in</strong>g shell<br />

C-O core


AGB lifecycle <strong>in</strong> more detail<br />

Deep convective<br />

envelope<br />

H-burn<strong>in</strong>g shell<br />

He-rich <strong>in</strong>tershell<br />

He-burn<strong>in</strong>g shell<br />

C-O core


AGB lifecycle <strong>in</strong> more detail<br />

Deep convective<br />

envelope<br />

H-burn<strong>in</strong>g shell<br />

He-rich <strong>in</strong>tershell<br />

He-burn<strong>in</strong>g shell<br />

C-O core


AGB lifecycle <strong>in</strong> more detail<br />

Deep convective<br />

envelope<br />

H-burn<strong>in</strong>g shell<br />

He-rich <strong>in</strong>tershell<br />

He-burn<strong>in</strong>g shell<br />

C-O core


The AGB Evolution Cycle<br />

1. On phase: He-shell burns brightly, produc<strong>in</strong>g up to 100<br />

million L sun , drives a convection zone <strong>in</strong> the He-rich <strong>in</strong>tershell<br />

<strong>and</strong> lasts for ~ 100 years<br />

2. Power-down: He-shell dies down, energy released by flash<br />

drives expansion which ext<strong>in</strong>guishes the H-shell<br />

3. Third dredge-up: convective envelope moves <strong>in</strong>ward <strong>in</strong>to<br />

regions mixed by flash-driven convection. Mixes partially Heburnt<br />

material to surface.<br />

4. Interpulse: star contracts <strong>and</strong> H-shell is re-ignited, provides<br />

most of the surface lum<strong>in</strong>osity for the next 10 4 to 10 5 years<br />

Pulse (He-burn<strong>in</strong>g) TDU (mix<strong>in</strong>g) Interpulse<br />

Few ~10 2 yrs ~10 2 years ~10 4-5 yrs


<strong>Nucleosynthesis</strong>: He-burn<strong>in</strong>g<br />

• Ma<strong>in</strong> energy-generat<strong>in</strong>g reactions:<br />

– 3α process: 3 4 He 12 C<br />

– 12 C(α,γ) 16 O – relatively unimportant dur<strong>in</strong>g<br />

thermal pulses<br />

• Other reactions:<br />

– 14 N captures 2 α particles to make 22 Ne<br />

– 22 Ne can capture an α particle to produce<br />

25,26<br />

Mg. Only occurs when T > 300 million K<br />

– 19 F can be produced through complex series of<br />

reactions <strong>in</strong>volv<strong>in</strong>g both H, He-burn<strong>in</strong>g <strong>and</strong><br />

neutron-capture nucleosynthesis


Mak<strong>in</strong>g Carbon Stars!<br />

• Thermal pulses <strong>and</strong> dredge-up can occur many<br />

times dur<strong>in</strong>g the AGB<br />

• Dredge up mixes 12 C from the He-shell to the<br />

surface, <strong>in</strong>creas<strong>in</strong>g the C/O ratio to > 1<br />

• Can expla<strong>in</strong> the transition from M-type star (with<br />

C/O 1)<br />

• Along with carbon, the third dredge-up mixes<br />

elements created by the s<strong>low</strong>-neutron capture<br />

process (s-process) <strong>in</strong>to the envelope<br />

• Fluor<strong>in</strong>e is produced <strong>in</strong> the <strong>in</strong>tershell <strong>and</strong> mixed<br />

to the surface by the TDU (Jorissen et al. 1992)


This is how we make carbon <strong>stars</strong>!


And it’s easier at <strong>low</strong>er metallicity<br />

M = 3, Z = 0.004, [Fe/H] ~ - 0.7


Hot bottom burn<strong>in</strong>g<br />

• In <strong>mass</strong>ive (M > 3Msun) AGB <strong>stars</strong> the base of the convective<br />

envelope can dip <strong>in</strong>to the H-shell<br />

• Typical temperatures between ~50 to 100 million K<br />

• Burn<strong>in</strong>g region is th<strong>in</strong> <strong>in</strong> <strong>mass</strong> (10 -4 Msun) but efficient mix<strong>in</strong>g<br />

means that entire envelope is exposed to hot region at least<br />

1000 times per <strong>in</strong>terpulse!<br />

• Envelope burn<strong>in</strong>g was orig<strong>in</strong>ally proposed to expla<strong>in</strong><br />

existence of lum<strong>in</strong>ous O-rich AGB <strong>stars</strong> <strong>in</strong> the LMC (Wood,<br />

Bessel & Fox 1983)<br />

• Many of these <strong>stars</strong> also rich <strong>in</strong> lithium <strong>and</strong> s-process<br />

elements (Smith & Lambert 1989)<br />

• Dredge-up can still occurs but CNO cycl<strong>in</strong>g at the base of the<br />

envelope prevents the formation of a C-rich atmosphere


Dredge-up still occurs


But the base of the envelope is hot!<br />

6.5M sun , Z =Z solar : Peak temperature ~ 90 x 10 6 K


Surface abundance evolution<br />

The 13 C content <strong>in</strong>creases, due to the process<strong>in</strong>g of 12 C <strong>in</strong>to 12 C. In extreme cases,<br />

when the entire envelope can be processed many time between pulses, HBB can<br />

produce the equilibrium ratio of 12 C/ 13 C of about 3.5. A consequence of this burn<strong>in</strong>g<br />

is the copious production of primary 14 N.


Production of sodium<br />

Surface abundance evolution dur<strong>in</strong>g the AGB phase<br />

sodium production<br />

Production of 25,26 Mg


Production of Li <strong>and</strong> destruction of F<br />

F production <strong>and</strong> destruction!<br />

Short-lived Li production phase<br />

as a result of HBB


Model uncerta<strong>in</strong>ties<br />

• Mass loss: model calculations use simple parameterized<br />

formulae which are supposed to be an average of what is<br />

observed. What about <strong>mass</strong> loss for very <strong>low</strong> Z models?!<br />

• Convection: 1D models mostly use mix<strong>in</strong>g-length theory. Also<br />

numerical problem of treat<strong>in</strong>g convective boundaries<br />

• Extra-mix<strong>in</strong>g? When <strong>and</strong> where to apply! What are the physical<br />

processes that produce it (e.g. rotation, overshoot)? Multidimensional<br />

modell<strong>in</strong>g is required!<br />

• Reaction rates: improvements have been made but large<br />

uncerta<strong>in</strong>ties rema<strong>in</strong> for many important reactions e.g.<br />

22<br />

Ne(a,n) 25 Mg<br />

• Low-temperature molecular opacities: AGB <strong>stars</strong> have cool<br />

enough outer layers to dem<strong>and</strong> a proper treatment


The s<strong>low</strong>-neutron capture process<br />

The s process is responsible for the<br />

production of about half the<br />

abundances of elements heavier<br />

than iron <strong>in</strong> the Galaxy.<br />

s-process peaks<br />

Dur<strong>in</strong>g the s process:<br />

N n ~ 10 7 n/cm 3<br />

t(n,g) >> t b


Chart of the Nuclides<br />

The further a nucleus is from the valley of nuclear stability, the more<br />

unstable it is to β ± decay i.e. the shorter is its half-life<br />

From Frank Timmes website


The s-process path<br />

p-process nuclei - proton rich!<br />

S-only isotope<br />

The unstable Tc is observed <strong>in</strong> <strong>stars</strong>!<br />

r-process isotope<br />

s-process branch<strong>in</strong>g po<strong>in</strong>t


Time evolution of their structure.<br />

Where <strong>in</strong> AGB <strong>stars</strong>?<br />

4<br />

He, 12 C, 22 Ne, s-process elements: Zr, Ba, ...


Time evolution of their structure.<br />

Where <strong>in</strong> AGB <strong>stars</strong>?<br />

4<br />

He, 12 C, 22 Ne, s-process elements: Zr, Ba, ...<br />

At the<br />

stellar<br />

surface:<br />

C>O, s-<br />

process<br />

enhance<br />

ments


Theoretical models: the neutron sources<br />

proton<br />

diffusion<br />

13<br />

C(α,n) 16 O<br />

Interpulse phase (t ~ 10 4 years)


Theoretical models: the neutron sources<br />

proton<br />

diffusion<br />

13<br />

C(α,n) 16 O<br />

22<br />

Ne(α,n) 25 Mg<br />

Interpulse phase (t ~ 10 4 years)


Theoretical models: the neutron sources<br />

Low <strong>mass</strong> AGBs<br />

Intermediate <strong>mass</strong> AGBs<br />

Lower temperature ~4.5 M Higher temperature<br />

Larger <strong>in</strong>tershell <strong>mass</strong><br />

Smaller <strong>in</strong>tershell <strong>mass</strong><br />

proton<br />

diffusion<br />

13<br />

C(α,n) 16 O<br />

22<br />

Ne(α,n) 25 Mg<br />

Interpulse phase (t ~ 10 4 years)


Inclusion of a 13 C pocket<br />

• St<strong>and</strong>ard <strong>low</strong>-<strong>mass</strong> AGB models do not produce<br />

enough s-process elements to match observations<br />

of AGB <strong>stars</strong><br />

• That is because there is not enough 13 C <strong>in</strong> the He<strong>in</strong>tershell<br />

to activate the 13 C(α,n) 16 O reaction<br />

• So we need to artificially add <strong>in</strong> some 13 C<br />

• This is not great, but the best we can do <strong>in</strong> 1D<br />

• The mix<strong>in</strong>g mechanism <strong>and</strong> the extent <strong>in</strong> <strong>mass</strong> of<br />

the pocket are unknown<br />

• see Herwig (2005, ARAA) for more discussions<br />

about 13 C pockets <strong>and</strong> 3D efforts be<strong>in</strong>g made to<br />

underst<strong>and</strong> how they form


Theoretical models<br />

Typical neutron<br />

density profile <strong>in</strong><br />

time:<br />

Low <strong>mass</strong><br />

Intermediate <strong>mass</strong><br />

Neutron source<br />

13<br />

C(a,n) 16 O<br />

22<br />

Ne(a,n) 25 Mg<br />

Maximum<br />

neutron density<br />

Timescale<br />

10 8 n/cm 3<br />

10,000 yr<br />

10 13 n/cm 3<br />

10 yr<br />

Neutron exposure<br />

0.3 mbarn -1 0.02 mbarn -1<br />

(at solar metallicity)


Neutron density <strong>in</strong>dicators<br />

At high neutron densities, two branch<strong>in</strong>g po<strong>in</strong>ts open that al<strong>low</strong><br />

rubidium to be produced. At N n =5 x 10 8 n/cm 3 ~80% of the flux goes<br />

through 85 Kr, <strong>and</strong> the branch<strong>in</strong>g at 86 Rb opens to make 87 Rb<br />

1.<br />

85<br />

Rb has a high σ = 240 mb (30 keV)<br />

2. 87 Rb is magic, has a <strong>low</strong> σ = 15 mb (30 keV)<br />

Rb <strong>in</strong> AGB <strong>stars</strong> <strong>in</strong> an <strong>in</strong>dicator of the neutron density!<br />

86<br />

Kr, 87 Rb, <strong>and</strong> 88 Sr are<br />

all magic, with <strong>low</strong> neutron<br />

capture cross sections<br />

In <strong>low</strong>-<strong>mass</strong> <strong>stars</strong>: 88 Sr produced<br />

In <strong>mass</strong>ive AGB: 87 Rb


Rubidium enhancements <strong>in</strong> AGB <strong>stars</strong><br />

Max. production factor ~ 100!<br />

[Rb/Fe]<br />

Increas<strong>in</strong>g stellar <strong>mass</strong><br />

From D. A. Garcia-Hern<strong>and</strong>ez et al. (2006, Science)


Comparison to observations: Rb<br />

Carbon <strong>stars</strong> from Abia et al.<br />

(2001): <strong>low</strong> <strong>mass</strong> AGBs<br />

OH <strong>stars</strong> from Garcia-Hern<strong>and</strong>ez et<br />

al. (2006): <strong>in</strong>termediate <strong>mass</strong> AGBs<br />

Stellar model of 1.5, 5 M <strong>and</strong><br />

Z (FRANEC + Tor<strong>in</strong>o)<br />

Stellar model of 3 M <strong>and</strong> Z <br />

(MONSSTAR + Monash).


Comparison to observations: Rb<br />

Carbon <strong>stars</strong> from Abia et al.<br />

(2001): <strong>low</strong> <strong>mass</strong> AGBs<br />

OH <strong>stars</strong> from Garcia-Hern<strong>and</strong>ez et<br />

al. (2006): <strong>in</strong>termediate <strong>mass</strong> AGBs<br />

Stellar model of 1.5, 5 M <strong>and</strong><br />

Z (FRANEC + Tor<strong>in</strong>o)<br />

Stellar model of 3 M <strong>and</strong> Z <br />

(MONSSTAR + Monash).


Comparison to observations: Rb<br />

Carbon <strong>stars</strong> from Abia et al.<br />

(2001): <strong>low</strong> <strong>mass</strong> AGBs<br />

OH <strong>stars</strong> from Garcia-Hern<strong>and</strong>ez et<br />

al. (2006): <strong>in</strong>termediate <strong>mass</strong> AGBs<br />

Stellar model of 1.5, 5 M <strong>and</strong><br />

Z (FRANEC + Tor<strong>in</strong>o)<br />

Stellar model of 3 M <strong>and</strong> Z <br />

(MONSSTAR + Monash).<br />

Stellar model of 6.5 M <strong>and</strong> Z <br />

(MONSSTAR + Monash).<br />

Stellar model of 5 M <strong>and</strong> Z <br />

(MONSSTAR + Monash).


We also produce Zr…


How do AGB <strong>stars</strong> make F?<br />

• The reaction cha<strong>in</strong>: 18 O(p, α) 15 N(α, γ) 19 F(α, p) 22 Ne<br />

• Fluor<strong>in</strong>e production takes place <strong>in</strong> the He<strong>in</strong>tershell<br />

region: He-rich, H poor<br />

• There are almost no protons, <strong>and</strong> little 15 N<br />

• These are created by other reactions <strong>in</strong>clud<strong>in</strong>g:<br />

– 13 C(α, n) 16 O - produces free neutrons<br />

– 14 N(n, p) 14 C - produces free protons<br />

– 18 F(α, p) 21 Ne - alternative proton production<br />

– 14 N(α, γ) 18 F(β + ) 18 O - ma<strong>in</strong> reaction to produce 18 O<br />

– 14 C(α, γ) 18 O - alternative reaction<br />

– 18 O(α, γ) 22 Ne - ma<strong>in</strong> 18 O destruction reaction<br />

– 15 N(p, α) 12 C - destroys 15 N


Fluor<strong>in</strong>e production<br />

Results for a 3Msun model:<br />

Composition profile show<strong>in</strong>g <strong>in</strong>tershell<br />

region just a-er last TP. TDU will mix<br />

the 19 F created by the pulse <strong>in</strong>to the<br />

envelope<br />

C/O<br />

Abundances from Jorissen et al.<br />

(1992) compared to model results<br />

⊗ - shows SC <strong>stars</strong>, with C/O = 1.0


The 18 F(a,p) 21 Ne reaction<br />

• Lee et al. (2008) recently performed experiments<br />

to obta<strong>in</strong> this reaction rate for the first time<br />

• Up until 2006, only theoretical rate was available<br />

• This experimental evaluation, when consider<strong>in</strong>g its<br />

associated uncerta<strong>in</strong>ties, presented significant<br />

differences compared to the theoretical rate at T ≈<br />

300 million K<br />

• Us<strong>in</strong>g the upper limit of this rate, we f<strong>in</strong>d<br />

<strong>in</strong>creases <strong>in</strong> the production of 19 F <strong>and</strong> 21 Ne<br />

• How does this come about? Through the extra<br />

protons released by this (a,p) reaction<br />

• Further experimental results needed to test the<br />

validity of the upper limit


[F/O] versus C/O ratio<br />

With upper limit<br />

Recommended rate<br />

Karakas et al. (2008)<br />

Increas<strong>in</strong>g C/O ratio


Ne isotopic ratios<br />

Previous models<br />

Pre-solar gra<strong>in</strong> data<br />

With 18 F(a,p) rate, we<br />

can move horizontally<br />

Karakas et al. (2008)


Fluor<strong>in</strong>e <strong>in</strong> C-rich metal-poor <strong>stars</strong><br />

• The fluor<strong>in</strong>e abundance of the carbon-enhanced metal-poor<br />

star HE 1305+0132 is [F/Fe] = 2.90 (Schuler et al. 2007)<br />

• The iron abundance is [Fe/H] = -2.5, mak<strong>in</strong>g HE 1305+0132<br />

the most Fe-deficient star, by more than an order of<br />

magnitude, for which the abundance of fluor<strong>in</strong>e has been<br />

measured<br />

• Schuler et al. concluded that the atmosphere of HE<br />

1305+0132 was polluted via <strong>mass</strong> transfer by a primary<br />

companion dur<strong>in</strong>g its AGB phase<br />

• Lugaro et al. (2008) estimate that AGB models of 2Msun, Z<br />

= 0.0001 can expla<strong>in</strong> the composition of HE 1305<br />

• Al<strong>low</strong><strong>in</strong>g for 3 to 11% of the AGB matter to be accreted by a<br />

companion<br />

• We also predict that most CEMP <strong>stars</strong> should also be rich <strong>in</strong><br />

fluor<strong>in</strong>e, s<strong>in</strong>ce <strong>mass</strong>ive rotat<strong>in</strong>g <strong>stars</strong> of <strong>low</strong> Z do not<br />

produce F


Fluor<strong>in</strong>e <strong>in</strong> HE 1305<br />

Note that HE 1305 has an<br />

Fe abundance ~2.5 orders<br />

of magnitude smaller than<br />

the MS/S/C <strong>stars</strong> <strong>in</strong> this<br />

sample<br />

Most MS/S/C <strong>stars</strong> are disk<br />

<strong>stars</strong> with near solar Z<br />

Logarithmic abundances of 19 F versus 12 C.<br />

The abundances of HE 1305+0132 are marked<br />

by the magenta box with error bars.<br />

From Schuler et al. (2007).


Model results: F, C+N abundances<br />

The grey area is the region<br />

where the F, <strong>and</strong> C+N<br />

abundances from the AGB<br />

companion should be to<br />

match the observed<br />

abundances, a-er dilution<br />

The darker grey is the area<br />

covered by our models<br />

Models: [Fe/H] = -2.3, scaled<br />

solar <strong>in</strong>itial composition<br />

From Lugaro et al. (2008, A&A Letters, <strong>in</strong> press)


Summary<br />

• All <strong>stars</strong> <strong>in</strong> the <strong>mass</strong> range 0.8 to ~8 Msun will<br />

pass through the AGB phase<br />

• AGB <strong>stars</strong> make an important contribution to<br />

the chemical evolution of galaxies<br />

• Important factories for C, N, F, <strong>and</strong> s-process<br />

elements<br />

• Model uncerta<strong>in</strong>ties (e.g. convection, <strong>mass</strong> loss,<br />

nuclear reaction rates) still problematic<br />

• Necessary to compare the models to the<br />

observations<br />

• Abundances from carbon enhanced metal-poor<br />

<strong>stars</strong> provide an <strong>in</strong>terest<strong>in</strong>g set of <strong>stars</strong> for<br />

comparison!


Fluor<strong>in</strong>e <strong>in</strong> the <strong>in</strong>tershell<br />

Fluor<strong>in</strong>e <strong>in</strong>tershell abundance reach a maximum (150 to 290<br />

times solar) for <strong>stars</strong> between 2 <strong>and</strong> 3.5Msun<br />

L<strong>in</strong>es from F v <strong>and</strong> F vi have been discovered <strong>in</strong> FUSE spectra<br />

of several PG1159 <strong>stars</strong> (Werner et al. 2005).<br />

Abundance rang<strong>in</strong>g from solar to 250 times solar

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!